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Characterizing the Cantor bi-cube in asymptotic categories
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Abstract. We present characterizations of metric spaces that are micro-, macro- or bi-uniformly
equivalent to the extended Cantor set EC D ˚P1

iD�n
2xi

3i j n 2 N; .xi /i2Z 2 f0; 1gZ
� �

R, which is bi-uniformly equivalent to the Cantor bi-cube 2<Z D f.xi /i2Z 2 f0; 1gZ j
there exists n such that xi D 0 for all i � ng endowed with the metric d..xi /; .yi // D
maxi2Z 2

i jxi � yi j. The characterizations imply that any two (uncountable) proper iso-
metrically homogeneous ultrametric spaces are coarsely (and bi-uniformly) equivalent. This
implies that any two countable locally finite groups endowed with proper left-invariant metrics
are coarsely equivalent. For the proof of these results we develop a technique of towers which
may be of independent interest.
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1. Introduction

This paper is motivated by the problem of coarse classification of countable locally
finite groups posed in [BDHM], repeated in [Sj], Problem 1606, and communicated
to the authors by I.V. Protasov. As we will see later, a crucial role in this classification
is played by the extended Cantor set

EC D ˚P1
iD�n

2xi

3i j n 2 N; .xi /i2Z 2 f0; 1gZ
� � R:

Firstly we present four characterizations of the extended Cantor set EC in various
categories of metric spaces and then we apply these characterizations to the problem
of coarse and bi-uniform classifications of locally finite groups (more generally of
isometrically homogeneous metric spaces).

We will mainly work in the categories of proper metric spaces and their (macro-,
micro-, or bi-) uniform maps. It will be convenient to introduce such maps using the
notion of the oscillation !f of a function f W X ! Y between metric spaces X and
Y . By definition, the oscillation of f is the function !f W Œ0;1/ ! Œ0;1� assigning
to each ı � 0 the (finite or infinite) number

!f .ı/ D supfdist.f .x/; f .x0// j x; x0 2 X; dist.x; x0/ � ıg:
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Here dist.x; x0/ denotes the distance between points x; x0 in a metric space.
A map f W X ! Y is called

� uniformly continuous (or else micro-uniform) if for any " > 0 there exists ı > 0
with !f .ı/ � ";

� macro-uniform if for any ı < 1 there exists " < 1 with !f .ı/ � ";
� bi-uniform if f is macro- and micro-uniform.

These notions induce the corresponding equivalences of metric spaces. Namely,
a map f W X ! Y between two metric spaces is called

� a uniform homeomorphism if f is bijective and both f and f �1 are uniformly
continuous;

� a bi-uniform equivalence if f is bijective and both f and f �1 are bi-uniform
maps;

� a coarse equivalence if f is macro-uniform and there exists a macro-uniform
map g W Y ! X such that dist.f B g; idY / < 1 and dist.g B f; idX / < 1.

Observe that a map f W X ! Y is a bi-uniform equivalence if and only if f is
both a uniform homeomorphism and a coarse equivalence.

We have defined morphisms and isomorphisms in our categories and now switch
to the objects.

We say that a metric space X

� is isometrically homogeneous if for any two points x; y 2 X there is a bijective
isometry f W X ! X such that f .x/ D y;

� is proper if X is unbounded, but for every x0 2 X and r 2 Œ0;C1/ the closed
r-ball Br.x0/ D fx 2 X j dist.x; x0/ � rg centered at x0 is compact;

� has bounded geometry if there is ı < 1 such that for every " < 1 there exists
n 2 N such that each "-ball in X can be covered by � n balls of radius ı;

� is ultrametric if d.x; y/ � maxfd.x; z/; d.z; y/g for any points x; y; z 2 X .

Ultrametric spaces often appear as natural examples of zero-dimensional spaces
(in various senses), see [BDHM]. We are interested in four notions of zero-di-
mensionality: topological, micro-uniform, macro-uniform (D asymptotic), and bi-
uniform.

First, given a positive real number s define the s-connected component of a point
x of a metric space X as the set Cs.x/ of all points y 2 X that can be linked with
x by a chain of points y D z0; z1; : : : ; zn D x such that dist.zi�1; zi / � s for all
i � n. By Cs.X/ D fCs.x/ j x 2 Xg we denote the family of the (pairwise disjoint)
s-connected components of X . Given a family C of subsets of a metric space X let

mesh C D sup
C 2C

diam.C /:

For a metric space X and positive real numbers ı � " consider the cardinal
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characteristics

�"
ı .X/ D min

x2X
jC".x/=Cı.X/j and ‚"

ı.X/ D sup
x2X

jC".x/=Cı.X/j;

where jC".x/=Cı.X/j D jfCı.y/ j y 2 C".x/gj is the number of ı-connected
components composing the "-connected component C".x/ of x.

If the metric space X is isometrically homogeneous, then �"
ı
.X/ D ‚"

ı
.X/ D

jC".x/=Cı.X/j for every x 2 X . If X is an ultrametric space, then the "-connected
component C".x/ of a point x coincides with the closed "-ball B".x/ and thus
jC".x/=Cı.X/j is just the number of ı-balls composing the "-ball B".x/. Observe
that an ultrametric spaceX has bounded geometry if and only if there is ı < 1 such
that ‚"

ı
.X/ if finite for every finite " � ı.

We say that a metric space X has

� topological dimension zero if the family of closed-and-open subsets forms a
base of the topology of X ;

� micro-uniform dimension zero if for all " > 0 there exists ı > 0 with
mesh Cı.X/ � ";

� macro-uniform (or else asymptotic) dimension zero if for all ı < 1 there exists
" < 1 with mesh Cı.X/ � ";

� bi-uniform dimension zero if X has both micro-uniform and macro-uniform
dimensions zero.

It follows that a metric spaceX of bi-uniform dimension zero has topological, micro-
uniform, and macro-uniform dimensions zero.

If X is an ultrametric space, then for every s > 0 the s-connected component
Cs.x/ of a point x 2 X coincides with the closed s-ball Bs.x/. SoX has bi-uniform
dimension zero (because mesh Cs.X/ D s for all s > 0). On the other hand, each
metric space of asymptotic (bi-uniform) dimension zero is coarsely (bi-uniformly)
equivalent to an ultrametric space; see Theorem 4.3 of [BDHM].

The class of proper metric spaces of bi-uniform dimension zero contains an inter-
esting object

EC D ˚P1
iD�n

2xi

3i j .xi /i2Z 2 f0; 1gZ; n 2 N
� � R;

called the extended Cantor set. The extended Cantor set EC coincides with the image
of the Cantor bi-cube

2<Z D f.xi /i2Z 2 f0; 1gZ j there exists n 2 N such that xi D 0 for all i > ng
under the map

f W 2<Z ! EC; f W .xi /i2Z 7!
1P

iD�1
2 � 3i � xi :
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This map determines a bi-uniform equivalence between the extended Cantor set EC
and the Cantor bi-cube 2<Z endowed with the ultrametric

d..xi /; .yi // D max
i2Z

2i jxi � yi j:

The Cantor bi-cube can be written as the product 2<Z D 2! � 2<N of the Cantor
micro-cube

2! D f.xi /i2Z 2 2<Z j xi D 0 for all i > 0g
and the Cantor macro-cube

2<N D f.xi /i2Z 2 2<Z j xi D 0 for all i � 0g:
The Cantor micro-cube can be identified with the standard Cantor cube f0; 1g! . It
is well known that the Cantor micro-cube 2! contains a micro-uniform copy of each
zero-dimensional compact metric space [Ke], Theorem 7.8. The Cantor macro-cube
2<N has a similar property: it contains a macro-uniform copy of each asymptotically
zero-dimensional metric space of bounded geometry; see Theorem 3.11 of [DZ].
This picture is completed by the following result.

Theorem 1 (Universality of the Cantor bi-cube). A metric space X is bi-uniformly
equivalent to a subspace of the Cantor bi-cube 2<Z if and only if X is a metric space
of bi-uniform dimension zero such that ‚"

ı
.X/ < 1 for all 0 < ı � " < 1.

Now we turn to the problem of characterization of the spaces 2! , 2<N , and 2<Z

in various categories. The characterization of the Cantor micro-cube is well known
and is due to Brouwer (see [Ke], Theorem 7.4):

Theorem 2 (Topological characterization of the Cantor cube). For a metric spaceX
the following conditions are equivalent:

(1) X is topologically equivalent to the Cantor micro-cube 2! ;
(2) X is micro-uniformly equivalent to 2! ;
(3) X is bi-uniformly equivalent to 2! ;
(4) X is a zero-dimensional metric compact space without isolated points.

Since the Cantor bi-cube 2<Z D 2! � 2<N , and the Cantor macro-cube 2<N

is discrete, the preceding theorem implies the following (well-known) topological
characterization of the Cantor bi-cube 2<Z:

Theorem 3 (Topological characterization of the Cantor bi-cube). A metric space X
is topologically equivalent to the Cantor bi-cube 2<Z if and only if

(1) X has topological dimension zero;

(2) X is separable, locally compact and non-compact;
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(3) X has no isolated points.

In the next three theorems we present characterizations of the Cantor bi-cube in
the micro-, macro-, and bi-uniform categories.

Theorem 4 (Micro-uniform characterization of the Cantor bi-cube). A metric space
X is micro-uniformly equivalent to the Cantor bi-cube 2<Z if and only if

(1) X is a non-compact complete metric space of micro-uniform dimension zero;

(2) there exists an " > 0 such that ‚"
ı
.X/ is finite for all positive ı � " and

lim
ı!C0

�"
ı
.X/ D 1.

Theorem 5 (Macro-uniform characterization of the Cantor bi-cube). A metric space
X is macro-uniformly equivalent to the Cantor bi-cube 2<Z if and only if

(1) X has macro-uniform dimension zero;

(2) there exists an ı > 0 such that ‚"
ı
.X/ is finite for all positive " � ı and

lim
"!1 �"

ı
.X/ D 1.

Theorem 6 (Bi-uniform characterization of the Cantor bi-cube). A metric space X
is bi-uniformly equivalent to the Cantor bi-cube 2<Z if and only if

(1) X is a complete metric space of bi-uniform dimension zero;

(2) ‚"
ı
.X/ is finite for all 0 < ı � " < 1;

(3) lim
"!1 �"

ı
.X/ D 1 for all ı < 1;

(4) lim
ı!C0

�"
ı
.X/ D 1 for all " > 0.

It is clear that any metric spaceX that is bi-uniformly equivalent to the Cantor bi-
cube 2<Z is micro-uniformly and macro-uniformly equivalent to 2<Z. The converse
is not true.

Example 1. Let ! be the space of finite ordinals, endowed with the discrete 2-valued
metric. The metric space 2! � ! � 2<N is micro-uniformly and macro-uniformly
equivalent to 2<Z but fails to be bi-uniformly equivalent to 2<Z.

Characterization Theorems 3–6 of the Cantor bi-cube allows us to detect copies
of 2<Z among isometrically homogeneous metric spaces:

Corollary 7. An isometrically homogeneous metric space X is

(1) micro-uniformly equivalent to 2<Z if and only if X is homeomorphic to 2<Z

if and only if X is uncountable, separable, locally compact, non-compact, and
has topological dimension zero;

(2) macro-uniformly equivalent to 2<Z if and only ifX is unbounded, has bounded
geometry and has asymptotic dimension zero;
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(3) bi-uniformly equivalent to 2<Z if and only if X is proper, uncountable, and has
bi-uniform dimension zero.

Now we apply this classification result to the macro- and bi-uniform classification
of countable groups, viewed as metric spaces endowed with perfect left-invariant met-
rics. J. Smith [Sm] observed that each countable group carries a perfect left-invariant
metric and such a metric is unique up to the bi-uniform equivalence. A. Dranish-
nikov and J. Smith [DS] proved that a countable group G endowed with a proper
left-invariant metric has asymptotic dimension zero if and only if G is locally finite
in the sense that each finitely-generated subgroup of G is finite. The authors of
[BDHM] classified countable locally finite groups up to the bi-uniform equivalence
and posed the problem of classification of countable locally finite groups up to the
coarse equivalence. The same problem was repeated by J. Sanjurjo in [Sj], Problem
1606. The following corollary of Corollary 7 (2) answers this problem.

Corollary 8. Any two countable locally finite groups endowed with proper left-
invariant metrics are coarsely equivalent.

This corollary is a principal ingredient in the coarse classification of countable
abelian groups given in [BHZ].

Corollary 7 shows that the coarse classification of proper isometrically homo-
geneous metric spaces of asymptotic dimension zero is trivial: all such spaces are
coarsely equivalent. The same concerns the bi-uniform classification of uncountable
proper isometrically homogeneous metric spaces of bi-uniform dimension zero: all
such spaces are bi-uniformly equivalent. Also the micro-uniform classification of
countable proper isometrically homogeneous metric spaces is trivial: all such spaces
are micro-uniformly equivalent to Z. In contrast, the bi-uniform classification of
countable proper isometrically homogeneous metric spaces of uniform dimension
zero is non-trivial and yields continuum many non-equivalent spaces.

First observe that Baire’s theorem guarantees that each countable proper isomet-
rically homogeneous metric spaceX is boundedly-finite in the sense that all bounded
subsets of X are finite.

For each boundedly-finite metric space X of asymptotic dimension zero we can
consider the function fX W … ! ! [ f1g defined on the set … of prime numbers
and assigning to each p 2 … the number

fX .p/ D supfn 2 ! j pn divides jCs.x/j for some x 2 X and s > 0g;
whereCs.x/ stands for the s-connected component of x. It turns out that the function
fX completely determines the bi-uniform type of a countable proper isometrically
homogeneous metric space X of asymptotic dimension zero.

Theorem 9. Two countable proper isometrically homogeneous metric spaces X , Y
of asymptotic dimension zero are bi-uniformly equivalent if and only if fX D fY .
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For countable groups (endowed with proper left-invariant metrics) Theorem 9 has
been proved in [BDHM].

Observe that for any function f W … ! ! [ f1g there is a countable proper
isometrically homogeneous ultrametric space X with f D fX . Indeed, consider the
abelian group

Zf D L
p2…

Zf .p/
p :

If f .p/ D 1 then Zf .p/
p D Z1

p is the direct sum of countably many copies of
the cyclic group Zp D Z=pZ. Endowing the group Zf with a suitable proper
left-invariant metric d , we can see that the metric space X D .Zf ; d / has fX D f .
Combining this observation with Corollary 7 (3) and Theorem 9, we get the following
bi-uniform classification of proper isometrically homogeneous metric spaces of bi-
uniform dimension zero.

Corollary 10. A proper isometrically homogeneous metric space X of bi-uniform
dimension zero is bi-uniformly equivalent to

� the Cantor bi-cube 2<Z if X is uncountable;
� the group ZfX

if X is countable.

2. Characterizing the coarse equivalence

In this section we show that various natural ways of defining morphisms in asymptol-
ogy1 lead to the same notion of coarse equivalence. Besides the original approach of
J. Roe [Roe] based on the notion of a coarse map, we discuss an alternative approach
based on the notion of a multi-map.

By a multi-map ˆ W X ) Y between two sets X , Y we understand any subset
ˆ � X � Y .

For a subset A � X by ˆ.A/ D fy 2 Y j there exists a 2 A with .a; y/ 2 ˆg
we denote the image of A under the multi-map ˆ. Given a point x 2 X we write
ˆ.x/ instead of ˆ.fxg/.

The inverse ˆ�1 W Y ) X to the multi-map ˆ is the subset ˆ�1 D f.y; x/ 2
Y � X j .x; y/ 2 ˆg � Y � X . For two multi-maps ˆ W X ) Y and ‰ W Y ) Z

we define their composition ‰ Bˆ W X ) Z as usual:

‰Bˆ D f.x; z/ 2 X�Z j there exists y 2 Y such that .x; y/ 2 ˆ and .y; z/ 2 ‰g:
A multi-map ˆ is called surjective if ˆ.X/ D Y and bijective if ˆ � X � Y

coincides with the graph of a bijective (single-valued) function.

1The term “asymptology” was coined by I. Protasov in [PZ] for naming the theory studying large scale
properties of metric spaces (or more general objects like balleans of I. Protasov [PZ], [PB] or coarse
structures of J. Roe [Roe]).
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The oscillation of a multi-mapˆ W X ) Y between metric spaces is the function
!ˆ W Œ0;1/ ! Œ0;1� assigning to each ı � 0 the (finite or infinite) number

!ˆ.ı/ D supfdiam.ˆ.A// j A � X; diam.A/ � ıg:
Observe that !ˆ.ˆ/ D 0 if and only if ˆ is at most single-valued in the sense that
jˆ.x/j � 1 for any x 2 X .

A multi-map ˆ W X ) Y between metric spaces X and Y is called

� micro-uniform if for all " > 0 there exists ı > 0 with !ˆ.ı/ � ";
� macro-uniform if for all ı < 1 there exists " < 1 with !ˆ.ı/ � ";
� bi-uniform if ˆ is both micro-uniform and macro-uniform.

A multi-map ˆ W X ) Y is called a bi-uniform (resp. micro-uniform, macro-
uniform) embedding ifˆ�1.Y / D X and both multi-mapsˆ andˆ�1 are bi-uniform
(resp. micro-uniform, macro-uniform). If, in addition, ˆ.X/ D Y , then ˆ is called
a bi-uniform (resp. micro-uniform, macro-uniform) equivalence.

Two metric spaces X , Y are called bi-uniformly (resp. micro-uniformly, macro-
uniformly) equivalent if there is a bi-uniform (resp. micro-uniform, macro-uniform)
equivalence ˆ W X ) Y .

It follows that each micro-uniform multi-map is at most single-valued and thus
is uniformly continuous in the usual sense. So, two metric spaces X , Y are micro-
uniformly equivalent if and only if they are uniformly homeomorphic. On the other
hand, the notion of bi-uniform equivalence agrees with that given in the introduc-
tion. In Proposition 2.1 below we will prove that metric spaces are macro-uniformly
equivalent if and only if they are coarsely equivalent.

A subset L of a metric space X is called large if Br.L/ D X for some r 2 R,
where Br.L/ D fx 2 X j dist.x; L/ � rg stands for the closed r-neighborhood of
the set L in X .

For two multi-maps ˆ W ‰ W X ) Y between metric spaces let

dist.‰;ˆ/ D inffr 2 Œ0;1� j ˆ.x/ � Br.‰.x// and ‰.x/ � Br.ˆ.x//

for all x 2 Xg:
The following characterization is the main (and unique) result of this section.

Proposition 2.1. For metric spaces X , Y the following assertions are equivalent:

(1) X and Y are macro-uniformly equivalent;

(2) X and Y are coarsely equivalent;

(3) the spaces X , Y contain bi-uniformly equivalent large subspaces X 0 � X and
Y 0 � Y ;

(4) there are two macro-uniform maps f W X ! Y and g W Y ! X , the in-
verses f �1 W Y ) X and g�1 W X ) Y of which are macro-uniform and
maxfdist.g B f; idX /; dist.f B g; idY /g < 1:
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Proof. To prove the equivalence of the items (1)–(4), it suffices to establish the im-
plications .1/ ) .4/ ) .2/ ) .3/ ) .1/.

.1/ ) .4/: Assuming that X and Y are macro-uniformly equivalent, fix a sur-
jective macro-uniform multi-mapˆ W X ) Y with surjective macro-uniform inverse
ˆ�1 W Y ) X . Since the multi-map ˆ�1 is surjective, for every x 2 X the subset
ˆ.x/ � Y is not empty and thus contains some point f .x/ 2 ˆ.x/. It follows
from the macro-uniformity of ˆ that the map f W X ! Y is macro-uniform. Since
f �1.y/ � ˆ�1.y/ for all y 2 Y , the macro-uniformity ˆ�1 implies the macro-
uniformity of the multi-map f �1 W Y ) X .

By the same reason, the surjectivity of the multi-map ˆ implies the existence of
a map g W Y ! X such that g.y/ 2 ˆ�1.y/ for all y 2 Y . The macro-uniformity ˆ
and ˆ�1 implies that g W Y ! X and g�1 W X ) Y are macro-uniform.

As the compositionˆ�1 Bˆ W X ) X is macro-uniform, there is a constant C <

1 such that diamˆ�1 Bˆ.x/ � C for all x 2 X . From fx; g Bf .x/g � ˆ�1 Bˆ.x/
we see that dist.g B f; idX / � C < 1. By the same reason, dist.f B g; idY / < 1.

The implication .4/ ) .2/ trivially follows from the definition of the coarse
equivalence given in the Introduction.

.2/ ) .3/: Assume that there are two macro-uniform maps f W X ! Y , g W Y !
X with dist.g B f; idX / < R and dist.f B g; idY / < R for some real number R.
It follows that BR.f .X// D Y and hence the set f .X/ is large in Y . Since f is
macro-uniform, the numberS D 1C!f .1/ is finite. LetY 0 � f .X/ be a maximalS -
separated subset of f .X/. TheS -separated property of Y 0 means that dist.y; y0/ � S

for any distinct points y; y0 2 Y 0. The maximality of Y 0 guarantees that Y 0 is large
in f .X/ and consequently, in Y .

Choose any subsetX 0 � X making the restriction h D f jX 0 W X 0 ! Y 0 bijective.
The map h is macro-uniform, since it is a restriction of a macro-uniform map. The
choice of the number S guarantees that the set X 0 is 1-separated and consequently,
the map h is micro-uniform. Since Y 0 is S -separated the inverse map h�1 W Y 0 ! X 0
is micro-uniform.

It remains to check that h�1 is macro-uniform. Given arbitrary " < 1, use the
macro-uniformity of the map g W Y ! X to conclude that the number ı D !g."/

is finite. Now take any points y; y0 2 Y 0 with dist.y; y0/ � " and let x D h�1.y/

and x0 D h�1.y0/. We claim that dist.x; x0/ � ı C 2R. By the choice of ı,
dist.g Bf .x/; g Bf .x0// D dist.g.y/; g.y0// � ı D !g."/. Since dist.g Bf; idX / �
R, we conclude that

dist.x; x0/ � dist.x; g B f .x//C dist.g B f .x/; g B f .x0//C dist.g B f .x0/; x0/
� RC dist.g.y/; g.y0//CR � ı C 2R:

Finally, let us show that the set X 0 is large in X . Given any point x 2 X , find a
point x0 2 X 0 with dist.f .x/; f .x0// � S . Then dist.x; x0/ � dist.x; g B f .x//C
dist.g B f .x/; g B f .x0//C dist.g B f .x0/; x0/ � RC!g.S/CR and consequently,
BR0.X 0/ D X for R0 D 2RC !g.S/.
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.3/ ) .1/ Assume that the spaces X , Y contain bi-uniformly equivalent large
subspaces X 0 � X and Y 0 � Y and let f W X 0 ! Y 0 be a bi-uniform equiva-
lence. Find R 2 R such that BR.X

0/ D X and BR.Y
0/ D Y . Take any surjective

maps ' W X ! X 0 and  W Y ! Y 0 with dist.'; idX / � R and dist. ; idY / � R.
It is easy to see that ' and  are macro-uniform equivalences and then the com-
position  �1 B f B ' W X ) Y is a required macro-uniform equivalence between
X and Y .

3. "-connected components and uniform multi-maps

Recall that, for " > 0 and a point x of a metric space X , we denote by C".x/ the
"-connected component of x. This is the set of all points x0 2 X that can be linked
with x by a chain of points x D x0, x1; : : : , xn D x0 with dist.xi�1; xi / � " for
all i � n. By C".X/ D fC".x/ j x 2 Xg we denote the family of all "-connected
components of X .

Lemma 3.1. Let ˆ W X ) Y be a multi-map such that ˆ�1.Y / D X . For any real
numbers ı � 0 and " � !ˆ.ı/, and every point x 2 X the image ˆ.Cı.x// lies in
the "-connected component C".y/ of any point y 2 ˆ.x/.

Proof. Given any x0 2 Cı.x/ and y0 2 ˆ.x/, we need to check that y0 2 C".y/.
Find a chain of points x D x0, x1; : : : , xn D x0 such that dist.xi�1; xi / � ı for all
i � n. Since X D ˆ�1.Y /, for every i � n we can choose a point yi 2 ˆ.xi /

so that y0 D y and yn D y0. It follows from the definition of !ˆ.ı/ that for every
i � n, we get

dist.yi�1; yi / � diamˆ.fxi�1; xig/ � !ˆ.dist.xi�1; xi // � !ˆ.ı/ � ";

which means that y D y0, y1; : : : , yn D y0 is an "-chain linking the points y and y0.
Consequently, y0 2 C".y/.

Lemma 3.1 will be applied in order to show that some information on the asymp-
totic properties of the cardinal numbers �"

ı
.X/ and‚"

ı
.X/ is preserved by bi-uniform

equivalences.

Lemma 3.2. Letˆ W X ) Y is a multi-map such that Y D ˆ.X/ andˆ�1.Y / D X .
For any positive real numbers ı < " and ı0 < "0 with "0 � !ˆ."/, ı � !ˆ�1.ı0/ we
get �"

ı
.X/ � �"0

ı0 .Y / and ‚"
ı
.X/ � ‚"0

ı0.Y /.

Proof. For any ı-connected component C 2 Cı.X/ choose a point yC 2 ˆ.C/.
Since !ˆ�1.ı0/ � ı, we can apply Lemma 3.1 to prove that for any distinct compo-
nents C;C 0 2 Cı.X/ the points yC and y0

C lie in distinct ı0-components of Y .
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Therefore the map

' W Cı.X/ ! Cı0.Y /; ' W C 7! Cı0.yC /;

is injective.
By Lemma 3.1, for any point x 2 X the set ˆ.C".x// lies in C"0.y/ for any

y 2 ˆ.x/. Now the injectivity of the map ' implies that

jC".x/=Cı.X/j � jC"0.y/=Cı0.Y /j � ‚"0

ı0.Y /

and hence ‚"
ı
.X/ � ‚"0

ı0.Y /.

Next, find a point y 2 Y with �"0

ı0 .Y / D jC"0.y/=Cı0.Y /j and choose any point
x 2 ˆ�1.y/. Then

�"
ı .X/ � jC".x/=Cı.X/j � jC"0.y/=Cı0.Y /j D �"0

ı0 .Y /:

4. Towers

The Characterization Theorems announced in the introduction will be proved by
induction on partially ordered sets called towers. A typical example of a tower is the
set fB2n.x/ j x 2 X; n 2 Zg of closed 2n-balls of an ultrametric space X , ordered
by the inclusion relation. To give a precise definition of a tower we need to recall
some standard notions related to partially ordered sets.

4.1. Partially ordered sets. A partially ordered set is a set T endowed with a
reflexive antisymmetric transitive relation �.

A partially ordered set T is called "-directed (resp. #-directed ) if for any two
points x; y 2 T there is a point z 2 T such that z � x and z � y (resp. z � x and
z � y).

A subset C of a partially ordered set T is called #-cofinal (resp. "-cofinal) if for
every x 2 T there is y 2 C such that y � x (resp. y � x). A subset C � T is called
l-cofinal in T if C is #-cofinal and "-cofinal in T .

By the lower cone (resp. upper cone) of a point x 2 T we understand the set
#x D fy 2 T j y � xg (resp. "x D fy 2 T j y � xg). A subset A � T will be
called a lower (resp. upper) set if #a � A (resp. "a � A) for all a 2 A. For two
points x � y of T the intersection Œx; y� D "x\ #y is called the order interval with
end-points x, y.

A partially ordered set T is a tree if T is #-directed and for each point x 2 T the
lower cone #x is well-ordered (in the sense that each subsetA � #x has the smallest
element).
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4.2. Introducing towers. A partially ordered set T is called a tower if T is "-
directed and for every points x � y in T the order interval Œx; y� � T is finite and
linearly ordered.

This definition implies that for every point x in a tower T the upper set "x is
linearly ordered and is order isomorphic to a subset of !. Since T is "-directed, for
any points x; y 2 T the upper sets "x and "y have non-empty intersection and this
intersection has the smallest element x ^ y D min."x \ "y/ (because each order
interval in X is finite). Thus, any two points x, y in a tower have the smallest upper
bound x ^ y.

It follows that for each point x 2 T of a tower the lower cone #x endowed with
the reverse partial order is a tree of at most countable height.

4.3. Levels of a tower. The definition of a tower T includes the condition that for
any points x � y of T the order interval Œx; y� D "x \ #y is linearly ordered and
finite. This allows us to define levels of the tower T as follows.

Given two points x; y 2 T we write levT .x/ � levT .y/ if

jŒx; x ^ y�j � jŒy; x ^ y�j:
Also we write levT .x/ D levT .y/ if jŒx; x ^ y�j D jŒy; x ^ y�j.

The relation
f.x; y/ 2 T � T j levT .x/ D levT .y/g

is an equivalence relation on T dividing the tower T into equivalence classes called
the levels of T . The level containing a point x 2 T is denoted by levT .x/. Let

Lev.T / D flevT .x/ j x 2 T g
denote the set of levels of T and

levT W T ! Lev.T /; levT W x 7! levT .x/;

stand for the quotient map called the level map. If the tower T is clear from the
context, we omit the subscript T and write lev instead of levT .

The set Lev.T / of levels of T endowed with the order levT .x/ � levT .y/ is a
linearly ordered set, order isomorphic to a subset of integers. For a level � 2 Lev.T /
by � C 1 (resp. � � 1) we denote the successor (resp. the predecessor) of � in the
level set Lev.T /. If � is a maximal (resp. minimal) level of T , then we put �C1 D ;
(resp. � � 1 D ;).

An embedding of the level set Lev.T / into Z can be constructed as follows. Pick
any point � 2 T and consider the map e� W Lev.T / ! Z assigning to each level
levT .x/ 2 Lev.T / the integer number

jŒx; x ^ ��j � jŒ�; x ^ ��j:
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In such a way we label the levels of T by integer numbers so that the point � sits on
the zeros level.

The following model of the famous Eiffel tower is an example of a tower having
seven levels.

�

�

�

�

�

�
�

�
��

�
��

�
�

�

�
�

�
�� � � �

�
levT

� 6

� 5

� 4

� 3

� 2

� 1

� 0

A tower T is called #-bounded (resp. "-bounded) if the level set Lev.T / has
the smallest (resp. largest) element. Otherwise T is called #-unbounded (resp. "-
unbounded). A towerT is called l-unbounded it it is #-unbounded and "-unbounded.
Let us observe that "-bounded towers endowed with the reverse partial order are trees
of at most countable height.

4.4. A tower induced by a decomposition of a group. Let G be a group written
as the countable union G D S

n2! Gn of a strictly increasing sequence

feg D G0 � G1 � � � �

of subgroups of G.
Consider the family of cosets T D fxGn j x 2 G; n 2 !g partially ordered by

the inclusion relation. It is easy to check that the partially order set T is a tower.
This tower is #-bounded and "-unbounded. For every n 2 ! the family of cosets
fxGn j x 2 Gg forms a level of T . The minimal level ofG consists of the singletons
and hence can be identified with the whole group G.

4.5. The boundary of a tower. By a branch of a tower T we understand a maximal
linearly ordered subset of T . The family of all branches of T is denoted by @T and is
called the boundary of T . The boundary @T carries an ultrametric that can be defined
as follows.

Let f W Lev.T / ! Œ0;1/ be a strictly increasing function such that

� inf f .Lev.T // D 0 if T is #-unbounded, and
� supf .Lev.T // D 1 if T is "-unbounded.
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Such a map f will be called a scaling function on Lev.T /.
Given two branches x; y 2 @T let

�f .x; y/ D
´
0 if x D y,

f .levT .min x \ y// if x ¤ y.

It is a standard exercise to check that �f is a well-defined ultrametric on the boundary
@T ofT turning @T into a complete ultrametric space. The following easy proposition
says that the bi-uniform structure on @T induced by the ultrametric�f does not depend
on the choice of a scaling function f .

Proposition 4.1. For any two scaling functions f; g W Lev.T / ! .0;1/ the identity
map id W .@T; �f / ! .@T; �g/ is a bi-uniform equivalence.

In the sequel we assume that the boundary @T of any tower T is endowed with
the ultrametric �f induced by some scaling function f W Lev.T / ! .0;1/.

4.6. Degrees of points of a tower. For a point x 2 T and a level � 2 Lev.T / let
pred�.x/ D � \ #x be the set of predecessors of x on the �-th level and deg�.x/ D
jpred�.x/j. For � D levT .x/ � 1, the set pred�.x/, called the set of parents of x, is
denoted by pred.x/. The cardinality jpred.x/j is called the degree of x and is denoted
by deg.x/. Thus, deg.x/ D deglevT .x/�1.x/. It follows that deg.x/ D 0 if and only
if x is a minimal element of T .

For levels �; l 2 Lev.T / let

degl
�.T / D minfdeg�.x/ j levT .x/ D lg

and

Degl
�.T / D supfdeg�.x/ j levT .x/ D lg:

Now let us introduce several notions related to degrees. We define a tower T to
be

� homogeneous if deg`
�.T / D Deg`

�.T / for any level � � ` of T ;

� pruned if deg�C1
�

.T / > 0 for every non-maximal level � of T ;

� "-branching if for all � 2 Lev.T / there exists l 2 Lev.T / with Degl
�.T / > 1;

� #-branching if for all � 2 Lev.T / there exists l 2 Lev.T / with deg�
l .T / > 1;

� l-branching if T is both #-branching and "-branching.

It is easy to check that a tower T is pruned if and only if each branch of T meets
each level of T . A tower T is "-branching if no level � 2 Lev.T / has an upper bound
in T .

By a binary tower we understand an "-unbounded homogeneous tower T such
that deg�C1

�
.T / D 2 for each non-maximal level � of T . It is clear that each binary

tower is pruned and "-branching.
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Remark 4.2. The Cantor bi-cube 2<Z (resp. Cantor macro-cube 2<N) can be iden-
tified with the boundary @T2 of a #-unbounded (resp. #-bounded) binary tower T2.

There is a direct dependence between the degrees of points of the tower T and
the capacities of the balls in the ultrametric space @T . We recall that for positive real
numbers ı � " and a point x 2 X by jC".x/=Cı.X/j we denote the cardinality of the
set fCı.y/ j y 2 C".x/g of ı-connected components of X that lie in the "-connected
component of y in X . If X is an ultrametric space then C".x/=Cı.X/ is equal to the
number of ı-balls composing the "-ball B".x/.

Proposition 4.3. Let be a tower and f W Lev.T / ! .0;1/ be a scaling function
determining the ultrametric �f on the boundary @T of T . For any branch ˇ 2 @T ,
a point x 2 ˇ with n D levT .x/, and a level k � n of T we get degk.x/ D
jCf .n/.ˇ/=Cf .k/.@T /j. Consequently,

degn
k.T / D �

f .n/

f .k/
.@T / and Degn

k.T / D ‚
f .n/

f .k/
.@T /:

The proof is easy and is left to the reader as an exercise.

4.7. Assigning a tower to a metric space. In the preceding section to each tower T
we have assigned the ultrametric space @T . In this section we describe the converse
operation assigning to each metric spaceX a pruned tower T L

X whose boundary @T L
X

is canonically related to the space X .
A subset L � Œ0;1/ is called a level set if

� supL D 1 and hence L is "-cofinal in Œ0;1/;
� L is a tower in the sense that Œx; y� \ L is finite for all x; y 2 L;
� inf L D 0 if L \ .�1; x� is infinite for some x 2 L.

A level setL � Œ0;1/ is called #-bounded if it has the smallest element. Otherwise,
L is #-unbounded.

Given a metric space X and a level set L � Œ0;1/ consider the set

T L
X D f.C�.x/; �/ j x 2 X; � 2 Lg

endowed with the partial order .C�.x/; �/ � .Cl.y/; l/ if � � l andC�.x/ � Cl.y/.
Here, as expected, C�.x/ stands for the �-connected component of x in X .

Proposition 4.4. The partially ordered set T L
X is a pruned tower whose level set

Lev.T L
X / can be identified with L. If the metric space X is isometrically homoge-

neous, then the tower T L
X is homogeneous.

Proof. To detect that the partially ordered set T L
X is "-directed, let us take two

elements .C˛.x/; ˛/, .Cˇ .y/; ˇ/ 2 T L
X and look for a number � 2 L such that



706 T. Banakh and I. Zarichnyi

� � maxf˛; ˇ; dist.x; y/g (such a number � exists because supL D 1). Then
.C�.x/; �/ is an upper bound for .C˛.x/; ˛/ and .Cˇ .y/; ˇ/ in T L

X .
Next, given two points u D .C˛.x/; ˛/, v D .Cˇ .y/; ˇ/ in T L

X with u � v, we
need to check that the order interval Œu; v� is linearly ordered and finite. Take any two
points t1; t2 2 Œu; v� and for every i 2 f1; 2g find a point zi 2 X and a real number
�i 2 L such that ti D .C�i

.zi /; �i /. It follows from u � ti � v that ˛ � �i � ˇ

and C˛.x/ � C�i
.zi / � Cˇ .y/.

Without loss of generality, we may assume that �1 � �2. Since C˛.x/ �
C�2

.z1/ \ C�2
.z2/, the �2-connected components C�2

.z1/, C�2
.z2/ coincide and

hence C�1
.z1/ � C�2

.z1/ D C�2
.z2/. Thus, t1 � t2, showing that Œu; v� is linearly

ordered.
By the same reason, �1 D �2 implies t1 D t2, ensuring that the projection

pr W Œu; v� ! Œ˛; ˇ� \ L; pr W .C�.z/; �/ 7! �;

is bijective and jŒu; v�j � jŒ˛; ˇ� \ Lj is finite.
It follows that the projection

pr W T L
X ! L; pr W .C�.x/; �/ 7! �;

is a monotone surjective level-preserving map and for every � 2 L the preimage
pr�1.�/ D f.C�.x/; �/ j x 2 Xg coincides with a level of the tower T L

X . So, the set
L can be identified with the set Lev.T L

X / of levels of the tower T L
X .

To see that the tower T L
X is pruned, take any point t D .C�.x/; �/ 2 TX on a

non-minimal level � 2 L and let �� 2 L be the predecessor of � in L. Then the
element .C��.x/; ��/ is a parent of t , showing that deg.t/ > 0 and TX is pruned.

If the metric space X is isometrically homogeneous, then the tower T L
X is ho-

mogeneous because for each point t D .C�.x/; �/ 2 T L
X and each level ` 2 L,

` � �, the degree deg`.t/ D jC�.x/=C`.X/j does not depend on the point x. So,
deg�

` .T
L

X / D Deg�
` .T

L
X /, showing that the tower T L

X is homogenous.

The tower T L
X is called the canonicalL-tower of a metric spaceX . The boundary

@T L
X is endowed with the ultrametric �id induced by the identity scaling function

id W L ! Œ0;1/. This ultrametric on @T L
X will be called canonical.

Observe that for each point x 2 X the set CL.x/ D f.C�.x/; �/ j � 2 Lg is a
branch of the tower, so the map

CL W X ! @T L
X ; CL W x 7! CL.x/;

called the canonical map, is well defined.

Proposition 4.5. (1) dist.CL.x/; CL.y// � inff� 2 L j � � d.x; y/g for all
x; y 2 X .

(2) The canonical map CL W X ! @T L
X is macro-uniform.

(3) If 0 … L, then the canonical map CL is micro-uniform.
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(4) If L is #-bounded, then the canonical map CL is surjective.
(5) The canonical map CL has dense image CL.X/ in @T L

X .
(6) The inverse multi-map C�1

L W @T L
X ) X is macro-uniform if and only if X

has macro-uniform dimension zero.
(7) If L is #-unbounded, then the inverse multi-map C�1

L W @T L
X ) X is micro-

uniform if and only if X has micro-uniform dimension zero.

Proof. (1) Given any two points x; y 2 X let � D inf.L \ Œdist.x; y/;1// and
observe that C�.x/ D C�.y/, which implies that dist.CL.x/; CL.y// � �.

(2) The preceding item implies immediately that the canonical map CL W X !
@T L

X is macro-uniform.
(3) Assume that 0 … L. If inf L > 0, then for any positive ı < inf L we get

!CL
.ı/ D 0 and thus CL is micro-uniform.

If inf L D 0, then for every " > 0 we can find ı 2 L \ .0; "� and observe that
!CL

.ı/ D ı � ", showing that CL is micro-uniform.
(4) If L is #-bounded, then L has a minimal element �0. It follows that each

branch ˇ of the tower T L
X is equal to CL.x/ for a point x 2 X whose �0-connected

component C�0
.x/ coincides with the smallest element of the branch ˇ. In this case

the map CL is surjective.
(5) If L is #-bounded, then the map CL is surjective by the preceding item and

hence has dense image CL.X/ in @T L
X .

If L is #-unbounded, then inf L D 0 … L. Given any branch ˇ 2 @T L
X and any

" > 0, we can find � 2 L \ .0; "/ and a point x 2 X with .C�.x/; �/ 2 ˇ. Then
dist.ˇ; CL.x// � � < ", showing that the image CL.X/ is dense in @T L

X .
(6) Assume that the inverse multi-map C�1

L W @T L
X ) X is macro-uniform. To

show that X has macro-uniform dimension zero, we need to show that mesh Cı.X/

is finite for every ı < 1. Find any � 2 L \ Œı;1/ and put " D !C �1
L
.�/.

We claim that mesh Cı.X/ � ". Indeed, given any ı-connected component
C 2 Cı.X/ and any pointsx; y 2 C we get dist.CL.x/; CL.y// � � and dist.x; y/ �
diamC�1

L .fCL.x/; CL.y/g/ � !C �1
L
.�/ � ". Then diamC � " and mesh Cı.X/ �

", showing that the metric space X has macro-uniform dimension zero.
Now assume conversely that X has macro-uniform dimension zero. In order

to show that the inverse multi-map C�1
L W @T L

X ) X is macro-uniform, given any
ı < 1 find � 2 L\ Œı;1/ and put " D mesh C�.X/. The number " is finite because
X has macro-uniform dimension zero. We claim that !C �1

L
.ı/ � ". Take any subset

A � @T L
X with diamA � ı. We need to show that diamC�1

L .A/ � ". Take any points
x; y 2 C�1

L .A/ and observe that CL.x/; CL.y/ 2 A. Since dist.CL.x/; CL.y// �
ı � �, C�.x/ D C�.y/ and then dist.x; y/ � mesh C�.X/ D " and hence
diamA � ".

(7) Assume thatL is #-unbounded. IfX has micro-uniform dimension zero, then
for any " > 0we can find� 2 L\.0; "/ and take ı > 0 so small that mesh Cı.X/ � �.
Repeating the argument from the preceding item, we can prove that!C �1

L
.ı/ � � � ",
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showing that C�1
L is micro-uniform.

Finally assume thatC�1
L is micro-uniform. Then for every " > 0we can find ı 2 L

with !C �1
L
.ı/ � ". Repeating the argument from the proof of the preceding item,

we can check that mesh Cı.X/ � ", showing that X has micro-uniform dimension
zero.

The statements (2), (3), (6), (7) of Proposition 4.5 imply:

Corollary 4.6. Let L � Œ0;1/ be a level set. The canonical map CL W X ! @T L
X

of a metric space X into the boundary of its canonical L-tower T L
X is:

(1) a macro-uniform embedding if and only ifX has macro-uniform dimension zero;

(2) a micro-uniform embedding (if and ) only if X has micro-uniform dimension
zero (and L is #-unbounded );

(3) a bi-uniform embedding (if and ) only if X has bi-uniform dimension zero (and
L is #-unbounded ).

Combining this corollary with Proposition 4.5 (4), (5) we get another

Corollary 4.7. Let L � Œ0;1/ be a level set. The canonical map CL W X ! @T L
X

of a metric space X into the boundary of its canonical L-tower is:

(1) a macro-uniform equivalence (if and ) only if X has macro-uniform dimension
zero (and L is #-bounded );

(2) a micro-uniform equivalence (if and ) only if X is a complete metric space of
micro-uniform dimension zero (and L is #-unbounded );

(3) a bi-uniform equivalence (if and ) only if X is a complete metric space of bi-
uniform dimension zero (and L is #-unbounded ).

Proof. (1) The first item is a direct consequence of Corollary 4.6 (1) and Proposi-
tion 4.5 (4).

(2) If CL W X ! @T L
X is a micro-uniform equivalence (that is, a uniform homeo-

morphism), then the metric space X is complete because so is the ultrametric space
@T L

X . Corollary 4.6 (2) implies that X has micro-uniform dimension zero.
Now assume conversely that the metric space X is complete and has micro-

uniform dimension zero and the level set L is #-unbounded. By Corollary 4.6 (2),
the canonical map CL W X ! @T L

X is a micro-uniform embedding and by Proposi-
tion 4.5 (5), the image CL.X/ is dense in @T L

X . The metric space CL.X/ � @T L
X ,

being uniformly homeomorphic to the complete metric space X , is complete and
hence coincides with @T L

X . Then the canonical map CL, being a surjective micro-
uniform embedding, is a micro-uniform equivalence.

(3) The third statement can be proved by analogy with the second one.
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Remark 4.8. The correspondence between towers and metric spaces discussed in
this section resembles in spirit the correspondence between R-trees and ultrametric
spaces discussed in [Hug], [MPM].

5. Tower morphisms

In this section we discuss morphisms between towers.

5.1. Introducing tower morphisms. In this subsection we introduce several kinds
of morphisms between towers S , T .

A map ' W S ! T is defined to be

� monotone if for any x; y 2 S the inequality x < y implies '.x/ < '.y/;
� level-preserving if there is an injective map 'Lev W Lev.S/ ! Lev.T / making

diagram

S

levS

��

' �� T

levT

��
Lev.S/

'Lev �� Lev.T /

commutative.

If ' W S ! T is a monotone level-preserving map, then the induced map
'Lev W Lev.S/ ! Lev.T / is monotone and injective.

A monotone level-preserving map ' W S ! T is called

� a tower isomorphism if it is bijective;
� a tower embedding if it is injective;
� a tower immersion if it is almost injective in the sense that for any pointsx; x0 2 S

with '.x/ D '.x0/ we get levS .x ^ x0/ � maxflevS .x/; levS .x
0/g C 1.

Proposition 5.1. If ' W S ! T is a tower embedding, then for any x; x0 2 S the
inequality x < x0 is equivalent to '.x0/ < '.x0/.

Proof. If x < x0, then '.x/ < '.x0/ by the monotonicity of '.
Now assume that '.x/ < '.x0/. The chain of the inequalities '.x/ � '.x0/ �

'.x^x0/ and the level-preserving property of' imply that lev.x/ � lev.x0/ � lev.x^
x0/. Then there is a point x00 2 Œx; x ^ x0� with lev.x00/ D lev.x0/. For this point x00
we get '.x/ � '.x00/ � '.x^x0/. Taking into account that lev.'.x00// D lev.'.x0//
and the order interval Œ'.x/; '.x ^ x0/� � T is linearly ordered, we conclude that
'.x00/ D '.x0/ and x00 D x0 by the injectivity of '. Then x � x00 D x0 and
'.x/ ¤ '.x0/ implies x < x0.
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5.2. Induced multi-maps between boundaries of towers. Each monotone map
' W S ! T between towers induces a multi-map @' W @S ) @T assigning to a
branch ˇ � S the set @'.ˇ/ � @T of all branches of T that contain the linearly
ordered subset '.ˇ/ of T . It follows that @'.ˇ/ ¤ ; and hence .@'/�1.@T / D @S .

The following proposition describes some properties of the boundary multi-maps.

Proposition 5.2. For a monotone map ' W S ! T defined on a pruned tower S the
induced multi-map @' W @S ) @T is

(1) single valued if for all ˇ 2 @S and for all � 2 Lev.T / there exists x 2 ˇ with
levT .'.x// � �;

(2) micro-uniform if for all � 2 Lev.T / there exists � 2 Lev.S/ such that
levS .x/ � � ) levT .'.x// � � for all x 2 S ;

(3) macro-uniform if for all � 2 Lev.S/ there exists � 2 Lev.T / such that
levS .x/ � � ) levT .'.x// � � for all x 2 S .

Proof. We recall that the boundaries @S and @T are endowed with ultrametrics �f and
�g generated by some scaling functions f W Lev.S/ ! Œ0;1/ and g W Lev.T / !
Œ0;1/.

(1) Assuming that @' is not single-valued, we can find a branch ˇ 2 @S and two
distinct branches b1; b2 2 @T such that b1 \ b2 � '.ˇ/. Since b1 ¤ b2, there is a
level � 2 Lev.T / of T such that the intersections b1 \ � and b2 \ � are not empty
and distinct. For this level � no point x 2 ˇ exists with levT .'.x// � �.

(2) Assume that for all � 2 Lev.T / there exists � 2 Lev.S/ such that
levS .x/ � � ) levT .'.x// � � for all x 2 S . The micro-uniform property of
the boundary map @' W @S ) @T follows as soon as for every " > 0 we find ı > 0

with !@'.ı/ � ".
If the tower T is #-bounded, then the set Lev.T / has the smallest element �0. By

our assumption, for the level�0 there is a level � 2 Lev.S/ such that levT .'.x// � �0

for all x 2 S with levS .x/ � �. Let ı D f .�/. We claim that !@'.ı/ D 0. This
follows as soon as we check that for each subset A � @S with diamA � ı the image
@'.A/ is a singleton. Take any two branches b1; b2 2 @'.A/ and find two branches
a1; a2 2 A with bi 2 @'.ai / for i 2 f1; 2g. Since �f .a1; a2/ � ı D f .�/, there is a
point x 2 a1 \ a2 \ �. Then '.x/ 2 �0 \ b1 \ b2 and the minimality of �0 implies
that b1 D b2.

Next, assume that the tower T is #-unbounded. In this case for every " > 0 we
can find a level � 2 Lev.T / with g.�/ � ". By our hypothesis, for the level � there
is a level � 2 Lev.S/ such that levT .'.x// � � for each x 2 S with levS .x/ � �.
Let ı D f .�/. We claim that !@'.ı/ � ". This follows as soon as we check that for
each subset A � @S with diamA � ı the image @'.A/ has diameter � ". Take any
two branches b1; b2 2 @'.A/ and find two branches a1; a2 2 A with bi 2 @'.ai /

for i 2 f1; 2g. Since �f .a1; a2/ � ı, there is a point x 2 a1 \ a2 \ �. Since
levT .'.x// � � and '.x/ 2 b1 \ b2, we get �g.b1; b2/ � g.�/ < ".
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(3) Assume that for all � 2 Lev.S/ there exists � 2 Lev.T / such that
levS .x/ � � ) levT .'.x// � � for all x 2 S . The macro-uniform property of
the boundary map @' W @S ) @T follows as soon as we check that for every ı < 1
the oscillation !@'.ı/ is finite. Find a level � 2 Lev.S/ such that f .�/ � ı. By
our hypothesis, for the level � there is a level � 2 Lev.T / such that levT .'.x// � �

for each x 2 S with levS .x/ � �. We claim that !@'.ı/ � " where " D g.�/.
This follows as soon as we check that for each subset A � @S with diamA � ı the
image @'.A/ has diameter � ". Take any two branches b1; b2 2 @'.A/ and find two
branches a1; a2 2 A with bi 2 @'.ai / for i 2 f1; 2g. Since �f .a1; a2/ � ı � f .�/,
there is a point x 2 a1 \ a2 \ �. Then levT .'.x// � � and '.x/ 2 b1 \ b2 implies
that �g.b1; b2/ � g.�/ D ".

Proposition 5.2 implies

Corollary 5.3. For a level-preserving monotone map ' W S ! T defined on a pruned
tower S the induced multi-map @' W @S ) @T is

(1) macro-uniform;

(2) bi-uniform if 'Lev.Lev.S// is #-cofinal in Lev.T /.

Next, we establish some properties of the boundary multi-maps induced by tower
immersions.

Proposition 5.4. For a tower immersion ' W S ! T defined on a pruned tower S
the induced multi-map @' W @S ) @T is

(1) a macro-uniform embedding;

(2) a bi-uniform embedding if the tower S is #-unbounded;

(3) a macro-uniform equivalence if '.S/ is #-cofinal in T ;

(4) a bi-uniform equivalence if S is #-unbounded and '.S/ is #-cofinal in T .

Proof. Let ' W S ! T be a tower immersion. It follows from the definition of @' that
.@'/�1.@T / D @S . The boundaries @S and @T are endowed with the ultrametrics �f
and �g induced by some scaling functions f W Lev.S/ ! .0;1/ and g W Lev.T / !
.0;1/.

(1) Corollary 5.3 implies that the boundary multi-map @' W @S ) @T is macro-
uniform. It remains to check that the inverse multi-map .@'/�1 W @S ) @T is
macro-uniform. This is clear if the tower S is "-bounded (in which case @S has finite
diameter). So we assume that S is "-unbounded. The tower immersion ', being
monotone and level-preserving, induces a monotone injective map 'Lev W Lev.S/ !
Lev.T /. Now we see that 'Lev.Lev.S// is "-cofinal in Lev.T / and the tower T is
"-unbounded.

Given any finite ı we should find a finite " such that !.@'/�1.ı/ � ", which means
that diam.@'/�1.A/ � " for any subset A � @T with diamA � ı. Since the tower
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T is "-unbounded, there is a level � 2 Lev.T / such that g.�/ � ı. The "-cofinality
of the set 'Lev.Lev.S// in lev.T / allows us to assume additionally that � D 'Lev.�/

for some level � 2 Lev.S/. We claim that the finite number " D f .� C 1/ has the
desired property. Take any two branches b1; b2 2 .@'/�1.A/ and find two branches
a1; a2 2 A with bi 2 .@'/�1.ai / for i 2 f1; 2g. The latter inclusion is equivalent to
ai 2 @'.bi /. Since�g.a1; a2/ � diamA � ı � g.�/, there is a pointy 2 �\a1\a2.

For every i 2 f1; 2g let xi be the unique point of the intersection bi \ �. It
follows that '.xi / 2 '.bi / \ '.�/ � ai \ � D y. Since ' is a tower immersion,
lev.x1 ^ x2/ � maxflev.x1/; lev.x2/g C 1 D � C 1. Then x1 ^ x2 � b1 \ b2 and
then �f .b1; b2/ � f .lev.x1 ^ x2// � f .� C 1/ D ".

(2) Assume that the tower S is #-unbounded. Since the map 'Lev W Lev.S/ !
Lev.T / is injective and monotone, the set'Lev.Lev.S// is #-cofinal in Lev.T / and the
tower T is #-unbounded. By Corollary 5.3, the map @' W @S ) @T is bi-uniform and
by the preceding item, the inverse multi-map .@'/�1 W @T ) @S is macro-uniform.
It remains to check that this map micro-uniform. Since S is #-unbounded, for any
" > 0 we can find a level � 2 Lev.S/ with f .� C 1/ � ". Since T is #-unbounded,
we can find a level � � 'Lev.�/ in T . Repeating the argument from the preceding
item we can show that the positive real number ı D g.�/ satisfies the inequality
!.@'/�1.ı/ � ", witnessing that the multi-map .@'/�1 is micro-uniform.

(3) The third statement follows from the first one as soon as we check that
@'.@S/ D @T provided '.S/ is #-cofinal in T .

If T is #-bounded, then the ordered set lev.T / contains the smallest element �0.
Then each branch ˇ 2 Lev.T / is equal to "y where fyg D ˇ \ �0. The cofinality
of '.S/ in T implies that �0 � '.S/. Take any point x 2 S with '.x/ D y and
observe that "x is a branch in @S whose image @'."x/ D "y D ˇ.

If T is #-unbounded, then so is the tower S . Let us show that the tower T is
pruned. Take any point t 2 T and use the cofinality of '.S/ in T in order to find a
point s 2 S with '.s/ � t . Since S is pruned, there is a point s0 2 S with s0 < s and
the monotonicity of ' guarantees that '.s0/ < '.s/ � t , witnessing that T is pruned.

Given any branch ˇ 2 @T we are going to find a branch ˛ 2 @S with @'.˛/ D ˇ.
Taking into account that the tower T is pruned and #-unbounded, we conclude that
the branch ˇ meets all the levels of T . Fix a #-cofinal subset L � Lev.S/ such that
�C 1 … L for every � 2 L.

For every � 2 L pick a point x� 2 �\ '�1.ˇ/. Such a point x� exists because ˇ
meets the level'.�/ ofT . LetxC

�
be the unique point of the intersection "x�\.�C1/.

We claim that the set fxC
�

W � 2 Lg is linearly ordered. Indeed, take any two
levels � < � and let z� be the unique point of the intersection � \ ".xC

� /. Taking
into account that

'.z�/ � '.xC
� / 2 "'.xC

� / � ˇ;

we see that '.z�/ 2 ˇ \ '.�/ D f'.x�/g and hence '.z�/ D '.x�/. Since ' is a
tower immersion, lev.z� ^ x�/ � �C 1 and thus xC

� � z� ^ x� � xC
�

.
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The linearly ordered subset fxC
�

j � 2 Lg can be enlarged to a branch ˛ 2 @S

whose image @'.˛/ coincides with the branch ˇ.
(4) If '.S/ is cofinal in T and the tower S is #-unbounded, then @' is a bi-uniform

equivalence, being a surjective bi-uniform embedding according to the statements (2)
and (3) of Proposition 5.4.

5.3. Level subtowers. It is clear that each "-directed subset S of a tower T is a
tower with respect to the partial order inherited from T . In this case we say that S is
a subtower of T . A typical example of a subtower of T is a level subtower

T L D fx 2 T W levT .x/ 2 Lg;
where L � Lev.T / is an "-cofinal subset of the level set of the tower T .

Proposition 5.4 implies

Corollary 5.5. Let T be a pruned tower andL be a "-cofinal subset of Lev.T /. The
multi-map @id W @T L ) @T induced by the identity embedding id W T L ! T is

(1) a macro-uniform equivalence;

(2) a bi-uniform equivalence if L is #-cofinal in Lev.T /.

5.4. Tower immersions induced by macro-uniform embeddings. In Proposi-
tion 5.4 we proved that for a tower immersion ' W S ! T its boundary @' W @S ) @T

is a macro-uniform embedding. It turns out that this statement can be partly reversed.

Proposition 5.6. Let S; T be pruned "-unbounded towers. For any macro-uniform
embedding ˆ W @S ) @T there are #-bounded "-cofinal subsets A � Lev.S/,
B � Lev.T / and a tower immersion ' W SA ! T B such that

@' D .@idT /
�1 Bˆ B @idS

where @idS W @SA ) @S and @idT W @T B ) @T are boundary multi-maps, induced
by the identity inclusions idS W SA ! S and idT W T B ! T .

Proof. Letˆ W @S ) @T be a macro-uniform embedding. We endow the boundaries
@S and @T of the towers S; T with the ultrametrics �f , �g induced by some scaling
functions f W Lev.S/ ! Œ0;1/ and g W Lev.T / ! Œ0;1/. Let ˛0 be any level of
the tower S .

By induction we can construct two increasing sequencesA D f˛ngn2! � Lev.S/
and B D fˇngn2! � Lev.T / such that

f .ˇn/ � !ˆ.g.˛n// and g.˛nC1/ � !ˆ�1.f .ˇn// (1)

for all n � 0.
Now we construct a tower immersion ' W SA ! T B . Given any point s 2 SA,

find a level ˛n containing s and observe that the lower cone #s � S has diameter
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diam #s � f .˛n/. Since diamˆ.#s/ � !ˆ.f .˛n// � g.ˇn/, we conclude that
ˆ.#s/ � #'.s/ for a unique point '.s/ 2 ˇn.

It is clear that the so-defined map ' W SA ! T B maps each level ˛n, n 2 !, into
the level ˇn, and hence is level-preserving. The uniqueness of the point '.s/ with
#'.s/ � ˆ.#s/ implies that ' is monotone.

To show that ' is a tower immersion, take two points s; s0 2 ˛n and assume that
'.s/ D '.s0/ D t for some point t 2 ˇn � T . Then ˆ.#s/ [ ˆ.#s0/ � #t and
consequently #s [ #s0 � ˆ�1.#t /. It follows from the choice of ˛nC1 that

diam.#s [ #s0/ � diamˆ�1.#t / � f .˛nC1/;

which implies that s; s0 2 #s00 for some point s00 2 ˛nC1. Consequently, levSA.s ^
s0/ � ˛nC1 and the level ˛nC1 is the successor level of ˛n D lev.s/ D lev.s0/ in the
tower SA, witnessing that the map ' W SA ! T B is a tower immersion.

The definition of ' easily implies that @' D .@idT /
�1 Bˆ B @idS .

By analogy we can prove

Proposition 5.7. Let S , T be pruned l-unbounded towers. For any bi-uniform
embeddingˆ W @S ! @T there are l-cofinal subsets A � Lev.S/, B � Lev.T / and
a tower immersion ' W SA ! T B such that

@' D .@idT /
�1 Bˆ B @idS ;

where @idS W @SA ! @S and @idT W @T B ! @T are bi-uniform equivalences, in-
duced by the identity inclusions idS W SA ! S and idT W T B ! T .

5.5. Constructing tower embeddings and isomorphisms. In this subsection we
describe a method of constructing tower embedding and isomorphisms.

Proposition 5.8. Let S , T be pruned towers and f W Lev.S/ ! Lev.T / be a mono-
tone (and surjective) map. If Deg�C1

�
.S/ � degf .�C1/

f .�/
.T / (and deg�C1

�
.S/ �

Degf .�C1/

f .�/
.T /) for each non-maximal level � 2 Lev.S/, then there is a tower em-

bedding (a tower isomorphism) ' W S ! T such that 'lev D f .

Proof. A map ' W A ! T defined on a subset A � S will be called an f -map if
levT .'.a// D f .levS .a// for every a 2 A. If, in addition, ' is a tower embedding
(isomorphism), then ' will be called f -embedding (f -isomorphism). The proof of
Proposition 5.8 is based on the following lemma.

Lemma 5.9. For any two points u 2 S and v 2 T with f .levS .u// D levT .v/

there is an f -embedding (f -isomorphism) ' W #u ! #v. Moreover, if for some
u0 2 pred.u/ and v0 2 predf .lev u0/.v/ we are given with a tower f -embedding (f -
isomorphism) '0 W #u0 ! #v0, then the map ' can be chosen so that 'j#u0 D '0.



Characterizing the Cantor bi-cube in asymptotic categories 715

Proof. For every level � � levS .u/ of S consider the subtower S�.u/ D fs 2 #u j
lev.s/ � �g having finitely many levels. By induction we are going to construct an
f -embedding '� W S�.u/ ! T so that '��1 extends '�.

If � D levS .u/, then S�.u/ D fug and we can put '�.u/ D v. Assume that
for some level � < levS .u/ of S an f -embedding '�C1 W S�C1.u/ ! T has been
constructed. Observe that

S�.u/ D S�C1.u/ [Sfpred.x/ j x 2 .�C 1/ \ #ug:

By our assumption, for every x 2 .�C 1/ \ #u, we get

deg.x/ � Deg�C1
�

.S/ � degf .�C1/

f .�/
.T / � degf .�C1/

f .�/
.f .x//:

Consequently, we can find an injective map x W pred�.x/ ! predf .�/.f .x//. More-
over, if deg�.x/ D degf .�/.f .x//, then we can take the map x to be bijective. If for
some u0 2 pred.u/ and v0 2 predf .lev u0/.v/we are given with a tower f -embedding
(f -isomorphism) '0 W #u0 ! #v0, then we can assume that  x D '0j pred.x/ if
x � u0.

Now define the f -embedding '� W S� ! T by letting '�jS�C1 D '�C1 and
'�j pred�.x/ D  x for x 2 .�C 1/ \ #u. This completes the inductive step.

One can readily check that the f -embedding ' W #u ! #v defined by 'jS�.u/ D
'� for levels � � levS .u/ of S has the required properties.

Now let us return to the proof of Proposition 5.8. Fix any point �S 2 S and
for every level � � levS .�S / of the tower S denote by u� the unique point of the
intersection "�S \ �. Choose any point �T at the level f .levS .�S // � T and for
every level � � levT .�T / denote by v� the unique point of the intersection �\ "�T .

For the initial level � D levS .�S / we can apply the first part of Lemma 5.9 in
order to find an f -embedding (an f -isomorphism) '� W #u� ! #vf .�/. Applying
inductively the second part of Lemma 5.9, for every level � > levS .�S / of S we can
find an f -embedding (f -isomorphism) '� W #u� ! #vf .�/ such that '�j#u��1 D
'��1.

After completing the inductive construction, we define an f -embedding
(f -isomorphism) ' W S ! T by letting 'j#u� D '� for � � levS .�S /. The
f -embedding ' is well defined because S is upward directed and hence S DS

��levS .�S / #u�.

Applying Proposition 5.8 to homogeneous towers we get

Corollary 5.10. Two homogeneous towers S , T are isomorphic if and only if there is
an order isomorphism f W Lev.S/ ! Lev.T / such that deg�C1

�
.S/ D degf .�C1/

f .�/
.T /

for each non-maximal level � 2 Lev.S/.
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6. The key lemma

The principal result of this section is Lemma 6.1, which is the most difficult result of
this paper. This lemma allows us to construct immersions between #-bounded towers
and will be used in the proof of Theorems 5 and 6 in Sections 7 and 8.

It follows from Corollary 5.5 that the boundary @T of each tower T is macro-
uniformly equivalent to the boundary @T L of the level subtower T L for any "-cofinal
subset L � Lev.T /. The subset L can be chosen to be #-bounded in Lev.T /, which
implies that the level subtower T L is #-bounded. Therefore, for studying the macro-
uniform structure of ultrametric spaces it suffices to restrict ourselves by #-bounded
"-unbounded towers T .

In this case the level set Lev.T / of T has the smallest element and can be canon-
ically labeled by finite ordinals. For k 2 ! by Levk.T / we denote the k-th level
of T . The identification of Lev.T / with ! defines the canonical scaling function
id W Lev.T / ! ! � Œ0;1/ that induces the canonical ultrametric �id on the bound-
ary @T of T . Observe that @T can be identified with the smallest level Lev0.T /

of T .

Lemma 6.1. For a #-bounded tower T and a #-bounded homogeneous tower H
there is a surjective tower immersion ' W T ! H if the two inequalities

(1) degk
0.T / � 4kC5 � degk�1

0 .H/,
(2) degk

0.H/ � 4k � Degk
0.T /

hold for every k 2 N.

Proof. First we introduce some notation.
A subset A of the tower T will be called a trapezium if A D #P for some non-

empty subset P � pred.v/ of parents of some point v 2 T , called the vertex of
the trapezium A and denoted by vx.A/. It is easy to see that fvx.A/g [ #P is a
subtower of T . The set P generating the trapezium A D #P is called the plateau of
the trapezium. For the plateau P let deg0.P / D j#P \ Lev0.T /j be the cardinality
of the “base” #P \ Lev0.T / of the trapezium #P .

A map ' W #P ! H from a trapezium #P � S to the tower H will be called an
admissible immersion if

� ' D �j#P for some tower immersion � W fvx.#P /g [ #P ! H ,
� '.P / D ftg for some t 2 T ,
� '.#P / D #t .
Let "k D 1

4k , k 2 N, and observe that

1Y
kD1

1C "k

1 � "k

< 2:

Lemma 6.1 will be derived from the following
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Claim 6.2. For any k 2 N, a trapezium #Ak � T , and a vertexw 2 H at the height
k D lev.Ak/ D lev.w/ there is an admissible immersion ' W #Ak ! #w provided
that

4 � 8 �
1Y

iDkC1

1 � "i

1C "i

� deg0.Ak/

degk
0.H/

� 16

1Y
iDkC1

1C "i

1 � "i

� 32:

Proof. The proof is by induction on k. If k D 0, then #Ak D Ak and the constant
map ' W Ak ! fwg � H is the required immersion.

Assume that the claim has been proved for some k � 1 2 !. Fix a trapezium
#Ak � S and a point w 2 T with levS .Ak/ D levT .w/ D k so that the upper and
lower bounds from Claim 6.2 hold.

Since deg0.Ak/ D P
a2Ak

deg0.a/, for every point a 2 Ak we can choose an
integer number da such thatˇ̌̌

ˇda � degk
k�1.H/

deg0.a/

deg0.Ak/

ˇ̌̌
ˇ � 1

and
P

a2Ak
da D degk

k�1.H/ D deg.w/.

Claim 6.3. For every a 2 Ak ,

degk
k�1.H/

deg0.Ak/
.1 � "k/ � da

deg0.a/
� degk

k�1.H/

deg0.Ak/
.1C "k/:

Proof. It follows from the choice of da that

da

deg0.a/
� degk

k�1.H/

deg0.Ak/
C 1

deg0.a/
D degk

k�1.H/

deg0.Ak/
�
�
1C deg0.Ak/

degk
k�1.H/ � deg0.a/

�
:

The upper bound in Claim 6.2 implies

deg0.Ak/

degk
k�1.H/ � deg0.a/

� 32 � degk
0.H/

degk
k�1.H/ � deg0.a/

� 32 � degk�1
0 .H/

degk
0.T /

� 1

4k
D "k :

The last inequality follows from the condition (1) of Lemma 6.1.
This proves the upper bound of Claim 6.3. By analogy we can prove the lower

bound.

Claim 6.3, the upper bound of Claim 6.2 and the condition (1) of Lemma 6.1
imply

da � deg0.a/
degk

k�1.H/

deg0.Ak/
.1 � "k/ � degk

0.T / � degk
k�1.H/

32 degk
0.H/

1

2

� 4kC5 � degk�1
0 .H/

64 � degk�1
0 .H/

� 4k�1 > 0:
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For every a 2 Ak write the set pred.a/ of parents of a in the tower T as the
disjoint union pred.a/ D S

Aa of a family Aa containing da sets such that for every
Ak�1 2 Aa we get

ˇ̌̌
deg0.Ak�1/ � deg0.a/

da

ˇ̌̌
� Degk�1

0 .T /:

Claim 6.4. For each set Ak�1 2 Aa the upper and lower bounds of Claim 6.2 are
satisfied for k � 1.

Proof. If k D 1, then ˇ̌̌
ˇ deg0.A0/ � deg0.a/

da

ˇ̌̌
ˇ � Deg0

0.T / D 1

and by Claim 6.3 and the inductive assumption:

deg0.A0/ � deg0.a/

da

C 1

� deg0.A1/

deg1
0.H/.1 � "1/

C 1

� deg0.A1/

deg1
0.H/.1 � "k/

�
1C deg1

0.H/

deg0.A1/

�

� deg0.A1/

deg1
0.H/.1 � "1/

�
1C 1

4

�

� 16

1Y
iD1

1C "i

1 � "i

:

By analogy, we can prove the lower bound

deg0.A0/ � deg0.A1/

deg1
0.H/

� 1 � "1

1C "1

� 8

1Y
iD1

1 � "i

1C "i

:

Next, assume that k > 1. Then by Claim 6.3:

deg0.Ak�1/

degk�1
0 .H/

� 1

degk�1
0 .H/

� deg0.a/

da

C Degk�1
0 .T /

degk�1
0 .H/

� 1

degk�1
0 .H/

� deg0.Ak/

degk
k�1.H/.1 � "k/

C Degk�1
0 .T /

degk�1
0 .H/

� deg0.Ak/

degk
0.H/.1 � "k/

 
1C Degk�1

0 .T / degk
0.H/

degk�1
0 .H/ deg0.Ak/

!
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and

Degk�1
0 .T / degk

0.H/

degk�1
0 .H/ deg0.Ak/

D Degk�1
0 .T / degk

k�1.H/

deg0.Ak/

� Degk�1
0 .T / degk

k�1.H/

4 degk
0.H/

D Degk�1
0 .T /

4 degk�1
0 .H/

� 1

4 � 4k
� "k

by the lower bound from Claim 6.2 and the condition (2) of Lemma 6.1. Then

deg0.Ak�1/

degk�1
0 .H/

� deg0.Ak/

degk
0.H/

� 1C "k

1 � "k

� 16 �
� 1Y

iDkC1

1C "i

1 � "i

�
� 1C "k

1 � "k

D 16 �
1Y

iDk

1C "i

1 � "i

:

By analogy, we can prove that

deg0.Ak�1/

degk�1
0 .H/

� deg0.Ak/

degk
0.H/

� 1 � "k

1C "k

� 8 �
1Y

iDk

1C "i

1 � "i

:

The family A D S
a2Ak

Aa has cardinality jAj D P
a2Ak

jAaj D P
a2Ak

da D
deg.w/ and hence we can find a bijective map f W A ! pred.w/. By the inductive
assumption and Claim 6.4, for each set A0 2 A we can find an admissible immersion
'A0 W #A0 ! #f .A0/. Now define the admissible immersion ' W #P ! #w by letting

'.x/ D
´
'A0.x/ if x 2 #A0 for some A0 2 A;

w if x 2 Ak :

This completes the proof of Claim 6.2.

Now we are able to complete the proof of Lemma 6.1. Let .ak/k2! and .bk/k2!

be two branches of the towers T and H , respectively. For every k 2 ! choose a
subset Ak � pred.akC1/ such that ak 2 Ak and

11 � deg0.Ak/

degk
0.H/

� 13:

Such a choice of Ak is always possible because deg0.akC1/ � degkC1
0 .T / �

4kC6 degk
0.H/ by the condition (1) of Lemma 6.1 and

Degk
0

.T /

degk
0

.H/
� 1

4k � 1 by the

condition (2) of Lemma 6.1.
By induction on k 2 ! we shall construct a tower immersion 'k W #Ak ! #bk

such that 'k�1 D 'kj#Ak�1.
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For k D 0 the constant map '0 W A0 ! fb0g is the desired immersion. Assume
that for some k 2 ! an immersion 'k W #Ak ! #bk has been constructed. Consider
the trapezium #A with the plateau

A D .Levk.T / \ #AkC1/ n Ak

in the tower T . Also consider the trapezium #B with plateauB D pred.bkC1/nfbkg
in the homogeneous tower H . It is clear that deg0.A/ D deg0.AkC1/ � deg0.Ak/

and jBj D degkC1
k

.H/ � 1. Observe that

degkC1
k

.H/ D degkC1
0 .H/

degk
0.H/

� 4kC1 DegkC1.T /

degk
0.H/

� 4kC1 4
kC6 degk

0.H/

degk
0.H/

D 42kC7 � 47:

Write A as the disjoint union A D S
b2B Ab of subsets Ab � A such that

ˇ̌̌
ˇ deg0.Ab/ � deg0.A/

jBj
ˇ̌̌
ˇ � Degk

0.T /

for every b 2 B . It follows from the condition (2) of Lemma 6.1 that

deg0.Ab/

degk
0.H/

� 1

degk
0.H/

� deg0.A/

degkC1
k

.H/ � 1 C Degk
0.T /

�

� 1

degk
0.H/

� degkC1
k

.H/

degkC1
k

.H/ � 1 � deg0.AkC1/

degkC1
k

.H/
C Degk

0.T /

degk
0.H/

� 47

47 � 1 � deg0.AkC1/

degkC1
0 .H/

C 1

4k
� 14

13
� 13C 1 < 16:

On the other hand,

deg0.Ab/

degk
0.H/

� 1

degk
0.H/

� deg0.A/

degkC1
k

.H/ � 1 � Degk
0.T /

�

� 1

degk
0.H/

� deg0.AkC1/ � deg0.Ak/

degkC1
k

.H/
� Degk

0.T /

degk
0.H/

� 11 degkC1
0 .H/ � 13 degk

0.H/

degkC1
0 .H/

� 1

4k
� 11 � 13

47
� 1 � 8:

The above two inequalities imply that the trapezium #Ab satisfies the upper and
lower bounds of Claim 6.2, which yields an admissible immersion 'b W #Ab ! #b.
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The immersions 'b compose the immersion 'kC1 W #AkC1 ! #bkC1 defined by the
formula

'kC1.x/ D
´
'k.x/ if x 2 #Ak;

'b.x/ if x 2 #Ab for some b 2 B:
Since 'k D 'kC1j#Ak for all k 2 ! we can define an immersion ' W T ! H letting
'j#ak D 'k for k 2 !.

7. Proof of Theorem 5 (macro-uniform characterization of the Cantor bi-cube)

The “only if” part of Theorem 5 follows from Lemmas 3.1 and 3.2. To prove the “if”
part, assume that a metric space X has macro-uniform dimension zero and for some
ı > 0 we get ‚"

ı
.X/ < 1 for all " � ı and lim

"!1 �"
ı
.X/ D 1.

Let �0 D ı and m0 D 0. By induction we can construct increasing sequences
.�k/

1
kD0

� .0;C1/ and .mk/
1
kD0

� ! such that ��k

ı
.X/ � 4kC5 � 2mk�1 and

2mk � 4k �‚�k

ı
.X/ for all k 2 N.

Now define L D f�ngn2N � .0;1/ and consider the canonical L-tower T L
X D

f.C�.x/; �/ j x 2 X; � 2 Lg of the metric space X . Its level set Lev.T L
X / can be

identified with the set L. By Corollary 4.7, the canonical map

CL W X ! @T L
X ; CL W x 7! CL.x/ D f.C�.x/; �/ j � 2 Lg;

is a macro-uniform equivalence.
Next, consider an #-unbounded binary tower T2. Its level-set Lev.T2/ can be

identified with Z and we can consider the level subtower TM
2 � T2 where M D

fmkgk2! � Z. By Corollary 5.5, the boundary multi-map @idT M
2

W @TM
2 ) @T2 D

2<Z induced by the identity embedding idT M
2

W TM
2 ! T2 is a macro-uniform equiv-

alence.
Observe that H D TM

2 is a homogeneous tower and

degk
0.T

M
2 / D 2mk ; degk

0.T
L

X / D �
�k

ı
.X/; Degk

0.T
L

X / D ‚
�k

ı
.X/;

which allows us to apply Lemma 6.1 to constructing a surjective tower immersion
' W T L

X ! TM
2 . By Proposition 5.4 (3), ' induces a macro-uniform equivalence

@' W @T L
X ) @TM

2 . Finally we obtain a macro-uniform equivalence between X and
the Cantor bi-cube 2<Z as the composition of the macro-uniform equivalences

X 	 @T L
X 	 @TM

2 	 @T2 D 2<Z:
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8. Proof of Theorem 6 (bi-uniform characterization of the Cantor bi-cube)

The “only if” part of Theorem 6 easily follows from Lemmas 3.1 and 3.2. To prove
the “if” part, assume that X is a complete metric space of bi-uniform dimension
zero such that for every 0 < ı � " < 1 the number ‚"

ı
.X/ is finite and for every

0 < " < 1
lim

ı!C0
�"

ı D 1 D lim
ı!C1

�ı
!.X/:

Let �0 D 1 andm0 D 0. By induction construct increasing sequences .�k/
1
kD0

�
Œ1;1/ and .mk/

1
kD0

� ! such that for every k 2 ! the following conditions hold:

(i) ��k

�0
.X/ � 4kC5 � 2mk�1 ,

(ii) 2mk � 4k‚
�k

�0
.X/.

By reverse induction, construct sequences .�k/
1
kD�1 � .0; 1/ and .mk/

1
kD�1 �

Z such that

(iii) �k�1 < �k and mk�1 < mk for each k � 0,
(iv) lim

k!�1
�k D 0, lim

k!�1
mk D �1,

(v) ‚
�kC1

�k
.X/ � 2mk�mk�1 � �

�k

�k�1
.X/.

For the subset L D f�n j n 2 Zg � .0;C1/, consider the canonical L-tower
T L

X D f.C�.x/; �/ j x 2 X; � 2 Lg of the metric space X . By Corollary 4.7(3), the
canonical map

CL W X ! @T L
X ; CL W x 7! CL.x/ D f.C�.x/; �/ j � 2 Lg;

is a bi-uniform equivalence.
Next, consider an #-unbounded binary tower T2. Its level-set Lev.T2/ can be

identified with Z and we can consider its level subtower TM
2 � T2 where M D

fmkgk2Z � Z. By Corollary 5.5, the boundary map @idT M
2

W @TM
2 ) @T2 D 2<Z

induced by the identity embedding idT M
2

W TM
2 ! T2 is a bi-uniform equivalence.

For every n 2 Z let Ln D f�k j k � ng and Mn D fmk j k � ng. Repeating the
argument of the proof of Theorem 5 and applying Lemma 6.1, we can find a surjective
tower immersion '0 W T L0

X ! T
M0

2 . Now our aim is to extend the immersion '0 to
a tower immersion ' W T L

X ! TM
2 .

By induction we define surjective tower immersions 'k W T Lk

X ! T
Mk

2 , k � 0,

such that 'k�1jT Lk

X D 'k for all k � 0.

Assuming that for somek � 0 a surjective tower immersion'k W T Lk

X ! T
Mk

2 has

been defined, we construct a tower immersion 'k�1 W T Lk�1

X ! T
Mk�1

2 as follows.

Since 'k is a tower immersion, for every point y 2 T
Mk

2 at the lowest level mk of

the tower TMk

2 the preimage '�1
k
.y/ lies in the set pred�k

.s/ D �k \ #s of parents
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of some point s 2 �kC1. Consequently, j'�1
k
.y/j � deg�k

.s/ � Deg
�kC1

�k
.TX / D

‚
�kC1

�k
.X/. By the choice of �k�1, we get

j'�1.y/j � ‚
�kC1

�k
.X/ � 2mk�mk�1 D degmk

mk�1
.T2/

� degmk�1
.y/ D j predmk�1

.y/j
and consequently we can find a surjective map y W predmk�1

.y/ ! '�1
n .y/. By the

choice of �k�1, for every x 2 '�1
k
.y/ � �k we get

j pred�k�1
.x/j D deg�k�1

.x/ � deg�k

�k�1
.TX /

D �
�k

�k�1
.X/

� 2mk�mk�1

D Degmk
mk�1

.T2/

D degmk�1
.y/ D j predmk�1

.y/j � j �1
y .x/j

and so we can find a surjective map 'x W pred�k�1
.x/ !  �1

y .x/. Now define the

tower immersion 'n�1 W T Lk�1

X ! T
Mk�1

2 by the formula

'k�1 D 'k [ S
y2mk

S
x2'�1

k
.y/

'x :

After completing the inductive construction, we can see that

' D S
n�0

'n W T L
X ! TM

2

is a tower immersion. By Proposition 5.4 (4), the tower immersion ' induces a bi-
uniform equivalence @' W @T L

X ! @TM
2 between the boundaries of the towers T L

X

and TM
2 , which are bi-uniformly equivalent to X and 2<Z, respectively.

9. Proof of Theorem 4 (micro-uniform characterization of the Cantor bi-cube)

The “only if” part of Theorem 4 easily follows from Lemmas 3.1 and 3.2. To prove
the “if” part, it suffices to prove that any two non-compact complete metric spaces
X , Y of micro-uniform dimension zero are micro-uniformly equivalent if there is
" 2 .0; 1/ is such that ‚"

ı
.X/ and ‚"

ı
.Y / are finite for all positive ı � " and

lim
ı!C0

�"
ı
.X/ D 1 D lim

ı!C0
�"

ı
.Y /.

Being complete and not compact, the spaces X and Y are not totally bounded.
Consequently, there is "0 2 .0; 1/ so small thatX cannot be covered by a finite number
of sets of diameter < "0. Since X has micro-uniform dimension zero, we can take a
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number " > 0 so small that each "-connected componentC".x/, x 2 X , has diameter
< "0. Then the choice of "0 guarantees that the cover C".X/ D fC".x/ j x 2 Xg is
infinite. Since X is separable the cover C".X/ is countable.

For the same reason, we can assume that " is so small that C".Y /D fC".y/ j y 2 Y g
is a countable cover of Y consisting of sets of diameter < "0.

It is clear that the metric space X is micro-uniformly equivalent to X endowed
with the metric minf1; dXg. So, we lose no generality assuming that dX � 1. By the
same reason, we can assume that dY � 1. In this case we prove that the bounded
metric spaces X , Y are bi-uniformly equivalent.

Let ˛0 D ˇ0 D " and ˛k D ˇk D k for k 2 N. By reverse induction, construct
sequences .˛k/

�1
kD�1 and .ˇk/

�1
kD�1 of real numbers in the interval .0; 1/ such that

(i) ˛k�1 < ˛k and ˇk�1 < ˇk for each k � 0,
(ii) limk!�1 ˛k D 0, limk!�1 ˇk D 0,

(iii) �˛k
˛k�1

.X/ � ‚
ˇk

ˇk�1
.Y /,

(iv) �ˇk

ˇk�1
.Y / � ‚

˛kC1
˛k

.X/.

For the level set A D f˛k j k 2 Zg consider the canonical A-tower T A
X D

f.C�.x/; �/ j x 2 X; � 2 Ag of the metric space X . The level set Lev.T A
X / of the

tower T A
X can be identified with the set A. By Corollary 4.7 (3), the canonical map

CA W X ! @T A
X ; CA W x 7! CA.x/ D f.C�.x/; �/ j � 2 Ag;

is a bi-uniform equivalence. The choice of ˛0 D " guarantees that the zeros level
Lev0.T

A
X / D f.C�.x/; �/ j x 2 X; � D ˛0g � T A

X is countable. On the other hand,
dX � 1 implies that for each k 2 N the level Levk.T

A
X / D f.C˛k

.x/; ˛k/ j x 2 Xg D
f.X; k/g is a singleton.

By analogy, for the level set B D fˇk j k 2 Zg consider the canonical B-tower
T B

Y D f.C�.y/; �/ j y 2 Y; � 2 Bg of the metric space Y . By Corollary 4.7 (3), the
canonical map

CB W Y ! @T B
Y ; CB W y 7! CB.y/ D f.C�.y/; �/ j � 2 Bg;

is a bi-uniform equivalence. The choice of ˇ0 D " guarantees that the zeros level
Lev0.T

B
Y / D f.C�.y/; �/ j y 2 Y; � D ˇ0g � T B

Y is countable. On the other hand,
dY � 1 implies that for each k 2 N the level Levk.T

B
Y / D f.Cˇk

.y/; ˇk/ j y 2
Y g D f.Y; k/g is a singleton.

For every k 2 Z consider the sets Ak D f˛n j n � kg and Bk D f˛n j n � kg.
Let '1 W T A1

X ! T
B1

Y be the tower isomorphism assigning to the unique point .X; k/

of a level of T A0

X the unique point .Y; k/ of the corresponding level of the tower T B1

Y .

Since the 0th levels of the towers T A0

X and T B0

Y both are countably infinite, we can

extend the tower isomorphism '1 to a tower isomorphism '0 W T A0

X ! T
B0

Y .
By analogy with the proof of Theorem 5, by the reverse induction we can con-

struct a sequence of surjective tower immersions 'k W T Ak

X ! T
Bk

Y , k � 0 such
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that 'k�1jT Ak

X D 'k for all k � 0. These tower immersions compose a surjective

tower immersion ' W T A
X ! T B

Y such that 'jT Ak

X D 'k for all k � 0. By Proposi-
tion 5.4, the immersion ' induces a micro-uniform equivalence @' W @T A

X ! @T B
Y .

By Corollary 4.7 (3), the boundary @T A
X is bi-uniformly equivalent to X while @T B

X

is bi-uniformly equivalent to Y . Consequently, the (bounded) metric spaces X and
Y are bi-uniformly equivalent.

10. Proof of Theorem 1 (the universality of the Cantor bi-cube)

The “only if” part easily follows from Lemmas 3.1 and 3.2.
To prove the “if” part, assume that X has bi-uniform dimension zero and ‚"

ı
.X/

is finite for all 0 < ı < " < 1. Since the completion of X has the same properties,
we lose no generality assuming that the space X is complete.

For the level set L D f2n j n 2 Zg consider the canonical L-tower T L
X of X . By

Corollary 4.7 (3), the canonical map CL W X ! @T L
X is a bi-uniform equivalence. It

follows that Deg2nC1

2n .T L
X / D ‚2nC1

2n .X/ < 1 for all 2n 2 L D Lev.T L
X /.

Let T! be a homogeneous tower such that the set Lev.T!/ is order isomorphic
to Z and deg.x/ D ! for each x 2 T . Let f W Lev.T L

X / ! Lev.T!/ be an order
isomorphism. By induction construct a homogeneous subtower T � T! such that

Deg�C1
�

.T / D maxf2;Degf �1.�C1/

f �1.�/
.TX /g:

By Proposition 5.8, there exists a tower embedding ' W T L
X ! T such that

'Lev D f . By Proposition 5.4 (2) the tower embedding ' induces a bi-uniform
embedding @' W @T L

X ! @T . By Theorem 6, the boundary @T of the homogeneous
l-unbounded tower T is bi-uniformly equivalent to the Cantor bi-cube 2<Z. Since
X is bi-uniformly equivalent to @T L

X , we see that X bi-uniformly embeds into 2<Z.

11. Proof of Theorem 9

LetX be an isometrically homogeneous countable proper metric space of asymptotic
dimension zero. Baire’s theorem guarantees that X has an isolated point and then
the isometric homogeneity of X implies that X is uniformly discrete in the sense
that for some " > 0 all "-balls in X are singletons. Being proper and uniformly
discrete, the space X is boundedly-finite. Since X has asymptotic dimension zero,
each "-connected component C".x/ � X is bounded and hence finite.

So, we can consider the function fX W … ! ! [ f1g assigning to each prime
number p 2 … the (finite or infinite) number

fX .p/ D supfk 2 ! j pk divides jC".x/j for some " > 0 and x 2 Xg:
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Given a function f W … ! ! [ f1g consider the direct sum

Zf D p̊2…Zf .p/
p

of cyclic groups Zp D Z=pZ.
In [Sm] J. Smith proved that each countable group admits a proper left-invariant

metric and that for any two proper left-invariant metrics �, d on G the identity map
id W .G; �/ ! .G; d/ is a bi-uniform equivalence. In the sequel we endow each
countable group G (in particular, each group Zf ) with a proper left-invariant metric.

Lemma 11.1. Each isometrically homogeneous proper countable metric spaceX of
asymptotic dimension zero is bi-uniformly equivalent to the group ZfX

.

Proof. Consider the canonical !-tower T !
X D f.Cn.x/; n/ j x 2 X; n 2 !g of the

metric space X .
Taking into account that each 0-connected component C0.x/ coincides with the

singleton fxg and applying Corollary 4.7, we conclude that canonical mapC! W X !
@T !

X is a bi-uniform equivalence. The isometric homogeneity of the metric space X
implies the homogeneity of the tower T !

X . It follows that for every n 2 ! we the
degree

degn.T
!

X / D degn.T
!

X / D jCnC1.x/=Cn.X/j
equals the number of n-connected components ofX composing an .nC1/-connected
component of X .

For every n 2 ! let fn W … ! ! be the function assigning to each prime number
p the maximal number k � 0 such that pk divides degn.TX /. Then the group Zfn

is
finite and has order jZfn

j D degn.TX /.
Consider the groupG D L

n2! Zfn
and observe that it is isomorphic (with help of

a coordinate permutating isomorphism) to the group ZfX
. The groupG can be written

as the unionG D S
m2! Gm of an increasing sequence .Gm/m2! of subgroups where

G0 D f0g and Gm D Sm�1
nD0 Zfn

for m > 0.
Consider the #-bounded tower TG D fxGm j x 2 G; m 2 !g endowed

with the inclusion relation and observe that it is homogeneous and degn.TG/ D
jZfn

j D degn.TX / for all n 2 !. By Proposition 5.8, there is a tower isomor-
phism ' W T !

X ! TG inducing a bi-uniform equivalence @' W @T !
X ! @TG . Then

the bi-uniform equivalence between X and Zf is obtained as the composition of the
bi-uniform equivalences:

X 	 @T !
X 	 @TG 	 G 	 Zf :

The following lemma (that essentially is due to I. Protasov [Pr]) combined with
Lemma 11.1 implies Theorem 9.

Lemma 11.2. If two countable proper isometrically homogeneous metric spaces X ,
Y of asymptotic dimension zero are bi-uniformly equivalent, then fX D fY .
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Proof. SinceX andY are boundedly-finite spaces of asymptotic dimension zero their
"-connected components are finite for all " < 1.

The inequality fX � fY follows as soon as we check that for each prime number
p and each k 2 N if pk divides the cardinality jC".x/j for some x 2 X and " < 1,
then pk divides jCı.y/j for some ı < 1 and y 2 Y .

Let ' W X ! Y is a bi-uniform equivalence and ı D !'."/. By Lemma 3.1, the
image '.C".x// of the "-connected component C".x/ lies in the ı-connected com-
ponent Cı.y/ of the point y D '.x/ in Y . Consider the preimage A D '�1.Cı.y//

and observe that by Lemma 3.1 for each point a 2 Awe get '.C".a// � Cı.'.a// D
Cı.y/ (the latter equality holds because '.a/ 2 Cı.y/). Consequently, C".y/ � A.
This implies thatA decomposes into a disjoint union of "-connected components ofX .
Since the metric spaceX is isometrically homogeneous, any two "-connected compo-
nent of X have the same cardinality. Consequently, jC".x/j divides jAj D jCı.y/j.
Since pk divides jC".x/j it also divides jCı.y/j. This concludes the proof of the
inequality fX � fY .

The inequality fY � fX can be proved by analogy.
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