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show that the groups defined by the Wirtinger presentation of certain prime dense alternating
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1. Introduction

This article is concerned with the geometry and topology of virtual link complements
and groups. The notion of a virtual knot appeared first in [11]. Much is known in
the classical knot setting. As consequence of Thurston’s geometrization theorem for
Haken manifolds, all knot groups are fundamental groups of non-positively curved
spaces and knot complements are hyperbolic in case the knot is neither a torus nor a
satellite knot. A virtual knot is a proper embedding k W I ! F �I , where I D Œ0; 1� is
the unit interval and F is a compact orientable surface with one boundary component,
and both k.0/ and k.1/ are contained in @F �.0; 1/. If we have more than one properly
embedded interval we speak of a virtual link. More generally, one could allow surfaces
with none or more than one boundary component and also embedded circles, but we
will not do so here. A projection of the virtual link to the top surface F � f1g is
a 4-regular graph in F with over- and under-crossing information provided at the
vertices. Given a virtual link projection, we can read off a Wirtinger presentation in
the usual way. Such Wirtinger presentations are best encoded via labeled oriented
graphs. A labeled oriented graph is a finite oriented (not necessarily connected)
graph � on vertices fa; b; c; : : : g and every oriented edge is labeled by a vertex. The
associated Wirtinger presentation has generators in one-to-one correspondence with
the vertices fa; b; c; : : : g, and relations in one-to-one correspondence with the edges.
An edge in � starting at a and ending at b, labeled by c, gives the relation ac D cb in
the Wirtinger presentation. Note that Wirtinger presentations that come from virtual
links are encoded by labeled oriented graphs where each connected component of
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the graph is a subdivided interval. The components of the graph are in one-to-one
correspondence with the components of the virtual link. A virtual link group is a
group defined by the Wirtinger presentation of a virtual link.

Labeled oriented graphs and their Wirtinger presentations arose first in the study
of higher dimensional knot theory. The Wirtinger complex, that is the standard 2-
complex built from a Wirtinger presentation, of a labeled oriented tree is the spine of a
ribbon disc complement in the 4-ball. The question of whether Wirtinger complexes
of labeled oriented trees are aspherical has been extensively studied because of its
well-known relevance to Whitehead’s asphericity conjecture: The subcomplex of
an aspherical 2-complex is aspherical. Howie showed (see [6], [7]) that if a finite
2-complex K is the subcomplex of a 2-complex that 3-deforms to a point, then K

is homotopically equivalent to a Wirtinger complex of a labeled oriented tree. Of
course, Wirtinger complexes of classical knots (properly embedded intervals in the
3-ball) are known to be aspherical, but the proof of this fact relies on 3-manifold
techniques and no combinatorial proof that would extend to labeled oriented trees
has been found. Except in the alternating case (see Weinbaum [18], Wise [19], and
[3], p. 220). For surveys of results concerning Whitehead’s conjecture see Bogley
[4] and Rosebrock [17].

Recall that an alternating knot projection on a sphere is called prime if an embed-
ded disc whose boundary intersects the knot in exactly two points contains all or no
crossing in its interior. This can also be expressed in terms of the cell decomposition
of the sphere dual to the projection, made up of 4-gons, one for each crossing. The
knot projection is prime if every reduced edge loop in the one skeleton of the cell
decomposition dual to the projection has length at least four. In analogy one can
define a prime notion for alternating surface link projections. However, since F has
a boundary we have to adjust this definition slightly. For example, if the virtual link
has only one component, then the boundary is a 2-cycle in the cell decomposition
dual to the projection. We fix this by considering edge cycles that use only one of the
boundary edges.

A link projection on a surface F is called alternating if one encounters over- and
under-crossings alternately as one travels along any component. Since a 2-cell in the
decomposition of F dual to the projection comes from a crossing, two opposing edges
in it are connected by the over-crossing. We refer to these edges as the over-crossing
edges. The other two opposing edges are referred to as under-crossing edges.

Definition 1.1. Given an alternating link projection on a surface F endowed with
the cell decomposition dual to the projection. We say that the arc projection is
prime if every reduced edge loop contained in F .1/ �fover-crossing boundary edgesg
or in F .1/ � funder-crossing boundary edgesg has length at least four. Further-
more we say the arc projection is dense if every reduced edge loop in F .1/ �
fover-crossing boundary edgesg or in F .1/ � funder-crossing boundary edgesg that
presents a non-trivial element in the fundamental group of the surface F has length
at least five.
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Note that for an alternating link there is a checkerboard coloring to the regions of
F determined by the projection. One color corresponds to a cycle of under-crossings
as one travels around the boundary of the region (in counterclockwise fashion, say),
and the other color corresponds to a cycle of over-crossings. This checkerboard
coloring implies that the 1-skeleton of the cell decomposition dual to the projection
is a bi-partite graph, and so we just have to rule out 2-cycles to see that the smallest
loop is of length at least 4. So our conditions are not too stringent. This point of
view is in D. Wise’s thesis [19]. Note that dense implies that there are more than two
strands of the projection running across every handle of the surface. It was shown
in [5] that prime alternating link projections on surfaces have aspherical Wirtinger
presentations. Here is one of the central results of this article.

Theorem 1.2. Given a prime alternating link projection on the surface F . Assume
that the projection does not contain 2- and 3-tangles (see Figure 1). Then G, the group
defined by the Wirtinger presentation of the projection, is the fundamental group of a
finite piecewise-Euclidian 2-complex of non-positive curvature. Furthermore, if the
link projection is dense, then G is hyperbolic.

Figure 1. 2- and 3-tangles.

Remark. A link projection on a disc F that has only one component has to contain
a 2- or a 3-tangle. Consider the cell decomposition of F dual to the projection. The
disc F is tiled by 4-gons and has two edges in its boundary. Thus, for curvature
reasons, there has to be an interior vertex of valency less than four.

In case F is a disc the first part of the theorem (not concerning hyperbolicity) is
well known and holds without having to rule out 2- and 3-tangles. In fact the Dehn
complex associated with the projection is a non-positively curved square complex
with fundamental group G. See for example [3], the section on knots. The fact that
groups of labeled oriented intervals can be hyperbolic (and hence are not knot groups)
was first observed by Rosebrock [16]. Other hyperbolic LOT (labeled oriented tree)
groups are in the literature. We will say more about this in the last section when we
discuss examples.
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2. Almost 3-manifolds and their spines

An almost 3-manifold is a 3-dimensional cell complex where all vertex links are
surfaces. In this section we define three almost 3-manifolds associated with an al-
ternating surface link projection, M , W and D and 2-dimensional spines Ms � M ,
Ws � W and Ds � D.

2.1. The link complement and its spine. Given an alternating surface link projec-
tion on the surface F endowed with the square cell decomposition dual to the link, we
can fatten the surface to F � Œ0; 1� and remove a properly embedded link that maps to
the link projection under F � Œ0; 1� ! F � f0g. If we remove an open neighborhood
of the link we arrive at a 3-manifold M whose boundary is a closed orientable surface
of genus 2g C k, where g is the genus of F and k is the number of components of
the link.

We can widen the removed link neighborhood and arrive at a 2-dimensional spine
Ms of M (see [5]). In the following we give a detailed description of the cell structure
of Ms . The manifold M is built up from cubes, each cube having an over- and under-
crossing arc removed. First we collapse the vertical edges v � Œ0; 1� of M , v being
a vertex in F , to the corresponding base vertex v. We arrive at a cell complex with
vertices in one-to-one correspondence to the vertices in F . For every edge e in F we
have two edges et and eb in this complex, a top and a bottom edge. Widening the
removed arcs leaves one with three square 2-cells for each cube, the bottom 2-cell
being a square in F � f0g, the top 2-cell being the square in F � f1g and a mixed
square coming from the removed arcs with boundary running alternately along top
and bottom edges. We denote this 2-complex by Ms . In summary, a crossing in the
surface link projection (corresponding to a 2-cell in the associated Wirtinger complex)
defines a square 2-cell of the projection surface, which yields three square 2-cells of
the spine Ms , a top square, a bottom square and a mixed square. This entire process
is depicted in Figure 2.

Vertex links in Ms . Let v vertex in Ms that is an interior vertex of F . Then the
link of v in Ms consists of a bottom circle and a top circle coming from the bottom
surface F � f0g and the top surface F � f1g, respectively. There are also edges
in the link connecting link vertices of the bottom circle and the top circle. They
come from the corners in the mixed squares. If ˛ D fp; qg is a corner in a square
of F connecting points p and q on the sides of the square, then we have corners
˛t D fpt ; qtg, ˛b D fpb; qbg and ˛m D fpt ; qbg (or ˛m D fpb; qtg) coming from
the corresponding top, bottom and mixed squares. A typical link is shown in Figures 3
and 4. If v is a boundary vertex of F the situation is similar. Top and bottom circles
as shown on the left side in Figure 4 are replaced by top and bottom arcs.

Theorem 2.1. Given a prime alternating link projection on a surface F that does
not contain 2- and 3-tangles (see Figure 1). Then the spine Ms is a non-positively
curved squared complex. Furthermore, H D �1.Ms/ is hyperbolic.
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Figure 2. The top row shows a crossing in the link projection and the corresponding 2-cell in
the Wirtinger complex. The row below shows the three corresponding 2-cells in Ms .

Proof. We give each 2-cell in Ms the metric of the unit square in the plane. The
assumptions that there are no 2- and 3-tangles in the arc projection implies that there
are at least four squares grouped around every interior vertex of F . It follows that a
reduced edge loop in the link of a vertex in Ms has length at least four (see Figure 4).
Hence Ms is non-positively curved (see [3]).

We will next show that the universal covering zMs does not contain an isometrically
embedded flat plane. Hyperbolicity of the fundamental group of Ms will then follow
from [3], Theorem 3.1, p. 459. Note first that the projection surface F is a retract
of Ms . We identify F with the top surface in Ms . A retraction r W Ms ! F is
obtained by identifying top and bottom edges that connect the same vertices, and
then identifying 2-cells whose boundary edges have already been identified.

Suppose that E is a flat plane in zMs . If we label the cells in E by their images
under the covering projection then E is a Euclidian plane, tiled with the unit squares
from Ms . One should think of E as a Van Kampen diagram where the underlying
space is a plane. We call a square in E a t -, b-, or m-square if it is labeled by a top,
bottom or mixed square, respectively. An edge Qe in E is called a folding edge if the
two squares of E that contain Qe in their boundary are mapped to the same square in
F under the composition of the covering map and the retraction r . A folding pair are
two squares that share a folding edge. Note that a folding pair consists of an m-square
and either a t - or a b-square. A folding line in E is a geodesic that consists entirely
of folding edges.
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Figure 3. The left side shows the link of a vertex v in the projection surface. Since there is a
top and a bottom version of that surface contained in Ms , the link of v in Ms contains a top
and a bottom circle. On the right is the part of Ms made up by the mixed squares with vertex
v. These squares contribute edges in the link that connect the top and bottom circle.
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Figure 4. The graph on the left is the link of an interior vertex v in Ms . It consists of a top and
a bottom circle, together with edges connecting these circles that come from corners in mixed
squares with vertex v. The graph on the right is the link of the same interior vertex in Ws .

We first argue that E has to contain a folding edge. Note that if we start at a square
in F and travel along a gallery of adjacent squares we will end up at the boundary.
This is because every such gallery follows a component of the link projection and
each such component starts and ends at the boundary. In particular there is no closed
gallery in F , every gallery starts and ends at the boundary and has length bounded
by the number of squares in F . Let � be the maximal length of a gallery of adjacent
squares in F . Now if we travel along any gallery of adjacent squares in E for at most
� squares, we will encounter a folding edge in E, because within that distance we
encounter an edge that maps to a boundary edge in F under the composition of the
covering map and the retraction.
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Next we argue that if Qe is a folding edge then the geodesic in E that contains
that edge is a folding line. Let Qv be a vertex of the folding edge Qe. Note that one of
the four squares grouped around Qv is an m-square because the folding edge Qe is an
edge of an m-square. The link lkE . Qv/ of Qv in E is a reduced cycle of length four in
lk zMs

. Qv/ D lkMs
.v/ (the links are identified under the covering map), where v is the

image of Qv under the covering projection. The left side of Figure 4 shows that link.
If v is a boundary vertex the top and bottom circles in the link are replaced by arcs.
Because one of the squares with vertex Qv is an m-square we may assume without loss
of generality that the 4-cycle is of the form ptqt �qtrb �rbqb �qbpt (here ptqt denotes
the edge in the link connecting pt to qt ). Under the composition of the covering map
and the retraction this cycle maps to pq � qr � rq � qp. Hence the 2 � 2-segment with
center Qv contains exactly two folding edges, corresponding to vertices pt and rb in
lkE . Qv/, and the folding edges are separated by a non-folding edge, that is, they are
part of a geodesic in E that passes through Qv. This shows that the two edges Qe and Qf

of the geodesic containing Qe emanating from Qv are both folding edges. Continuing
in this fashion we see that the geodesic that passes through Qv and contains the edge Qe
is a folding line. (In fact developing locally from a folding pair shows that E is tiled
in a checker board fashion if we color m-squares white and t - and b-square black.)

Now consider a bi-infinite gallery of adjacent squares with one boundary a folding
line. Starting at some square and traveling along the gallery a distant not greater
than � we encounter a folding edge that is perpendicular to our folding line. Thus
there are perpendicular folding lines in E. Let Qu be the vertex of intersection of
the two lines. Then the 2 � 2-segment of four squares grouped around Qu contains
perpendicular folding edges. But we have just observed that a 2 � 2-segment in E

contains exactly two folding edges, and they are part of a geodesic. We have reached
a contradiction.

Remark. We are indebted to the referee for providing the combinatorial proof just
given. Our original proof was based on Thurston Hyperbolization: If M is a com-
pact, orientable, irreducible and atoroidal 3-manifold which is Haken (i.e. contains a
properly embedded incompressible surface) and �1.M/ is not virtually abelian, then
the interior of M admits a complete hyperbolic structure. See [10] for a proof. The
manifold M D F � I � fknotted linkg is irreducible, orientable and atoroidal in case
the knotted link is prime (“atoroidal” being the non-obvious assertion). In the classi-
cal setting where F is a disc and the closed knotted link is not a torus knot this was
shown by Menasco [13]. His proof can be adopted for the general case. The boundary
@M is an incompressible surface, so M is Haken. Since �1.@M/ is a subgroup of
�1.M/, and the genus of @M is at least two, it follows that �1.M/ is not virtually
abelian. So all the conditions for Thurston Hyperbolization are satisfied. Since M

does not have torus boundary components the hyperbolic structure on the interior of
M can be taken convex co-compact (see Section 5 of Morgan [14] or Kapovich [10]),
which implies that �1.M/ is ı-hyperbolic.
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2.2. The Wirtinger spine. An almost 3-manifold W is obtained from the manifold
M by coning off the top surface F � f1g. We denote the cone point by T and call
W the Wirtinger space associated with the surface link projection. It was shown
in [5] that W is homotopically equivalent to the Wirtinger complex of the surface
link projection. In particular the 2-dimensional spine Ws of W constructed below is
homotopically equivalent to the Wirtinger complex.

The procedure of collapsing M to Ms can be applied to W and we arrive at a
3-complex that contains Ms , with the top surface coned off. We collapse the 3-cells
by pushing in the squares of the top surface. Note that the only 2-cells attached to
a top edge are a triangle coming from coning off this edge together with one mixed
square in case the edge is an interior edge or an under-crossing boundary edge (recall
that we assume the link projection to be alternating). We push every edge across its
cone triangle onto the two edges of the triangle that are attached to the cone vertex T .
This results in a cell structure since, as was pointed out already, a top edge belongs
to at most one mixed square. The resulting cell structure is as follows. The vertices
are the vertices of the (bottom) surface F together with the cone vertex T , we have
the edges from the bottom surface together with edges Ov connecting a vertex v of F

to the cone vertex T . The 2-cells are the squares from the bottom surface together
with hexagonal 2-cells coming from the mixed squares in Ms with top edges coned
off. See Figure 5.

c

2

1C

b

bb

b

ttA

C

BAB

w

xv

u

xv

TT

c

ba

u w

1C b

2
b

C

Figure 5. A crossing in the link projection yields two 2-cells in Ws , a hexagon and a bottom
surface square.

Vertex links in Ws . The spine Ws is obtained from Ms by coning off the top surface
and then collapsing the 3-cells across the surface squares. Every interior top edge
is now the boundary of exactly two 2-cells, the cone triangle for that edge and a
mixed square (recall that the surface link projection is assumed to be alternating).
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We produced a hexagonal 2-cell by internally collapsing the cone triangle across the
top edge. The top edge remains visible in the link of the top vertex T . See Figure 5.
A top edge et in the boundary of F is contained in a mixed square only if it is an
under-crossing edge (see the paragraph before Definition 1.1 for the definition of
over- and under-crossing edges). If et does not belong to any mixed square then this
edge will disappear when the cone triangle is collapsed. This shows that the link of
T in Ws is F .1/ �fover-crossing boundary edgesg. The link of an interior vertex v in
Ws is obtained from the link of v in Ms by coning off the top circle, then collapsing
the triangles by pushing in the edges of the top circle. Vertices of the top circle all
have valency two and can be left off. See the left side of Figure 4. If the vertex v is
a boundary vertex, then the situation is similar, the circle is replaced by an interval.

2.3. The Dehn spine. An almost 3-manifold D is obtained from W by coning off
the bottom surface F �f0g. We denote the cone point by B and call D the Dehn space
associated with the surface link projection. A 2-dimensional spine Ds is obtained
by a procedure analogues to the one given in the previous subsection, 3-cells are
collapsed across the bottom surface squares. We now collapse the triangle which
is the cone on the boundary edge f and perform internal collapses as before. The
result is a 2-complex with two vertices, T and B, edges in one-to-one correspondence
with the vertices in F and one square 2-cell for every crossing in the projection. See
Figure 6. The link of T in Ds is F .1/ � fover-crossing boundary edgesg and the link
of B is F .1/ � funder-cossing boundary edgesg. In [5] we used this spine to prove
that prime alternating surface link projections have aspherical Wirtinger complexes.
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Figure 6. A crossing in the link projection gives a square 2-cell in Ds .



92 J. Harlander

3. The geometry of the Wirtinger spine

Theorem 3.1. Given a prime alternating link projection on a surface F that does
not contain 2- or 3-tangles (see Figure 1). Then the 2-complex Ws can be made into
a non-positively curved piecewise-Euclidian complex. If we further assume that the
projection is dense then G D �1.Ws/ (which is isomorphic to the group defined by
the Wirtinger presentation of the link projection) is hyperbolic.

Proof. We give each square 2-cell in Ws the metric of the unit square in the plane,
in particular all corner angles are �=2. Each hexagonal 2-cell is metrized as a planar
hexagon, the angle at the two T -vertices being �=2, the four remaining angles being
3�=4. Alternating implies that the link of T in Ws is F .1/ � fover-crossing boundary
edgesg. Prime implies that there are no reduced edge loops of length less that four in
F .1/ � fover-crossing boundary edgesg, so each edge loop in the link has length at
least 2� . Next consider the link of a vertex v. In case v is interior, this link is a circle
with vertices coned off (see the right side of Figure 4). Since the arc projection does
not contain 2-or 3-tangles, this circle contains at least four edges. Thus a reduced
edge loop in the link that is part of the circle contains at least four circle edges and
hence has length at least 2� . A reduced edge loop in the link that contains a cone
edge (an edge not part of the circle) contains an even number of cone edges, each of
length 3�=4, and at least one circle edge and hence also has length at least 2� . If v

is a boundary vertex the situation is similar, the circle is replaced by an interval. We
see that there are no loops shorter that 2� in the vertex links and hence Ws is indeed
non-positively curved [3].

Now let us assume that the surface link projection is dense and either F is a disc
and the link projection has at least two components, or the genus of F is at least two.
In order to show that G is hyperbolic we need to prove that the universal covering zWs

does not contain flat planes (see [3], Theorem 3.1, p. 459). Suppose there is a flat E in
zWs . Then E is tessellated with the metrized 2-cells of Ws , that is with the flat squares

and hexagons of Ws (see Figure 7). The vertex links in this tessellation are reduced
edge loops in vertex links of Ws of length 2� . If the tessellation contains a vertex
labeled T , then there are four hexagons placed around that vertex and the link is an
edge loop of length four in the 1-skeleton of the top surface. Denseness implies that
this edge loop represents the trivial element in �1.F /. In fact, the edge loop bounds a
2-cell in the top surface. This can be seen as follows. Since the loop is homotopically
trivial, we can built a reduced Van Kampen disc tessellated with the square 2-cells
of F whose boundary is the edge loop of length four under consideration. Since
F itself is a non-positively curved squared complex the disc is as well. All squares
in the Van Kampen disc have curvature zero and the curvature at an interior vertex
is less or equal to zero. It follows from the combinatorial Gauss–Bonnet formula
(see for example McCammond[12], page 41) that the curvature at each boundary
vertex is �=2, so the Van Kampen disc consists of a single square. We can cut off
the four triangles around the T -vertex and replace it by that square 2-cell of the top
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Figure 7. A tessellation of the plane with the metric 2-cells of Ws . The dotted lines indicate
top edges. These edges are present in W (but not in the spine Ws). The link at the center
vertex is a reduced edge loop of length four in the 1-skeleton of the top surface, hence it is the
boundary of a 2-cell of the top surface (which is part of Ms).

surface. In this way we built tessellation of the Euclidian plane by square 2-cells of
Ms and each vertex link in this tessellation is a reduced edge loop in some vertex
link of Ms of length 2� . Topologically phrased, we pull the flat plane E � zWs � zW
off p�1.T /, where p W zW ! W is the covering projection, and obtain a flat plane
xE � xMs , where xMs is an intermediate covering of Ms (recall that Ms � M is

contained in W .) That flat plane lifts to a flat plane in zMs . This contradicts the fact
that, since H D �1.Ms/ is hyperbolic by Theorem 2.1, there are no flats in zMs (see
[3], Theorem 3.1, p. 459).

An analog result holds for the Dehn complex.

Theorem 3.2. Given a prime alternating link projection on a surface F . Then the
2-complex Ds is a non-positively curved squared complex. If we further assume that
the link projection does not contain 2- or 3-tangles and the projection is dense, then
Q is hyperbolic.

Proof. We give each 2-cell in Ds the metric of the unit square in the plane, in partic-
ular all corner angles are �=2. Alternating says that the links of T and B are F .1/ �
fover-crossing boundary edgesg and F .1/ � funder-crosdding boundary edgesg, re-
spectively, and prime says that the shortest reduced edge loop in these links has length
at least four. This implies that Ds is non-positively curved. Dense implies that there
are no flats in the universal covering of Ds . This can be seen by the same arguments
as given in the proof of Theorem 3.1.
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4. Examples

We use the results from the previous sections to construct virtual link groups that
are CAT(0), that is fundamental groups of non-positively curved piecewise-Euclidian
complex, and hyperbolic. Other examples are in the literature, the first ones are
Rosebrock’s [16]. The paper of Brady–Barnard contains LOT groups that are CAT(0)
and hyperbolic and free-by-cyclic.

The simplest example that fits our conditions is the following:

Example 4.1. Consider a link projection on a disc, one component running west to
east, the other running north to south, over-crossing the west-east component.

Clearly, this projection does not contain 2- or 3-tangles and is prime. In fact, F

consists of a single square. Thus G D �1.M/ D �1.W / D �1.D/ is hyperbolic.
The Wirtinger presentation of the projection is ha; b; c j ac D cbi, so G is free of
rank 2.

Example 4.2. Consider the square Œ0; n� � Œ0; n�, n an odd number in N. Draw
lines from .0; j / to .n; j C 1/, j D 0; : : : ; n � 1 and also from .i; n/ to .i C 1; 0/,
i D 0; : : : ; n � 1. Starting at .0; 0/, travel along these lines from left to right, make
the first crossing an over-crossing, the next an under-crossing and so on. Now cut off
the four corners and identify opposite sides. We obtain an alternating link projection
A.n/ with two components on a punctured torus. See Figure 8.
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Figure 8. The left side shows the surface link projection A.3/. On the right we see the
projection surface, a punctured torus, endowed with the square cell decomposition dual to the
link projection. Boundary edges that carry the same label are to be identified.

Note that A.n/ does not contain 2- or 3-tangles. The fact that n is odd ensures that
each component of the link is alternating and for n � 5 the projection is dense. The



Hyperbolic alternating virtual link groups 95

shortest edge loop in F .1/ � fthe two over-crossing boundary edgesg and in F .1/ �
fthe two under-crossing boundary edgesg (F being the projection surface, i.e., the
punctured torus), that does not represent the trivial element of �1.F / has length
n C 1. Our theorems implies that all groups �1.M/, �1.W / and �1.D/ are CAT(0)
and hyperbolic.
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