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Homological and homotopical higher-order filling functions

Robert Young

Abstract. We construct groups in which FV 3.n/ œ ı2.n/. This construction also leads to
groups Gk , k � 3, for which ık.n/ is not subrecursive.
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The Dehn function of a group provides a measure of the complexity of the group’s
word problem by measuring the difficulty of filling loops in a corresponding complex.
A natural generalization is to consider the difficulty of filling higher-dimensional
manifolds or cycles, and there are several ways to do so, varying in the nature of the
filling and the boundary. One can consider, for example, the volume necessary to
fill a k-sphere with a ball (ık), to fill @M with M (ıM ), or to fill a .k � 1/-cycle
by a k-chain (FV k). In some cases, these functions are equivalent; for example, the
methods used in [11] work for all these definitions. Along these lines, Brady et al. [3]
showed that if @M is connected and dim M D kC1 � 4 then ıM .n/ � ık.n/. In this
note, we will show that this is not necessarily true if dim M D 3, and that there are
groups where FV 3 is not equivalent to ı2. We will also show that for k � 2 there are
groups where FV k is not subrecursive (i.e., FV k grows faster than any computable
function) and for k � 3, there are groups where ık is not subrecursive.

We start by defining some filling functions. To define ık , we will take the approach
of Brady et al. [3], which is equivalent to the definition of Alonso, Wang, and Pride [2]
or of Bridson [5]. We recall their definition of an admissible map:

Definition 1 (Admissible maps [3]). Let W be a compact k-manifold and X a CW-
complex. An admissible map from W to X is a map f W W ! X .k/ such that
f �1.X .k/ n X .k�1// is a disjoint union of open k-dimensional balls in W , each
mapped homeomorphically to a k-cell of X . We define the volume vol.f / of f as
the number of these balls.

If ˛ D P
ai�i 2 Ck.X I R/ is a cellular chain in X , with ai 2 R and �i distinct

cells of X , define k˛k1 D P jai j. If W is orientable and f W W ! X is an admissible
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map, the image of the fundamental class of W is a cellular k-chain, which we call Of .
This has integer coefficients, and k Of k1 � vol f: Furthermore, if W is closed, then Of

is a cycle.
If X is a k-connected CW-complex, one can define the filling volume of an

admissible map ˛ W Sk ! X as

ık
X .˛/ D inffvol ˇ j ˇ W DkC1 ! X; ˇjSk D ˛; ˇ is admissibleg

and the k-th order Dehn function of the complex by

ık
X .n/ D sup

˛ W Sk!X
vol ˛�n

ık
X .˛/;

where ˛ is assumed to be admissible.
We can also define the Dehn function of a group:

Definition 2 (Dehn functions). We say a group G is F k if there is a K.G; 1/ with
finite k-skeleton. If G is F kC1, let X be the .k C 1/-skeleton of the universal cover
of such a K.G; 1/ and define the k-th order Dehn function of G

ık
G.n/ D ık

X .n/:

This function depends on the choice of X , but Gromov’s Filling Theorem [4]
states that the growth rate of ı1

X is an invariant of G, and Alonso, Wang, and Pride
generalized this to higher dimensions [2]. That is, we define the partial ordering,

f � g iff there exists A; B; C; D; E such that

f .n/ � Ag.Bn C C / C Dn C E for all n > 0;
(1)

and let f � g if and only if f � g and f � g. If X1 and X2 are as in Definition 2,
then ık

X1
� ık

X2
.

There are several ways to generalize this beyond fillings of spheres by balls.
Brady et al. [3] provide one generalization. If .M; @M/ is a (smooth or PL) compact
manifold pair with dim M D k C 1, define the filling volume of an admissible map
˛ W @M ! X as

ıM
X .˛/ D inffvol.ˇ/ j ˇ W M ! X; ˇj@M D ˛; ˇ is admissibleg

and
ıM
X .n/ D sup

˛ W @M!X
vol ˛�n

ıM
X .˛/;

where ˛ is again assumed to be admissible. In particular, ıDkC1

X D ık
X .

Another generalization is to consider fillings of chains by cycles, with volume
given by k � k1-norm. Gromov [9] defined the filling volume function FV of a
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manifold by using Lipschitz cycles; we will use cellular cycles. For ˛ 2 Zk�1.X I Z/

a .k � 1/-cycle, define

FV k
X;K.˛/ D inffkˇk1 j ˇ 2 Ck.X I K/; @ˇ D ˛g

for K D R or K D Z, and define the k-dimensional filling volume function of X by

FV k
X;K.n/ D sup

˛2Zk�1.XIZ/

k˛k1�n

FV k
X;K.˛/:

As with ıM , we can specify the manifold to fill. If N is a closed orientable
.k � 1/-dimensional manifold, we define

FV N
X;K.n/ D sup

˛ W N !X
vol ˛�n

FV k
X;K. Ǫ /;

where ˛ is assumed to be admissible. Then if .M; @M/ is a compact orientable
manifold pair with dim.M/ D k,

FV @M
X;Z .n/ � ıM

X .n/; FV @M
X;K.n/ � FV k

X;K.n/:

Finally, we define the filling size of a curve. The size of a chain is a notion from
geometric measure theory which counts the number of distinct cells in the support
of a chain. The filling size FSize describes the infimal size of a chain filling a curve.
If ˇ D Pr

iD1 bi�i 2 Ck.X I K/ for bi ¤ 0 2 K and distinct k-cells �i of X , let
size ˇ D r . Let the support supp ˇ of ˇ be the minimal subcomplex of X containing
the �i . Define the filling size FSize.˛/ of an admissible loop ˛ W S1 ! X by

FSizeX .˛/ D minfsize ˇ j ˇ 2 C2.X I R/; @ˇ D Ǫg;
FSizeX .n/ D sup

˛ W S1!X
vol ˛�n

FSizeX .˛/:

This represents the number of different 2-cells of X necessary to support a filling of
a loop.

Like ı, the functions FSize and FV are defined in terms of a CW-complex X , but
can also be defined up to (1) for a group

Lemma 1. Let k � 1 and let X1 and X2, be k-connected CW-complexes such that
G acts on Xi cocompactly, properly discontinuously, and by automorphisms. Let
K D R or K D Z. Then FSizeX1

� FSizeX2
and FV kC1

X1;K � FV kC1
X2;K.

Proof. It is enough to show that FSizeX1
- FSizeX2

and FV kC1
X1;K - FV kC1

X2;K; the
lemma then follows by symmetry.

By the Švarc–Milnor Lemma, X1 and X2 are both quasi-isometric to G, and
thus are quasi-isometric. By Lemmas 12 and 13 of [2], there are cellular quasi-
isometries f W X

.kC1/
1 ! X

.kC1/
2 and g W X

.kC1/
2 ! X

.kC1/
1 and a cellular homotopy
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h W X
.k/
1 	 Œ0; 1� ! X

.kC1/
1 such that for all x 2 X

.k/
1 , h.x; 0/ D .g B f /.x/ and

h.x; 1/ D x. Furthermore, there is a c > 0 such that if

f� W C�.X
.kC1/
1 I K/ ! C�.X

.kC1/
2 I K/

is the map induced by f , then, for all � 2 Ci .X
.kC1/
1 I K/, we have

kf�.�/k1 � ck�k1; size.f�.�// � c size.�/:

Similar inequalities hold when f is replaced by g or h.
If ˛ 2 Zk.X1I K/, then f�.˛/ is a cycle in X2, and there is a .k C 1/-chain

ˇ 2 CkC1.X2I K/ such that @ˇ D f�.˛/ and kˇk1 � FV kC1
X2;K.f�.˛// C 1. Then

ˇ0 D g�.ˇ/ C h�.˛ 	 Œ0; 1�/

has boundary ˛ and

FV kC1
X1;K.˛/ � kˇ0k1 � cFV kC1

X2;K.f�.˛//CcCck˛k1 � cFV kC1
X2;K.ck˛k1/CcCck˛k1:

Thus FV kC1
X1;K - FV kC1

X2;K. Similarly, choosing ˇ so that size.ˇ/ D FSizeX2
.f�.˛//

shows that FSizeX1;K - FSizeX2;K.

If G acts on X in this way, we can define FSizeG D FSizeX and FV �
G;K D FV �

X;K,
and these functions are well defined up to the equivalence relation (1). For all of these
functions, we will omit the group when there is no confusion.

We will use FSize to provide a lower bound on some higher-dimensional filling
volumes.

Theorem 2. If a group G is F kC1, then

FV
.S1/k

Gk ;Z
.n/ � FSizeG.n1=k/:

Proof. Let X be the .k C 1/-skeleton of the universal cover of a K.G; 1/ with fi-
nite .k C 1/-skeleton, so that X is k-connected and G acts cocompactly, properly
discontinuously, and by automorphisms on X . Let � W S1 ! X be an admissi-
ble map such that vol � D n and FSizeX .�/ D FSizeX .n/. Define the map ˛ D
�k W .S1/k ! Xk , where Xk is given the product CW-structure; then vol.˛/ D nk .
Let ˇ 2 CkC1.XkI Z/ be a chain whose boundary is Ǫ and such that

kˇk1 D FV
.S1/k

Xk ;Z
.˛/:

Let p1; : : : ; pk W Xk ! X be the maps projecting to each factor. Then pi .supp.ˇ//

is a subcomplex of X for each i . We claim that for some i , this subcomplex supports
a 2-chain filling O� and thus has at least FSizeX .�/ cells.
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We proceed by contradiction, assuming that O� is not a boundary (over R) in any of
the pi .supp ˇ/’s. Then O� represents a non-zero element of H1.pi .supp ˇ/I R/ and by
the universal coefficient theorem, there is a cohomology class vi 2 H 1.pi .supp ˇ/I R/

such that vi . O�/ D 1. Let wi D p�
i .vi / 2 H 1.supp ˇI R/. We claim that

� kS

iD1

wi

�
. Ǫ / ¤ 0I

this contradicts the fact that @ˇ D Ǫ .
The wi pull back under ˛ to the standard generators of H 1..S1/kI R/, so their cup

product is a class in H k.supp ˇI R/ which pulls back to a generator t of H k..S1/kI R/.
Therefore,

� kS

iD1

wi

�
. Ǫ /

is equal to t evaluated on the fundamental class of .S1/k , and is thus non-zero. Since Ǫ
is a boundary in supp ˇ, this is impossible; any class in H k.supp ˇI R/ must evaluate
to 0 on Ǫ . Thus � is a boundary in pi .supp ˇ/ for some i .

This implies that pi .supp ˇ/ contains at least FSizeX .�/ 2-cells. Each of these
is the image of a cell of supp ˇ, so supp ˇ contains at least FSizeX .�/ cells. By the
definition of a CW-complex, any .kC1/-cell of Xk is contained in a finite subcomplex
of Xk . Since there are only finitely many equivalence classes of cells of Xk under
the action of Gk , there is a constant c > 0 such that for all � 2 C �.XkI R/, the
number of cells in supp � is at most c size � . Thus

FV
.S1/k

Xk ;Z
.˛/ D kˇk1 � size ˇ � c�1 FSizeX .�/;

so
FV

.S1/k

Xk ;Z
.nk/ � c�1 FSizeX .n/:

as desired.

Lemma 3. There is an aspherical group G for which FSize.n/ is not subrecursive.

Proof. Collins and Miller [6] constructed a group G with unsolvable word problem
and an aspherical presentation. This group is constructed from a free group by ap-
plying three successive HNN-extensions where the associated subgroups are finitely
generated free groups. This group belongs to the hierarchy F constructed by Ger-
sten [8], and Theorem 4.3 of [8] states that for groups in this hierarchy, ıG is bounded
by a recursive function of FV S1

G;R. Since G has unsolvable word problem, ıG is not

subrecursive, so FV S1

G;R is also not subrecursive.

We claim that FV S1

G;R.n/ is bounded by a recursive function of FSizeG.n/ and
thus that FSizeG.n/ is not subrecursive. Let X be the CW-complex corresponding
to a finite aspherical presentation of G, let c be the total length of the relators in the
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presentation and let ˛ be a loop in X . Let ˇ 2 C2.supp ˇI R/ be a 2-chain such that
@ˇ D ˛ and such that size.ˇ/ D FSizeX .˛/. It suffices to show that there is a 2-chain
� such that @� D ˛ and k�k1 is bounded by a recursive function of size ˇ.

Note that

dim C2.supp ˇI R/ D size ˇ; dim C1.supp ˇI R/ � c size ˇ

and @ W C2.supp ˇI R/ ! C1.supp ˇI R/ is a linear map. The 2-cells of supp ˇ

correspond to a basis of C2.supp ˇI R/ and the 1-cells correspond to a basis of
C1.supp ˇI R/. In these bases, the equation @� D ˛ corresponds to a system of
at most c size ˇ linear equations in size ˇ variables with integer coefficients between
�c and c. Since ˇ is a solution, the system is solvable, and since such a system can be
solved algorithmically, there is a solution whose k �k1 norm is bounded by a recursive
function of size ˇ. Thus FV S1

X;R.n/ is bounded by a recursive function of FSizeX .n/

and so FSizeG.n/ is not subrecursive.

Using Theorem 2 and the following theorem of Brady et al. [3], Remark 2.6 (4),
we can give lower bounds on filling functions of products of G:

Theorem 4. If dim M D k C 1 � 4, then ıM � ık provided @M is connected or ık

is superadditive.

Corollary 5. For the group G in Lemma 3, FV kC1

Gk ;Z
.n/ is not subrecursive for k � 1

and ık
Gk .n/ is not subrecursive for k � 3.

Note that the spheres with large filling volumes may be extremely distorted. If
˛ W .S1/k ! Xk is as in the proof of Theorem 2, then the construction in the proof
of Theorem 4 results in a map ˛0 whose image contains non-recursively large 2-discs
filling curves in the image of ˛. These discs do not add to the k-volume of ˛0, but
they increase its “complexity”; for instance, the Lipschitz constants of ˛ and the
number of simplices in a simplicial approximation grow non-recursively with vol ˛.
Brady’s et al. theorem suggests that considering fillings of spheres is not particularly
restrictive in high dimensions, since low-volume, high-complexity spheres can be
used to approximate arbitrary manifolds. To study differences in filling different
manifolds, it may be worthwhile to study other filling functions.

Finally, a theorem of Papasoglu [10] states that ı2
G is a subrecursive function for

any group G which is F 3. Combining this with Corollary 5, we obtain the following:

Corollary 6. There is a group G such that FV 3
G;Z.n/ œ ı2

G.n/.

There are also examples of such groups with solvable word problem. To construct
one such example, we let G D BS.1; 2/ and consider G 	 G. One method to show
that ıG.n/ � 2n uses the asphericity of a certain 2-dimensional K.G; 1/ to show that
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discs filling certain curves must contain an exponentially large number of 2-cells [7],
7.4. This method also shows that FSizeG.n/ � 2n and thus, by Theorem 2,

FV 3
G�G;Z.n/ � 2

p
n:

On the other hand, since there is a 2-dimensional K.G; 1/,

ı2
G.n/ � n;

and by Theorem 5.3 of [1],
ı2

G�G.n/ � n2:

In these groups, filling a torus takes substantially more volume than filling a
sphere largely because the fundamental group of the torus is nontrivial. It would be
interesting to see if there are other ways that the topology of the boundary affects the
difficulty of filling. In particular, it remains open to find examples of groups in which
filling a genus g surface is harder than filling a torus.

The author would like to thank Hanna Bennett, Max Forester, and the referee for
their comments on drafts of this paper, and NYU for its hospitality during part of the
preparation of this paper.
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