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Introduction

The goal of this article is to produce new examples of aspherical polyhedra. The
construction we have in mind is the following: let P be an aspherical simplicial
complex and Q a subcomplex of P. We define P by attaching to P a cone of base
0. We are looking for conditions under which P remains aspherical. This kind of
situation was already studied by J. H. C. Whitehead in the 1940s. In [21] and [22],
he studied the second homotopy group of a space P, obtained by attaching 2-cells
to a cell complex P. He proved that 7, (P) exactly describes the identities between
the relators that define the projection 7y (P) — 1 (P). In this paper we try to attach
higher-dimensional cells.

Our main example is the following. Let H,(C) be the complex n-dimensional
hyperbolic space. We consider SO(n, 1) as the stabilizer of the real hyperbolic space
H, (R) in H,(C). Let G C SU(n, 1) be a real lattice, i.e., a lattice of SU(n, 1) such
that H = G N SO(n, 1) is still a lattice of SO(n, 1). We want to study the quotient
G/{(H)), where {(H)) is the normal subgroup of G generated by H.

Theorem. There exists a finite index subgroup G’ of G with the following property.
Let H’' be the group G’ N SO(n, 1). Let P be the space obtained by attaching to
H, (C)/G" acone of base H, (R)/H'. The complex P isaclassifying space for the
group G" = G'/{(H")).
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This situation is similar to a result of N. Bergeron in [3] who proved that the map
from the homology associated with H,,(R)/G N SO(xn, 1) to the one of H,(C)/G
is one to one. We also establish some analogue statements to our theorem for the
following pairs (SO(n, 1), SO(k, 1)), (SU(n, 1), SU(k, 1)) and (Sp(n, 1), Sp(k, 1)).

Our strategy is as follows. We endow the space P with alocal hyperbolic geometry
and apply a version of the Cartan-Hadamard Theorem. This will prove that the
universal cover X of P is globally hyperbolic. We then deduce the asphericity from a
kind of Rips’ theorem (cf. Theorem 1.3.4): if X is a hyperbolic simplicial complex, it
is sufficient to prove that X is locally contractible. This last local assumption follows
from the property of the developing map.

The hyperbolic structure on P is constructed as follows. Given a subcomplex Q
of P, we endow the cone of base QO with a metric modelled on the hyperbolic disc.
An argument of Berestovskii tells us that if Q is CAT(1) then the cone is CAT(—1)
(see [5]). In particular it is hyperbolic. The problem is then to find some conditions
so that the complex P remains locally hyperbolic.

With this aim in mind, we explore an idea of M. Gromov (see [15]) to extend the
small cancellation theory to a so-called “rotation family” of groups. If X is a metric
space and G a group acting on X by isometries, a rotation family is a pairwise distinct
collection (Y;, H;);es such that

* H; isasubgroup of G stabilizing ¥; C X,

« there is an action of G on / compatible with the one on X (i.e., Yy; = g¥; and
Hy; = gH;g ' forallg e Gandalli € I).

In order to study such a family, we define two quantities that respectively play the
role of the largest piece and the smallest relator in the usual small cancellation theory.
The constant A measures the overlap between two Y;’s whereas p is the minimal
translation length of a non-trivial element that belongs to an H;.

Given a rotation family, we define the cone-off over X, denoted by X, by attaching
to X cones of base ¥;. We consider the space P = X /G whose fundamental group is
G = G/{(H;)). The small cancellation provides us a framework where it is possible
to endow P with a local hyperbolic geometry. Moreover, this theory recovers the
usual small cancellation (see [17] or [19]) and the small cancellation with graphs as
well (see [15] or [18]).

We describe the space P as an orbifold using two kind of charts: the cones and the
cone-off. Section 2 is dedicated to the study of the geometry of the cones. Adapting
an argument of Berestovskii, we prove that the cone over a hyperbolic space remains
hyperbolic (cf. Theorem 2.3.2). Section 3 deals with the cone-off X . In particular we
prove the following fact. Under small cancellation assumptions, the cone-off over a
hyperbolic space is still hyperbolic (cf. Theorem 3.5.2). We choose for this proof an
asymptotical point of view that involves ultra-limits as in [10]. The goal of the main
technical lemma is to switch the cone-off construction and the ultra-limit: given a
sequence of metric spaces X,,, we prove (see Corollary 3.5.9) that there exists a local
isometry between the cone-off over the ultra-limit of X,, and the ultra-limit of X,.
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Section 4 mixes all the previous ingredients to obtain the following theorems.

Theorem (cf. Theorem 4.2.2). There exist two positive numbersé, and A satisfying
the following property.

Let X be a geodesic, simply connected, §-hyperbolic spaceand G a group acting
properly by isometrieson X. Let (Y;, H;);<; be arotation family such that each Y;
is strongly-quasi-convex. _

Let N be the normal subgroup of G generated by the H;'s and G the quotient
group G/ N . Assume also that

%$80 and %SA().

Then the universal cover of P, X ishyperbolicand G acts properly by isometries
onX.

Moreover if G (resp. H;) acts co-compactly on X (resp. ¥;) and /7 /G isfinite,
then X' /G iscompact. In particular G ishyperbolic.

Theorem (cf. Theorem 4.3.7). Under the same hypotheses, if X isa n-dimensional
simplicial complex such that every closed ball of X and of each Y; is contractiblein
its appropriate neighbourhood, then X is contractible.

Remark. Insome cases, the space P = X /G may be endowed with a sharper geom-
etry than the hyperbolic one. For instance, M. Gromov constructed in a similar way
CAT(—1) polyhedrain order to produce infinite torsion groups (see [12], Chap. 12). In
[14] M. Gromov introduced the notion of CAT(-1,¢) spaces, an e-perturbated version
of CAT(—1)-spaces. This provides another framework to study small cancellation
constructions which is not asymptotic.

In Section 5, we explain how to construct examples of rotation families that satisfy
the small cancellation assumptions. To that end, we use the geometry of lattices and a
result of N. Bergeron about the profinite topology of finitely generated linear groups
[2]. This leads to these new examples of aspherical polyhedra.

Question. The small cancellation for rotating families provides a framework to study
quotient groups which looks very similar to the usual small cancellation. However the
groups obtained in this way may have very different properties. For instance, a usual
C/(%) small cancellation group acts properly discontinuously and co-compactly on a
CAT (0)-cubical complex (see [23], Th. 1.2). In particular it cannot have Kazhdan’s
property (T) unless it is finite and cyclic. On the other hand, M. Gromov used in [15]
(see also [1]) the small cancellation theory with graphs in order to construct Kazhdan
groups. To that end he embedded expanding graphs in the Cayley graph of the group.
We wonder if it is possible to construct other examples of Kazhdan groups using the
small cancellation theory with rotation families. In particular we are interested in the
following example. As above, let G be a real lattice of SU(n, 1) and H the subgroup
G NSO(n,1). Does G = G/((H)) have the Kazhdan property (T)?
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1. Hyperbolic spaces

Let X be a metric space. If x and x’ are two points of X, we denote by |x’ — x|x
(or simply |x” — x|) the distance between them. Although it may not be unique, we
denote by [x, x] a geodesic joining x and x’. Given a base point x, the Gromov
product of two points y and z is defined by

1
(v.2)x = 5y = x| + [z =x[ = |z = y.

Let § be a non-negative number. The space X is é-hyperbolicif forall x, y,z,t € X
we have (x, z); = min{(x, y):, (y,z):} — 6. R-trees are very special examples of
hyperbolic spaces.

Proposition-Definition 1.0.1 ([12], Chap. 2., Prop. 6, or [6], Chap. 3, Th. 4.1). An
R-tree is a geodesic space such that every two points are connected by a unique
topological arc. A metric space is an R-tree if and only if it is geodesic and 0-
hyperboalic.

Definition 1.0.2 (Quasi-isometry). Let n be a non-negative number. A (1, n)-quasi-
isometry isamap f: X — Y between two metric spaces such that for all x, x’ € X,
we have

X = x|=n< /() = fOl < Ix" = x|+ 7.

The next result is a very easy case of the stability of quasi-geodesics. An asymp-
totic proof of this fact for a general (A, k)-quasi-isometry can be found in [7].

Proposition 1.0.3. Let § be a non-negative number. For all 6’ > §, thereexistsn > 0
satisfying the following property. Let X be a metric space and Y a §-hyperbolic
space. If there existsa (1, n)-quasi-isometry from X to Y, then X is §’-hyperbolic.

Proof. Let f: X — Y bea (1, n)-quasi-isometry. Forall x, y,z € X we have
S FOpe = 31 < (0 ): < (F@), L0 + 30
It follows that for all x, y,z,t € X,
(.2)0 2 (). F@)pa — 31
> min{(£(x), f)) s (f ) S gt =831

= min{(x, y):. (y,2)¢} — (8 + 3n).
Hence X is (6 + 3n)-hyperbolic. O
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1.1. Ultra-limits of hyperbolic spaces. Let us recall the definition of the ultra-
limit of a sequence of pointed metric spaces and its link with hyperbolicity. For more
details about this point of view see [9], [10] or [11].

A non-principal ultra-filter is a finite additive map w: £(N) — {0, 1} that van-
ishes on every finite subset of N and is such that w(N) = 1. A property &, is true
w-almost surely (w-as) if w({n € N/P, istrue}) = 1. A real sequence (u,) is w-
essentially bounded (w-eb) if there exists M € R such that |u, | < M w-as. If [ isa
real number, we say that the w-limit of (u,,) is{ and write limy, u,, = [ if || —u,| < ¢
w-as for all e > 0. In particular, any w-eb sequence admits an w-limit (cf. [4]).

Let (X,, x?) be a sequence of pointed metric spaces. We consider

[T, Xn = {(xn) | xn € X, forall n € N and (|x, — x2|) is w-eb}.
We endow this space with a pseudo-metric defined as follows:
|(Vn) = (xn)| = limg, |y — xn|.

Definition 1.1.1 (Ultra-limit of metric spaces). Let (X, x?) be a sequence of pointed
metric spaces and  a non-principal ultra-filter. The w-limit of (X, x2), denoted by
lime, (X,, x2) (or simply lim, X,), is the quotient of [, X, by the equivalence
relation which identifies the points at distance zero.

The pseudo-distance on [],, X, induces a distance on lim,, X,.

Notation. (i) If (x,) is an element of [, Xy, its image in lim,, X, is denoted by
limg, x;,.
(ii) Forall n € N, let Y,, be a subset of X,,. The set lim,, Y}, is defined by

limg, Y, = {limy v, | (|yn —x,‘,’|) isw-eband y, € Y, w-as}.

Proposition 1.1.2. Let w be a non-principal ultra-filter. Let (§,) be a sequence of
non-negative numbers which admits an w-limit §. Let (X,,x°) be a sequence of
pointed metric spaces. If for all n € N, X, is §,-hyperbolic, then the limit space
lim, X, isé-hyperboalic.

Proof. Let x = limg, x,, vy = limg, yu, z = lim, z, and ¢t = lim,, ¢, be four
points of lim,, X,. Since X, is é,-hyperbolic, we have, forall n € N, (xp,z,);, =
min{(x,, yn)s,, (¥n. Zn)s,} — Sn. By taking the w-limit, it follows that (x,z), >
min{(x, y);, (v, z);} — 8. Thus lim,, X,, is §-hyperbolic. O

Corollary 1.1.3. Let w be a non-principal ultra-filter and (6,) a sequence of non-
negative numbers such that lim, 6, = 0. Let (X,, x,?) be a sequence of pointed
geodesic spaces. If X, isé,-hyperbolic for all n € N, then the limit space lim,, X,
isan R-tree.
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Proof. The w-limit of a sequence of geodesic spaces is still geodesic (cf. [20]). It
follows that lim,, X, is a geodesic, 0-hyperbolic metric space. Hence lim,, X}, is an
R-tree. O

Proposition 1.1.4. Let w beanon-principal ultra-filter and § a non-negative number.
Let (X, x2) bea sequence of pointed metric spaces whose diameters are bounded. If
lim,, X,, is§-hyperbolic, then X,, is §'-hyperbolic w-asfor all §' > §. In particular
thereexistsn € N such that X, is §’-hyperbalic.

Proof. Assume that the proposition is false. Then lim,, X, is -hyperbolic and nev-
ertheless there exists 8’ > § such that X, is w-as not §’-hyperbolic. Thus we can find
four sequences (x,), (v»), (z») and (z,) satisfying the following properties:

() X, Yn.2Zn, th € X, foralln € N,
(1) (xn,zn)e, < Min{(Xn, Yn)ty> (Vns2Zn)s,} — & w-as.
Since (diam(X,,)) is bounded, these four sequences define four points of lim,, X,,,

respectively x, y, z and ¢. After taking the w-limit in the previous inequality we
obtain

(x.z)s <min{(x, y)s, (y,2)e} — 8 <min{(x, y)s, (y,2):} — 8.

Hence lim,, X,, is not -hyperbolic. Contradiction. O

1.2. Quasi-convexity. If X isageodesic space, there is another way to characterize
the hyperbolicity using geodesic triangles. Let § be a non-negative number. A
geodesic triangle is §-thin if each one of its sides is contained in the §-neighbourhood
of the union of the two others.

Proposition 1.2.1 (cf. [6], Chap. 1, Prop. 3.6, or [12], Chap. 3 §2). Let § be a non-
negative number. Consider a geodesic space X .

(i) If X is§-hyperbolic, then every geodesic triangle of X is 44-thin.

(ii) If every geodesic triangle of X is §-thin, then X is 85-hyperbolic.

Corollary 1.2.2. Let x, x’, y and y’ befour points of a geodesic, 5-hyperbolic space
X. Ifuisapointof [x, x’] suchthat [u—x| > |y —x|+88 and |u—x'| > |y'—x'|+88,
then u liesin the 85-neighbourhood of [y, y'].

Proof. Since the triangles [x, y, y’] and [x, x/, y] are 4§-thin, we can find a point v
in[x,y]U[y,y'lU[y, x'] such that [v — u| < 85. We will show that v € [y, y'].
Suppose that v € [x, y] (the case v € [x’, y'] is symmetric). The triangle inequality
gives

lu— x| <fu—v|+[v—x|<|y—x|+88,

a contradiction. Consequently, u lies in the 85-neighourhood of [y, y']. O
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Definition 1.2.3 (Quasi-convexity). Let o be a non-negative number. A subset Y of
a geodesic metric space X is a-quasi-convex if every geodesic between two points
of Y is contained in the a-neighbourhood of Y.

Notation. We denote by Y ™ the a-neighbourhood of Y.

Proposition 1.2.4 (Cf. [8], Lemma 2.2.2). Let §, = 0. Let X be a geodesic,
8-hyperbolic space. If Y and Z are two a-quasi-convex subsets of X', then we have

diam(Y ¥4 N z*+4) < diam(y To+108 q z+e+108)y 4 54 4 208
forall A = 0.

Proof. Let x and x’ be two points of Y t4 N Z+4 such that |x’ — x| = 24 + 206.
We choose

(i) two points ¢ and ¢’ of [x, x’] such that | — x| = |t/ — x'| = A + 106,

(i) two points y and y’ of Y such that |y — x|, |y’ — x'| < A + 6.
Applying Corollary 1.2.2, ¢ belongs to the 85-neighbourhood of [y, y’]. Since Y is a-
quasi-convex, [y, y'] lies in the a-neighbourhood of Y. Hence ¢ belongs to ¥ ++108,
We prove in the same way that 7 belongs to Z+2+108  The same fact holds for ¢’.

Thus
X' — x| — 24 — 208 = |t/ —t| < diam(y TeT108  Z+a+108)

The above inequality is true for all x, x’ € Y T4 n Z+4, hence

diam(Y 74 N Z*+4) < diam(y T+108 n z+e+108) 4 24 4 208. O

Corollary 1.2.5. Let w be a non-principal ultra-filter and (6,,) a sequence of real
numbers such that lim,, §, = 0. For all n € N, let (Xn,xg) be a pointed, geodesic,
dn-hyperbolic space and let Y,,, Z, be two 104,-quasi-convex subsets of X,,. Let
X = limy,(X,,x%) and Y = lim, Y,, Z = lim, Z,. We have

diam(Y N Z) < lim,, diam(Y, 2% 7 +20%n),

Proof. Let x and x’ be two points of Y N Z. Since x,x’ € Y, we can find two
sequences (x,) and (x;,) such that x = lim,, x,,, x’ = limy, x}, and x,, x;, € Y, w-as.
Moreover, x and x’ belong to Z, thus if A > 0 is given, x, and x,, belong to Z,jA
w-as. Using Proposition 1.2.4, we have

X}, — x| < diam(Y,4 0 ZF4) < diam(¥, 2% 0 Z,72%%m) 124 420,
By taking the w-limit, we obtain

|x’ — x| < lim,, diam(Y,F20%n 0 Z+20n) | 24,
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This inequality is true forall A > 0 and x,x’ € Y N Z, thus
diam(Y N Z) < lim,, diam(Y, 2% n z+20%n), O
We need in Section 3 a little stronger condition than quasi-convexity.

Definition 1.2.6. Let X be a -hyperbolic space. A subset Y of X is strongly quasi-
convex if for all x, x” € Y there exist p, p’ € Y suchthat |x — p| < 104, |[x' — p/| <
106 and the path [x, p] U [p, p'] U [p’, x'] liesin Y.

Remark. Since any geodesic triangle of X is 4§-thin, any strongly quasi-convex
space is 10§-quasi-convex. Given a 105-quasi-convex subset Y of X, there is a way
to find a subset of X, a little larger than Y, that is strongly quasi-convex. To that end,
we define the cylinder of a subset.

Definition 1.2.7. Let Y be a subset of a geodesic §-hyperbolic space X . The cylinder
of Y, denoted by cyl(Y), is the set of all points which are in the 10§-neighbourhood
of a geodesic of X joining two points of Y.

Lemmal.2.8. Let Y bea 10§-quasi-convex subset of a geodesic, 5-hyperbolic space
X. Theset cyl(Y) iscontained in Y +2% and is strongly quasi-convex.

Proof. By definition of quasi-convexity, any geodesic joining two points of Y lies
in Y193 1t follows that cyl(Y) C Y 2% Let x and x” be two points of cyl(Y).
By definition there exist two points of Y, y; and y, (resp. y; and yj) such that x
(resp. x) belongs to the 108-neighbourhood of [y1, y»] (resp. [y}, y5]). We denote p
and p’ the respective projections of x and x’ on [y, y»] and [y], ¥5].

By construction, the geodesic segments [x, p] and [p’, x'] are contained in cyl(Y)
and shorter than 106.

Since the triangles [y», p, p'] and [y2, y5. p'] are 48-thin, [p, p'] stays in the 85-
neighbourhood of [p, y>] U [y2, ¥5] U [v5, p’]. However these segments are parts of
geodesics between two points of Y. Thus [p, p’] lies in cyl(Y).

Hence [x, p] U [p, p'1 U [p’, x'] lies in cyl(Y). O

1.3. Asphericity
Notation. If X is a simplicial complex, we denote by X ®) its k-skeleton.

In this part we prove a version of the famous Rips’ theorem: ahyperbolic simplicial
complexwhichis locally aspherical is globally aspherical. Let X be ametric space and
d a positive number. The Rips’ polyhedron of X denoted by P;(X) is a simplicial
complex defined as follows. The simplices of P;(X) are the finite subsets of X
of diameter less than d. It is known (see [13], Section 2.2) that if X is geodesic §-
hyperbolic, thenforall d = 46 the polyhedron P; (X)) is contractible. More precisely,
we have the following proposition.
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Proposition 1.3.1 (cf. [6], Chap. 5, Prop. 1.1). Let X be a geodesic, §-hyperbolic
space. Letd = 4§ andn € N. The polyhedron Pa(,”“)(X ) is n-connected.

Before studying the case of an arbitrary simplicial complex, we prove the follow-
ing proposition.

Proposition 1.3.2. Let X be a n-dimensional simplicial complex. Letd > 1. As-
sume that for all » < 2(n + 1)d and for all x € X the closed ball B(x,r) is

contractiblein B(x, r + d). Thenthereexisttwomaps: f: X — P (X @) and
g: Pa(,”“)(X(O)) — X suchthat g o f ishomotopic to idy.

Proof. In this proof we denote by P the (n + 1)-skeleton of the Rips’ polyhedron
Py (X©@). We define f: X©@ — P by f(x) = {x}. Letk <n. If o isak-simplex
of X, its diameter is less than d. Thus the set of its vertices defines a k-simplex of
P. Hence f induces a simplicial map from X to P. We now define by induction a
mapg: P — X.

First we define a map g©@: P©@ — X by g@({x}) = x. Assume now that
we have already defined a continuous map g®: P® — x with the following
property: for each /-simplex o of P %), for every vertex x of o, g®) (o) is contained in
B(g® (x),21d). Leto bea (k +1)-simplex of P*+1 whose facesare oy, . .., 0x41.
Choose a vertex x of o. The function g®) maps the border do = f‘:ol o; onto a k-
sphere of X contained in B(g® (x), (2k + 1)d). However this sphere is contractible
in B(g®(x),2(k + 1)d). We define g+ (o) by choosing a homotopy which
contracts g (do) to a point. This defines a continuous map g*+1: pk+h 5 x
which coincides with g® on P®) and satisfies the following property: g® (o) is
contained in B(g® (x), 21d) for all I-simplex o of P**1 and for every vertex x
of o. We choose for g the map g+,

Lemmal.3.3. Forall k < n+ 1 thereisacontinuousmap H® : x® x[0,1] - X
satisfying the following properties:

(i) H®|yw g = idyw and H® |yw .y = g o flxaw-

(i) H® (o x [0, 1]) iscontained in B(x, (2I + 1)d) for each I-simplex o of X ®)
and for every vertex x of o.

Proof. We prove this result by induction on k. The restriction of g o f to X(© is
the identity, thus the proposition is obvious for the 0-skeleton. Assume now that the
lemma is true for k < n. Consider a (k + 1)-simplex o of X ®*+1_ We choose a
vertex x of o. By definition of g the set g o (o) is contained in B(x, 2k + 2)d).
Moreover, the induction assumption gives that H®) (3o x [0, 1]) € B(x, 2k +2)d).
Thus the subset o U H® (3o x [0,1]) U g o f(0) isa (k + 1)-sphere of X contained
in B(x, (2k + 2)d). This sphere is therefore contractible in B(x, 2k + 3)d). By
choosing ahomotopy that contracts it to a point, we defineamap H *+1: 5[0, 1] —
X such that
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(') H(k+1)|0><{0} = id, and H(k+1)|ax{1} =go flaa
(i) H VD a0x00,11 = H®aoxio11,
(i) H* V(o x [0,1]) C B(x, 2k + 3)d).
This defines a map H*+1: x &+ 5 [0, 1] — X which satisfies the properties of
the lemma. m

End of the proof of Proposition 1.3.2. The map H"+D: X x [0,1] — X is a
homotopy between g o f and idy. O

Theorem 1.3.4. Let X beads-hyperbolic, n-dimensional, simplicial complex. Assume
that the ball B(x, r) ishomotopicto zeroin B(x,r + 48) for all » < 8(n + 1)§ and
all x € X. Then all homotopy groups of X aretrivial. Hence X is contractible.

Proof. We fix d = 48. From Proposition 1.3.1 it follows that the Rips polyhedron
P = Pa(,”“)(X(O)) is n-connected. Moreover, the fact that the small balls are
contractible givestwomaps f: X — Pandg: P — X suchthat go f is homotopic
to idy. It follows that X is n-connected as well. Since X is n-dimensional, all the
higher homotopy groups of X are trivial by Hurewicz’s theorem. O

2. Coneover a metric space

In this section we prove an asymptotic version of the Berestovskii’s theorem con-
cerning the hyperbolicity of a cone with a locally hyperbolic base. From now on, we
fix a positive number ro whose value will be made precise in Section 4.

2.1. Definition

Definition 2.1.1. Let Y be a metric space. The cone over Y, denoted by C(Y) is
the quotient of Y x [0, ro] by the equivalence relation defined as follows. Two points
(y1,r1) and (y,, rp) are equivalent if r; = r, = 00r (y1,r1) = (¥2, 2)-

Notation. The equivalence class of (y,0), called the vertex of the cone, is denoted
vy (or simply v). The equivalence class of any other point (y, r) is still denoted by

(v, r).

Hyperbolic metric on a cone. We define a metric on C(Y) as M. Bridson and
A. Haefliger do in [5], Chap. I.5. If y and y’ are two points of Y, we consider the
angle 6(y, y’) defined by 6(y, y') = min {x ‘y/_”}.

> sinhrg

Proposition 2.1.2([5], Chap. 1.5, Prop. 5.9). Thefollowingformuladefinesadistance
on the cone C(Y, rg).

|(y',r") — (v, r)| = arccosh(cosh r cosh ' — sinh r sinh " cos 8(y, y")). (1)
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Remarks. The distance on the cone has the following interpretation. Given two
points (y, r) and (y’, ") of C(Y), the distance between them is the distance between
two points of the hyperbolic disc respectively distant from the centre of r and /, such
that the central angle between them is 8(y, y’).

It is important to notice that |(y', r") — (y, r)| is a continuous function of y, y’, r
and r’.

The cone C(Y) is the ball of centre v and of radius ro of the space C_l(ﬁ)
defined in [5], Chap. I.5.

Proposition 2.1.3 ([5], Chap. 1.5, Prop. 5.10). Let (y,r) and (y’, r’) be two points
of C(Y, 7’()).

(i) If r,r’ > 0and 6(y,y’) < m, then there is a bijection between the set of
geodesicsjoining y and y’ in Y and the set of geodesicsjoining (y, r) and (y’, 7) in
C(Y).

(ii) In all other cases, thereis a unique geodesic joining (y,r) and (y’, r’).

Examples. (i) If Y is a circle, endowed with its length metric, whose perimeter is
2 sinh rg, then the cone C(Y) is the hyperbolic disc of radius ry.

(if) If Y is isometric to a line, then C(Y) \ {v} is the universal cover of the
punctured hyperbolic disc of radius ry.

Relation between the cone and its base. In order to compare the cone C(Y) and
its base Y we consider two maps:

t:Y >C), p:CY)\{v}—Y,
y = (y.r0), (y.r) > y.

Proposition 2.1.4. Let (y,r) and (y’, ") betwo pointsof C(Y). Then

<|O.r")y—=.r)| < | —r| + Vsinhrsinhr/6(y, y').

2min{r, r’}

0(y.y")
T

In particular, let x be a point of C(Y') whose distance to v is at least Z2. Then for
every point x” intheball B(x, 22) wehave [p(x’) — p(x)]y < mpc —X|cw)y-

Proof. The inequalities follow from the facts that

» the map ¢ — arccosh(1 + a(1 — cos¢?)) is concave,

e forallt = 0, arccosh(a + t) < arccosh(a) + +/2t.
Consider now a point x = (y,r) of C(Y) whose distance to v is at least 2. If
x" = (y',r’) belongs to the ball B(x, %), then [x' —x| < B <r <r 471 It
follows that 6(y,y’) < m. Moreover r’ > 2. Using the previous inequality, we

. 2min{r,r’} ../ /
obtain s—0e—- 1y — ¥ < T 1Y — < & — x|, 0
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Proposition 2.1.5. Let u: Rt — R™ be the map defined by [c(y') — «(y)| =
u(ly’ — y) for al y,y" € Y. Then u is a non-decreasing, continuous, concave
map satisfying the following properties:

(i) (@ +1") < () + @) for all ¢,¢" = 0 (subadditivity),

(i) n;gﬁro min{m sinhrg, 2} < u(t) <t forallt = 0.

Proof. By construction, the map u is defined by
ju(r) = arccosh(cosh? ro — sinh? ro cos(Min{, gi1))-
The properties of u follow from its concavity (cf. Fig. 1).

w(t)

2ro

(0,0) nsin‘h(ro) t

Figure 1. Graph of p.

2.2. Cone and hyperbolicity

Lemma 2.2.1. Let w be a non-principal ultra-filter. Let (Y, y2) be a sequence of
pointed metric spaces. We assume that the sequence (diam(Y;)) is bounded. The
spaces C (lim,, (Y, y2)) and lim,, (C(Y,), 1, (y?)) areisometric.

Proof. Denote by Y the limit space lim, (Y, y2). We defineamap f: C(Y) —
lim, C(Y,) by f(limg y,,r) = limy, (yy, r). Since Formula (1), giving the distance
in a cone, is continuous, the map f preserves the distances. Consider now a point
x = limg, (yn, ra) of lim, C(Y,). By assumption, the sequences (r,) and (|y, — y21)
are bounded. Thus we may consider the real number » = lim, r, and the point
y = lim,, y,, of Y. Furthermore,

|f(y,r) = x| = 1img |(yn, 1) = (Y, )| = liMg |r — 1y | = 0.
It follows that f(y,r) = x. Hence f is onto. O

Lemma2.2.2. Let Y beametric space. If every ball of radius = sinh rg of Y isan
R-tree, then the cone C(Y) isCAT(—1). In particular this coneis In 3-hyperbolic.

Proof. Let T be a geodesic triangle of Y whose perimeter is smaller than 27 sinh rg.
It is contained in a ball of radius = sinh r¢. It follows that T is 0-thin. Consequently
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the rescaled space ﬁ is CAT(1) (cf. [5]). Using a Berestovskii’s theorem (cf. [5],

Chap. I1.3, Th. 3.14), the cone C(Y) is CAT(—1). In particular it is In 3-hyperbolic.
O

Proposition 2.2.3. Let ¢ > 0. Thereexists § > 0 satisfying the following property.
Let X beageodesic spacesuchthat each ball of radius sinh ry of X isé-hyperbolic.
Let Y bea 10§-quasi-convex subset of X. Thecone C(Y) is (In3 + ¢)-hyperbolic.

Proof. Assume that the proposition is false. For all » € N, we can find

* a geodesic space X, whose balls of radius 7 sinhry are &,-hyperbolic, with
8y = 0(1),
* a 106,-quasi-convex subset Y, of X,

such that the cone C(Y,) is not (In3 + ¢)-hyperbolic. We denote by X, the space
X, endowed with the metric

X" — x|z, = min{zsinhro, [x" — x[x,}.

The set ¥, viewed as a subspace of X,, is denoted by ¥,,. We choose a non-principal
ultra-filter w, the limit space X = lim,, X,, and the subspace ¥ = lim,, ¥,,. Each ball
of radius 7 sinh r¢ of ¥, is 3n-hyperbolic. Hence each ball of radius 7 sinh rq of Yis
0-hyperbolic. Moreover Y,, is 108,-quasi-convex. It follows that, for all y € ¥, the
set Y N B(y, wsinhre) is an R-tree. Using Lemma 2.2.2, C(Y) is In 3-hyperbolic.
Moreover, the diameter of ¥, is uniformly bounded. Hence Lemma 2.2.1 tells us
that C(Y) and lim,, C(Y,) are isometric. Thus there exists n € N such that C(¥,,)
is (In3 + &)-hyperbolic. However C(Y;) and C(¥,) are isometric. Contradiction.

O

2.3. Group acting on a cone

Definition 2.3.1. Let X be a metric space and G a group acting on X by isometries.
For all g € G the trandation length of g, denoted by [g]x (or simply [g]) is

= inf —x]|.
[g]x Inf lgx — x|
The injectivity radius of G on X is rinj(G, X) = infgeq\(13[8]x-

Let Y be a metric space. We fix a group H acting by isometries on Y. We assume
that this action is proper, that is for all y € Y there exists r > 0 such that the set
the H|h-B(y,r)N B(y,r) # @} is finite. We denote by Y the quotient Y/H
and by j the image in Y of a point y € Y. Since H acts properly on Y, the quotient
Y may be endowed with a metric defined by |y” — 7|y = infrem |hy" — yly.

We extend the action of H to the cone C(Y) by homogeneity: If x = (y,r) is
a point of C(Y') and & an element of H, then hx is defined by hx = (hy,r). The
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group H acts by isometries on C(Y). Note that if ¥ is not compact, this action is no
more proper. However the relation |x" — X| = infyeq [hx" — x|c(y) still defines a
metric on the quotient C(Y')/H. Moreover C(Y/H) and C(Y)/H are isometric.

Theorem 2.3.2 (First hyperbolicity theorem). Lete > 0. Thereexists§ > 0 satisfying
the following property. Let X be a §-hyperbolic, geodesic spaceand Y a 10§-quasi-
convex subset of X. Assumethat H isa group acting by isometries on X such that
H stabilizes Y. If rinj(H,Y) > 2m sinh rg, then the space C(Y)/H is(In3 + ¢)-
hyperbolic.

Proof. We consider the constant § > 0 given by Proposition 2.2.3. Let X be a §-
hyperbolic, geodesic space and Y a 105-quasi-convex subset of X. Assumethat H isa
group acting by isometries on X such that H stabilizes Y and riqj(H,Y) > 27 sinhro.
The spaces X/H and Y/H satisfy the assumptions of Proposition 2.2.3. It follows
that C(Y/H), which is isometric to C(Y)/H, is (In 3 + ¢)-hyperbolic. O

2.4. Contracting balls in a cone. In this section we assume that Y is a proper
metric space. The cone over Y is contractible, nevertheless it is not necessarily
locally contractible. To avoid this problem, we consider the following geometric
assumption.

Condition H(l): Forall y € Y and all r € R there exists a homotopy /: B(y,r)x
[0,1] — Y contracting the closed ball B(y,r) to {y} with the following property:
|h(y',t) — y| < |y —y|+ [ forall y € B(y,r)andallz € [0, 1].

Proposition 2.4.1. Let x bea point of thecone C(Y) and r; € R*. If Y satisfies
the condition H(l), then the closed ball B(x, ry) iscontractiblein B(x,r; + [).

Proof. We denote by (y,r) the point x and by B the closed ball B(x,r;). We
distinguish two cases.

Case 1. If r; = r, then the vertex of the cone v belongs to B. We consider the
following homotopy.

H:Bx[0,1]—CY), ((v.r).0)~> . (A—=0)r).

It contracts the ball B to the vertex v. Let x’ = (y’,r’) be a point of B. The
metric in H, is convex. Since the metric on the cone is modelled on the one on H,
we have for all ¢ € [0, 1],

|[H(x', 1) — x| = |0, (1 —=0)r") — x| < max{|x’ — x|, |v — x|} < ry.

Thus H maps to B.
Case 2. We assume now that r; < r. It follows that |y’ — y| < msinhro for
all (y’,r’) € B. By assumption, there exists a homotopy map 4: B(y, z sinhrg) x
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[0, 1] — Y contracting B(y,msinhrg)to {y}suchthat |h(y’,t) —y| < |y —y| +1
forall y' € B(y,msinhrg) and all ¢ € [0, 1]. We consider the map

H:Bx[0,1] > CY), ((.r').0)— (h(y.1).r).

It contracts B to {y} x [r — ry,min{ro,r + r1}]. Let x’ = (y’,r’) be a point of
B and ¢t € [0,1]. By assumption, we have 8(y,h(y’,t)) < 6(y,y’) + o, where
a = min{sim’] o T O(y,y’)}. The distances between x, x’ and H(x’,¢) may be
viewed in H,. Due to the triangle inequality, we have

|H(x', 1) — x| = arccosh(cosh r cosh ¥’ — sinh r sinh " cos 6(y, h(y',1)))
< arccosh(cosh r cosh ¥’ — sinh r sinh ' cos 6(y, y))
+ arccosh(cosh? r’ — sinh? r’ cos )

<|x'— x| +asinhr’ <r + 1.

Consequently, H maps to B(x, r; + /). We conclude by noticing that {y} x [r — ry,
min{rg, r + r1}] is contractible in B(x,r; +[). O

The next lemma explains how to deformation retract a ball of the cone onto its
base.

Proposition 2.4.2. Let x = (y,r) be a point of the cone C(Y) and let
r1 €]ro —r, r[. Assumethat Y satisfiesthe condition H(I). Then there exists a homo-
topy H : B(x,r1) x [0,1] = B(x, r; + 2I) which contracts B(x, r1) to a subset of
((Y)and suchthat H(x’,¢) = x’ for all x’ € B(x,r;) N«(Y)andall ¢ € [0, 1].

(0,0) [y =yl

Figure 2. Shape of the ball B(x, r1). The points (y’, ") that belong to B (x, r1) lie in the gray
part.

Remark. The first idea to prove this proposition is to project the cone onto its base,
using the map p. Nevertheless, this homotopy does not stay in a neighbourhood of
B(x,ry). This problem can be observed on Figure 2 which represents the shape of
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B(x,ry). Inorder to get around this difficulty, we have to proceed in two steps. At
first, we contract the ball horizontally, using a homotopy of Y, then we project it onto
the base.

Proof. Denote by B the closed ball B(x,r;). Since r; < r, we have |y’ — y| <
w sinhro for all points x’ = (y’,r") of B. By assumption there exists a homo-
topy h: B(y,msinhrg) x [0,1] — Y contracting B(y, m sinhrg) to {y} such that
lh(y',t) —y| < |y’ —y|+1forall y € B(y,msinhry)andall ¢ € [0, 1].

Let x’ = (y’,r’) be a point of C(Y'). There exists a continuous function L(r’) =
arccos(hreoshr—eoshry g ch that x' belongs to B if and only if |y’ — y| < L(r").
Since r; > ro —r, L(ro) is positive. By continuity, there exists r, < rq such that
L(r'y < L(ro) + [ for all ' €]rp, ro[. Since A is continuous on a compact set, there
exists 7o such that |2(y’, 1) — y| < L(ro) forall y’ € B(y, 7 sinhry). We consider
now the map

2 ’ o (h(y',tt0),1") if r’ < ry,
H: B x|[0,1 Cc(Y), 1)t ) _
X [ ] — ( ) ((y r ) ) i {(h(yl, :8_:2tt0)a r/) if ,,./ > 7.

The map H is continuous. Furthermore, H(x',t) = x’ forall x’ € B N «(Y) and all
t € [0, 1]. As in the previous proposition, we prove that H maps to B(x,r; +1). We
denote by E the image of B x {1} by H.

Lemma 2.4.3. The set E, theimage by H of B x {1}, has the following property.
For all x’ = (y',r") € C(Y), if x’ belongsto E, then |y’ — y| < L(rg) + 2I.

Proof. Letx’ = (y’,r’) be apointof B. If r’ < rp, then H(x', 1) = (h(y'. ty), 7).
By construction of 7o, we have |h(y’, t9) — y| < L(ro). If r’ > rp, then H(x', 1) =
(h(y’, 2=14), r"). By definition of r, and &, we have

> ro—T2

h(y', o= g0) — y| < |y — y| +1 < L(ro) + 2. m

P ro—r2
End of the proof of Proposition 2.4.2. We now consider a second homotopy
H':Ex[0,1] = C®X), (. r)t0)— 0" A=t +trg).

The map H’ contracts E to a subset of ((Y). Let x’ = (y’,r’) be a point of £ C
B(x,r1+1). ByLemma2.4.3,|y’—y| < L(ro)+2l. Thus x" and ¢(y’) are points of
B(x,ry +21). The metric in H, is convex. Since the metric on the cone is modelled
on the one on H,, we have for all € [0, 1],

|H' (x',t) —x| = |y, (1 =0)r" +1tro) — x| < max{|x’ — x|, |t(y") — x|} < r1 +2L.

Thus H’ maps to B(x,r; + 2I). Applying successively H and H’ provides the
homotopy of the proposition. O
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3. Cone-off over a metric space

The goal of this part is to study the large scale geometry of the cone-off. We give
a detailed proof that under some small cancellation assumptions, the cone-off of a
hyperbolic space is locally hyperbolic. We recall that ry is a fixed positive number
whose value will be made precise in Section 4.

3.1. Definition. Let X be a metric space and Y = (Y;);<s a collection of subsets
of X. Foreachi € I, we consider the following objects: C; is the cone C(Y;) and
v; its vertex; ;: ¥; — C; and p;: C; \ {v;} — Y; are the maps between the cone
and its base defined in the previous part.

Definition 3.1.1 (Cone-off over a metric space). The cone-off over X relatively to
Y is the space obtained by gluing each cone C; on X along Y; according to ;. We
denote it by X (Y) (or simply X).

Metric on the cone-off. In this paragraph we define a metric on the cone-off such
that its restriction to a cone is the metric previously defined. To this end, one defines
the metric as the lower bound of the length of chains joining two points. In this way,
we obtain a pseudo-metric. The goal here is to prove that it is also positive.

We endow X LI (| |;<; Ci) with the metric induced by |- [x and |- |¢,. Let x and
x’ be two points of X. The quantity ||x” — x| is the minimal distance between two
points of X U (|_|;c; Ci) whose image in X are respectively x and x’. The value of
|x" — x|| is different whether x and x’ both belong to a cone C; or not. The three
possible cases are presented in the next lemma.

Recall that u is the function defined in Proposition 2.1.5 by

j1(r) = arccosh(cosh? ro — sinh? ro cos(min{, gi=1})).

It has the following interpretation. If y and y’ are two points of Y;, then the distance
between (y,ro) and (y', 7o) in C; is u(ly" — ylx).

Lemma3.1.2. Let x and x’ be two points of X.

(i) If thereisi € I suchthatx, x" € C;, then ||x'—x| = [x’—x|c,. Inparticular,
if x,x" € Y;, then ||x" — x|| = u(|x" — x|x).

(i) If x,x" € X, but thereisnoi € I suchthat x,x’ € Y;, then ||x’ — x| =
[x" — x|x.

(iii) In all other cases, we have ||x" — x| = +oc.

In particular, for all x,x" € X, ||x’ — x| = u(]x’ — x|x).

The quantity ||x" — x|| does not define a metric. It does not indeed satisfy the
triangle inequality. That is why we consider chains of points.
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Definition 3.1.3. Let x and x’ be two points of X.
A chain between x and x’ is a finite sequence C = (z, ..., z,) of points of X,
such that z; = x and z,, = x’. Its length is 1(C) = Y77} |zj41 — z;.
Furthermore we define

|x" — x|y = inf{l(C) | C achain between x and x'}.
Obviously, | - |y is a pseudo-metric.

Lemma 3.1.4. Let x and x’ be two points of X. For all ¢ > 0 there is a chain
C = (z1,...,zm) between x and x’ satisfying the following.

(i) I(C) < |x' —x[x +e.

(i) zj e Xforall j €{2,....m—1}.

Proof. Lete > 0. By definition there exists C = (zy, ... z») a chain between x and
x" such that /(C) < |x’ — x|x + &. Assume that there is j € {2,...,m — 1} such
that z; does not belong to X. It follows that z; is strictly contained in a cone, that
is there exists i € I such that z; € C; \ (;(¥;). In particular there is only one point
of (L];¢; Ci) U X whose image in X is z;j. Using the triangle inequality in C;, we
have ||zj+1 — zj—1ll < llzj+1 — zjll + llzj — zj—1]|. Thus the sequence C’ obtained
by removing the point z; from C is a chain between x and x’ shorter than C. Hence
after removing all points of C which are not in X, we obtain a chain satisfying the
properties of the lemma. O

Lemma3.15. Foralli € I,|-|c, and|- |y locally coincide: Let x = (y,r) be
apoint of C; \ ;(Y;). If x’ isa point of X such that |x’ — x|y < %|r0 —r|, then
x' e Cpand |x" — x|y =[x —x|¢;.

Proof. Leti € I andx = (y,r)beapointof C;\¢;(Y;). Sincex ¢ ;(Y;), ro—r > 0.
Let x’ be a point of X such that |x" — x|y < 1(ro —r). Letn €]0, +(ro — r)[. Using
the previous lemma, there is a chain C = (zy, ..., z,,) between x and x’ such that
I(C) < |x"—x|y +nandforall j € {2,...,m—1},z; € X. Assume that m > 3.
Since x € C; \ (; (Y;), we have

ro—r < llz2— 21 SUC) < ¥ = x|y +1 < 3(r0— 7).

Contradiction. Thusm = 2 and ||x’ — x|| = I(C) < %(ro —r). Consequently x’
belongs to C; and ||x" — x|| = [x" — x|¢,. Hence for all 5 €]0, %(ro —r)[, we have

X = x|y < [x" = x|, < ¥ = x|y + .
It follows that [x" — x|y = [x" — x]c;. H

Lemma3.1.6. For all x,x’ € X, wehave |x" — x|y = u(|x" — x[x).
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Proof. Let ¢ > 0. Using Lemma 3.1.4, there exists a chain C = (z1,...,2Zm)
between x and x’ such that/(C) < |[x'— x|y +eandforall j € {1,...,m},z; € X.
The subadditivity of u gives

m—1 m—1
p(x"=xlx) < X plzj+1 —zi) < X llzjy1 —zill = I(C).
Jj=1 j=1

Thus forall ¢ > 0, we have u(|x" —x[y) < |[x'—x|y +e&. Itfollows that |x"— x|y >
p(x" = x[x). O

Proposition 3.1.7. | - |y defines a metric on X.

Proof. The only point to prove is the positivity of | - | ;. Consider two points x and
x” of X such that |x’ — x|y = 0. There are two cases.

(i) If thereisi € I suchthat x € C; \ ¢;(Y;) or x” € C; \ 4 (Y;), then, using
Lemma 3.1.5, x and x’ both belong to C;. Moreover |x" — x|¢; = [x" — x|y = 0.
Thus x = x'.

(i) If x and x’ are both elements of X, then, due to Lemma 3.1.6, we have
u(|x"—x|x) < |x"— x|y = 0. Hence |[x" — x|x = 0. Itfollows that x = x’.  [J

Projection of the cone-off on itsbase. We consider amap p from X \ {v;,i € I}
onto X whose restriction to a cone C; \ {v;} is p; and whose restriction to X is the
identity.

Proposition 3.1.8. Consider a point x of X such that the distance between x and

any vertex of X isat least 2. Forall x" € B(x,7), wehave [p(x') — p(x)|x <
3nsinhr0|xr

o —X|y.

Proof. Let ¢ €]0, 2[. Consider a point x” of B(x,%). Using Lemma 3.1.4, there
existsachainC = (zi,...,zp)suchthatforall j belongingto{2,...,m—1},z; € X
and /(C) < |x'— x|y +& < ro. Wechoose j €{2,...,m—1}. Lemma 2.1.5 gives

ro = 1(C) = |zj+1 — zjll = n(lzj+1 — zjlx)

2r . .
= m(f)wo min{z sinh rg, |Zj+1 —Zj lx}.
37 sinh
Thus |p(zj+1) — p(z)lx = |zj+1 — zjlx < =00 1zj1 — Z4.

If x = z; is a point of X, by same proof0 we obtain |p(z2) — p(z1)lx <

3SMNL0||z, — 2y . On the other hand, if x belongs to a cone C;, then Lemma 2.1.4
gives the same inequality. In the same way, we obtain

3w sinhrg
|p(zm) — P(Zm-1)|x < T”Zm — Zm—1].
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Consequently, we have

m—1 . m—1
3 sinhrg
1P'() = p@)x < D |p(zj+1) — p(z)lx < — Yz =zl
j=1 =1
37 sinh
_ T rol(c)
ro
3z sinhrg
< (Ix" — x|y + &).
ro
Hence |p'(x) = p(x)lx < 2000 |x — x|y =

3.2. Uniform approximation of the distance on the cone-off. In order to study
the ultra limit of a sequence of cone-off spaces, we need to approximate the distance
between two points of X by a chain such that the number of points involved in the
chain only depends on the error and not on the base space X. This point was already
noted by M. Gromov in [14]. More precisely, in this section we prove the following
result:

Proposition 3.2.1. Let A > 1. There exists a constant M, depending only on A
and not on ry, with the following property. Let ¢ €]0, 1[, X be a metric space and
Y = (Y;)ier acollection of subsets of X. Let x and x’ be two points of the cone-off
X (Y) such that [x” — x|y < A. Thereexistsa chain C between x and x’ with less

than % pointsand such that /(C) < |x’ — x|y +&.

Proof. Let ¢ €]0,1[. Let x and x’ be two points of X such that |x’ — x|y < A

Using Lemma 3.1.4, there is a chain C = (z1,...,z,) between x and x’ such that
I(C) < |x' —x|y + 2eand forall j € {2,....n— 1}, z; € X. We fix n €]0, 1],
and construct a subchain of C between x and x’, denoted by C,, = (zj,....,zj,), as
follows.

(I) Put jl = land j2 =2.

(ii) Let £ = 2. We construct ji 4 from j.

If jx <n—1land|zj +1—zj |x > n, then jry = ji + 1.

If jx <n—1and|zj, 41—z |x < n,then jry,isthelargestj e {jx+1,....n—
1} suchthat |z; — zj, |[x < 7.

If jx =n —1,then jry+; = n and the process stops.

This construction removes from C the small parts of the chain which may be
contained in a cone. We prove now that it hardly changes the length of the chain.

Lemma 3.2.2 (Comparison between the two chains). The chains C;,, and C satisfy
theinequality /(C,) < I(C) + mn?, where m is the number of pointsin C,,.

Proof. We consider an integer k € {1, ...,m — 2}. There are two cases.
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First case: Assume that |z, , — z; |x < n. The function u given by Proposi-
tion 2.1.5 has the following property: wu(z) =t —t3 forall t € [0, 7 sinh rg]. Thus
using the subadditivity of u we obtain

Jk+1—1 Jk+1—1
> lzivi—zill = X wlzj+1 —zjlx)
J=Jk J=Jk

3
Z 1Zjepr = Zie X)) 2 1Zje g = Zielx = 1Zjg0 = Ziclx-
k1—1
Thus we have 7 7 |lzj 41 — 21| = llzjey, — 2zl — 7°.
Second case: Assume that |z, | —zj;, [x > n. By construction, we have jx 1, =
Jix + 1. Hence the last inequality remains true.
After summing over k these inequalities, we finally obtain /(C) = I(Cy) — mn>.
O

Lemma 3.2.3 (Estimation of m). If n < %, then m, the number of pointsin the chain
Cy, islessthan 1004.

Proof. Let k € {2,...,m — 3}. The two inequalities |z, ., — zj, [x < %'I and
|Zjx1n — Zjxsa Ix < %7 cannot be both true. Indeed, if it was the case, jx41 will
not be the largest j € {jx + 1,...,n — 1} such that |z; — z; |x < n. Assume that

1Zjkgr — Zixlx > %?7 (the other case is symmetric). Using the same estimation of u
as the one in the previous lemma, we obtain

1 1 1.3
1Zjxr = Zix | = 1zje oy — Zjx [x) = p(zn) = 30— g0

Thus. 121 = Zi |+ NZjgn = Zigg | = 31 — gn°. After summing over k, the
previous lemma gives

|22 | Gn—§n%) < I1(Cp) < I(C) + mn® < |x' — x|y + 36+ mnp’.

We have the inequality

m@d—17n%) < 50%.

Henceifn < %, then4—1792 > % It follows that 2 must be bounded by 100%. O
End of the proof of Proposition 3.2.1. Combining the two previous lemmas, we
obtain

H(Cy) S UC) +mif < |x' = x|y + 5 + 100A7?.

1 e

If we choose n = 15./54, then we have [(Cy) < |x’ — x|y + e. Moreover the

number m of points of C,, is less than 10004 / %. O
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3.3. Contracting balls of the cone-off. In this section X is a proper, geodesic,
8-hyperbolic space. We consider a collection Y = (Y;);<s of closed strongly quasi-
convex subsets of X. We assume that X satisfies the condition H(l), i.e.,

Condition H(l): Forall x € X and r € R+_, there exists a homotopy /: B(x,r) x
[0, 1] — X which contracts the closed ball B(x,r) to {x} such that |h(x’, 1) — x| <
|x — x|+ 1 forall x’ € B(x,r)andall ¢t € [0, 1].

We also assume that the Y;’s satisfy the same condition.

Proposition 3.3.1. Let x beapoint_ofX andr € RT. Weassumethat |v; — x| > r
for all i € I. Thenthe closed ball B(x, r) iscontractiblein B(x, r + 3/).

Proof. If there exists i € I such that B(x, r) is contained in a cone C(Y;), then we
apply Proposition 2.4.1. Otherwise we proceed as follows. Leti € I. Assume that
B(x,r)N C(Y;) # @. By Proposition 2.4.2, there exists a homotopy H; : B(x,r) N
C(Y;) x [0,1] = B(x,r + 2I) satisfying the following properties.

(i) H; contracts B(x,r) N C(Y;) to a subset of ¥;.
(i) H;(x',t) = x'forallx’ € B(x,r)NY;andall ¢ € [0, 1].

Thus we may defineamap H : B(x,r)x[0, 1] = B(x, r+2[) such that its restriction
to B(x,r)NC(Y;) x [0, 1]is H;,and H(x’,¢) = x’ forall x’ € B(x,r) N X and all
t € [0, 1]. It follows that A contracts B(x, r) to a subset of B(x,r + 2[) N X. By
condition H(l), this set is contractible in B(x, r + 31). O

3.4. Hyperboalicity of the cone-off over an R-tree

Proposition 3.4.1. Let X bean R-treeand Y = (Y;);e; a collection of subtrees of
X such that two distinct elements of ¥ share no more than one point. The cone-off
X(Y) isIn3-hyperbolic.

Remark. In fact X (Y) is a CAT(—1) space, but we shall not use this point.

This result is a consequence of the more particular case where X is a finite sim-
plicial tree.

Lemma3.4.2. Consider afinitesimplicial tree X andafinitecollectionY = (Y;);es
of subtrees of X' such that two distinct elements of Y share no more than one point.
The cone-off X (Y) isCAT(—1). In particular it isIn3-hyperbolic.

Proof. Each Y; is a tree, thus all the cones C(Y;) are CAT(—1) (cf. Lemma 2.2.2).
Consequently the cone-off X is obtained by gluing a finite number of CAT (—1)-spaces
that share no more than one point. These spaces are the cones and the remaining parts
of X on which no cone is glued. It follows that X is CAT(—1) (cf [5], Chap. 11.11,
Th. 11.1). O
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Proof of Proposition 3.4.1. Let x, y, z and ¢ be four points of X. Forall n € N, we
can find a finite simplicial subtree X,, of X and a finite collection Y of subtrees of
X, such that

« two distinct elements of Y” share no more than one point,
 x,y,z tbelongto X,(Y"),
o forallu,v e {x,y,z,t}, wehave lim,_ y |v — ”|Xn(Yn) = v —ulgy)

This can be done in the following way. Let » € N. For all pair of points in
{x,y, z,t} we consider a chain which approximates the distance between them, with
an error smaller than % These chains contain a finite number of points. Thus we
choose X, and Y” such that the chains have the same length in X (Y) and X, (Y").
Since X,, is In3-hyperbolic (see Lemma 3.4.2), x, y, z, ¢ satisfy in these spaces
the hyperbolicity condition. After taking the limit, we obtain in X the inequality
{(x.z)e = min{(x, y)s, (y,2)e} —In3. 0

3.5. Hyperboalicity of the cone-off over a hyperbolic space. In this section, we
generalize the previous proposition when the base X is a hyperbolic space. Let § be
a positive number. We consider a geodesic, §-hyperbolic space X and a collection
Y = (Y;)ies of closed 105-quasi-convex subsets of X. In order to estimate the
hyperbolicity of X (), we define a constant which controls how much two elements
of Y overlap.

Definition 3.5.1. The largest piece of Y, denoted by A(Y), is the quantity

A(Y) = supdiam(Y;72% 0 y;72%%).
i#]j
Assume that X is an R-tree, so that § = 0. Then A(Y) is zero if and only if two
distinct elements of Y share no more than one point.

Theorem 3.5.2 (Second hyperbolicity theorem). Let ¢ > 0. Thereexist §,A > 0
satisfying the following properties. Consider a geodesic, §-hyperbolic space X and a
collection Y = (Y;);<; of closed, 105-quasi-convex subsets of X suchthat A(Y) <
A. If xo isa point of the cone-off X (¥') whose distance to any vertex is greater than
7, thenthe ball B(xo, %) is (In3 + &)-hyperbolic.

Remark. This theorem is an extension of Proposition 3.4.1 for spaces that may be
viewed as §-perturbed R-trees. Thus it is possible to prove that X (Y) satisfies the
CAT(—1)-condition with a small error depending only on § and A. M. Gromov
introduced in [14] the notion of CAT(—1, ¢)-spaces which formalizes this idea. It
was also developed in [8]. Since we are only interested in the hyperbolicity of X (Y),
we will not use it.

In [14], M. Gromov gave a quantitative statement (Hyperbolic Coning Lemma)
of this result. We propose here a detailed proof which provides a qualitative version
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of the theorem. The strategy is as follows. Assuming that this theorem is false gives
a family X,, of 6,-hyperbolic counter-examples with §, tending to zero. Taking the
limit gives the cone off over an R-tree which we already know to be In 3-hyperbolic.
This is a contradiction according to Corollary 1.1.4. The point is to construct a local
isometry between the cone-off over the ultra-limit of (X,,) and the ultra-limit of the
cones-off over X,,.

Proof. Assume that the theorem is false. Then for all » € N, we can find
(i) ageodesic, 8,-hyperbolic space X, with §, = o(1),
(i) acollection Y, = (Yy.;,)i,er, Of closed, 105, -quasi-convex subsets of X, with
A(Yy) = o(1),
(iii) a point xg € X, (Y,) whose distance to any vertex is greater than %0 and such

that the ball B(x?, ) is not (In 3 + &)-hyperbolic.

We fix a non-principal ultra-filter » in order to study the limit space lim, (X, x9).
First we consider several objects.
o x%=lim, x?;
o X =limy,(X,, pn(x2)) (recall that p, is the projection from X, onto X,,);
* I = [],en In/~ where ~ is the equivalence relation defined by i ~ j if
in = jn w-aS;
« ifi isasequence of [ [, o 1, We define Y; = limy, Yy, ;..

Lemma3.5.3. Leti = (i,) and j = (j,) betwo sequencesof [[,cn In- If in = Jjn
w-as, thenY; = Y;; otherwise, diam(Y; NY;) = 0.

Proof. If i, = j, w-as, the equality ¥; = Y; follows from the definition of the

w-limit of a sequence of subsets. In the other case, we have i, # j, w-as. Hence

diam(¥,2%" n Ynsznog”) < A, w-as. Thus Corollary 1.2.5 gives diam(Y; N Y;) <

: ; +2068, +208,\

lim,, diam(Y,"; ™™ N Y, ™) = 0. O
Due to the previous lemma, we may consider the collection Y = (Y;);es.

Lemma 3.5.4. The cone-off X (Y) isIn 3-hyperbolic.

Proof. Sinceforalln € N, X, is geodesic and &, -hyperbolic with 6, = o(1), X isan
R-tree. Furthermore, any Y, ;, is a 108,-quasi-convex subset of X,,. By the previous
lemma, Y is a collection of subtrees such that two distinct elements of Y share no
more than one point. Applying Proposition 3.4.1, X (Y) is In 3-hyperbolic. O

The next step is to produce a local isometry between X (Y), the cone-off over
lim,, X, and lim,, (X,,, x2). For this purpose we consider the maps

Y X — limg, X,, limg, x, — limy, xp,

Y C(Yy) = limy, Xy, (limg, vy, 1) > limg (v, 7).
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These maps induce a function v from X to lim,, X, such that its restriction to X
(resp. C(Y;)) is yr (resp. v;). At first we prove that this map is 1-Lipschitz, then we
show that it induces a local isometry.

Lemma3.5.5. Letx and x’ betwo pointsof X. Wehave ||x’ — x| = [ (x') — v/ (x)].

Proof. We distinguish three cases.

(i) Assume that there is i € I such that x,x” € C(Y;). Then we can write
x = (y,r)and x" = (y’,r"), where y = lim,, y, and y’ = lim,, y, are two points
of Y;. In this situation we have

|x" — x|l = |x" — x|c(y;) = arccosh(cosh r cosh r’ —sinh rsinh ' cos 6(y, y")).
By continuity, This gives

|x" — x| = lim,, arccosh(cosh r cosh " — sinh r sinh ' cos 6 (y,, y;))
= limg, [ (v, ") = ms Dl )
= lim, |(y,. ') — . Dy,

= [ (x) = ().
(ii) Assume that x = lim, x, and x” = lim, x/, belong to X, but there is no
i € I suchthat x,x’ € ¥;. Inthiscase |[x" — x| = [x" — x|x = lim,, |x], — Xp]x,,-

However, for all n € N, we have |x, — xn|x, = [x, — xn|y . Thus [[x" — x| =

limg, |x), — xnl g, = [V (x) = ¥ (x)].
(iii) In all other cases, ||x” — x|| = +oco. There is nothing to prove. O

Corollary 3.5.6. Themap y/: X — lim,, X,, is 1-Lipschitz, where X isthe cone-off
over limy, X,,.

Proof. Letx and x’ be two points of X. Consider achain C = (zy., ... zy) of points
of X between x and x’. Using the previous lemma, we have

. . m_l . . m_l . .
WD) =yl < X W) —vE)I < X V() — v @)l = 1(C).
j=1 j=1
After taking the infimum over all chains between x and x’, we obtain |y (x")— (x)| <
lx" — x|y O
We now construct a partial inverse function of v.

Lemma35.7. Thereisamap ¢: B(x, ) C lim, X, — X suchthat ¢ inducesa

bijection onto the ball B(¢(x?), ), whoseinverseis .
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Proof. Let x = lim, x, be a point of B(x?, ). By construction, the distance

between x? and any vertex of X, is greater than 2. Thus applying Lemma 3.1.8, we

have
37 sinhr
0 0 0
[P (xn) — pn(x,)x, < o |Xn — xn|X,,'

It follows that (| p (xn) — pn(x9)|x,) is w-eb. Hence lim,, p, (x,) defines a point in
X. We now distinguish two cases.

(i) If there isi € I such that x, belongs to C(Y5 ;,) w-as, then x, can be written
Xn = (pn(xn), rn) w-as. Since (r,) is bounded, we may consider r = lim, r,. We
define ¢ (x) as the point (limy, p,(x,),r) of C(Y;).

(i) If x, belongs to X,, w-as, then we define ¢(x) as the point lim, p,(x,) of X.

The properties of ¢ are satisfied. O

Lemma 3.5.8. Let x = lim, x, and x’ = lim,, x, be two points of B(x?, %) such
that ([lx;, — xn|l) is w-eb. We have lim,, [[x;, — xa | = [[@(x) — @ (x)]|.

Proof. We distinguish two cases.
(i) If thereisi € I suchthat x,, and x;, belong to C(Yy,,;,) w-as, then || x), —x, | =
X, — Xnlc(y, ;,) w-as. By continuity we have

lime |x;, — Xnlc, ., = 10 = e®)lew) = (") — @)

Thus limg, [lx;, — xall = ll¢(x) — @(x)].
(ii) If x,,x), € X, w-as, but there isno i € I such that x,, and x,, belongs to
C(Yn,i,) w-as, then ||x;, — x| = |x,, — xn|x,, w-as. In this case we have

lim, |x, — xalx, = [@(x") —@()lx = ¢(x) — @)

Thus lim, [|x;, — x| = @(x") — @ (). -

The proof of the next corollary uses the uniform approximation of the distance on
the cone-off. Indeed, if x = lim,, x, and x” = lim,, x/, are two points of B(x°, ),
we can find for each n a chain C,, of X,, that approximates |x), —x,| with a given error.
However it is difficult to give a sense to the w-limit of C,, if the number of points of
C,, is not uniformly bounded. That is why we previously proved Proposition 3.2.1.

Corollary 3.5.9. Therestriction of ¢ to the ball B(x?, %) is 1-Lipschitz.

Proof. Consider two points x = lim,, x, and x" = lim,, x/, of B(x", $). Lete >0
such that |x" — x| 4+ & < 7. By Proposition 3.2.1, there is a number m depending
only of ry and ¢ such that for alln € N there isa chain C, = (z},...,z™) between

Xp and x,, with /(C,) < |x;, — xaly + & < 7. Notice that forall 1 < j < m,
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|zn = xplx, < |xn —xplg, +1(Cy) < 2. Thus we can consider the points z/ =
lim,, z;. The previous lemma gives

p(x) — @)y < Z lp(z7*1) = @)l < limg I[(Cp) < limg |37, — xuly, +e.

Hence we have |<p(x/) —¢(x)|y < [x"—x[+¢eforall e > 0. Thus ¢ is 1-Lipschitz.
[

Corollary 3.5.10. The map ¢ induces an isometry from the ball B(x°, ) onto its
image.

Proof. We already know that ¢ is a 1-Lipschitz bijection from B(x°, 3 onto its

image. However its inverse function v is also 1-Lipschitz. Hence ¢ preserves the
distances. O

End of the proof of the theorem. We have just proved that B(x°, 3 is isomet-

ric to a subset of X (Y, ro). Since X (Y, ro) is In3-hyperbolic, so is B(x°, ) =
lim, B(x?, 3. Consequently there exists # € N such that B(x?, )is(In3 + ¢)-
hyperbolic. Contradlctlon O

3.6. Length structure on the cone-off. In order to apply the Cartan—Hadamard
Theorem, we need a length structure on the cone-off. But the metric | - |y is not
necessary a length metric. We study here the difference between | - | ; and the length
metric d y induced by | - | ;. We will see that d ;. hardly changes the geometry of X.
Thus if (X, ] - |y) is hyperbolic, then so is (X, d ).

From now on, X is a geodesic, 5-hyperbolic space, and Y = (Y;);es a collection
of strongly quasi-convex subsets of X . We recall that a strongly quasi-convex set Y;
satisfies the following property: for all x, x” € Y; there exist y, y’ € ¥; such that the
path [x, y]U [y, YU [y, x'] C Y; and |y — x|, |y’ — x’| < 106. In particular this
condition is satisfied if ¥; is a cylinder (see Proposition 1.2.8). X (Y) is the cone-off
constructed as in Section 3.1.

Lemma3.6.1. Leti € I. Wehaved; (x,x’) < |x" — x|c(y,) + 4068 for all x,x" €
C(Yi).

Proof. We denote by x = (y,r) and x’ = (y’,r’) two points of the cone C(Y;).
We have assumed that ¥; was strongly quasi-convex, thus we can find two points z
and z’ in ¥; such that the geodesics [y, z], [z, z'] and [z’, y’] are contained in Y; and
|z = ylx, |2/ = y'|x <108.

By Proposition 2.1.3, we can find a geodesic c¢o (resp. ¢, ¢’) between (z,r)
and (z’,r’) (resp. between (y,r) and (z,r), between (y’,r’) and (z’,r’)). Since
|z —ylx,|z/ — y'|x <1068, we have

[z.r) = . Dleay. 1) = (' e, < 108.
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It follows that |(z', ¥") — (z,7)|c(v;) < | — x|c(y;) + 208. Thus by composing the
geodesics ¢, co and ¢’, we obtain a path from x to x” whose length is no more than
|x" — X|c(y;) + 406. O

Corollary 3.6.2. For all x,x’ € X, wehaved(x,x") < ||x’ — x|| + 408.

Proof. Let x and x" be two points of X. We distinguish three cases.

If there exists i € I suchthatx,x” € C(Y;), then ||[x" —x|| = |x"—X|c(y;). Thus
the inequality is given by the previous lemma.

If x,x" € X, butthere isnoi € I suchthat x,x" € C(Y;), then ||x" — x| =
|x’ — x|x. There is a geodesic of X between x and x’. It gives a path in X, whose
length is no more than |x” — x|x. It follows that d(x, y) < ||x" — x]|.

In all the other cases, |x’ — x|| = +oo. There is nothing to prove. O

Proposition 3.6.3. Let A = 1 and n > 0. There exists a constant § > 0 depending
only on A and n with the following property. Let X be a geodesic, §-hyperbolic
space, and Y = (Y;);er a collection of strongly quasi-convex subsets of X. The
identity map from (X, | - |) onto (X, d) induces a (1, n)-quasi-isometry on any ball
of radius A.

Proof. Let x and x’ be two points of X such that |x’ — x|y < 2A. Using Propo-
sition 3.2.1 there exists a constant M(A), an integer m < % and a chain C =

(z1,....2zm) between x and x’ such that /(C) < [x" — x|y + é. By Corollary 3.6.2
we have

m—1
d(x,x') < Y d(zj,zj+1) U(C) + 40m8 < |x" — x|y + 8 + 40M(A)V/S.
j=1
Thus we have
Ix" — x|y <d(x,x) < |x" —x|y +8+ 40M(A)VS.

Consequently, if § is small enough, the identity map from (X, |-|) onto (X, d) induces
a (1, n)-quasi-isometry on any ball of radius A. O

Remark. This last proposition combined with Proposition 1.0.3 tells us that if (X, |-
is locally hyperbolic, then so is (X, d).

4. Small cancellation theory

4.1. Orbifold. In this section we introduce vocabulary concerning orbifolds. For
more details about these objects see [5], Part 111.§.
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Definition and length structure

Definition 4.1.1 (Rigidity). The action of a group G on a topological space X isrigid
if it satisfies the following property: if there isan open U C X suchthat g|y = idy,
theng = 1forallg € G.

Definition 4.1.2 (Orbifold). Let O be a topological space. We say that Q is an
orbifold if there exists a collection (U;, ¢;)icr, Where U; is a topological space and
@; a continuous map from U; into Q, satisfying the following properties.

() @ =Ujes w:(Ui).

(i) Forall y € ¢;(U;), forall x € ¢ ' ({y}), there exists a finite, rigid group of
homeomorphisms of U;, Gy, fixing x, such that ¢; o g = ¢; for all g € G4
and the restriction of ¢; to a neighbourhood V. of x induces a homeomorphism
from V. /G onto its image.

(i) Forall x; € U; and x; € U; such that ¢; (x;) = ¢;(x;), there exists a home-
omorphism 6;; from a neighbourhood of x; onto a neighbourhood of x; with
¢i = ¢j o0,

(iv) ¢; lifts paths and homotopies for all i € I; thatis, if c: [0,1] — Q (resp.
H:[0,1] x [0,1] — Q) is a continuous path (resp. a homotopy), there exists
a subdivision 0 = 79 < --- < t, = 1 of [0, 1] (resp. subdivisions 0 = 7y <

<ty =1land 0 = ug < -+ < uy = 1 of [0,1]) such that c|,,
(resp. H |1, 1, 11 1x[us.us411) lifts in one of the U;.

tr+1]

(U;. i) is called a chart of Q. The set of charts is an atlas. The map 6;; is a
transition map, and the group G is an isotropy group.

Definition 4.1.3 (Length structure). The orbifold defined as above is endowed with
a length structure if
(i) the spaces U; are endowed with a length structure,
(ii) forall x € U;, theisotropy group G isan isometry group for the length structure
in U;,
(iii) the transition maps 6; ; are isometries with respect to the length structures in U;
and U;.

In this case, we can measure the length of a path by measuring the length of its
lift.

Definition 4.1.4 (o-useful length structure). Let o be a positive number. The length
structure defined as above is said to be o-useful if for all y € Q there exists a chart
(Ui, ¢i) and a point x € ¢; ' ({y}) such that

(i) the restriction ¢; : B(x,0) — B(y,0) is onto,

(i) this restriction lifts the paths starting in y whose lengths are less than 7,
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(iii) this restriction lifts the homotopies H : [0, 1] x [0, 1] — Q satisfying H(0,0) =
y, and for all 7o € [0, 1] (resp. uo € [0, 1]) the length of the path u — H(zo, u)
(resp.t — H(t,up)) is shorter than 7.

(Ui, ¢i, x) is called a o-useful chart.

Definition 4.1.5 (o-locally §-hyperbolic length structure). Let o > 0 and § > 0.
The o-useful length structure, defined as above, is said to be o-locally §-hyperbolic
if for all y € Q there exists a o-useful chart (U;, ¢;, x) such that the ball B(x, o) is
8-hyperbolic.

Topology of orbifolds. If Q is an orbifold, we can define the €-paths and the ho-
motopy of two §-paths (cf. [5] or [8]). This leads to the definition of the fundamental
group of the orbifold Q denoted by 7®(Q). We may also define the notion of
covering and universal covering of Q in the sense of orbifolds (cf. [5]).

Example. Let X be a geodesic space and G a group whose action on X is rigid
and proper. We denote by Q the quotient X/G, and by g: X — Q the canonical
projection. Q may be endowed with an orbifold structure with one chart (X, g).
Indeed, for all x € X, the isotropy group Gy is necessarily finite. Moreover ¢
induces a local isometry from X /G, onto its image. If X is simply connected, the
mapq: X — Q isalso the universal cover of Q and G = 79®(Q). Such an orbifold
is said to be developable.

Cartan—-Hadamard Theorem

Theorem 4.1.6 ([8], Th. 4.3.1). Let§ > 0 and o > 10°5. Consider an orbifold
0 with a o-locally §-hyperbolic length structure. Then Q is developable and its
universal cover X is2005-hyperbolic. Let (U, ¢, x) be a o-useful chart. If z isa
preimage in X of the point y = ¢(x), then the developing map (U, x) — (X, z)
induces an isometry from B(x, {5) onto itsimage.

4.2. Statement of the very small cancellation theorem

Notation. If G is a group acting on a space X and Y a subset of X, we denote by
Stab(Y') the subgroup of G that preserves Y, i.e.,

Stab(Y)={geG|gY =Y}
We define the notion of rotation family introduced by M. Gromov in [15].

Definition 4.2.1 (Rotation family). Let (H;);e; be a family of subgroups of G and
(Yi)ier acollection of pairwise distinct subspaces of X. We say that (Y;, H;)iey 1S
a rotation family if

(i) H; is a finite index normal subgroup of Stab(Y;) foralli € I,
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(ii) there is an action of G on I which is compatible with the one on X, that is, we
have Y,; = gY; and Hg; = gH; g ' forallg e Gandi € I.

Theorem 4.2.2 (\Very small cancellation theorem). There exist two positive numbers
8o and A, satisfying the following property.

Let X bea geodesic, simply connected, 5-hyperbolic space and G a group acting
properly by isometrieson X. Let (Y;, H;);e; be arotation family such that each Y;
is strongly-quasi-convex. Let p = min; ey rinj(H;, X), N be the normal subgroup of
G generated by the H;’sand G the quotient group G/ N . Assume also that

AY
%§80 and #§AO

Then there exists a simply connected, hyperbolic, metric space X suchthat G acts
properly by isometrieson X .

Moreover if G (resp. H;) acts co-compactly on X (resp. ¥;) and 1 /G isfinite,
then X /G iscompact. In particular G is hyperbolic.

Remark. In this theorem, A(Y) and p respectively play the role of the length of the
largest piece and the length of the smallest relation in the usual small cancellation
theory.

It is important to notice that the constants 6, and A are independent from the
space X. This is useful in order to construct by iteration a sequence of hyperbolic
groups, as it is done in [15], [8] or [1].

4.3. Proof of the very small cancellation theorem

Construction of an orbifold. First, we have to fix several constants in order to ap-
ply the Cartan—Hadamard Theorem 4.1.6 and the two hyperbolicity theorems (The-
orems 2.3.2 and 3.5.2).

Let us consider a positive number ¢ and choose a radius ro such that ro >
10%(In3 + &). With such constants we can apply the Cartan-Hadamard Theorem
to a 73-locally (In3 4 &)-hyperbolic orbifold. By Proposition 1.0.3, there exists a
positive number n with the following property. Consider two metric spaces X and
X’ and a (1, n)-quasi-isometry f: X — X'. If X" is (In3 + Z)-hyperbolic then X
is (In3 + &)-hyperbolic. From now on we will work with the rescaled metric space
X, = 200 X Thus, rinj(H;, X,) = 27 sinhro forall i € 1.

We can find &y, Ag > 0 depending on r¢ and ¢ only such that if % < §p and
% < Ay, then we have the following.

(i) Assume that xq isapointopr(Y),whose distance to a vertex is at least 2. Then

the ball B(xo. %) of (X, |- |Xp) is (In3 + £)-hyperbolic (see Theorem 3.5.2).

(ii) Foralli € I the cone C(Y;)/H; is (In3 + %)-hyperbolic (see Theorem 2.3.2).
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(iii) The identity map from (Xp, d) onto (Xp, | - |) restricted to any ball of radius rq
is a (1, n)-quasi-isometry (see Proposition 3.6.3).

Thus if x¢ is a point of X,,(Y) whose distance to a vertex is at least 73, the ball
B(xo. 13) of (Xp, d) is (In3 + ¢)-hyperbolic and, forall i € 7, the cones C(Y;)/H;
with the length metric are (In 3 + &)-hyperbolic.

Lemma4.3.1. Theaction of G on X, extendsto an action by isometriesof G on X,,.

Proof. We define this action such that its restriction to X, is the action of G on X.
Leti € /. Consider a point x = (y, r) of C(Y;) and an element g of G. We define
g - x as the point (gy, r) of C(Y,;). We check that for all x,x’ € X, and for all
g € G we have ||gx’ — gx]| = ||x’ — x||. It follows that the action of G preserves
the distances | - |Xp and d. O

From now on we denote by Q the quotient space Xp(Y)/G endowed with the
quotient topology. The canonical projection Xp — Q is denoted by ¢g. Then we
define two kind of charts.

The first one is (U, ¢), where U is the cone-off XP(Y) from which we have
removed the vertices.

Leti € I, we define U; = (C(Y;) \ 1;(Y;))/H;. The composition C(Y;) —
Xp — Q induces an map ¢; : U; — Q. The second type of charts is (U;, ;).

Lemma 4.3.2. The charts defined previously endow Q with an orbifold structure.
Proof. The action of G on U is proper. Moreover the stabilizer of the vertex v; of
the cone U; is exactly the finite group Stab(Y;)/H;. We check that the atlas {(U, q),
(Ui, q1)} defines a structure of orbifold on Q. O
Properties of the orbifold Q

Lemma4.3.3. Thestructureof orbifoldon Q defined asaboveis {5-locally (In 34-¢)-
hyperboalic.

Proof. Itisaconsequence of the two hyperbolicity theorems: the constants §o and Ag
have been chosen in such a way that the structure of orbifold is 73 -locally (In 3 + ¢)-
hyperbolic. O

Corollary 4.3.4. The orbifold Q is developable and its universal cover X is é-
hyperbolic, with § = 200(In 3 + ¢).

Proof. This is an application of the Cartan—Hadamard Theorem (see Theorem 4.1.6)
to the orbifold O with its 3-locally (In 3 + &)-hyperbolic length structure. O
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Proposition 4.3.5. Thegroup G acts properly by isometrieson X

Proof. We prove that G = 7%®(Q). The charts U and U; are simply connected.
This implies that z®(U/G) = G and = (U;/(Stab(Y;)/H;)) = Stab(Y;)/H;.

Applying to O the van Kampen Theorem for orbifolds, it follows that Q) =
Stab(Y;)/H; *swuny;) G = G (see [16]). Thus G acts properly on X. O

Proposition 4.3.6. If G (resp. H;) acts co-compactly on X (resp. ;) and 1/G is
finite, then X /G is compact. In particular G is hyperbalic.

Proof. Since there are, up to a translation by an element of G, a finite number of

Y;, it follows that Q is obtained by gluing a finite number of compact cones on the
compact space X/G. Thus Q = X /G is compact. Hence the action of G on X is
proper, co-compact. O

Theorem 4.3.7. Let X beann-dimensional simplicial complexwith8(n +1)§ < o5
Suppose that, for all x € X and all r € R, there exists a homotopy / : B(x,_r) X

[0, 1] — X contracting B(x, r) to {x} suchthat |2(x", 1) — x| < |x’ — x| + ani+r0

for all x’ € B(x,r). Moreover, suppose that the ¥;’s have the same property. Then
X iscontractible.

Proof. Let % be a point of X and r € [0, 8(n + 1)§]. We denote by B the closed ball
B(x,r) of X. We distinguish two cases.

Case 1. There exists i € I such that the vertex v; of the cone C(Y;)/H; belongs
B. Then there is a homotopy H : B x [0, 1] — B which contracts B to {;}.

Case 2. The ball B does not contain a vertex #;. Due to the Cartan-Hadamard
Theorem, there exists a chart (V, x) such that the developing map (V, x) — (X, X)
induces an isometry from B(x, {g5) onto its image. In particular the ball B lifts in
one of the charts. Assume that this chartis U; = C(Y;)/H;. Since v; does not belong
to B, the ball B lifts in fact in the cone C (Y;). By Proposition 2.4.1, B is contractible
in B(X,r + &). In the other hand, if the chart V is U, we apply Proposition 3.3.1.
Thus B is contractible in B(x, r + 35).

Consequently, every ball B(x,r) of X, with r < 8(n + 1)§, is contractible in
B(x,r + 468). By Proposition 1.3.4, X is contractible. O

5. Examples of aspherical complexes

In this section we explain how to construct examples of rotation families satisfying the
very small cancellation assumptions. Let X be a proper, geodesic, §-hyperbolic space
and Y a closed convex subset of X. Let G be a group acting properly, co-compactly,
by isometries on X, such that Stab(Y") acts co-compactly on Y.
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We are interested in the rotation family (gY, gHg ') geq/suv(y), Where H is
a subgroup of Stab(Y). In concrete situations, {diam(g¥ t20% N y+208) | ¢ ¢
G \ Stab(Y)} may not be bounded. Nevertheless, in many situations this assumption
can be achieved by replacing G with a finite index subgroup of G. This uses, as
explained in the next lemma, the profinite topology of groups.

Lemma 5.1. Assume that the subgroup Stab(Y) is closed in G under the profinite
topology. Let A be a non-negative number. There exists a finite index subgroup G’
of G containing Stab(Y") such that for all g in G’ we have g € Stab(Y) if and only
if diam(gY 7208 0y +208) 5 A,

Proof. Let K be a compact fundamental domain for the action of Stab(Y) on Y.
Since the action of G is proper, the set

E={geCG| diam(gK+A+308 N K+A+308) > A}

is finite. By assumption, Stab(Y') is closed in G under the profinite topology. In other
words,
Stab(Y) = (N Stab(Y)-N.
N<G
[G:N]<+o0

Hence there exists a finite index normal subgroup N of G suchthat £ NStab(Y)-N C
Stab(Y). We denote by G’ the set Stab(Y) - N. It is a finite index subgroup of G
containing Stab(Y). Consider now g € G’ such that diam(g¥ t29 n Y +208) 5 A,
Since K isafundamental domain of Y, there exist four points x, x’, y, y’ of K T305+4
and two elements &, 4’ of Stab(Y) with the following properties: hx = gh'x’,
hy = gh’y"and |y — x| = |y’ — x| > A. Thus h~!gh’ belongsto E N G’. But &
and &’ both belong to Stab(Y'). Hence g € Stab(Y). O

In this context, the following result of N. Bergeron is useful.

Proposition 5.2 ([2], Lemme principal). Let A bean algebraic subgroup of GL,(R)
and G afinitely generated subgroup of GL,(R). Then A N G isclosed in G under
the profinite topol ogy.

The second lemma explains how to find a subgroup H of Stab(Y') with an injec-
tivity radius as large as desired.

Lemma 5.3. Assume that the group G isresidually finite. Then for all p > 0 there
exists a finite index normal subgroup A of Stab(Y') such that rinj(H, X) = p.

Proof. Let K be a compact fundamental domain for the action of G on X. Since the
action of G is proper, the set

E={geG|gKT™"NK™ £
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is finite. Moreover, G is residually finite. Hence there exists a finite index normal
subgroup N of G suchthat E N N = {1}. Consider g € N \ {l}and x € X. By
definition there exists 4 € G such that hx € K. But hgh~! belongsto N \ {1}, thus
hgh™'K*T° N K*T° = @. It follows that |gx — x| = |(hgh™')hx — hx| = p. Hence
[¢] = p. Consequently, we take for H the group N N Stab(Y). O

Theorem 5.4. Let H,, denotethereal (resp. complex, quater nionic) hyperbolic space,
and § its hyperbolicity constant. We consider Ay = SO(k, 1) (resp. SU(k, 1),
Sp(k, 1)) asthe stabilizer of H inH,,. Let G beauniformlatticeof A,, = SO(n, 1)
(resp. SU(n, 1), Sp(n, 1)). We assume that G N A isa uniformlattice of Ay.

(i) There exists a finite index subgroup G’ of G such that the set

{diam(gH;/2% N H;72%) | g € G'\ Ay}

is bounded.

(i) Let O be the space obtained by gluing a cone of base Hy /G’ N Ay over
H,/G’. Thereisafiniteindex subgroup H of G’ N A} and a contractible hyperbolic
space X suchthat G’ = G’/ {(H )) actsproperly co-compactlyon X,and Q0 = X /G'.

Proof. Applying Proposition 5.2, G N Ay, is closed in G under the profinite topology.
The first point follows from Lemma 5.1.
We denote by A the upper bound of

{diam(gH 2% N H;72%%) | g € G\ Ay}

It is known that a finitely generated subgroup of A, is residually finite. Using
Lemma 5.3 there exists a finite index normal subgroup H of G’ N A, whose injectivity
radius is p, and such that § < §pp and A < Agp, where 5o and Ay are the constants
given by the very small cancellation theorem (see Theorem 4.2.2). It follows that
the rotation family (¢Hy.gHg ")gec//6'na, Satisfies the hypotheses of the very

small cancellation theorem. Thus there exists a hyperbolic space X such that G’ =
G'/{(H)) acts properly by isometries on X and 0 = X/G’. Since G’ (resp. H) is
a uniform lattice of A, (resp. Ay) the action of G’ (resp. H) on H,, (resp. Hy) is
co-compact. It follows that the action of G’ on X is co-compact. Moreover, every
ball in H,, or Hy is contractible. Thus Theorem 4.3.7 implies that X is contractible.
O

The next result is proved in the same way, it only uses another kind of convex
subsets of H,,.

Theorem 5.5. Let H,(C) denote the complex hyperbolic space, and let § be its
hyperbolicity constant. Consider SO(n, 1) asthe stabilizer of the n-dimensional real
hyperbolic space H,, (R) in H,, (C). Let G bea uniformlattice of SU(n, 1) such that
G N SO(n, 1) isalso a uniform lattice of SO(xn, 1).
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(i) There exists a finite index subgroup G’ of G such that the set
{diam(gH,, (R) 2% N H, (R)*2%) | g € G'\ SO(n, 1)}

is bounded.

(ii) Denote by Q the space obtained by attaching over H,, /G’ a cone of base
H, (R)/G’ N SO(n, 1). Thereisa finite index subgroup H of G’ N SO(n, 1) and a
contractible hyperbolic space X such that G’ = G’/{(H)) acts properly
co-compactlyon X,and 0 = X/G'.
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