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Quasi-isometries of rank one S -arithmetic lattices
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Abstract. We complete the quasi-isometric classification of irreducible lattices in semisim-
ple Lie groups over nondiscrete locally compact fields of characteristic zero by showing that
any quasi-isometry of a rank one S -arithmetic lattice in a semisimple Lie group over nondis-
crete locally compact fields of characteristic zero is a finite distance in the sup-norm from a
commensurator.
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1. Introduction

Throughout we let K be an algebraic number field, VK the set of all inequivalent
valuations on K, and V1

K � VK the subset of Archimedean valuations. We will use
S to denote a finite subset of VK that contains V1

K , and we write the corresponding
ring of S -integers in K as OS . In this paper, G will always be a connected non-
commutative absolutely simple algebraic K-group.

1.1. Commensurators. For any valuation v 2 VK , we let Kv be the completion of
K with respect to v. For any set of valuations S 0 � VK , we define

GS 0 D Q

v2S 0

G .Kv/

and identify G .OS / as a discrete subgroup of GS using the diagonal embedding.
We let Aut.GS / be the group of topological group automorphisms of GS . An

automorphism  2 Aut.GS / commensurates G .OS / if  .G .OS // \ G .OS / is a
finite index subgroup of both  .G .OS // and G .OS /.

We define the commensurator group of G .OS / to be the subgroup of Aut.GS /

consisting of automorphisms that commensurate G .OS /. This group is denoted as
CommAut.GS /.G .OS //. Notice that it differs from the standard definition of the
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commensurator group of G .OS / in that we have not restricted ourselves to inner
automorphisms.

1.2. Quasi-isometries. For constants L � 1 and C � 0, an .L; C / quasi-isometric
embedding of a metric space X into a metric space Y is a function � W X ! Y such
that for any x1; x2 2 X :

1
L
d.x1; x2/ � C � d.�.x1/; �.x2// � Ld.x1; x2/C C:

We call � an .L; C / quasi-isometry if � is an .L; C / quasi-isometric embedding
and there is a numberD � 0 such that every point in Y is within distanceD of some
point in the image of X .

1.3. Quasi-isometry groups. For a metric spaceX , we define the relation � on the
set of functions X ! X by � �  if

sup
x2X

d
�
�.x/;  .x/

�
< 1:

In this paper we will call two functions equivalent if they are related by �.
For a finitely generated group with a word metric � , we form the set of all quasi-

isometries of � , and denote the quotient space modulo � by Q� .�/. We call Q� .�/

the quasi-isometry group of � as it has a natural group structure arising from function
composition.

1.4. Main result. In this paper we show:

Theorem 1.4.1. Suppose K is an algebraic number field, G is a connected non-
commutative absolutely simple algebraic K-group, S properly contains V1

K , and
rankK.G / D 1. Then there is an isomorphism

Q� .G .OS // Š CommAut.GS /.G .OS //:

Two special cases of Theorem 1.4.1 had been previously known: Taback proved
it when G .OS / is commensurable to PGL2.ZŒ1=p�/where p is a prime number [Ta]
(we shall use Taback’s theorem in our proof), and it was proved when rankKv

.G / � 2

for all v 2 S by the author in [Wo1].
Examples of S -arithmetic groups for which Theorem 1.4.1 had been previously

unknown include when G .OS / D PGL2.ZŒ1=m�/ where m is composite. Theo-
rem 1.4.1 in this case alone was an object of study; see Taback–Whyte [Ta-Wh] for
their program of study. Theorem 2.4.1 below presents a short proof of this case.
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1.5. Quasi-isometry groups of non-cocompact irreducible S -arithmetic lattices.
Combining Theorem 1.4.1 with the results from Schwartz, Farb–Schwartz, Eskin,
Farb, Taback, and Wortman ([Sch1], [Fa-Sch], [Sch2], [Es], [Fa], [Ta], and [Wo1])
we have

Theorem 1.5.1. SupposeK is an algebraic number field, and G is a connected, non-
commutative, absolutely simple, K-isotropic, algebraic K-group. If either K © Q,
S ¤ V1

K , or G is not Q-isomorphic to PGL2, then there is an isomorphism

Q� .G .OS // Š CommAut.GS /.G .OS //:

Note that Theorem 1.5.1 identifies the quasi-isometry group of any non-cocompact
irreducible S -arithmetic lattice in a semisimple Lie group over nondiscrete locally
compact fields of characteristic 0 that is not virtually free.

Indeed, the condition that G is K-isotropic is equivalent to G .OS / being non-
cocompact, and it is well known that G .OS / is virtually free only when K Š Q,
S D V1

K , and G is Q-isomorphic to PGL2. In this case, G .OS / is commensurable
with PGL2.Z/.

1.6. Cocompact case. By Kleiner–Leeb [K-L], the classification of quasi-isometries
of cocompact S -arithmetic lattices reduces to the classification of quasi-isometries
of real and p-adic simple Lie groups. This classification is known; see e.g. [Fa] for
an account of the cases not covered in [K-L].

1.7. Function fields. Our proof of Theorem 1.4.1 also applies when K is a global
function field when we add the hypothesis that there exists v;w 2 S such that
rankKv

.G / D 1 and rankKw
.G / � 2.

For more on what is known about the quasi-isometry groups of arithmetic groups
over function fields – and for a conjectural picture of what is unknown – see [Wo2].

1.8. Outline of the proof and the paper. We begin Section 2 with a sort of large-
scale reduction theory. We examine a metric neighborhood, N , of an orbit of an S -
arithmetic group, � , inside the natural product of Euclidean buildings and symmetric
spaces, X . In Section 2.2 we show that the fibers of N under projections to building
factors of X are geometric models for S -arithmetic subgroups of � .

In Section 2.3, we apply results from [Wo1] to extend a quasi-isometry � W � ! �

to the space X that necessarily preserves factors.
Our general approach to proving Theorem 1.4.1 is to restrict � to factors of X

and use the results from Section 2.2 to decompose � into quasi-isometries of S -
arithmetic subgroups of � . Once each of these “sub-quasi-isometries” is understood,
they are pieced together to show that � is a commensurator. An easy example of this
technique is given in Section 2.4 by PGL2.ZŒ1=m�/. We then treat the general case
of Theorem 1.4.1 in Section 2.5
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Our proof in Section 2.5 relies on the structure of horoballs for S -arithmetic
groups associated to the product of a symmetric space and a single tree. We prove the
results that we need for these horoballs (that they are connected, pairwise disjoint,
and reflect a kind of symmetry in factors) in Section 3, so that Section 3 is somewhat
of an appendix. The proof is organized in this way because, in the author’s opinion, it
just makes it easier to digest the material. There would be no harm though in reading
Section 3 after Section 2.4 and before Section 2.5 for those who prefer a more linear
presentation.

Acknowledgements. I was fortunate to have several conversations with Kevin Whyte
on the contents of this paper, and am thankful for those. In particular, he brought to
my attention that SL2.Z/ is the only non-cocompact arithmetic lattice in SL2.R/ up
to commensurability.

I am also grateful to the following mathematicians who contributed to this paper:
Tara Brendle, Kariane Calta, Indira Chatterji, Alex Eskin, Benson Farb, Dan Margalit,
Dave Witte Morris, and Jennifer Taback.

2. Proof of Theorem 1.4.1

Let G , K, and S be as in Theorem 1.4.1, and let � W G .OS / ! G .OS / be a quasi-
isometry.

2.1. Geometric models. For each valuation v of K, we let Xv be the symmetric
space or Euclidean building corresponding to G .Kv/. If S 0 is a finite set of valuations
of K, we let

XS 0 D Q

v2S 0

Xv:

Recall that there is a natural inclusion of topological groups Aut.GS 0/ ,! Isom.XS 0/.
Let O be the ring of integers in K, and fix a connected subspace �V 1

K
� XV 1

K

that G .O/ acts cocompactly on. Let D1 � XV 1

K
be a fundamental domain for this

action.
For each non-Archimedean valuationw 2 S�V1

K , we denote the ring of integers
in Kw by Ow . The group G .Ow/ is bounded in G .Kw/, so G .Ow/ fixes a point
xw 2 Xw . We choose a bounded set Dw � Xw containing xw with G .OS /Dw D
Xw and such that gxw 2 Dw for g 2 G .OS / implies that gxw D xw .

For any set of valuations S 0 satisfying V1
K � S 0 � S , we define the space

�S 0 D G .OS 0/
�
D1 � Q

w2S 0�V 1

K

Dw

�
:

Note that �S 0 is a subspace of XS 0 .
We endow�S 0 with the path metric. Since G .OS 0/ acts cocompactly on�S 0 , we

have the following observation:
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Lemma 2.1.1. For V1
K � S 0 � S , the space �S 0 is quasi-isometric to the group

G .OS 0/.

2.2. Fibers of projections to buildings are S -arithmetic. In the large-scale, the
fibers of the projection of�S onto building factors ofXS are alsoS -arithmetic groups
(or more precisely,S 0-arithmetic groups). This is the statement of Lemma 2.2.2 below,
but we will start with a proof of a special case.

Lemma 2.2.1. The Hausdorff distance between

�S \ �
XS 0 � Q

w2S�S 0

fxwg�

and

�S 0 � Q

w2S�S 0

fxwg

is finite.

Proof. There are three main steps in this proof.
First, if y 2 �S 0 , then y D gd for some g 2 G .OS 0/ and some

d 2 D1 � Q

w2S 0�V 1

K

Dw :

Since G .OS 0/ � G .Ow/ for all w 2 S �S 0, it follows from our choice of the points
xw that

fyg � Q

w2S�S 0

fxwg D g
�fdg � Q

w2S�S 0

fxwg� � �S :

Therefore,
�S 0 � Q

w2S�S 0

fxwg � �S \ �
XS 0 � Q

w2S�S 0

fxwg�: (1)

Second, we suppose that

fyg � Q

w2S�S 0

fxwg � �S

for some y 2 XS 0 . Then there exists a g 2 G .OS / such that

gy 2 D1 � Q

w2S 0�V 1

K

Dw

and gxw 2 Dw for allw 2 S �S 0. Notice that our choice ofDw implies gxw D xw

for all w 2 S � S 0. Thus, g is contained in the compact group

Hw D f h 2 G .Kw/ j hxw D xw g
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for all w 2 S � S 0. Consequently, g is contained in the discrete group

G .OS / \ �
GS 0 � Q

w2S�S 0

Hw

�
:

We name this discrete group �S 0 .
Note that we have shown

fyg � Q

w2S�S 0

fxwg � �S 0

�
D1 � Q

w2S�V 1

K

Dw

�
:

Therefore,

�S \ .XS 0 � Q

w2S�S 0

fxwg/ � �S 0

�
D1 � Q

w2S�V 1

K

Dw

�
: (2)

Third, we recall that

G .OS 0/ D G .OS / \ �
GS 0 � Q

w2S�S 0

G .Ow/
�

and use the definition of �S 0 coupled with the fact that G .Ow/ � Hw to see that
�S 0 contains G .OS 0/. Since, �S 0 and G .OS 0/ are lattices in GS 0 � Q

w2S�S 0 Hw ,
the containment G .OS 0/ � �S 0 is of finite index. Therefore, the Hausdorff distance
between

�S 0

�
D1 � Q

w2S 0�V 1

K

Dw � Q

w2S�S 0

fxwg�

and

�S 0 � Q

w2S�S 0

fxwg D G .OS 0/
�
D1 � Q

w2S 0�V 1

K

Dw � Q

w2S�S 0

fxwg�

is finite. Combined with (1) and (2) above, the lemma follows.

The more general form of Lemma 2.2.1 that we will use in our proof of Theo-
rem 1.4.1 is the following lemma. We will use the notation of xS�S 0 for the point
.xw/w2S�S 0 2 XS�S 0 .

Lemma 2.2.2. Suppose that V1
K � S 0 � S . If y 2 XS�S 0 and y 2 G .OS /xS�S 0 ,

then the Hausdorff distance between

�S \ .XS 0 � fyg/
and

�S 0 � fyg
is finite.
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Remark. Our assumption in Lemma 2.2.2 that y 2 G .OS /xS�S 0 is not a serious
restriction over the assumption that y 2 XS�S 0 . Indeed, G .OS / is dense in GS�S 0 ,
so the orbit G .OS /xS�S 0 is a finite Hausdorff distance from the space XS�S 0 .

Proof. Let g 2 G .OS / be such that y D gxS�S 0 . Then

f h 2 G .OS / j hxS�S 0 D y g D gf h 2 G .OS / j hxS�S 0 D xS�S 0 g
D g.G .OS / \ �

GS 0 � Q

w2S�S 0

Hw/
�

D g�S 0 ;

where Hw and �S 0 are as in the proof of the previous lemma.
Now by our choice of the points xw 2 Xw for w 2 S � V1

K at the beginning of
this section, we have

�S \ .XS 0 � fyg/ D G .OS /
�
D1 � Q

w2S�V 1

K

Dw

� \ .XS 0 � fyg/

D g�S 0

�
D1 � Q

w2S 0�V 1

K

Dw

� � fyg:

Notice that the final space from the above chain of equalities is a finite Hausdorff
distance from

gG .OS 0/
�
D1 � Q

w2S 0�V 1

K

Dw

� � fyg

since �S 0 is commensurable with G .OS 0/.
Because g commensurates G .OS 0/, the above space is also a finite Hausdorff

distance from �S 0 � fyg.

2.3. Extending quasi-isometries of �S to XS . Applying Lemma 2.1.1, we can
regard our quasi-isometry � W G .OS / ! G .OS / as a quasi-isometry of �S . Our
goal is to show that � is equivalent to an element of CommAut.GS /.G .OS //, and we
begin by extending � to a quasi-isometry of XS .

Lemma 2.3.1. There is a permutation of S , which we name � , and there are quasi-
isometries

�v W Xv ! X�.v/

such that the restriction of the quasi-isometry

�S D Q

v2S

�v W XS ! XS

to�S is equivalent to �. If Xv is a higher rank space for any v 2 S , then �v may be
taken to be an isometry.
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Proof. By Proposition 6.9 of [Wo1], the quasi-isometry � W �S ! �S extends to
a quasi-isometry of X . That is there is some quasi-isometry N� W X ! X such that
� � N�j�S

where N�j�S
is the restriction of N� to �S .

The map N� preserves factors in the boundary of X and an argument of Eskin’s –
Proposition 10.1 of [Es] – can be directly applied to show that N� is equivalent to a
product of quasi-isometries of the factors of X , up to permutation of factors.

Note that the statement of Proposition 10.1 from [Es] claims that Xv and X�.v/

are isometric for v 2 V1
K . This is because quasi-isometric symmetric spaces are

isometric up to scale.

2.4. Example of proof to come. Before continuing with the general proof, we shall
pause for a moment to demonstrate the utility of Lemmas 2.2.2 and 2.3.1 by proving
the following special case of Theorem 1.4.1.

Theorem 2.4.1. If m 2 N and m ¤ 1, then

Q� .PGL2.ZŒ1=m�// Š PGL2.Q/:

Proof. Let K D Q, G D PGL2, and let S D fv1g [ fvpgpjm, where v1 is
the Archimedean valuation and vp is the p-adic valuation. Therefore, G .OS / D
PGL2.ZŒ1=m�/, the space Xv1

is the hyperbolic plane, and Xvp
is a .p C 1/-valent

regular tree.
If � W PGL2.ZŒ1=m�/ ! PGL2.ZŒ1=m�/ is a quasi-isometry, then by Lem-

ma 2.3.1 we can replace � by a quasi-isometry �S which is the product of quasi-
isometries

�1 W Xv1
! Xv1

and �p W Xvp
! Xv�.p/

for some permutation � of the primes dividing m.
If m is prime, then this theorem reduces to Taback’s theorem [Ta]. Now suppose

that ` is a prime dividing m. We let S 0 D f v1; v` g and S 00 D f v1; v�.`/ g.
It follows from the density of PGL2.ZŒ1=m�/ in

Q
pjmI p¤�.`/ PGL2.Qp/ that any

point inXS�S 00 is a uniformly bounded distance from the orbit PGL2.ZŒ1=m�/xS�S 00 .
Therefore we may assume that there is some y 2 PGL2.ZŒ1=m�/xS�S 00 such that
�S .XS 0 � fxS�S 0g/ � XS 00 � fyg.

Since �.�S / � �S , we may assume that �S

�
�S \ .XS 0 � fxS�S 0g/� � �S \

.XS 00 � fyg/. It follows from Lemma 2.2.2 that �S restricts to a quasi-isometry
between �S 0 � fxS�S 0g and �S 00 � fyg.

Note that by the product structure of �S , we can assume that �1 � �` restricts
to a quasi-isometry between �S 0 and �S 00 – or by Lemma 2.1.1– a quasi-isometry
between PGL2.ZŒ1=`�/ and PGL2.ZŒ1=�.`/�/. Taback showed that for any such
quasi-isometry we must have ` D �.`/ and that �1 � �` is equivalent to a commen-
surator g1 � g` 2 PGL2.R/ � PGL2.Q`/ where g1 and g` must necessarily be
included in, and represent the same element of, PGL2.Q/ [Ta].
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As the above paragraph is independent of the prime `jm, the element g1 2
PGL2.Q/ determines �S and thus �.

Having concluded our proof of the above special case, we return to the general
proof. Our goal is to show that the quasi-isometry �S is equivalent to an element of
CommAut.GS /.G .OS //. At this point, the proof breaks into two cases.

2.5. Case 1: GV 1

K
is not locally isomorphic to PGL2.R/. We observe that

CommAut.GS /.G .OS // acts by isometries on XS . So a good first step toward our
goal is to show that �S is equivalent to an isometry. First, we will show that �V 1

K
is

equivalent to an isometry.

Lemma 2.5.1. The quasi-isometry �V 1

K
W XV 1

K
! XV 1

K
is equivalent to an

isometry of the symmetric space XV 1

K
. Indeed, it is equivalent to an element of

CommAut.GS /.G .O//.

Proof. Notice that �V 1

K
is simply the restriction of �S to XV 1

K
� fxS�V 1

K
g.

Since G .OS / is dense inGS�V 1

K
, the Hausdorff distance between G .OS /xS�V 1

K

and XS�V 1

K
is finite. Thus, by replacing �S with an equivalent quasi-isometry, we

may assume that XV 1

K
� fxS�V 1

K
g is mapped by �S into a space XV 1

K
� fyg for

some y 2 XS�V 1

K
with y 2 G .OS /xS�V 1

K
.

Since the Hausdorff distance between �S .�S / and �S is finite, we have by
Lemmas 2.2.2 and 2.1.1 that �V 1

K
induces a quasi-isometry of G .O/. The lemma

follows from the existing quasi-isometric classification of arithmetic lattices using
our assumption in this Case that GV 1

K
is not locally isomorphic to PGL2.R/; see

[Fa].

At this point, it is not difficult to see that Theorem 1.4.1 holds in the case when
every non-Archimedean factor of GS is higher rank:

Lemma 2.5.2. If rankKv
.G / � 2 for all v 2 S � V1

K then �S is equivalent to an
element of CommAut.GS /.G .OS //.

Proof. By Lemma 2.3.1, �v is equivalent to an isometry for all v 2 S � V1
K . Com-

bined with Lemma 2.5.1, we know that �S is equivalent to an isometry.
That�S is equivalent to an element of CommAut.GS /.G .OS // follows from Propo-

sition 7.2 of [Wo1]. Indeed, any isometry ofXS that preserves�S up to finite Haus-
dorff distance corresponds in a natural way to an automorphism ofGS that preserves
G .OS / up to finite Hausdorff distance, and any such automorphism of GS is shown
in Proposition 7.2 of [Wo1] to be a commensurator.

For the remainder of Case 1, we are left to assume that there is at least one
w 2 S � V1

K such that rankKw
.G / D 1.
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Before beginning the proof of the next and final lemma for Case 1, it will be best
to recall some standard facts about boundaries.

Tree boundaries. If w is a non-Archimedean valuation of K, and rankKw
.G / D 1,

then Xw is a tree.
For any minimal Kw -parabolic subgroup of G , say M , we let "M be the end of

Xw such that M .Kw/"M D "M . Notice that the space of all ends of the form "P

where P is a minimal K-parabolic subgroup of G forms a dense subset of the space
of ends of Xw .

Tits boundaries. For any minimalK-parabolic subgroup of G , say P , we let ıP be
the simplex in the Tits boundary ofXV 1

K
corresponding to the group

Q
v2V 1

K
P.Kv/.

If ı is a simplex in the Tits boundary of XV 1

K
, and " is an end of the tree Xw ,

then we denote the join of ı and " by ı � ". It is a simplex in the Tits boundary ofXT

where T D V1
K [ fwg.

Lemma 2.5.3. Let w 2 S � V1
K be such that rankKw

.G / D 1. Then �w W Xw !
X�.w/ is equivalent to an isometry that is induced by an isomorphism of topological
groups G .Kw/ ! G .K�.w//.

Proof. Below we will denote the set of valuations V1
K [ f�.w/g by T � .

We begin by choosing a minimal K-parabolic subgroup of G , say P , and a
geodesic ray � W R�0 ! XT that limits to the interior of the simplex ıP � "P .

By Lemma 2.5.1, the image of �T B� under the projectionXT ! XV 1

K
limits to a

point in the interior of ıQ for some minimalK-parabolic subgroup Q. Similarly, �w

is a quasi-isometry of a tree, so it maps each geodesic ray into a bounded neighborhood
of a geodesic ray that is unique up to finite Hausdorff distance. Thus, the image of
�T B � under the projection XT ! X�.w/ limits to "Q0 for some minimal K�.w/-
parabolic subgroup Q0. Together, these results imply that �T B � is a finite Hausdorff
distance from a geodesic ray that limits to a point in the interior of ıQ � "Q0 .

By Lemma 3.4.1, there is a subspace HP of XT corresponding to P (called a
“T -horoball”) such that

t 7! d.�.t/; XT � HP/

is an unbounded function. Thus,

t 7! d.�T B �.t/; XT � � �T .HP//

is also unbounded.
Using Lemma 3.2.1 and the fact that �T .�T / is a finite Hausdorff distance from

�T � , we may replace �T with an equivalent quasi-isometry to deduce that �T .HP/

is contained in the union of all T � -horoballs in XT � .
It will be clear from the definition given in Section 3 that each T -horoball is

connected. In addition, Lemma 3.2.2 states that the collection of T � -horoballs is
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pairwise disjoint, so it follows that �T .HP/ is a finite distance from a single T � -
horoball HM � XT � where M is a minimalK-parabolic subgroup of G . Therefore,

t 7! d.�T B �.t/; XT � � HM /

is unbounded.
Because the above holds for all � limiting to ıP � "P , and because �T B � limits

to ıQ � "Q0 , we have by Lemma 3.4.2 that Q D M D Q0. That is, �V 1

K
completely

determines the map that �w induces between the ends of the treesXw andX�.w/ that
correspond to K-parabolic subgroups of G .

Recall that by Lemma 2.5.1, �V 1

K
is equivalent to a commensurator of G .O/ �

GV 1

K
. Using Lemma 7.3 of [Wo1], �V 1

K
(regarded as an automorphism of GV 1

K
)

restricts to G .K/ as a composition

ı B �ı W G .K/ ! G .K/

where � is an automorphism of K,

�ı W G .K/ ! �G .K/

is the map obtained by applying � to the entries of elements in G .K/, and

ı W �G ! G

is a K-isomorphism of K-groups.
Thus, if @Xw and @X�.w/ are the space of ends of the trees Xw and X�.w/ respec-

tively, and if @�w W @Xw ! @X�.w/ is the boundary map induced by �w , then we
have shown that

@�w."P/ D "ı.� P/

for any P � G that is a minimal K-parabolic subgroup of G .
Our next goal is to show that the valuation w B ��1 is equivalent to �.w/. If this

is the case, then ı B�ı extends from a group automorphism of G .K/ to a topological
group isomorphism

˛w W G .Kw/ ! G .K�.w//:

If @˛w W @Xw ! @X�.w/ is the map induced by˛w , then @˛w equals @�w on the subset
of ends in @Xw corresponding toK-parabolic subgroups of G since ˛w extends ıB�ı.
Therefore, @˛w D @�w on all of @Xw by the density of the “K-rational ends" in @Xw .
Thus, ˛w determines �w up to equivalence. This would prove our lemma.

So to finish the proof of this lemma, we will show that w B ��1 is equivalent to
�.w/.

For any maximal K-split torus S � G , we let 	w
S

� Xw (resp. 	 �.w/
S

� X�.w/)
be the geodesic that S .Kw/ (resp. S .K�.w//) acts on by translations.

Fix S and T , two maximalK-split tori in G such that 	w
S

\ 	w
T

is nonempty and
bounded. We choose a point a 2 	w

S
\ 	w

T
.
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Since S .OT / is dense in S .Kw/, there exists a group element gn 2 S .OT / for
each n 2 N such that

d.gn.	
w
T /; a/ > n:

Note that gn.	
w
T
/ D 	w

gnT g�1
n

. Thus

d.�w.	
w

gnT g�1
n
/; �w.a//

is an unbounded sequence.
As gnT g�1

n is K-split, �w.	
w

gnT g�1
n

/ is a uniformly bounded Hausdorff distance
from

	
�.w/

ıB�ı.gnT g�1
n /

D ı B �ı.gn/	
�.w/

ıB�ı.T /

because a geodesic in X�.w/ is determined by its two ends.
We finally have that

d.ı B �ı.gn/	
�.w/

ıB�ı.T /
; �w.a//

is an unbounded sequence. It is this statement that we shall contradict by assuming
that w B ��1 is inequivalent to �.w/.

Note that gn 2 G .Ov/ for all v 2 VK � T since gn 2 S .OT /. Thus, �0.gn/ 2
�G .OvB��1/ for all v 2 VK � T . If it were the case that w B ��1 is inequivalent to
�.w/, then it follows that �0.gn/ 2 �G .O�.w//. Hence, ı B�0.gn/ defines a bounded
sequence in G .K�.w//. Therefore,

d.ı B �ı.gn/	
�.w/

ıB�ı.T /
; �w.a//

is a bounded sequence, our contradiction.

The proof of Theorem 1.4.1 in Case 1 is complete with the observation that
applications of Lemma 2.5.3 to tree factors, allows us to apply the Proposition 7.2 of
[Wo1] as we did in Lemma 2.5.2.

2.6. Case 2: GV 1

K
is locally isomorphic to PGL2.R/. It follows that V1

K contains
a single valuation v, and that Kv Š R. Thus K D Q, and V1

K is the set containing
only the standard real metric on Q.

Our assumption that G is absolutely simple implies thatGV 1

K
is actually isomor-

phic to PGL2.R/. Thus, G is a Q-form of PGL2. As we are assuming that G is
Q-isotropic, it follows from the classification of Q-forms of PGL2 that G and PGL2

are Q-isomorphic (see e.g. p. 55 of [Ti]).
From our assumptions in the statement of Theorem 1.4.1, S ¤ V1

K . As the only
valuations, up to scale, on Q are the real valuation and the p-adic valuations, G .OS /

is commensurable with PGL2.ZŒ1=m�/ for some m 2 N with m ¤ 1. Thus, Case 2
of Theorem 1.4.1 follows from Theorem 2.4.1.

Our proof of Theorem 1.4.1 is complete modulo the material from Section 3.
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3. Horoball patterns in a product of a tree and a symmetric space

In this section we will study the components of XS ��S when XS is a product of a
symmetric space and a tree.

Setting notation. Suppose that w is a non-Archimedean valuation on K such that
rankKw

.G / D 1. Then set T equal to V1
K [ fwg.

3.1. Horoballs in rank one symmetric spaces. Let P be a minimal K-parabolic
subgroup of G . As in the previous section, we let ıP be the simplex in the Tits
boundary of XV 1

K
corresponding to the group

Q
v2V 1

K
P.Kv/.

Notice that G being K-isotropic and rankKw
.G / D 1 together imply that

rankK.G / D 1. Borel proved that the latter equality implies that XV 1

K
� �V 1

K

can be taken to be a disjoint collection of horoballs ([Bo], 17.10).
To any horoball ofXV 1

K
��V 1

K
, sayH , there corresponds a unique ıP as above

such that any geodesic ray � W R�0 ! XV 1

K
that limits to ıP defines an unbounded

function
t 7! d.�.t/; XV 1

K
�H/:

3.2. T -horoballs in XT . Let y 2 Xw and suppose y 2 G .OT /xw . Recall that
by Lemma 2.2.2 the space �T \ .XV 1

K
� fyg/ is a finite Hausdorff distance from

�V 1

K
� fyg.

For any minimalK-parabolic subgroup of G , say P , we let H
y
P;1 � XV 1

K
�fyg

be the horoball of �T \ .XV 1

K
� fyg/ that corresponds to ıP .

For arbitrary x 2 Xw , we define

H x
P;1 D H

y
P;1

where y 2 G .OT /xw minimizes the distance between x and G .OT /xw .
We let

HP D S

x2Xw

.H x
P;1 � fxg/:

Each of the spaces HP is called a T -horoball.
Let P be the set of all minimalK-parabolic subgroups of G . The following lemma

follows directly from our definitions. It will be used in the proof of Lemma 2.5.3.

Lemma 3.2.1. The Hausdorff distance between XT ��T and
S

P2P HP is finite.

We record another observation to be used in the proof of Lemma 2.5.3.

Lemma 3.2.2. If P ¤ Q are minimal K-parabolic subgroups of G , then
HP \ HQ D ;.
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Proof. The horoballs comprising
�
XV 1

K
��V 1

K

��fxwg are pairwise disjoint, and are
a finite Hausdorff distance from the horoballs of�T \.XV 1

K
�fxwg/ by Lemma 2.2.1.

Hence, if y D gxw for some g 2 G .OT /, then the horoballs determined by

�T \ .XV 1

K
� fyg/ D gŒ�T \ �

XV 1

K
� fxwg/�

are disjoint.

3.3. Deformations of horoballs over geodesics in Xw. We let 
 W XT ! XV 1

K
be

the projection map. Note that if x 2 Xw and P is a minimal K-parabolic subgroup
of G , then 
.H x

P;1/ is a horoball in XV 1

K
that is based at ıP .

Recall that for any minimal Kw -parabolic subgroup of G , say Q, we denote the
point in the boundary of the tree Xw that corresponds to Q.Kw/ by "Q.

Lemma 3.3.1. Suppose that P is a minimal K-parabolic subgroup of G and that
Q is a minimal Kw -parabolic subgroup of G . If 	 W R ! Xw is a geodesic with
	.1/ D "P and 	.�1/ D "Q then

(i) s � t implies 
.H �.s/
P;1/ � 
.H

�.t/
P;1/,

(ii)
S

t2R 
.H
�.t/
P;1/ D XV 1

K
,

(iii)
T

t2R.H
�.t/
P;1/ D ;,

(iv) there exists constants LP ; C > 0 such that if

h.s; t/ D d.
.H
�.s/
P;1/; 
.H

�.t/
P;1//

then
j h.s; t/ � LP js � t j j � C:

Proof. As the ends ofXw corresponding toK-parabolic subgroups are a dense subset
of the full space of ends, it suffices to prove this lemma when Q is defined over K.
In this case, the image of 	 corresponds to a K-split torus S � G that is contained
in P .

Let ˛ be a root of G with respect to S such that ˛ is positive in P . Since the
diagonal embedding of S .OT / in the group

Q
v2V 1

K
S .Kv/ has a dense image, there

is some b 2 S .OT / such that j˛.S .b//jv < 1 for all v 2 V1
K . Thus, S .b/
.H

�.0/
P;1/

is a horoball in XV 1

K
that strictly contains 
.H �.0/

P;1/. Generally, we have

S .b/m
.H
�.0/
P;1/ ¨ S .b/n
.H

�.0/
P;1/

for all m; n 2 Z with m < n.
By the product formula we have j˛.S .b//jw > 1. Thus, there is a positive number

� > 0 such that 	.n�/ D S .b/n	.0/ for any n 2 Z. It follows for m < n that


.H
�.m�/
P;1 / D S .b/m
.H

�.0/
P;1/ ¨ S .b/n
.H

�.0/
P;1/ D 
.H

�.n�/
P;1 /:
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We let

LP D 1

�
d.
.H

�.0/
P;1/; 
.H

�.�/
P;1//

so that
h.m�; n�/ D LP�jm � nj D LP jm� � n�j:

Then we take
C 0 D max

0�s�t��

˚
d.
.H

�.s/
P;1/; 
.H

�.t/
P;1//

�

and, say,
C D 2C 0 C LPd.	.0/; 	.�//:

3.4. Basepoints in the Tits boundary for T -horoballs. The Tits boundary for X
is the spherical join of the Tits boundary for the symmetric space XV 1

K
and the Tits

boundary for the tree Xw .
The purpose of the following two lemmas – and of this entire section – is to show

that each T -horoball HP is geometrically associated with the join of ıP and "P ,
denoted ıP � "P .

Lemma 3.4.1. Let P be a minimal K-parabolic subgroup of G . Any geodesic ray
� W R�0 ! XT that limits to the simplex ıP � "P in the Tits boundary of XT defines
an unbounded function when composed with the distance from the complement of
HP in XT :

t 7! d.�.t/; XT � HP/:

Proof. Any such geodesic ray � is a product of a geodesic ray b W R�0 ! XV 1

K
that

limits to ıP and a geodesic ray c W R�0 ! Xw that limits to "P .
Let Y D 
.H

c.0/
P;1/ � c.R�0/. Since

t 7! d.b.t/; XV 1

K
� 
.H c.0/

P;1//

is unbounded, it follows that

t 7! d.�.t/; XT � Y /
is unbounded. The lemma follows from Lemma 3.3.1 (i) , which guarantees that
Y � HP .

Lemma 3.4.2. Suppose that Q and M are minimal K-parabolic subgroups of G ,
and that Q0 is a minimal Kw -parabolic subgroup of G with M ¤ Q or M ¤ Q0.
Then there is a geodesic ray � W R�0 ! X with �.1/ 2 ıQ � "Q0 such that the
function

t 7! d.�.t/; XT � HM /

is bounded.
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Proof. Choose a geodesic ray b W R�0 ! XV 1

K
that limits to ıQ and a geodesic ray

c W R�0 ! Xw that limits to "Q0 . Let r be the ratio of the speed of b to the speed
of c.

If M ¤ Q0, then after ignoring at most a bounded interval of c, we can extend c
to a bi-infinite geodesic with c.�1/ D "M . With LM as in Lemma 3.3.1, �.t/ D
.b.LM t /; c.rt// defines a geodesic ray satisfying the lemma.

In the remaining case, M ¤ Q and M D Q0.
The distance from b.t/ to 
.H b.0/

M ;1/ is a convex function in t . Since M ¤ Q,
this function has a positive derivative, u > 0, for some large value of t . Then
�.t/ D .b.LM t /; c.urt// defines a geodesic ray satisfying the lemma.
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