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Abstract. In this paper we show that the commensurability classes of discrete arithmetic sub-
groups of Isom.Hn/ of the simplest type, i.e., those coming from quadratic forms of signature
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1. Introduction

All hyperbolic n-manifolds and orbifolds arise as quotient spaces Hn=� where Hn

is n-dimensional hyperbolic space and � is a discrete subgroup of the group of
isometries Isom.Hn/. When n D 2 or 3, Hn can be modelled by upper-half space
in R2 or R3 so that IsomC.Hn/, the orientation-preserving subgroup, is identified
with PSL.2; R/ or PSL.2; C/ respectively. Thus, in these cases, discrete subgroups
of Isom.Hn/ give rise in a natural way to subalgebras of M2.R/ or M2.C/ which
turn out to be quaternion algebras (e.g. [19], §3.2). When the groups are arithmetic,
the quaternion algebras are defined over number fields and the commensurability
classes of these discrete arithmetic subgroups correspond precisely to the isomor-
phism classes of the quaternion algebras (see [25], [17], [27]). We show that this type
of correspondence persists for all even n in that the commensurability classes of dis-
crete arithmetic subgroups of Isom.Hn/ are parametrised by the isomorphism classes
of certain quaternion algebras over totally real number fields (see Theorem 7.2). As
the isomorphism classes of quaternion algebras are determined by their ramifications
sets, which are finite sets of places of the defining field, we obtain, in particular, the
following result (Corollary 7.3)

Theorem 1.1. When n is even, the commensurability classes of discrete arithmetic
subgroups of Isom.Hn/ are parametrised for each totally real field k � R, by the
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sets fP1; P2; : : : ; Prg of prime ideals in the ring of integers Rk where

r �

8̂̂̂
<
ˆ̂̂:

0 .mod 2/ if n � 0 .mod 8/;

Œk W Q� � 1 .mod 2/ if n � 2 .mod 8/;

Œk W Q� .mod 2/ if n � 4 .mod 8/;

1 .mod 2/ if n � 6 .mod 8/:

When n is even, these discrete arithmetic subgroups are all of the simplest type
in the language of Vinberg [30], Chap. 6, as they all arise from suitably defined
quadratic spaces of dimension n C 1 over totally real number fields. When n is
odd, we obtain parametrising sets similarly defined via quaternion algebras for the
commensurability classes of those discrete arithmetic subgroups of the simplest type.
The parametrising sets in the cases where n is odd are a little less neat than in the
even cases (Theorem 7.4) and this is already manifest in the case n D 3 (see [18],
[9]). For all odd n, there is another construction of discrete arithmetic subgroups of
Isom.Hn/ [30], Chap. 6. These groups together with all those of simplest type cover
all discrete arithmetic subgroups for all odd n apart from 3 and 7. The problem of
determining parametrising sets for the groups obtained by this second construction
is apparently open.

The parametrising sets are obtained via the Clifford algebras of the related quad-
ratic spaces and the even/odd dichotomy referred to above is partly a reflection of the
structural differences between Clifford algebras which depend on the parity of the
dimension of the quadratic space. The well-known invariants of Witt and Hasse for
quadratic spaces are elements of the Brauer group of the defining totally real number
field and, as such, can be represented in the Brauer group by quaternion algebras. It
is by using these invariants that we obtain our parametrising sets.

Extensive investigations into discrete subgroups of finite covolume in Isom.Hn/

have been made (see e.g. [30] and references therein); in particular, in small dimen-
sions using Coxeter groups generated by reflections in the faces of Coxeter polytopes
in Hn. If such groups are arithmetic, they are necessarily of the simplest type and
necessary and sufficient conditions for such groups to be arithmetic have been given
by Vinberg [28]. These results can be readily adapted to describe the quadratic spaces
involved. For those that do turn out to be arithmetic, the parameters defining the com-
mensurability classes can be easily calculated. We pursue this in §9 and illustrate the
application with examples from dimensions 4 and 5. In the cases where the poly-
topes are simplices, the commensurability classes of all the Coxeter groups have been
described in [11].
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2. Background

Let the vector space RnC1 be endowed with a quadratic form Q of signature .n; 1/,
so that, with respect to a suitable basis,

Q.x/ D x2
1 C x2

2 C � � � C x2
n � x2

nC1:

Consider the cone
C D fx 2 RnC1 j Q.x/ < 0g

which has two components. The Lobachevski model of hyperbolic n-space can
then be identified with the projective space of one component, C C=RC, with metric
induced from ds2 D dx2

1 C dx2
2 C � � � C dx2

n � dx2
nC1. Let O.n; 1/ denote the group

of isometries of the quadratic space .RnC1; Q/ so that

O.n; 1/ D fT 2 GL.n C 1; R/ j Q.T .x// D Q.x/ for all x 2 RnC1g:
Thus if OC.n; 1/ denotes the subgroup preserving the components of the cone then
Isom.Hn/ D OC.n; 1/.

Discrete arithmetic subgroups of OC.n; 1/ can be constructed as follows: Let
k be a real subfield of R which is a totally real number field. Let .V; q/ be an
.n C 1/-dimensional quadratic space over k such that .V; q/ has signature .n; 1/.
Furthermore, for any embedding � W k ! R, � ¤ Id, the induced quadratic space
.�V; �q/ is required to have signature .nC1; 0/, i.e., be positive definite. Under these
circumstances, there exists X 2 GL.n C 1; R/ such that q.X.x// D Q.x/ for all
x 2 RnC1 Š V ˝ R. Thus if we define

O.V; q/ D fT 2 GL.n C 1; R/ j q.T .x// D q.x/ for all x 2 V ˝ Rg
then X induces an isomorphism X� W OC.V; q/ ! OC.n; 1/ by X�.T / D X�1TX .
Now let O.V; qI k/ denote the k-points of the subgroup of the algebraic group O.V; q/

and let L be a complete Rk-lattice in V , where Rk is the ring of integers in k. Define

O.L/ D fT 2 OC.V; qI k/ j T .L/ D Lg:
Then O.L/ is a discrete subgroup of finite covolume in OC.V; q/ [3]. Furthermore,
for any two complete lattices L1, L2 in V , the groups O.L1/, O.L2/ are commensu-
rable. Thus X�.O.L// is a discrete subgroup of finite covolume in OC.n; 1/, and any
subgroup of OC.n; 1/ commensurable with some such X�.O.L// is a discrete arith-
metic subgroup of OC.n; 1/. The groups so obtained will be referred to subsequently
as arithmetic groups of the simplest type (see [30]).

Under the general definition of discrete arithmetic subgroups of a Lie group
(e.g. [3], [8]), all discrete arithmetic subgroups of OC.n; 1/ are arithmetic groups
of the simplest type in the cases where n is even [15]. In the above discussion, X is
not uniquely defined, but any other will differ by an element of OC.n; 1/. We thus
always define commensurable to mean commensurable in the wide sense, so that two
subgroups �1, �2 of OC.n; 1/ are commensurable if there exists A 2 OC.n; 1/ such
that �1 \ A�2A�1 has finite index in both �1 and in A�2A�1.
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3. Commensurability and similarity

Let us suppose that �1, �2 are arithmetic groups of the simplest type in OC.n; 1/

and that �1 and �2 are commensurable. Thus there exist totally real number
fields k1, k2 with k1; k2 � R and quadratic spaces .V1; q1/, .V2; q2/ over k1, k2

respectively, of dimensions n C 1 such that .V1; q1/, .V2; q2/ have signature .n; 1/

and for any non-identity Galois embeddings � , � 0 of k1 or k2, .�V1; �q1/, .� 0

V2; � 0

q2/

are positive definite. In the remainder of the paper, the totally real fields will always
be regarded as being embedded in R and so come equipped with an embedding into R.
Furthermore, the statement that the quadratic space “has the appropriate signatures”
will be used to cover the conditions just stated on the signature of the quadratic space
and its images under the real embeddings. Then for Li a complete lattice in Vi and
Xi 2 GL.n C 1; R/ such that qiXi D Q, �i is commensurable with X�

i .O.Li // in
OC.n; 1/, i D 1; 2.

In these circumstances, k1 D k2 ´ k and there exists a totally positive � 2 k�
such that .V1; q1/ is isometric to .V2; �q2/ over k (see [8]).

Thus the (wide) commensurability classes of these discrete arithmetic groups of
the simplest type in OC.n; 1/ are in one-to-one correspondence with the similarity
classes of quadratic spaces .V; q/ over totally real subfields k � R such that .V; q/

has appropriate signatures, and two such spaces are similar, if there exists a totally
positive � 2 k� such that .V1; q1/ and .V2; �q2/ are isometric over k.

Thus, in order to parametrise these commensurability classes we need to param-
etrise the similarity classes of quadratic spaces, which we will denote by Q.k; n/, for
each totally real field k. There are well-established invariants for isometry classes of
quadratic spaces – the Witt invariant and the Hasse invariant. These are elements of
the Brauer group Br.k/ of k and, as such, can be represented by quaternion algebras
since k is a number field (see e.g. [13]). Thus our parametrising sets will turn out to
be, in essence, isomorphism classes of certain quaternion algebras. That quaternion
algebras parametrise commensurability classes of arithmetic subgroups of OC.n; 1/ is
known for n D 2 [25]. They are also used in the parametrisation of arithmetic groups
of the simplest type in the case n D 3 (e.g. [18]) and the commensurability classes of
all discrete arithmetic subgroups of OC.3; 1/ are parametrised by quaternion algebras
(e.g. [17], [19]). The neat classification of quaternion algebras over number fields
via their ramification sets (see Theorem 4.1 below) makes them particularly useful
as parametrising sets.

4. Quaternion algebras

We briefly recall some information on quaternion algebras and prove a result con-
cerning them which will be required subsequently. For more details, see [19], [27].
A quaternion algebra over k is a four-dimensional central simple algebra. It has a
basis of the form 1, i , j , ij where i2 D c, j 2 D d , ij D �j i , c; d 2 k�. This is
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referred to as a standard basis and the quaternion algebra B can be represented by
a Hilbert symbol

�
c;d
k

�
. A quaternion algebra over a local field K, .¤ C/, is either

isomorphic to M2.K/ or to a unique division algebra. If k� denotes the completion
of k at the place corresponding to the valuation �, then B is said to be ramified at �

if B� ´ B ˝k k� is a division algebra. Also B is said to split at � if B� Š M2.k�/.

Theorem 4.1 (Classification Theorem). Let B be a quaternion algebra over a number
field k. Then:

� B is ramified at a finite set of places, called the ramification set, and the cardi-
nality of the set is even.

� Two quaternion algebras over k are isomorphic if and only if their ramification
sets are equal.

� Let S be any finite set of places of k of even cardinality, excluding the complex
places. Then there exists a quaternion algebra over k whose ramification set is
precisely S .

Denote the ramification set of B by Ram.B/, the subset of Archimedean ramified
places by Ram1.B/ and the subset of non-Archimedean or P -adic ramified places
by Ramf .B/.

If B1, B2 are quaternion algebras over a number field k, then there exists a
quaternion algebra D over k such that

B1 ˝k B2 Š D ˝k M2.k/: (1)

Thus in the Brauer group Br.k/, B1 � B2 D D. For quaternion algebras B1, B2, D

as at (1),

Ram.D/ D .Ram.B1/ [ Ram.B2// n .Ram.B1/ \ Ram.B2//: (2)

Later, in establishing the parametrisation of commensurability classes of arithmetic
groups of the simplest type, we require the following result. The necessary informa-
tion on quaternion algebras can be found in [19] (cf. [19], Theorem 9.5.5).

Lemma 4.2. Let k be a totally real number field and let ı 2 k� be such that L D
k.

p
ı/ is a quadratic extension field of k. Let B1, B2 be quaternion algebras over k

such that Ram1.B1/ D Ram1.B2/ and

B1 ˝k L Š B2 ˝k L:

Then there exists a totally positive � 2 k� such that

B1 ˝k B2 Š
�

�; ı

k

�
˝k M2.k/:
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Proof. Let A D Bi ˝k L so that A is a quaternion algebra over L. Let P be an ideal
of L and let p D P \ Rk . Then

A ˝L LP Š .Bi ˝k L/ ˝L LP Š .Bi ˝k kp/ ˝kp
LP :

Clearly, if Bi splits at p, then A splits at P . If p is ramified or inert in Ljk, then
ŒLP W kp� D 2. If Bi is ramified at p, the division algebra Bi ˝k kp over the local
field kp splits under any quadratic extension. Thus A cannot be ramified at any prime
P such that p is inert or ramified in Ljk. If p decomposes in Ljk, then kp ! LP is
an isomorphism. Thus, in these cases, A is ramified at P if and only if Bi is ramified
at p, if and only if A is ramified at P 0 where pRL D P P 0. Thus Ramf .A/ D
fP1; P 0

1; : : : ; Pr ; P 0
rg where p1; p2; : : : ; pr are prime ideals of k which decompose

in Ljk as piRL D PiP
0
i . Furthermore, T0 D fp1; p2; : : : ; prg � Ramf .Bi /,

i D 1; 2.
Let Ramf .B1/ D T0 [ T1, Ramf .B2/ D T0 [ T2 where T1, T2 are subsets of

those primes of k which are inert or ramified in the extension Ljk. Now, if D is as
defined at (1), then by (2),

Ramf .D/ D .T1 n T2/ [ .T2 n T1/

and Ram1.D/ D ;.
Since L ˝k k� is a field for all � 2 Ram.D/, L embeds in D. Let u 2 D

be such that u2 D ı. Then there exists v 2 D such that vuv�1 D �u by the
Skolem–Noether theorem. Then v2 D � 2 k� and 1, u, v, uv is a standard basis of
D. So D Š �

�;ı
k

�
. Now v can be replaced by v0 D v.a C bu/, a; b 2 k, and then

v02 D v2NLjk.aCbu/ D �.a2 �ıb2/. Suppose that � is positive at real embeddings
�i , i 2 S1, and negative at �i , i 2 S2. Since Ram1.D/ D ;, �i .ı/ must be positive
for i 2 S2. So, for i 2 S1 pick ai ; bi 2 k�i

such that a2
i ��i .ı/b2

i > 0 and for i 2 S2,
pick ai ; bi 2 k�i

such that a2
i � �i .ı/b2

i < 0. By the Approximation Theorem, there
exist a; b 2 k arbitrarily close to ai , bi respectively for all i 2 S1 [ S2. Replacing v

by v0 D v.a C bu/ gives v02 D �0 where �0 is totally positive and D Š �
�0;ı

k

�
.

5. Clifford algebras

Our parametrisation of the sets Q.k; n/ is established by using Clifford algebras.
These are described in detail in [13]. We make extensive use of this theory and adopt
some notation from [13], parts of which are recalled below.

If .V; q/ is a quadratic space over a field k, then the Clifford algebra, C.V /, is
an associative algebra over k with 1 which contains V and which is universal for the
property that its multiplication is compatible with the form q in that x2 D q.x/ � 1

for all x 2 V . If V has dimension r , then C.V / has dimension 2r and, for a regular
quadratic space, it is a central simple Z2-graded algebra with even and odd parts
denoted by C0.V / and C1.V / respectively. Note that C0.V / is a k-subalgebra. If
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fx1; x2; : : : ; xrg is an orthogonal basis of V , then the element z D x1x2 : : : xr is
such that z2 D .�1/r.r�1/=2d.V / D ı 2 k� where d.V / is the determinant of .V; q/.
Then ı, regarded as an element of k�=k�2 is termed the signed determinant. The
structure of C.V / depends on the parity of r . When r is odd, z lies in the center
of C.V / and C0.V / is a central simple algebra over k. The subalgebra k C kz is
Z2-graded by defining @.k/ D 0, @.kz/ D 1. Carrying this grading, the subalgebra
is denoted by khpıi. Then, as a graded algebra C.V / Š .C0.V // y̋ khpıi where y̋
denotes the graded tensor product and the notation .C0.V // indicates that the algebra
C0.V / is graded so that it is concentrated at zero. When r is even, z lies in the center of
C0.V / and C.V / is a central simple algebra over k. If B is a quaternion algebra over
k with Hilbert symbol

�
c;d
k

�
and standard basis 1, i , j , ij , we use the notation

˝
c;d
k

˛
to indicate that it has been Z2-graded by @.1/ D @.ij / D 0 and @.i/ D @.j / D 1.

The structure of these graded Clifford algebras is compatible with taking orthog-
onal sums in that

C.V ? V 0/ Š C.V / y̋ C.V 0/:

We will make use of this and related orthogonal decomposition theorems (see [13],
Chap. 5). The Witt invariant, c.V /, of a regular quadratic space .V; q/ is the element
of the Brauer group Br.k/ of k defined by

c.V / D
´

ŒC0.V /� if dim.V / is odd;

ŒC.V /� if dim.V / is even:

The Hasse invariant, s.V /, also in Br.k/, is obtained from a diagonalisation
fa1; a2; : : : ; arg of .V; q/ as the element in Br.k/ given by the product of the quater-
nion algebras with Hilbert symbols

�ai ;aj

k

�
over i < j . The Hasse invariant does not

depend on the choice of diagonalisation and is related to the Witt invariant in Br.k/

as follows:

dim.V / � 1; 2 .mod 8/ W c.V / D s.V /;

dim.V / � 3; 4 .mod 8/ W c.V / D s.V / �
��1; �d.V /

k

�
;

dim.V / � 5; 6 .mod 8/ W c.V / D s.V / �
��1; �1

k

�
;

dim.V / � 7; 8 .mod 8/ W c.V / D s.V / �
��1; d.V /

k

�
:

(3)

We further note that if k is a number field, then c.V /, s.V / can always be represented
by an element ŒB� where B is a quaternion algebra. Thus it is not surprising that our
parametrising sets, defined in the following sections, are sets of isomorphism classes
of quaternion algebras.
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6. Invariants

Recall that Q.k; n/ is the set of similarity classes of quadratic spaces .V; q/ over the
totally real field k, of dimension n C 1 such that .V; q/ has the appropriate signatures
and .V; q/; .V 0; q0/ are similar if there exists a totally positive � 2 k� such that
.V; �q/; .V 0; q0/ are isometric over k. We continue to use results and notation on
Clifford algebras from [13].

Let I.k; n/ denote the set of isomorphism classes of k-algebras of dimension 2n.
Define

‚ W Q.k; n/ ! I.k; n/ by ‚.Œ.V; q/�/ D C0.V /

where Œ.V; q/� denotes the similarity class of .V; q/. This is well defined since C0.V /

is unchanged in its isomorphism class under scaling. We will show that ‚ is a perfect
invariant by establishing that ‚ is injective. The proof depends on the parity of n.

n even. In this case, dim.V / D n C 1 is odd so that C0.V / is a central simple
algebra over k.

Theorem 6.1. When n is even, ‚ is an injection.

Proof. Let .V; q/, .V 0; q0/ be representatives of elements of Q.k; n/. Thus they both
have appropriate signatures and so both have the same signature at all real places. This
will, of course, remain true under scaling by a totally positive element of k� and we can
scale by such a scalar to assume that d.V / D d.V 0/. If ‚.C0.V // Š ‚.C0.V 0//,
then c.V / D c.V 0/. Thus in the Brauer group Br.kP / for any prime ideal P ,
s.V / D s.V 0/ since the dimensions and the determinants are also equal. Thus .V; q/,
.V 0; q0/ are isometric over kP for each P . Then, by the Hasse–Minkowski theorem,
the quadratic spaces .V; q/; .V 0; q0/ are isometric over k.

n odd. In this case, dim.V / D n C 1 is even and C.V / is a central simple algebra
over k.

Let V D V0 ? V1 where V1 D hx1i is one-dimensional with q.x1/ totally
positive. First scale .V; q/ so that q.x1/ D 1. Then d.V / D d.V0/ and ı D �ı0 for
the signed determinants of V and V0. Now C.V / Š C.V0/ y̋ C.V1/ and C.V1/ Š
khp1i as Z2-graded algebras. Furthermore, C.V0/ Š .C0.V0// y̋ khpı0i. Thus

C.V / Š .C0.V0// y̋
��ı; 1

k

�
: (4)

Now C0.V0/ is a central simple algebra over k, so there exists a quaternion algebra
B over k such that C0.V0/ Š Mr.B/ where r D .n � 3/=2. Since, in (4), .C0.V0//

is concentrated at zero, the graded tensor product is just the tensor product. Also, as��ı;1
k

� Š M2.k/, it follows that c.V / D ŒB� in Br.k/.

Theorem 6.2. When n is odd, ‚ is injective.
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Proof. Let .V; q/, .V 0; q0/ represent elements of Q.k; n/ where n is odd and suppose
that ‚.C0.V // Š ‚.C0.V 0//. Thus their centers are isomorphic and ı D ı0 as
elements of k�=k�2. Now C0.V / Š C0.V0/ ˝ C.�ı0V1/ Š Mr.B/ ˝ k.

p
ı/. If

ı 62 k�2, then C0.V / is a central simple algebra over k.
p

ı/ which will be represented
in the Brauer group of k.

p
ı/ by B ˝ k.

p
ı/. Thus B ˝ k.

p
ı/ Š B 0 ˝ k.

p
ı/. At

all real places, the invariants s.V0/; s.V 0
0/ are trivial. Note that ŒB� D c.V0/. Since

ı D ı0, d.V0/ D d.V 0
0/ so that, from (3), Ram1.B/ D Ram1.B 0/. By Lemma 4.2,

there exists a totally positive � such that B D B 0��;ı
k

�
in Br.k/. Now scale V 0 by �

so that c.�V 0/ D c.V 0/
�

�;ı
k

� D c.V / in Br.k/. Arguing as in Theorem 6.1, it follows
that .V; q/ and .V 0; �q0/ are isometric. If ı 2 k�2, then C0.V / Š Mr.B/ � Mr.B/.
But an isomorphism Mr.B/ � Mr.B/ ! Mr.B 0/ � Mr.B 0/ induces an isomor-
phism Mr.B/ ! Mr.B 0/ by Schur’s lemma. Since C.V / Š MrC1.B/; C.V 0/ Š
MrC1.B 0/, it follows that c.V / D c.V 0/ and the argument is as before.

7. Parametrising sets

We have shown that ‚ maps injectively into the isomorphism classes of k-algebras. In
this section, we obtain a precise description of the image of ‚ in terms of quaternion
algebras, thus establishing the parametrising sets for the commensurability classes of
discrete arithmetic subgroups of OC.n; 1/ of the simplest type.

Let .V; q/ be a quadratic space over k with appropriate signatures and recall
the definitions of the Witt invariant and Hasse invariant. Choose a diagonalisation
fa1; a2; : : : ; anC1g of .V; q/ in such a way that a1 < 0, aj > 0 for all j > 1 and
�.ai / > 0 for all i and embeddings � ¤ Id. Then the quaternion algebra

�ai ;aj

k

�
is unramified at all real places. Thus the Hasse invariant, s.V /, is represented by
a quaternion algebra which has no real ramification by (2). But then, from (3), the
quaternion algebra B representing the Witt invariant of .V; q/ satisfies

Ram1.B/ D

8̂̂
<̂
ˆ̂̂:

; n � 0; 1 .mod 8/;

�1 n fIdg n � 2; 3 .mod 8/;

�1 n � 4; 5 .mod 8/;

fIdg n � 6; 7 .mod 8/;

(5)

where �1 denotes the set of all real places of k.

Theorem 7.1. Let n be even, k be a totally real number field and let B be a quaternion
algebra over k such that B satisfies (5). Then M2.n�2/=2.B/ 2 ‚.Q.k; n//.

Proof. For n D 2; 4 we construct from B , a central simple Z2-graded algebra C such
that its odd part C1 contains a subspace V of dimension nC1 on which multiplication
defines a quadratic form with the appropriate signatures and such that c.V / D B .
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The remaining cases are then obtained from V ? Vr where we use the notation Vr

to denote a space of dimension r with diagonalisation f1; 1; : : : ; 1g.
We begin with n D 2 (where the result is already known). Thus let B have real

ramification at all real places except the identity and let B D �
c;d
k

�
with standard

basis 1, i , j , ij . Choose ı 2 k� such that ı > 0 and �.ı/ < 0 for all � ¤ Id. Then
khpıi is a Z2-graded algebra. Let C0 D B and define C D .C0/ y̋ khpıi so that
C is a central simple Z2-graded algebra whose even part is isomorphic to B .

Let Bo denote the 3-dimensional subspace of pure quaternions in B and set

V D fb0 ˝ x
p

ı j b0 2 Bo; x 2 kg:
Thus V is a 3-dimensional subspace of C1 and for ˛ D b0 ˝ x

p
ı 2 V , ˛2 D

x2b2
0ı 2 k�. Thus .V; q0/ with q0.˛/ D ˛2 is a quadratic space over k with orthogonal

basis i ˝ p
ı, j ˝ p

ı, ij ˝ p
ı. It thus has the diagonalisation fıc; ıd; �ıcdg and

so has the appropriate signatures. By uniqueness, C Š C.V / and C0.V / Š B so
that B 2 ‚.Q.k; 2//.

Now consider the case n D 4 and take a quaternion algebra B over k which is
ramified at all real places. Choose ı 2 k� such that ı < 0 and �.ı/ > 0 for all
� ¤ Id. Let khpıi denote the field k.

p
ı/ with Z2-grading as defined earlier. Let

C0 be the central simple algebra M2.B/ and define C D .C0/ y̋ khpıi. In this case,
take

V D
n �

a bNb=ı �a

	
˝ x

p
ı j a; x 2 k; b 2 B with conjugate Nb

o
:

Then V is 5-dimensional subspace and for ˛ D
�

a bNb=ı �a

	
˝ x

p
ı 2 V we have

˛2 D x2.ıa2 C b Nb/ 2 k�. Thus .V; q0/ with q0.˛/ D ˛2 is a quadratic space with
orthogonal basis fX ˝ p

ıg, where

X D
�

1 0

0 �1

�
;

�
0 1

1=ı 0

�
;

�
0 i

�i=ı 0

�
;

�
0 j

�j=ı 0

�
;

�
0 ij

�ij=ı 0

�
:

This yields the diagonalisation fı; 1; �c; �d; cdg so that .V; q0/ has the appropriate
signatures. Again by uniqueness, C Š C.V / and C0.V / Š M2.B/ so that M2.B/ 2
‚.Q.k; 4//.

For n D 6, let B be a quaternion algebra over k ramified at the identity real
place. Let B 0 be the quaternion algebra over k such that, in the Brauer group Br.k/,
B D B 0 � ��1;�1

k

�
. Thus B 0 is ramified at all real places except the identity. Thus

from the case n D 2, we can construct a 3-dimensional quadratic space V 0 having
the appropriate signatures and such that C0.V 0/ Š B 0. Now let V D V 0 ? V4. Then
V has the appropriate signatures and C0.V / Š C0.V 0/ ˝ C.�ıV4/. The signed
determinant of �ıV2 is �1 so that

C.�ıV4/ Š C.�ıV2/ ˝ C.ıV2/ Š
��ı; �ı

k

�
˝

�
ı; ı

k

�
Š

��1; �1

k

�
˝ M2.k/:

Thus M4.B/ 2 ‚.Q.k; 6//.
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For n D 8, a similar argument using the construction for the case n D 4 yields
the result.

Finally, let n D n0 C 8m where n0 D 2, 4, 6, 8, m � 1, and let B be a quaternion
algebra over k as described at (5). Let V 0 be the quadratic space of dimension n0 C 1

and with the appropriate signatures such that c.V 0/ D B in Br.k/. Let V be obtained
by taking the orthogonal sum of V 0 with m copies of V8. Then V has the appropriate
signatures. Furthermore C.�ıV8/ is isomorphic to the tensor product of four copies
of C.�ıV1 ? ıV1/ Š M2.k/. Thus M2.n�2/=2.B/ 2 ‚.Q.k; n//.

Thus assembling these results we have:

Theorem 7.2. When n is even, the commensurability classes of discrete arithmetic
subgroups of Isom.Hn/ are in one-to-one correspondence with the isomorphism
classes of quaternion algebras over totally real number fields k which satisfy the
conditions on their real ramification given at (5).

Since the isomorphism class of a quaternion algebra over k is determined by its
ramification set (Theorem 4.1) and the real ramification is prescribed by the dimension
n, we can describe the parametrising sets as follows:

Corollary 7.3. When n is even, the commensurability classes of discrete arithmetic
subgroups of Isom.Hn/ are parametrised for each totally real field k � R, by the
sets fP1; P2; : : : ; Prg of prime ideals of Rk where

r �

8̂̂
<̂
ˆ̂̂:

0 .mod 2/ if n � 0 .mod 8/;

Œk W Q� � 1 .mod 2/ if n � 2 .mod 8/;

Œk W Q� .mod 2/ if n � 4 .mod 8/;

1 .mod 2/ if n � 6 .mod 8/:

Now consider the cases where n is odd. Then ‚.Œ.V; q/�/ D C0.V / which has
center k C kz with z2 D ı 2 k� where

.�1/n.nC1/=2ı < 0 and .�1/n.nC1/=2�.ı/ > 0 for all � ¤ Id: (6)

When ı 62 k�2, then C0.V / is a matrix algebra over B ˝ k.
p

ı/ for some quaternion
algebra B which represents the class of C0.V0/ in Br.k/ under the decomposition
V D V0 ? V1 as described in §6. Thus .V0; q/ has dimension n and appropriate
signatures. In particular Ram1.B/ satisfies (5). Conversely, let B satisfy (5) and let
ı satisfy (6) such that ı 62 k�2. The construction in Theorem 7.1 gives a quadratic
space V0 of dimension n, signed determinant �ı, having appropriate signatures and
C0.V0/ Š Mr.B/. Let V D V0 ? V1. Then V has signed determinant ı, the
appropriate signatures and C0.V / Š Mr.B ˝ k.

p
ı//. If ı 2 k�2, then k D Q and

n � 1 (mod 4). In that case, C0.V / is a direct sum of two matrix algebras of the same
dimension over B , where again B is a quaternion algebra with real ramification as at
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(5). Conversely, for n � 1 (mod 4), let B be a quaternion algebra over Q satisfying
(5). As in Theorem 7.1, construct a quadratic space V0 of dimension n over Q, signed
determinant �1 and C0.V / Š Mr.B/. Then let V D V0 ? V1, which has signed
determinant 1 and C0.V / Š Mr.B/�Mr.B/. This then proves the following result:

Theorem 7.4. When n is odd, the commensurability classes of discrete arithmetic
subgroups of Isom.Hn/ of the simplest type are in one-to-one correspondence with
the isomorphism classes over k.

p
ı/ of quaternion algebras of the form B ˝ k.

p
ı/

where B is a quaternion algebra over k satisfying (5) and k.
p

ı/ is a quadratic
extension of k where ı satisfies (6) together with, in the cases where n � 1 (mod 4),
the isomorphism classes of quaternion algebras over Q which satisfy (5).

The number of real places of k.
p

ı/ at which B˝k.
p

ı/ is ramified will always be
even and the finite places at which it is ramified are of the form fP1; P 0

1; : : : ; Ps; P 0
sg

where Pi \ Rk D P 0
i \ Rk D pi by the proof of Lemma 4.2 and fp1; : : : ; psg �

Ramf .B/. Thus we can describe the parametrising sets as follows:

Corollary 7.5. When n is odd, the commensurability classes of discrete arithmetic
subgroups of Isom.Hn/ of the simplest type are parametrised by the triples
fk; ı; fp1; : : : ; psgg where k � R is a totally real number field, ı 2 k satisfies
(6) and k.

p
ı/ is a quadratic extension of k and fp1; : : : ; psg are prime ideals in k

which split in k.
p

ı/, together with, in the cases where n � 1 (mod 4), the pairs
fQ; fp1; : : : ; prgg where p1; : : : ; pr are rational primes such that

r �
´

0 .mod 2/ if n � 1 .mod 8/;

1 .mod 2/ if n � 5 .mod 8/:

8. Non-cocompact groups

The discrete non-cocompact arithmetic subgroups of Isom.Hn/ are all of the simplest
type [15]. A non-cocompact arithmetic group of the simplest type occurs if and only
if the defining spaces are isotropic (see e.g. [8]). Since .V; q/ is required to be positive
definite at all real places apart from the identity real place, this forces k D Q. On the
other hand, if .V; q/ is defined over Q, since it has signature .n; 1/, it is necessarily
isotropic over R. For n � 4, the dimension of V is greater than or equal to 5 and then
.V; q/ is isotropic over all p-adic fields. Thus by the Hasse–Minkowski theorem,
.V; q/ will then be isotropic over Q.

Theorem 8.1. For n � 4, discrete arithmetic groups in Isom.Hn/ are non-cocompact
if and only they are of the simplest type and the corresponding spaces .V; q/ are defined
over Q. Their commensurability classes are then as described inTheorems 7.2 and 7.4
for k D Q.
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Corollary 8.2. There are infinitely many commensurability classes of non-cocompact
discrete arithmetic subgroups of OC.n; 1/ for each dimension n � 4.

We note, for example, that when n D 4, the commensurability classes of discrete
non-cocompact arithmetic subgroups of Isom.H4/ are parametrised by those quater-
nion algebras over Q which are ramified at the real place and so by finite sets of odd
cardinality of primes in Z.

For completeness, we indicate how the cases n D 2; 3 develop, although, as
already pointed out, the results here are known. For Isom.H2/, the defining field
must be Q. By Theorem 7.1, let B be a quaternion algebra over Q, unramified
at R, with Hilbert symbol

�
c;d
Q

�
. In the proof, we can take ı D 1 thus giving a

quadratic form with diagonalisation fc; d; �cdg. This is the negative of the norm
form restricted to the space of pure quaternion Bo and that space is isotropic precisely
when B Š M2.Q/ [19], [13]. Thus there is just one commensurability class of non-
cocompact discrete arithmetic subgroups of Isom.H2/.

For n D 3, take ı 2 Q�, ı < 0, and a set of primes p1; p2; : : : ; ps which
split in Q.

p
ı/jQ. Let B be a quaternion algebra over Q, unramified at R, hav-

ing fp1; : : : ; psg � Ramf .B/ and such that all other primes in Ramf .B/ are in-
ert or ramified in Q.

p
ı/. By the construction of Theorem 7.1, we have V D

V0 ? V1 with C0.V0/ Š B , C0.V / Š B ˝ Q.
p

ı/ and V has diagonalisa-
tion f1; �ıc; �ıd; ıcdg. Now if V is isotropic and pi splits in Q.

p
ı/, then

f1; �c; �d; cdg is isotropic over Qpi
. But that implies that B splits in Qpi

. Thus
s D 0 and B ˝ Q.

p
ı/ Š M2.Q.

p
ı// so that the commensurability classes of

non-cocompact arithmetic groups of the simplest type in Isom.Hn/ are parametrised
by the quaternion algebras M2.Q.

p
ı//, ı < 0.

9. Application

Groups generated by reflections in Coxeter polytopes furnish examples of discrete
groups of finite covolume in Isom.Hn/ for n � 4 and many such examples have
been obtained (see [14], [29], [4], [5], [6], [12], [10], [7], [26]). It is also known
that such polytopes do not exist when n is sufficiently large [29], [24]. Necessary
and sufficient conditions for such Coxeter groups to be arithmetic are due to Vinberg
and these groups are always of the simplest type [28]. Furthermore, it is now known
that there are only finitely many commensurability classes of hyperbolic arithmetic
Coxeter groups in all dimensions [21], [22], [16], [1], [2], [23]. We show here that
Vinberg’s methods determine the quadratic spaces and hence the commensurability
class parameters, thus partitioning the arithmetic Coxeter groups into commensura-
bility classes. This has already been accomplished for all Coxeter groups where the
related polytope is a simplex [11].

We briefly recall Vinberg’s method and, in particular, the rôle of Gram matrices.
The Lobachevski model of Hn as described §2, is identified with P C C D C C=RC.
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Geodesic subspaces of dimension r in Hn are then the projective image of the inter-
section of a linear subspace of dimension rC1 with C C. In particular, hyperplanes are
determined by the orthogonal complement of vectors e 2 RnC1 such that Q.e/ > 0.
A polytope P is bounded by a finite number of hyperplanes and we refer to those
bounding hyperplanes F such that P \ F has non-empty interior as a subset of F ,
as the facets of P . If P has facets F1; F2; : : : ; Fr , choose outward-pointing normals
ei normalised such that Q.ei / D 1. It is convenient to take the associated bilinear
form B on RnC1 to be defined by

B.x; y/ D Q.x C y/ � Q.x/ � Q.y/

so that B.ei ; ei / D 2. The polytope P is the projective image of

fx 2 RnC1 j B.x; ei / � 0 for i D 1; 2; : : : ; rg \ C C:

The Gram matrix G.P / of P is the .r � r/-matrix Œaij � where aij D B.ei ; ej /. The
Coxeter polytope is such that intersecting facets meet at a dihedral angle of the form
�=m for some integer m � 2. The related Gram matrix has rank n C 1 and signature
.n; 1; r � .n C 1//, giving, respectively, the number of positive, negative and zero
eigenvalues. It is convenient to denote a Coxeter polytope by its Coxeter symbol.
This has a node for each facet and two nodes are joined either by an edge of weight
m or by m � 2 edges if the facets meets at an angle �=m. In all cases, we adopt the
useful geometrical convention that facets which meet orthogonally are not joined by
an edge. If two facets are parallel, the joining edge is labelled with 1, while, if they
are ultraparallel, the nodes are joined by a broken line (see tables below).

The arithmeticity or otherwise of the Coxeter group generated by reflections in a
Coxeter polytope is read off from the Gram matrix. For any subset

fi1; i2; : : : ; ikg � f1; 2; : : : ; rg (7)

define the cyclic product

bi1i2:::ik D ai1i2ai2i3 : : : aik i1 :

The non-zero cyclic products correspond to the closed paths in the Coxeter symbol.
Let K D Q.faij g/ and k D Q.fbi1i2:::ik g/.

Theorem 9.1 (Vinberg). Let P be a Coxeter polytope of finite volume in Hn and
let �.P / be the group generated by reflections in the facets of P . Then �.P / is
arithmetic if and only if the following three conditions hold:

� K is totally real,
� all bi1i2:::ik are algebraic integers,
� for all � W K ! R such that � jk ¤ Id, the matrix �G.P / D Œ�.aij /� is positive

semi-definite.
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In these circumstances, for fi1; i2; : : : ; ikg as at (7), let

vi1i2:::ik D a1i1ai1i2 : : : aik�1ik eik :

Let V be the k-span of all vi1i2:::ik . Then the restriction of Q to V defines V

as an .n C 1/-dimensional quadratic space over k with the appropriate signatures.
Furthermore, �.P / is commensurable with a group O.L/ where L is a complete
Rk-lattice in .V; Q/.

Thus to determine the commensurability class parameters for an arithmetic Cox-
eter group �.P /, first obtain the Gram matrix G.P /. From this determine the field
k D Q.fbi1i2:::ik g/ and a basis for V over k. From this obtain a diagonalisation.
From the diagonalisation, calculate the Hasse invariant, s.V /, of V (see §5). In de-
termining the quaternion algebra which represents the Hasse invariant we make use
of the following elementary relations on Hilbert symbols (see [13]), together with (1)
and (2): �

a; 1

k

�
Š

�
a; �a

k

�
Š

�
a; 1 � a

k

�
Š M2.k/;

and �
a; b

k

�
˝

�
a; c

k

�
Š

�
a; bc

k

�
˝ M2.k/:

From s.V /, we obtain c.V / (see (3)) and hence the parameters as described in
Corollaries 7.3 and 7.5.

a

b

b

ba

21

0

Figure 1.

We tabulate the results for some known groups by way of illustration. Note that
two copies of any polytope with a Coxeter symbol of the form shown in Figure 1
on the left, where a is either an even integer, 1 or facets 1 and 2 are ultraparallel,
adjoined along facet 1 yields a Coxeter polytope with symbol as shown in Figure 1
on the right. The groups are obviously commensurable and, in the tables below, we
always omit the second of these when the situation arises.

Note that, from Table 1, we deduce that there are exactly two commensurability
classes of arithmetic Coxeter groups in H4 whose compact Coxeter polytopes have
at most 6 facets.
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Table 1. All 4-dimensional compact Coxeter polytopes with at most 6 facets (see [29], [6],
[12]).

Symbol Arith Field Parameter

Yes Q.
p

5/ ;
Yes Q.

p
5/ ;

Yes Q.
p

5/ ;

Yes Q.
p

2/ ;
10

Yes Q.
p

5/ ;
10

Yes Q.
p

5/ ;
88

Yes Q.
p

2/ ;
No

Yes Q.
p

5/ ;

Yes Q.
p

5/ ;

Yes Q.
p

5/ ;

No

No

Yes Q.
p

2/ ;
Yes Q.

p
5/ ;

No

Yes Q.
p

5/ ;
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Table 2. Some arithmetic 4-dimensional non-compact Coxeter polytopes.

Symbol No. of cusps Parameter

All simplices f2g

2 f2g
6 1

1 f3g

Table 3. Some 5-dimensional Coxeter polytopes.

Symbol cusps Arith Field Parameter

0 Yes Q.
p

5/ ..�1 C 3
p

5/=2; ;/

0 Yes Q.
p

5/ ..1 C p
5/=2; ;/

0 Yes Q.
p

2/ ..�1 C 2
p

2/; ;/

1 Yes Q f2g

2 No

1 Yes Q .5; ;/

1 No
1 2 Yes Q f2g
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