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How to read the length of a braid from its curve diagram
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Abstract. We prove that the Garside length of a braid is equal to a winding-number type
invariant of the curve diagram of the braid.
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1. Introduction

Is it possible to read the length of a braid ˇ from the curve diagram of ˇ? The words
used in this question admit different interpretations, but in this paper we shall show
that, if the word “length” is interpreted in the sense of Garside, then the answer is
affirmative: the Garside length of a braid is equal to a winding-number type invari-
ant of the curve diagram which can be read from the diagram by a simple-minded
procedure.

The easiest answer one might have hoped for is that the length of a braid is
proportional to the number of intersections of the curve diagram of the braid with
the real line. This answer, however, is false – see for instance [12] and [4]. In
these papers a relation was established between a certain distorted word length and
the above-mentioned intersection number, which is in turn related to the distance in
Teichmüller space between a base point and its image under the braid action.

Let us recall some basic definitions and establish some notation. We recall that
Garside introduced in [8] a certain set of generators for the braid group, called the
Garside generators (or “divisors of �” or “positive permutation braids”). The length
of an element of the braid group with respect to this generating set is called its Garside
length. Still according to Garside, every braid ˇ can be written in a canonical way as
a product of Garside generators and their inverses (see e.g. [5], [2], [9]). From this
canonical form one can read off two integer numbers inf.ˇ/ and sup.ˇ/, which are
the maximal and minimal integers, respectively, satisfying

�inf.ˇ/ 4 ˇ 4 �sup.ˇ/:
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(Here the symbol 4 denotes the subword partial ordering: ˇ1 4 ˇ2 means that there
exists a product w of Garside generators such that ˇ1 �w D ˇ2. Moreover, � denotes
Garside’s half twist braid �1 � .�2�1/ : : : .�n�1 : : : �1/.) Then one can show that the
Garside length of ˇ equals max.sup.ˇ/; 0/ � min.inf.ˇ/; 0/.

We denote Dn the n times punctured disk, i.e., the disk D2 D fc 2 C j jcj 6 1g,
equipped with n punctures which are regularly spaced in the interior of the interval
Œ�1; 1�. We define E to be the diagram in Dn consisting of the real (horizontal)
line segment between the leftmost and the rightmost puncture. We define xE to be
the diagram consisting of the real line segment between the point �1 (the leftmost
point of @D2) and the rightmost puncture. A curve diagram of a braid ˇ is the image
of xE under a diffeomorphism of Dn representing the braid ˇ (cf. [6]). Throughout
this paper, braids act on the right. We shall call a curve diagram reduced if it has
the minimal possible number of intersections with the horizontal line, and also the
minimal possible number of vertical tangencies in its diffeotopy class, and if none of
the punctures lies in a point of vertical tangency.

2. Winding number labellings and the main result

For a braid ˇ we are going to denote xDˇ the curve diagram of ˇ, and Dˇ the image
of E under ˇ – so Dˇ is obtained from xDˇ simply by removing one arc. We shall
label each segment of xDˇ between two subsequent vertical tangencies by an integer
number, in the following way: the first segment (which starts on @D2) is labelled 0,
and if the label of the i th segment is k, and if the transition from the i th to the .i C1/st
segment is via a right curve, then the .i C 1/st segment is labelled k C 1. If, on the
other hand, the transition is via a left curve, then the label of the .i C 1/st segment is
k � 1. See Figure 1 for an example of this labelling. We shall call this labelling the
winding number labelling of the curve diagram.

A more rigorous definition of this labelling is as follows. If ˛ W I ! D2 is a smooth
parametrization of the curve diagram xDˇ , defined on the unit interval I D Œ0; 1�, and
such that ˛.0/ D �1, then we define the tangent direction function T˛ W I ! R=2Z
as the angle of the tangent direction of ˛ against the horizontal, divided by �� . In
particular, if the arc goes straight to the right in ˛.t/, then T˛.t/ D 0 C 2Z. If it goes
straight down, then T˛.t/ D 1

2
C 2Z; and if it goes to the left, then T˛.t/ D 1 C 2Z.

Now we have a unique lifting of the function T˛ to a function zT˛ W I ! R with
zT˛.0/ D 0. Finally, if r W R ! Z denotes the rounding function, which sends every
real number to the nearest integer (rounding down nC 1

2
), then we define the function

�˛ W I ! R; t 7! r B zT˛.t/;

which one might call the rounded lifted tangent direction function.
Now the winding number labelling can be redefined as follows: a point x of Dˇ

with non-vertical tangent direction is labelled by the integer �˛.t/, where t in I is
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such that ˛.t/ D x.
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Figure 1. The curve diagram (with the first line drawn dashed) of the braid ˇ D .�1��1
2

/2.
The labels of the solid arcs vary between �2 and 2. The Garside normal form of ˇ is ��1

2
��1

1
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��1
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� �2 � �2�1, so its infimum is �2 and its supremum is 2. Also note that there is only one
arc carrying the maximal label “2” and only one arc with the minimal label “�2”.

We shall denote the largest and smallest labels occurring in Dˇ by LL.ˇ/ and
SL.ˇ/. Notice that we are talking about the restricted diagram Dˇ , not the full
diagram xDˇ . Nevertheless, in order to actually calculate the labels of the restricted
diagram, one has to start by calculating the labels of the first arc (the one that starts
at �1 on @D2).

Theorem 2.1. For any braid ˇ, the largest label occurring in the diagram Dˇ is
equal to sup.ˇ/ and the smallest label occurring is equal to inf.ˇ/. In particular, the
Garside length of the braid ˇ is max.LL.ˇ/; 0/ � min.SL.ˇ/; 0/.

Proof of Theorem 2.1. The proof comes down to the following lemma:

Lemma 2.2. If ˇ is a positive braid, then the largest label occurring in the diagram
Dˇ is equal to the Garside length of ˇ.

Let us first see why Lemma 2.2 implies Theorem 2.1: let us assume for the moment
that Lemma 2.2 is true, and try to deduce Theorem 2.1. The crucial observation is
that multiplying ˇ by �k increases all four numbers (the sup, the inf, the maximal
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label of Dˇ and the minimal label of Dˇ ) by k. We obtain

LL.ˇ/ D LL.ˇ�� inf.ˇ// C inf.ˇ/

�D lengthGars.ˇ�� inf.ˇ// C inf.ˇ/

D sup.ˇ�� inf.ˇ// C inf.ˇ/ D sup.ˇ/;

where
�D denotes that the equality follows from Lemma 2.2. Now we make the

following

Claim: If ˇ is a negative braid, then the smallest label occurring in Dˇ , multiplied
by �1, is equal to the Garside length of ˇ.

In order to prove this claim, we consider the image Ň of ˇ under the homomor-
phism which replaces each crossing �˙1

i by its negative crossing ��1
i . Its curve

diagram D Ň is just the mirror image, with respect to the horizontal line, of Dˇ . We
observe that

inf.ˇ/ D � sup. Ň/; sup.ˇ/ D � inf. Ň/; LL.ˇ/ D � SL. Ň/; SL.ˇ/ D � LL. Ň/:
The claim now follows from Lemma 2.2.

Now we have for an arbitrary braid ˇ that

SL.ˇ/ D SL.ˇ�� sup.ˇ// C sup.ˇ/

�D � lengthGars.ˇ�� sup.ˇ// C sup.ˇ/

D inf.ˇ�� sup.ˇ// C sup.ˇ/ D inf.ˇ/;

where
�D denotes that the equality follows from the Claim. This completes the proof

of Theorem 2.1, assuming Lemma 2.2.

Proof of Lemma 2.2. First we shall prove that for a positive braid ˇ we have LL.ˇ/ 6
lengthGars.ˇ/. By induction, this is equivalent to proving the following: if ˇ is a
positive braid and ˇC is a divisor of �, then LL.ˇ � ˇC/ 6 LL.ˇ/ C 1.

The action on the disk of any braid ˇC which is a divisor of � can be realized
by the following dance of the punctures. Initially the punctures are lined up on the
real line. As a first step, perform a clockwise rotation so that the punctures are lined
up on the imaginary axis. As a second step, move each of the punctures horizontally,
until no more puncture lies precisely above any other one. In a third step, by vertical
movements, bring all the punctures back to the horizontal line.

Let us suppose that ˛ W I ! D2 is a parametrization of the curve diagram xDˇ ,
and let us look at a segment I 0 � I parametrizing a segment between two successive
points of vertical tangency. The function �˛jI 0 is constant, we shall denote its value
by k; this means that on the interval I 0, the function zT˛ takes values in the interval
�k � 1

2
; k C 1

2
�. Now, after the first step of the puncture dance (the rotation), we

have a deformed curve diagram parametrized by a function ˛0 W I ! D2, and we
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observe that on the interval I 0, the function zT˛0 takes values in the interval �k; k C 1�.
The horizontal movement of the punctures deforms the arc ˛0 into an arc ˛00, but
during this deformation no horizontal tangencies are created or destroyed; therefore
the values of zT˛00 jI 0 still lie in the interval �k; k C 1�. The third step (squashing the
punctures back to the real line) changes tangent directions by at most a quarter turn,
so the new function zT˛000 takes values in the interval �k � 1

2
; k C 3

2
� on I 0. Thus on

the interval I 0, we have �˛000 2 fk; k C 1g, so the labels have increased by at most
one under the action of ˇC. This completes the proof that LL.ˇ/ 6 lengthGars.ˇ/.

In order to prove the converse inequality, we shall prove that for any braid ˇ

with SL.ˇ/ > 0, there is a braid ˇ� which is the inverse of a simple braid such that
LL.ˇ � ˇ�/ D LL.ˇ/ � 1 and still SL.ˇ � ˇ�/ > 0. Intuitively, every braid can be
“relaxed” into another one with less high twisting.

Our construction of such a braid ˇ� will again be in the form of a dance of the
punctures of Dˇ , where in a first step each puncture performs a vertical movement
until no two punctures lie at the same height, in a second step the punctures are
squashed onto the imaginary axis by horizontal movements, and in a third step the
punctures are brought back to the horizontal axis by a 90ı counterclockwise rotation
of the vertical axis.

The only step that needs to be defined in a more detailed manner is the first one.
In order to do so, we first classify the kinds of segments which one can see between
successive points with vertical tangency in the diagram Dˇ . Firstly, there are those
segments which start in a right turn and end in a left turn (see Figure 2 (a)); these
correspond to local maxima of the function �˛ . Secondly, there are those segments
that start in a left and end in a right turn (see Figure 2 (b)); these correspond to local
minima of the function �˛ . Thirdly, there are those that start and end in a right turn,
and, fourthly, those that start and end in a left turn (see Figure 2 (c) and (d)). The
key to the construction of ˇ� is the following lemma, which is also illustrated in
Figure 2.

Sublemma 2.3. There exists a diffeotopy of the disk which moves every point only
vertically up or down and which deforms the diagram Dˇ into a diagram D0 such
that:

(1) Arcs of the first and second type in Dˇ give rise to arcs in D0 which do not have
any horizontal tangencies.

(2) Arcs of the third type in Dˇ give rise to arcs in D0 which have precisely one
maximum and no minimum in the vertical direction (and hence exactly one
horizontal tangency).

(3) Arcs of the fourth type in Dˇ give rise to arcs in D0 which have precisely one
minimum and no maximum in the vertical direction.

Proof of Sublemma 2.3. We define a relation on the set of punctures in the diagram
Dˇ by saying that a puncture p1 is below a puncture p2 if there is some segment of
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(b)

(c)

(d)

(a)

Figure 2. Four types of segments of curve between points of vertical tangency, and how to
deform them by vertical movements of the punctures.

Dˇ which contains no vertical tangencies and such that p1 lies below the segment,
or possibly on it, and such that p2 lies above, or possibly on, the segment – but at
most one of the two punctures is supposed to lie on the segment. We observe that this
relation is a partial order. Let us choose any extension of this partial order to a total
order. Now the desired diffeotopy can be obtained by sliding the punctures of Dˇ up
or down so that their vertical order corresponds to the total order just defined.

This completes our description of the first step of the puncture dance, and hence
the definition of the braid ˇ�.

Now we have to prove that the action of ˇ� simplifies the curve diagram as claimed.
Let us look at an arc of Dˇ between two successive vertical tangencies which carries
the label LL.ˇ/, i.e., the largest label that occurs. Such an arc is of the first type, in
the above classification. Let us suppose that ˛ W I ! D2 is a parametrization of the
curve diagram Dˇ , and that I 0 is a subinterval of I such that ˛jI 0 parametrizes the
arc under consideration. On the interval I 0, the function T˛ takes values in the range
� LL.ˇ/� 1

2
; LL.ˇ/C 1

2
�. The first step of our particle dance, however, deforms ˛ into

a parametrized arc ˛0 such that T˛0 only takes values in the range � LL.ˇ/� 1
2
; LL.ˇ/Œ.

Now the second step deforms the arc ˛0 into an arc ˛00. Since this step only
moves points horizontally, it never creates or destroys a point of horizontal tangency
in the diagram, so on the interval I 0 the function T˛00 only takes values in the range
� LL.ˇ/ � 1; LL.ˇ/Œ. Finally, the third step acts as a 90o counterclockwise rotation
on the arc, so the values of T˛000 lie in the interval � LL.ˇ/� 3

2
; LL.ˇ/� 1

2
Œ. Therefore

the segment parametrized by ˛000jI 0 is part of a segment in the curve diagram of DˇˇC

which is labelled LL.ˇ/ � 1.
Next we claim that an arc of Dˇ which is labelled by SL.ˇ/, i.e., the minimal

possible label, gives rise in DˇˇC
to part of an arc which is still labelled SL.ˇ/, and
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in particular still positive. This proof is similar to the argument just presented, and it
is left to the reader.

3. Maximally labeled arcs are rare

There is one additional observation to be made about our labellings of curve diagrams.
Not only do the extremal labels determine the Garside length of the braid, but moreover
these extremal labels occur only very rarely in the diagram: there is a bound on their
number which is linear in the number of punctures n and independent of ˇ. More
precisely:

Proposition 3.1. Suppose that ˇ is a braid with n strands. Then in the winding
number labelling of the curve diagram xDˇ there are at most n � 1 arcs labelled
LL.ˇ/, and there are at most n � 1 arcs labelled SL.ˇ/.

Proof. We shall prove that there are at most n � 1 arcs labelled LL.ˇ/ (the proof in
the case of SL.ˇ/ is similar), and we shall do so by proving the following result:

Proposition 3.10. No two of the arcs labelled LL.ˇ/ have their right extremities
between the same pairs of punctures. The same holds for the left extremities.

Let us assume, for a contradiction, that two such arcs exist. Figure 3 illustrates
what this means, in the particular case LL.ˇ/ D 7. There are different possibilities,
depending on whether or not the rightmost puncture lies on one of the arcs.

(a)

7

6
6

6

(b)

7

7
76

(c)

6
6

7

7
7

6
6

6

6

Figure 3. A schematic picture of a curve diagram with LL.ˇ/ D 7. Neither of the dotted lines
can occur, with the required labels, in the prolongation of the solid line.

The proof is completed by checking all possible isotopy classes in D2n(solid arc)
of embedded arcs connecting one endpoint of the solid arc of Figure 3 to one of the
endpoints of one of the dotted arcs. One observes that the labellings never match up.

4. Outlook

This paper was motivated by the question “What do quasi-geodesics in braid groups
really look like?”. More precisely, it is an experimental observation that any rea-
sonable way of untangling the curve diagram of a braid ˇ yields a quasi-geodesic
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representative of ˇ [13]. However, the question what precisely is “reasonable” has
turned out to be very difficult.

An essential portion of the answer seems to be provided by the insight of Masur
and Minsky [11] that for any braid (or mapping class) there are only finitely many
subsurfaces whose interior is tangled by the action of the braid, and by the Masur–
Minsky–Rafi distance formula [12]. It is, however, not clear how these results can
be used in practice to prove, for instance, that the Bressaud normal form [1, 3] or the
transmission-relaxation normal form [4] are quasi-geodesic, or that all braids have
� -consistent representatives of linearly bounded length [7]. It would be very useful
to have a more practical, or algorithmic, version of these ideas.

Let us denote �i;j the braid in which strands number i; i C 1; : : : ; j perform a
half twist. Let us define the � -length of a Garside-generator in the following way:
it is its length when written as a word in the generators �i;j (equivalently, it is the
number of half Dehn twists along round curves in Dn needed to express it). Now,
given a braid ˇ, put it in right Garside normal form, and add up the lengths of its
factors. We shall call the result the � -length of ˇ.

For a subdisk D � Dn which is round (contains punctures number i; i C1; : : : ; j

for some 1 6 i < j 6 n), and a braid ˇ, we define the tangledness of the curve
diagram of ˇ in D in the following way. The intersection of the curve diagram of ˇ

with D consists of a (possibly very large) number of arcs, which inherit a labelling
from the winding number labelling of the full diagram. Suppose that you shift the
labelling of each arc inside the subdisk so that the two extremities of each arc

� either both lie in a segment labelled 0, or
� one lies in a segment labelled 0 and the other lies in a segment labelled 1.

Now for each arc take

.the largest label � the smallest label/ or .the largest label � 1 � the smallest label/

according to the type of the arc. Take the maximum of these quantities over all arcs.
That is the tangledness.

Conjecture 4.1. Suppose that in the curve diagram of a braid ˇ there is a round disk
whose interior curve diagram has strictly positive tangledness. Suppose that ˇC is a
Garside generator or the inverse of a Garside generator, that it moves only strands
inside the round disk, and that its action reduces the tangledness of the diagram inside
the round disk. Then ˇˇC has smaller � -length than ˇ.

Question 4.2. Another question also arises from Proposition 3.10. For a pseudo-
Anosov braid ˇ we can look at the maximally and minimally labelled arcs in the
curve diagrams of high powers of ˇ, and, by passing to the limit, in a train track or
in the stable foliation of ˇ. The obvious question is: what do the positions of these
arcs tell us? Could they, for instance, be helpful for solving the conjugacy problem?
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Question 4.3. Is there an analogue of the main result (Theorem 2.1) for Out.Fn/, or
at least a substantial subgroup of Out.Fn/?
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