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Abstract. For i D 1; 2, let Gi be cocompact groups of isometries of hyperbolic space Hn of
real dimension n, n � 3. LetHi � Gi be infinite index quasiconvex subgroups satisfying one
of the following conditions:

(1) The limit set of Hi is a codimension one topological sphere.

(2) The limit set of Hi is an even dimensional topological sphere.

(3) Hi is a codimension one duality group. This generalizes (1). In particular, if n D 3, Hi

could be any freely indecomposable subgroup of Gi .

(4) Hi is an odd-dimensional Poincaré duality group PD.2k C 1/. This generalizes (2).

We prove pattern rigidity for such pairs extending work of Schwartz who proved pattern
rigidity whenHi is cyclic. All this generalizes to quasiconvex subgroups of uniform lattices in
rank one symmetric spaces satisfying one of the conditions (1)–(4), as well as certain special
subgroups with disconnected limit sets. In particular, pattern rigidity holds for all quasiconvex
subgroups of hyperbolic 3-manifolds that are not virtually free. Combining this with results
of Mosher, Sageev, and Whyte, we obtain quasi-isometric rigidity results for graphs of groups
where the vertex groups are uniform lattices in rank one symmetric spaces and the edge groups
are of any of the above types.
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1. Introduction

1.1. Statement of results. In [Gro93] Gromov proposed the project of classifying
finitely generated groups up to quasi-isometry. A class of groups where any two
members are quasi-isometric if and only if they are commensurable is said to be quasi-
isometrically rigid. However, in certain classes of groups, for instance uniform lattices
G in some fixed hyperbolic space H, all members of the class are quasi-isometric
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to H and hence to each other. In this context (or in a context where quasi-isometric
rigidity is not known) it makes sense to ask a relative version of Gromov’s question.
Here, (almost as a rule) additional restriction is imposed on the quasi-isometries by
requiring that they preserve some additional structure given by a ‘symmetric pattern’
of subsets. A ‘symmetric pattern’of subsets roughly means aG-equivariant collection
J of subsets in H, each of which in turn is invariant under a conjugate of a fixed
subgroup H of G, such that the quotient of an element of J by its stabilizer is
compact. Then the relative version of Gromov’s question for classes of pairs .G;H/
becomes:

Question 1.1. Given a quasi-isometry q of two such pairs .Gi ;Hi / (i D 1; 2) pairing
a .G1;H1/-symmetric pattern J1 with a .G2;H2/-symmetric pattern J2, does there
exist an isometry I which performs the same pairing? Further, does q lie within a
bounded distance of I ?

Formulated in these terms, the phenomenon addressed by Question 1.1 is called
pattern rigidity (See [MSW04] where this terminology was first used. See Section 1.2
for more on the genesis of the problem and the techniques used, particularly work of
Mostow [Mos68] and Sullivan [Sul81].)

One of the first papers to come out in the subject of quasi-isometric rigidity was
by Schwartz [Sch95], and even here, the problem can be formulated (in part) as a
pattern rigidity question for symmetric patterns of horoballs in H. The next major
piece of work on pattern rigidity was for subgroups H D Z by Schwartz [Sch97]
again. In a certain sense, [Sch95] deals with symmetric patterns of convex sets whose
limit sets are single points, and [Sch97] deals with symmetric patterns of convex sets
(geodesics) whose limit sets consist of two points. In this paper we initiate the study
of pattern rigidity for symmetric patterns of convex sets whose limit sets are infinite.

For i D 1; 2, let Gi be cocompact groups of isometries in a rank one symmetric
space Hn of real dimension n, n � 3. Let Hi � Gi be an infinite index quasiconvex
subgroup satisfying any of the following conditions:

(1) The limit set of Hi is a codimension one topological sphere.
(2) The limit set of Hi is an even dimensional topological sphere.
(3) Hi is a codimension one duality group. This generalizes (1).
(4) Hi is an odd-dimensional Poincaré duality group PD.2kC 1/. This generalizes

(2).

In this paper, we prove pattern rigidity for such pairs (See Theorem 1.4 below for
a precise statement).

Examples of (1) above include quasi-Fuchsian surface subgroups of closed hy-
perbolic 3-manifold groups corresponding to immersed surfaces. A special case of
this would correspond to embedded totally geodesic surfaces (cf. [Fri04]). Examples
of (3) include all freely indecomposable subgroup of closed hyperbolic 3-manifold
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groups. (Note that these need not correspond to embedded submanifolds with bound-
ary.) See also [Bel10], [Bis09] and [Mj09] for related work.

Definition 1.2. A symmetric pattern of closed convex (or quasiconvex) sets in a rank
one symmetric space H is a G-invariant countable collection J of closed convex (or
quasiconvex) sets such that the following holds:

(1) G acts cocompactly on H.
(2) The stabilizer H of J 2 J acts cocompactly on J .
(3) J is the orbit of some (any) J 2 J under G.

This definition is slightly more restrictive than Schwartz’ notion of a symmetric
pattern of geodesics, in the sense that he takes J to be a finite union of orbits of
geodesics, whereas condition (3) above forces J to consist of one orbit. All our
results go through with the more general definition, where J is a finite union of
orbits of closed convex (or quasiconvex) sets, but we restrict ourselves to one orbit
for expository ease.

Suppose that .X1; d1/, .X2; d2/ are metric spaces. Let J1, J2 be collections
of closed subsets of X1, X2 respectively. Then di induces a non-negative function
(which, by abuse of notation, we continue to refer to as di ) on Ji � Ji for i D 1; 2.
This is just the ordinary (not Hausdorff) distance between closed subsets of a metric
space.

In particular, consider two hyperbolic groupsG1,G2 with quasiconvex subgroups
H1, H2 and Cayley graphs �1, �2. Let Lj for j D 1; 2 denote the collection of
translates of limit sets of H1, H2 in @G1; @G2 respectively. Individual members of
the collection Lj will be denoted asLj

i . Let Jj denote the collection fJ j
i D J.L

j
i / W

L
j
i 2 Lj g of joins of limit sets. Recall that the join of a limit set ƒi is the union of

bi-infinite geodesics in �i with end-points inƒi . This is a uniformly quasiconvex set
and lies at a bounded Hausdorff distance from the Cayley graph of the subgroup Hi

Following Schwartz [Sch97], we define:

Definition 1.3. A bijective map � from J1 ! J2 is said to be uniformly proper if
there exists a function f W N ! N such that

(1) dG1
.J.L1

i /; J.L
1
j // � n H) dG2

.�.J.L1
i //; �.J.L

1
j /// � f .n/,

(2) dG2
.�.J.L1

i //; �.J.L
1
j /// � n H) dG1

.J.L1
i /; J.L

1
j // � f .n/.

When Ji consists of all singleton subsets of �1, �2, we shall refer to � as a uniformly
proper map from �1 to �2.

Our first main theorem (combining Theorems 4.3, 4.7, 4.8, 4.17, 5.1 in the paper)
is:
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Theorem 1.4. Let n � 3. Suppose that Ji (for i D 1; 2) are symmetric patterns of
closed convex (or quasiconvex) sets in hyperbolic space Hn D H, or more generally
uniform lattices in rank one symmetric spaces of dimension n, n � 3. For i D 1; 2,
let Gi be the corresponding cocompact group of isometries. Let Hi � Gi be an
infinite index quasiconvex subgroup stabilizing the limit set of some element of Ji

and satisfying one of the following conditions:

(1) The limit set ofHi is a codimension one topological sphere.

(2) The limit set ofHi is an even dimensional topological sphere.

(3) Hi is a codimension one duality group. This generalizes (1). In particular, if
n D 3,Hi could be any freely indecomposable subgroup of Gi .

(4) Hi is an odd-dimensional Poincaré duality group PD.2kC1/. This generalizes
(2).

Then any uniformly proper bijection between J1 and J2 is induced by a hyperbolic
isometry.

To prove cases (1) and (2) we shall use the classical Brouwer and Lefschetz fixed
point theorems respectively. To generalize these to cases (3) and (4) we shall use
tools from the algebraic topology of generalized (or homological) manifolds.

Next suppose J is a symmetric pattern of closed convex sets in H as in Theo-
rem 1.4. For convenience suppose that elements of J are "-neighborhoods of convex
hulls of limit sets of elements of J, so that they are strictly convex andG-equivariant.
Let � be a uniformly proper bijection from J to itself. Then Theorem 1.4 shows that
� is induced by a hyperbolic isometry f . Consider the pattern of geodesic segments
perpendicular to elements of J at their end-points. This collection is invariant under
G and there can only be a finite number of such segments of bounded total length
inside any bounded ball. Hence the subgroup of isometries of Isom.H/ preserving
this pattern is discrete and contains G as a finite index subgroup. This proves the
following corollary that is by now (after [Sch97] ) a standard consequence of such
pattern rigidity statements as Theorem 1.4.

Corollary 1.5. Suppose J is a symmetric pattern of closed convex sets in hyperbolic
space Hn D H or more generally uniform lattices in rank one symmetric spaces
of dimension n, n � 3, as in Theorem 1.4 and G the associated cocompact group
of isometries. Then the subgroup of the quasi-isometry group QI.H/ that coarsely
preserves J contains G as a subgroup of finite index.

More generally, the pattern rigidity Theorem 1.4 goes through for quasiconvex
subgroups with disconnected limit sets, at least one of whose components has a
stabilizer H 0 of the form (1), (2), (3) or (4) in Theorem 1.4 above. For details, see
Corollary 5.3 in this paper. Theorem 1.4 combined with Corollary 5.3 implies further
that pattern rigidity holds for all quasi convex subgroups of hyperbolic 3-manifolds
that are not virtually free.



Pattern rigidity in hyperbolic spaces: duality and PD subgroups 101

Similar extensions hold for quasiconvex subgroupsH when some finite intersec-
tion of conjugates

T
iD1;:::;k giHg

�1
i is of the form (1), (2), (3) or (4) in Theorem 1.4

above. For details see Corollary 5.4 in this paper.
Combining this with the main theorem of Mosher–Sageev–Whyte [MSW04] (to

which we refer for the terminology) we get the following QI-rigidity theorem.

Theorem 5.5. Let G be a finite, irreducible graph of groups with associated Bass–
Serre tree T of spaces such that no depth zero raft of T is a line. Further suppose
that the vertex groups are fundamental groups of compact hyperbolic n-manifolds, or
more generally uniform lattices in rank one symmetric spaces of dimension n, n � 3,
and edge groups are all of exactly one the following types:

(a) a duality group of codimension one in the adjacent vertex groups; in this case
we require in addition that the crossing graph condition of Theorems 1.5, 1.6
of [MSW04] be satisfied and that G is of finite depth,

(b) an odd-dimensional Poincaré duality group PD.2k C 1/ with 2k C 1 � n � 1.
If H is a finitely generated group quasi-isometric to G D �1.G / then H splits

as a graph G 0 of groups whose depth zero vertex groups are commensurable to those
of G and whose edge groups and positive depth vertex groups are respectively quasi-
isometric to groups of type (a), (b).

1.2. Outline and sketch. Outline. In Section 2, we describe some general prop-
erties of limit sets of quasiconvex subgroups of hyperbolic groups and recall some
theorems from [Mj08]. In Section 3, we recall some of the foundational work of
Schwartz from [Sch97] and describe some generalizations that we shall use in this
paper. Section 4 is the heart of the paper. We reduce the problem of pattern rigidity
to finding fixed points of certain maps, and then proceed to apply classical fixed point
theorems (Brouwer and Lefschetz) to limit sets that are either spheres of codimension
one, or of even dimension. We generalize these results to quasiconvex Duality sub-
groups of dimension n�1 and quasiconvex PD.2kC1/ subgroups. For this we need
some tools from the algebraic topology of homology manifolds. In Section 5, we
describe further generalizations of these results to quasiconvex subgroups with dis-
connected limit sets as well as subgroups with certain intersection properties. We also
combine these results with the main theorem of [MSW04] by Mosher–Sageev–Whyte
to obtain QI-rigidity results.

Sketch of proof. We describe in brief the various steps involved in the proof.
1) Uniformly proper pairings come from quasi-isometries [Mj08].
2) Use Mostow–Sullivan–Schwartz zooming in (cf. Lemma 3.1) at a point of

differentiability and non-conformality to get an ‘eccentric’ map A on the boundary
pairing limit sets. The ‘eccentric’ map is obtained by pre- and post-composing a
linear map of Euclidean space (thought of as a sphere minus the North pole) with
conformal maps of the sphere. This ‘zoom-in, zoom-out’ step is really quite classical
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and goes back to Mostow [Mos68]. This was refined by Sullivan [Sul81] and adapted
to the present context by Schwartz [Sch95] [Sch97].

3) Fix a particular limit set which is taken to another fixed limit set under the
pairing. Zoom in using the stabilizer of the first limit set, act byA and zoom out using
the stabilizer of the second limit set. This step differs from the corresponding step
in [Sch97] as follows. Though we can by the Generalized Eccentricity Lemma 3.5,
zoom in using powers of the same element, we cannot necessarily zoom out using
powers of the same element (as in [Sch97]). This makes the step technically more
complicated and we use a generalized zoom-in zoom-out lemma (Lemma 3.3) to
address this difficulty.

4) Get a sequence of rational functions that leave invariant a finite collection of
limit sets.

5) Apply Brouwer’s Fixed Point Theorem (in the codimension one sphere case)
to get fixed points in the ball bounded by the sphere; and the Lefschetz Fixed Point
Theorem (in the even dimensional sphere limit set case) to get a fixed point on the
sphere limit set itself.

6) Use some generalizations of the Lefschetz Fixed Point Theorem going back to
work of Lefschetz (himself), Felix Browder, R. Thompson, R. Knill, R. Wilder along
with a theorem of Bestvina and Bestvina–Mess to generalize Step 5 to duality and
Poincaré duality groups.

Acknowledgments. The authors would like to thank Marc Bourdon and Herve Pajot
for beautiful lectures on quasiconformal geometry and geometric function theory. We
would also like to thank Mladen Bestvina and Kalyan Mukherjea for helpful corre-
spondence and discussions. We also thank the referee for several helpful comments.

2. Preliminaries

Remark 2.1. A folklore fact that we shall be using is that for discrete subgroups
G of isometries of real hyperbolic space Hn, convex cocompactness is equivalent
to quasiconvexity. The forward implication is a consequence of the Milnor–Svarc
Lemma (cf. [Gro85]).

One way to prove the converse implication is to use the fact that Hn is projectively
flat. Hence the convex hull of a finite set of points is the union of the convex hulls of
its nC 1-tuples. Now let ƒ be the limit set of G and let CH0 denote the union of all
ideal geodesic nC 1-simplices with vertices inƒ. Then CH0 is dense in the (closed)
convex hull CH ofƒ. Now, if an orbitG � x is quasiconvex in Hn, then the inclusion
of G � x into Hn extends continuously to a homeomorphism from the (Gromov-
)hyperbolic boundary @G to ƒ. Hence, by ı-hyperbolicity of G and quasiconvexity,
it follows that for any fx0; : : : ; xng � ƒ and any p in the ideal simplex with vertices
fx0; : : : ; xng, d.p;G � x/ is uniformly bounded, where d is the usual metric on Hn.
It follows that CH0 and hence CH lies in a bounded Hausdorff neighborhood ofG �x.
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Therefore the quotient CH=G is compact.

Limit sets and pairings. LetG be a hyperbolic group. @G will denote its boundary
equipped with a visual metric. Any fixed point of a hyperbolic element on @G is
called a pole. @2G will denote the set of unordered pairs of distinct points on @G
with the topology inherited from @G. A pole-pair is a pair of points .x; y/ 2 @2G

corresponding to the fixed points of a hyperbolic element of G.

Lemma 2.2 (Gromov [Gro85], 8.2G, p. 213). Pole-pairs are dense in @2G and more
generally, ifH be a finitely generated group of isometries acting on hyperbolic space
H with limit set ƒ then pole-pairs are dense in @2ƒ.

The next lemma is a consequence of the fact that the action of a finitely gener-
ated group of isometries of a hyperbolic metric space H acting on the limit set is a
convergence group action.

Lemma 2.3. LetH be a finitely generated group of isometries acting on hyperbolic
space H with limit set ƒ. Then for all .x; y/ 2 @2ƒ, there exists a sequence of hy-
perbolic isometries Ti 2 H with attracting (resp. repelling) fixed points xi (resp. yi )
such that xi ! x, yi ! y, and the translation length of Ti tends to 1.

Proof. We choose pole-pairs .xi ; yi / converging to .x; y/ 2 @2ƒ by Lemma 2.2. Let
Ti be a hyperbolic isometry in G with attracting fixed point xi and repelling fixed
point yi . Choosing appropriately large powers T ni

i of Ti , we are through.

Since the orbit of an open subset of @G under G is the whole of @G, it follows
that the limit set LH of any infinite index quasiconvex subgroup H of G is nowhere
dense in @G. Assume for simplicity that H D Stab.LH /. Then for all g 2 G n
H , gHg�1 \ H is an infinite index quasiconvex subgroup of H (by a theorem of
Short [Sho91]) and hence its limit set is nowhere dense in LH . As g ranges over
g 2 G nH , we get a countable collection of nowhere dense subsets of LH . The next
lemma follows.

Lemma 2.4. Suppose thatH D Stab.LH / is a quasiconvex subgroup of a hyperbolic
group G. For all p 2 LH and all " > 0 there exists x 2 LH such that d.p; x/ < "

and LH is the unique translate of LH to which x belongs, i.e., if x 2 LH \ gLH

then g 2 H .

Lemma 2.5. Suppose thatH D Stab.LH / is a quasiconvex subgroup of a hyperbolic
group G. Let U � @G be an open subset and let " > 0. Then there exists a finite
collection of points x1; : : : ; xn 2 U such that

(1) fx1; : : : ; xng is an "-net in U ,

(2) xi 2 Li D giLH for some gi 2 G nH and Li is the unique translate of LH to
which x belongs.
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Proof. This follows from Lemma 2.4 and the fact that the union of all the translates
of LH under G is dense in @G.

Definition 2.6. A point that belongs to a unique translate of LH will be called a
unique point.

In [Mj08] we showed the following:

Theorem 2.7 (Theorem 3.5 of [Mj08]). Let � be a uniformly proper (bijective, by
definition) map from J1 ! J2. There exists a quasi-isometry q from �1 to �2 which
pairs the sets J1 and J2 as � does.

Proposition 2.8 (Characterization of quasiconvexity, Proposition 2.3 of [Mj08]). Let
H be a subgroup of a hyperbolic groupG with limit setƒ. Let L be the collection of
translates ofƒ (counted with multiplicity) by elements of distinct cosets ofH (one for
each coset). ThenH is quasiconvex if and only if L is a discrete subset of C 0

c .@G/,
where C 0

c .@G/ denotes the collection of compact subsets of @G with more than one
point equipped with the Hausdorff metric.

Finally, combining Lemmas 2.2 and 2.4 along with Proposition 2.8, we get

Corollary 2.9 (Generic pole-pairs). Suppose that H D Stab.LH / is a quasiconvex
subgroup of a hyperbolic group G. Identify LH with the boundary @H of H . For
all .p; q/ 2 @2H and all " > 0 there exists a pole-pair .x; y/ 2 @2H such that
d.p; x/ < ", d.q; y/ < " and LH is the unique translate of LH to which x (or y)
belongs, i.e., if x (or) y 2 LH \ gLH then g 2 H .

Small homotopies. We shall have need for the following fact [BT90].

Lemma 2.10. Given a closed Riemannian manifold .M; d/, there exists "1 > 0 such
that the following holds:

If f is a self-homeomorphism such that d.f .x/; x/ < "1 for all x 2 M , then f
is homotopic to the identity.

Sketch of proof for smooth maps. SinceM is a compact Riemannian manifold, there
is an "0 > such that (modulo the natural identification of the normal bundle of the
diagonal,DM � .M �M/, with the tangent bundle ofM ) tangent vectors of length
"0 map via the exponential map diffeomorphically onto an open tubular neighborhood
of DM . If f W M ! M is sufficiently near to the identity 1M in the compact-open
topology, then the image of the graph of f will lie in this tubular neighborhood.
The inverse of the exponential map identifies the graph of F with a section of the
tangent bundle of M and since any section is homotopic to the zero section (which
corresponds to the graph of the identity map) we are through.
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Boundaries. We shall have need for the following theorem of Bestvina and Mess
[BM91].

Theorem 2.11. Boundaries @G of PD.n/ hyperbolic groupsG are locally connected
homological manifolds (over the integers) with the homology of a sphere of dimension
.n � 1/. Further, if G acts freely, properly, cocompactly on a contractible complex
X , then the natural compactification X [ @G is an absolute retract (AR).

Remark 2.12. In particular,X[@G has the fixed point property, i.e., any continuous
map from X [ @G to itself has a fixed point.

3. Differentiability principles and eccentric maps

3.1. Differentiability principles. Let HnC1 D H denote the hyperbolic (n C 1)-
space and let @HnC1 D Sn1 denote the boundary sphere at infinity with the standard
conformal structure (preserved by isometries of HnC1). Let En D E denote the
Euclidean space obtained from Sn1 by removing the point at infinity.

We recall a certain differentiability principle from Schwartz’s paper [Sch97]. Sup-
pose that h W Sn1 ! Sn1 is a homeomorphism fixing 0;1 such that dh.0/ exists. Let
T1, T2 be two contracting similarities (with possible rotational components) of E
both fixing 0. For each pair k1; k2 of positive integers, Schwartz defines the map

hŒk1; k2� D T
�k2

2 B h B T k1

1

and shows

Lemma 3.1 (Lemma 5.3 of [Sch97]). Suppose thatK1; K2 � E are compact subsets.
Suppose that .k11; k21/; .k12; k22/; .k13; k23/; : : : is a sequence of pairs such that

(1) k1n ! 1,

(2) hŒk1n; k2n�.K1/ \K2 ¤ ;.

Then some subsequence of hŒk1n; k2n� converges, uniformly on compact sets, to a
linear map.

Remark 3.2. Lemma 3.1 can be slightly generalized by replacing the maps T k1

1 and

T
k2

2 by maps T1k1
and T2k2

such that the translation lengths of T1k1
and T2k2

tend
to infinity as k1; k2 ! 1. This is all Schwartz uses in his proof.

We shall need a generalization and weakening of this to continuously differentiable
functions.

Lemma 3.3 (Generalized zoom-in zoom-out). Suppose h W Sn1 ! Sn1 is continu-
ously differentiable. Let T1n, T2n be sequences of hyperbolic Möbius transformations
such that their fixed point sets fx1n; y1ng, fx2n; y2ng satisfy
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(1) xin is the attracting fixed point of Tin for i D 1; 2,

(2) yin is the repelling fixed point of Tin for i D 1; 2.

We further assume that x1n D 0 and y1n D 1 for all n.
Let

hn D T �1
2n B h B T1n:

Suppose that .T11; T21/; .T12; T22/; .T13; T23/; : : : is a sequence of pairs such that

(a) the translation lengths of T1n ! 1,

(b) there exists " > 0 such that

inf
n
.minfd.hn.0/; hn.1//; d.hn.1/; hn.1//; d.hn.0/; hn.1//g/ � ":

Then some subsequence of hn converges, uniformly on compact sets, to a linear map
post-composed with a conformal map.

Proof. The sequence gn D T �1
1n BhBT1n converges (up to sub-sequencing) to a linear

map by Lemma 3.1 and Remark 3.2. Condition (b) in the hypothesis guarantees that
the ratio of the translation lengths of T1n and T2n is bounded away from both 0 and
1. Hence, (extracting a further subsequence if necessary) T �1

2n B T1n converges to a
conformal map. The result follows.

3.2. Eccentric maps

Definition 3.4 ([Sch97]). Let T be a real linear map of the Euclidean space En D E.
Let gi (for i D 1; 2) be two conformal maps of @HnC1 D Sn1. The map � D
g2 B T B g�1

1 is said to be an eccentric map if

(1) � preserves E and fixes 0,
(2) � is differentiable at 0,
(3) � is not a real linear map.

Then the Eccentricity Lemma (Lemma 2.2) of Schwartz [Sch97] generalizes to

Lemma 3.5 (Generalized Eccentricity Lemma). Let G1, G2 be two groups acting
freely, properly discontinuously by isometries and cocompactly on HnC1 D H. Let
H 0

1 ,H 0
2 be quasiconvex subgroups ofG1; G2 respectively with limit setsƒ0

1,ƒ0
2. Let

J0
i ( for i D 1; 2) be the set of translates of joins (or convex hulls) of ƒ0

i . Let q0 be
a quasi-isometry pairing J0

1 with J0
2 . Assume that h0 D @q0 is not conformal. Then

there exist symmetric pattern of joins (or convex hulls) Ji (of limit setsƒi abstractly
homeomorphic to ƒ0

1, ƒ0
2) and a quasi-isometry q W H ! H such that

(1) q pairs the elements of J1 with those of J2,

(2) � D @q is an eccentric map,
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(3) the geodesic � D 01 is a subset of some Ji 2 Ji for i D 1; 2; further, the
(translates of the) limit sets ƒ1 and ƒ2 in which the end-points 0;1 lie is
unique,

(4) 0;1 are poles for the action of the stabilizer Stab.ƒ1) on ƒ1.

Proof. The difference with Lemma 2.2 of [Sch97] is in conditions (3) and (4) above.
Schwartz’ proof proceeds by zooming in at a point of differentiability and non-
conformality (taken to be the origin) of the quasiconformal map h0 to obtain a linear
map h0 from E to itself in the limit. The sequence of maps used in zooming in come
by conjugating h0 byDn whereD is a dilatation map with 0;1 as fixed points. Fur-
ther h0 is the boundary value of some quasi-isometry q0 which pairs some symmetric
pattern of joins J0

1 with J0
2. This step goes through verbatim.

Next, by Lemma 2.4 there exist pairs of points ˛, ˇ on some limit set ƒ1 of an
element of J0

1 such thatƒ1 is unique, i.e., ˛, ˇ do not belong to any other limit setƒ0
1

of an element of J0
1. Also, by Corollary 2.9 the pair .˛; ˇ/ can be taken as pole-pair

for the action of the stabilizer Stab.ƒ1) on ƒ1. Since q0 pairs the symmetric pattern
of joins J0

1 with J0
2, h0.˛/ D ˛0, h0.ˇ/ D ˇ0 belong to some unique ƒ2, i.e., h0.˛/,

h0.ˇ/ do not belong to any other limit set ƒ0
2 of an element of J0

2. Let gj be chosen
in such a way that g1 (resp. g2) maps 0, 1 to ˛, ˇ (resp. ˛0, ˇ0 ) respectively.

Then � D g2 B h0 B g�1
1 and q D g2 B q0 B g�1

1 are the required maps.

We shall need the following ‘Zariski-density’ property of eccentric maps due to
Schwartz [Sch97].

Lemma 3.6 (Corollary 5.2 of [Sch97]). Let U � E be an open subset. Then there is
a constant ı D ı.U / > 0 such that if two eccentric maps agree on a ı-dense subset
of U , then they agree everywhere.

4. Pattern rigidity

4.1. Scattering. For i D 1; 2, let Fi be a (compact) fundamental domain for the
action ofHi D Stab.LHi

/ on the domain of discontinuity�i ofHi (see Remark 2.1).
LetQi be the quotient of�i byHi . Let…i W �i ! Qi be the covering map. Recall,
by Lemma 3.5 that 0;1 form a pole-pair for the action ofH1 onLH1

. Next, suppose
that we have

(1) an eccentric map �,
(2) a subset † � Q1,
(3) a neighborhood S � E of 0.

Define ‰.�;†; S/ D …2 B �.S \…�1
1 .†// � Q2.
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Lemma 4.1 (Scattering Lemma). Independent of � there is a constant ı0 > 0 such
that if S � E is any neighborhood of 0, and† � Q1 is ı0-dense, then‰.�;†; S/ �
Q2 is an infinite set.

Proof. Though we shall follow the broad scheme of the proof of Lemma 2.3 of
Schwartz [Sch97], technically our proof will be quite a bit more involved as we shall
first use the Generalized Zoom-in Zoom-out Lemma 3.3 and then Lemma 3.1 (and
not Lemma 3.1 directly as in [Sch97]). In particular, steps (1) and (2) below will be
different, while step (3) will be the same as in [Sch97].

Let †0 D …�1
1 .†/ \ F1. Let S be an open neighborhood of 0.

There exists by the Generalized Eccentricity Lemma 3.5 a sequence of hyperbolic
Möbius transformations T1n 2 H1 such that the fixed point sets fx1n; y1ng, satisfy

(1) x1n D 0 is the attracting fixed point of T1n,
(2) y1n D 1 is the repelling fixed point of T1n,
(3) the hyperbolic isometries corresponding to T1n, form an unbounded set in

PSL2.C /,
(4) T1n.F1/ � S .

Condition (4) follows from (1) and substituting T1n by large enough powers of
T1n if necessary.

Step 1. Choosing T2n 2 H2.
The first step is to choose T2n 2 H2. T1n.†0/ � …�1

1 .†/ \ S . First choose a
point w 2 F1. Let P.w/ denote the foot of the perpendicular from w to .0;1/ D
.x1n; y1n/. Then T1n.w/ 2 S . Map the tripod with vertices .0;1; T1n.w// over by
�. Recall that �.0/ D 0; �.1/ D 1. Then .0;1; � B T1n.w// form the vertices of
a uniformK-quasitripod in H with centroid � B T1n.P.w//. Choose T2n 2 H2 such
that T �1

2n B� BT1n.P.w// lies in a fixed fundamental domain for the action ofH2 on
the convex hull CH.LH2

/ of the limit set LH2
. (We could equally well have chosen

the join J.LH2
/ of the limit set LH2

.) Then, automatically, the three points T �1
2n .0/,

T �1
2n .1/, T �1

2n B � B T1n.w/ satisfy the hypotheses of Lemma 3.3, i.e., there exists
" > 0 such that the three points T �1

2n .0/, T
�1
2n .1/, T �1

2n B� BT1n.w/ are at a distance
of at least " from each other on the sphere (uniformly for all n). By Lemma 3.3, (up
to extracting a subsequence) T �1

2n B � B T1n converges to a map  B L, where  is
conformal and L is linear.

Step 2. The sequence T �1
2n B � B T1n consists of infinitely many distinct elements.

We would like to conclude that there are infinitely many distinct maps in the
sequence T �1

2n B� BT1n converging to a map  BL. Suppose not. Then the sequence
of maps T �1

2n B� B T1n is eventually constant and equal to  BL. In particular, since
�, T1n, L all fix 0, 1, it follows that T �1

2n .0/ D  .0/ and T �1
2n .1/ D  .1/ for all

n. But then

(1) T2m B T �1
2n .0/ D 0, and T2m B T �1

2n .1/ D 1 for all m, n,
(2) T2n 2 H2 for all n.
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Since the collection of elements of the form T2m B T �1
2n is infinite, it follows that

the set of elements in H2 fixing 0;1 is virtually infinite cyclic. Thus, .0;1/ form
a pole-pair for the action of H2 on LH2

. Let C be an infinite cyclic subgroup of
H2 fixing 0;1. In this case, we modify the sequence T2n by choosing these to be
elements of C satisfying the hypotheses of Lemma 3.1. Then �n D T �1

2n B � B T1n

converges to a linear map by Lemma 3.1. Since � is eccentric, so is �n and we may
assume that �n ! �0, a linear map. Hence in either case, we can conclude that the
sequence �n D T �1

2n B � B T1n of maps consists of infinitely many distinct elements
converging either to a map of the form  B L (with  conformal and L linear) or
simply a linear map L.

Step 3. Using Zariski density.
The rest of the proof follows that of [Sch97]. Define V D S1

nD1 �n.†0/.

Claim 4.2. V is infinite and xV � �2.

Proof of the claim. Since �n ! �, V is bounded and xV � �2. In particular, xV is
contained in the union of finitely many translates of the compact fundamental domain
F2. By step (2) there are infinitely many distinct maps in the sequence. If V is finite,
then only finitely many choices are there for �n.†0/ and hence by Lemma 3.6, there
are only finitely many choices for�n. This contradiction proves thatV is infinite.

Since V is infinite and xV is contained in the union of finitely many translates of
the compact fundamental domain F2, it follows that…2.V / is infinite. But…2.V / �
‰.�;†; S/ � Q2. Hence ‰.�;†; S/ is infinite.

4.2. Pattern rigidity: topological spheres. In this section we shall prove pattern
rigidity for symmetric patterns of closed convex (or quasiconvex) sets in hyperbolic
space HnC1 D H such that the limit sets are topological spheres (of either codi-
mension one or of even dimension). The techniques used are from fixed point the-
ory. In the next two subsections, we shall generalize this, to quasiconvex subgroups
of 3-manifolds with connected limit sets, to codimension one quasiconvex duality
subgroups, and to closed limit sets whose stabilizers are PD.2n C 1/ quasiconvex
subgroups. These will be generalizations of Theorem 4.3 (a) and Theorem 4.3 (b),
respectively. The technicalities for these generalizations are postponed for ease of
exposition.

Recall that a point that belongs to a unique translate of LH is called a unique
point.

Theorem 4.3. Let n � 2. Let J0
i ( for i D 1; 2) be symmetric patterns of closed

convex (or quasiconvex) sets in hyperbolic space HnC1 D H such that the limit sets
of J0

i are either

(a) topological spheres of dimension .n � 1/,
or
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(b) even-dimensional topological spheres.

Then any proper bijection � between J0
1 and J0

2 is induced by a hyperbolic
isometry.

Proof. By Theorem 2.7, there is a quasi-isometry q0 that pairs the convex (or quasi-
convex) sets J0

i as � does.
Suppose that h0 D @q0 is not conformal. Then by the Generalized Eccentricity

Lemma 3.5 there exist, for i D 1; 2, symmetric patterns of convex, or quasiconvex
sets Ji (with limit sets ƒ1 abstractly homeomorphic to ƒ2) and a quasi-isometry
q W H ! H such that

(1) q pairs the elements of J1 with those of J2,
(2) � D @q is an eccentric map,
(3) the geodesic � D 01 is a subset of some Ji 2 Ji for i D 1; 2. Further,

the (translates of the) limit sets ƒ1 and ƒ2 in which the end-points 0;1 lie is
unique.

Let ı0 be as in Lemma 3.6. Pick points as per Lemma 2.5 to get a ı0-net †
in the interior of the fundamental domain F1 of the action of H1 on its domain of
discontinuity �1, consisting of unique points. Let S be an open neighborhood of 0.
Then, by the Scattering Lemma 4.1,‰.�;…1.†/; S/ D …2B�.S\…�1

1 .…1.†/// �
Q2 is infinite.

However, since † D fx1; : : : ; xng is finite, and since its points belong to unique
limit sets, (xi 2 Li say) there is an upper bound on the distance of J.LH1

/ from
J.Li /. Since q is a quasi-isometry, there is an upper bound on the distance of J.LH2

/

from �.J.Li //. Hence, modulo the action ofH2, there are only finitely many choices
for �.J.Li //.

Since‰.�;…1.†/; S/ D …2 B�.S \…�1
1 .…1.†/// � Q2 is infinite, it follows

that there exists (after subsequencing again) Tin 2 Hi for i D 1; 2 such that:

(1) If �n D T �1
2n B � B T1n, then �n.LH1

/ D LH2
and for some Li D L1 (say,

without loss of generality) �n.L1/ D L2 is a fixed limit set. This follows from
the fact that the xi ’s are unique points. Also note that we can arrange that the
visual diameters of L1, L2 are smaller than any pre-assigned "0.

(2) The attracting (resp. repelling) fixed point x1n (resp. y1n) is 0 (resp. 1).
(3) The hyperbolic isometries corresponding to T1n form an unbounded set in

PSL2.C /.
(4) The maps �n restricted to L1 are distinct since ‰.�;…1.†/; S/ is infinite. In

particular, the �n’s are distinct maps.
(5) �n ! �0, where�0 is either a real linear map or a real linear map post-composed

with a conformal map where the linear factor of the map �0 is not a similarity
but continues to satisfy property (1).

Further, by Proposition 2.8, if we fix any finite collection of translates, L11, …,
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L1m, of the limit set LH1
, then the (ordered tuple) �n.L11/; : : : ; �n.L1m/ is even-

tually constant. Hence for n, l sufficiently large, ��1
l

B �n maps L1j to itself for
j D 1; : : : ; m.

The argument so far does not use any special topological property of the limit
sets. We summarize our conclusions in the remark below.

Remark 4.4. We have shown that given an eccentric map pairing symmetric patterns
Ji of convex (or quasiconvex) sets, there exists

(1) a sequence of eccentric maps �j ! �0 uniformly on compact sets, where �0 is
a) either a linear map that is not a similarity, or
b) a real linear map post-composed with a conformal map where the linear factor
of the map is not a similarity;

(2) the �j ’s pair J1 with J2;
(3) for any finite collection L of limit sets of elements of J1, there exists a positive

integer N , such that �n.L/ D �l.L/ for all L 2 L and n; l � N ;
(4) the �j ’s are distinct eccentric maps.

We now deal with the two cases of the theorem separately.

Case (a). Limit sets of J0
i are topological spheres of dimension .n � 1/.

Since each L1i is a topological sphere of codimension one and J1i is a convex
set (for quasiconvex sets, we take the convex hull), the compactification of a small
"-neighborhood, N".J1i / obtained by adjoining L1i is a strong deformation retract
of the whole compactified ball D D H [ Sn1. In particular, if � is one of the two
components of the domain of discontinuity of Stab.L1i /, then �[L1i D D1i is an
AR by Theorem 2.11 and hence satisfies the fixed-point property (Remark 2.12).

For n, l sufficiently large, ��1
l

B �n maps D1i to itself for i D 1; : : : ; m. By
Brouwer’s Fixed Point Theorem (Remark 2.12), there exist x1i 2 D1i such that
�n.x1i / D �l.x1i / for i D 1 : : : m. Now, by Remark 4.4 above, we can chooseL1i of
sufficiently small diameter such that for any x1i 2 D1i , the collection fx11; : : : ; x1mg
is an "0-net in Sn, where "0 is as in Lemma 3.6. Hence, by Lemma 3.6, �n D �l .
This contradicts condition (4) of Remark 4.4 above and proves case (a) of the theorem.

Case (b). Limit sets of J0
i are topological spheres of even dimension.

By Lemma 2.10 and Remark 4.4 it follows that given any finite collection L of
limit sets, there exists a positive integer N such that for all n; l � N and all Li 2 L,

(1) ��1
l

B �n.Li / D Li ,
(2) ��1

l
B �n restricted to Li is homotopic to the identity; hence, the Lefschetz

number of ��1
l

B �n restricted to Li is equal to the Euler characteristic of Li .

Since eachLi 2 L is an even-dimensional sphere, the Euler characteristic ofLi is
2, in particular non-zero. By the Lefschetz Fixed Point Theorem there exists xi 2 Li

such that �n.xi / D �l.xi /.
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The rest of the proof is as in case (a) above. By Remark 4.4, we can choose Li of
sufficiently small diameter such that for any xi 2 Li , the collection fx1; : : : ; xmg is
an "0-net in Sn, where "0 is as in Lemma 3.6. Hence, by Lemma 3.6, �n D �l . This
contradicts condition (4) of Remark 4.4 above and proves case (b) of the theorem.

Remark 4.5. The proof of case (b) when specialized to dimension zero (i.e., S0

limit sets) is exactly the one given by Schwartz in [Sch97]. To see this note that the
existence of a fixed point of a map from S0 to itself that is ‘close to the identity’
(hence equal to the identity) is clear.

4.3. 3-manifolds and codimension one duality subgroups

Remark 4.6. In our proof of Theorem 4.3, we have used the fact that the limit sets
are spheres in a mild way. In case (a) we used them to construct invariant absolute
retracts bounded by these spheres. After this, the proof of both Case (a) and Case (b)
end up using the Lefschetz Fixed Point Theorem. We have used the following facts:

(1) the Euler characteristic of each invariant limit set L is non-zero;
(2) a map that moves each point of L through a small distance is homotopic to the

identity;
(3) the Lefschetz Fixed Point Theorem holds for L.

We generalize Theorem 4.3 (a) now to quasiconvex subgroups of 3-manifolds with
connected limit sets.

Theorem 4.7. Let n D 3. Let J0
i ( for i D 1; 2) be symmetric patterns of closed

convex (or quasiconvex) sets in hyperbolic space H3 D H such that the limit sets of
J0

i are connected. Then any proper bijection � between J0
1 and J0

2 is induced by a
hyperbolic isometry.

Proof. Since limit sets are connected, we may assume by the Scott core theorem
[Sco73] that each J1i 2 J0

1 is the (Gromov compactified) universal cover of a com-
pact hyperbolic 3-manifold with incompressible boundary. In particular, its limit
set L1i shares a boundary circle C1i with the unbounded component of its comple-
ment. Adjoining all the bounded components of S21 n L1i to L1i we obtain 2-disks
D1i invariant under ��1

l
B �n as in Theorem 4.3 (a). Again, by Brouwer’s Fixed

Point Theorem ��1
l

B �n has fixed points in D1i . The rest of the proof is as in
Theorem 4.3 (a).

We next generalize Theorem 4.3 (a) to symmetric patterns of codimension one
closed convex (or quasiconvex) sets with connected limit sets such that their stabilizers
are duality groups. This is similar to Theorem 4.7 above.

Theorem 4.8. Let n � 3. Suppose J0
i ( for i D 1; 2) are symmetric patterns of closed

convex (or quasiconvex) sets in hyperbolic space Hn D H such that the limit sets of
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J0
i are connected of dimension .n � 2/ and assume that the stabilizers of elements

of J0
i ( freely indecomposable codimension one quasiconvex subgroups of G by the

restriction on limit sets) are duality groups. Then any proper bijection � between J0
1

and J0
2 is induced by a hyperbolic isometry.

Proof. Since limit sets L0
i of J0

i have codimension one, it follows that their stabilizers
are codimension one in the big group G (the group acting on H cocompactly).

The argument in this paragraph is similar to an argument of Kapovich and Kleiner
[KK05]. Let G1 denote a stabilizer of (some) L 2 L0

1. Since G1 is a duality group,
it follows that elements of L0

i have the same homology as a wedge of .n � 2/-
spheres. By Alexander duality, each component of the domain of discontinuity (i.e.,
the complement of the limit set) �.G1/ D Sn�11 n S

L2L0
i
L is acyclic. Since G1 is

quasiconvex (and hence convex-cocompact), there are only finitely many G1-orbits
of such components and the stabilizers Hi , i D 1; : : : ; k, of such components act on
them cocompactly. Therefore each Hi is a PD.n � 1/-group.

Since eachHi is a PD.n�1/-group, the limit set of eachHi is an .n�2/ homology
sphere Si by Theorem 2.11. By Alexander duality again, Si separates Sn1 into two
acyclic components (so the domain of discontinuity of Hi has two components).
Adjoining either of these to Si gives an absolute retract (AR).

Since the Lefschetz Fixed Point Theorem holds for AR’s (Remark 2.12), the proof
of Theorem 4.3 (a) goes through as before.

4.4. Local homology and PD.2k C 1/-subgroups. Bestvina [Bes96] shows that
Gromov boundaries of Poincaré duality (PD.m/) hyperbolic groups are homology
spheres (Theorem 2.11). Thus, if one knew some homology analogues of proper-
ties (2), (3) in Remark 4.6 above for such spaces, pattern rigidity would follow for
subgroups that are PD.2k C 1/.

We connect the work we have done so far in this paper to local homology properties
of boundaries of hyperbolic groups and classical techniques in algebraic topology and
fixed-point theory.

Homotopies and coarse topology. Lemma 2.10 goes through for topological man-
ifolds and more generally, ANR’s. But more important for us, it generalizes to the
coarse category, where the coarse topology used is that of Schwartz [Sch95], Farb–
Schwartz [FS96], as refined and generalized by Kapovich–Kleiner [KK05]. To see
this, first recall the following consequence of a theorem of Bestvina–Mess [BM91].

Theorem 4.9. For a PD.n/ hyperbolic group acting properly and cocompactly on
a proper finite dimensional simplicial complex X with metric inherited from the
simplicial structure, there exists a compact exhaustion by compact sets Bn such that
the natural inclusion map ofX nBnC1 intoX nBn induce isomorphisms on homology.



114 K. Biswas and M. Mj

We shall also be using the following theorem which is a result that follows from
work of Bestvina–Mess [BM91] and Bestvina [Bes96]. (See also Swenson [Swe99],
Bowditch [Bow98] and Swarup [Swa96].)

Theorem 4.10. Let G be a PD.n/ hyperbolic group acting freely, properly, cocom-
pactly on a contractible complex X . ThenHLF

n .X/ D Hn�1@G.

Remark 4.11. The isomorphism I (say) of Theorem 4.10 is functorial with respect
to quasi-isometries, i.e., if f is a simplicial quasi-isometry ofX to itself, and q D @f

is the induced map from @G to itself, then q� B I D I B f�.

Approximating quasi-isometries by Lipschitz and smooth maps. Let X be a
convex contractible manifold (possibly with boundary) of pinched negative curva-
ture equipped with a cocompact G-action (in particular, G is Gromov-hyperbolic).
Triangulating X=G and lifting the triangulation to X , we have a proper finite di-
mensional, locally finite simplicial complex structure on X equipped with a proper
simplicial cocompact G-action. Let f be a .K; "/- quasi-isometry of X . Let f 0

be the restriction of f to the zero-skeleton of the triangulation. Let v0; : : : ; vk be
vertices of a top dimensional simplex 	 � X . Let di be the distance function from
vi . Let ˛0; : : : ; ˛k be the barycentric co-ordinates of a point x 2 	 � X . We define
(following Kleiner [Kle99]) Of .x/ to be the unique point in X minimizing

P
˛id

2
i .

It follows from work of Kleiner [Kle99] that Of is a Lipschitz self-map of X uni-
formly close to f . Hence Of is also a quasi-isometry with quasi-isometry constants
depending on .K; "/ and the pinching constants of X . Since X is itself smooth, we
can further approximate Of by a smooth Lipschitz self-map of X uniformly close
to f . For the purposes of this paper, X will typically be a closed "-neighborhood
N".CH.ƒ// of the convex hull of a limit setƒ of a convex cocompactG. Thus we can
approximate each Ofn arbitrarily closely by a smooth map homotopic to fn. Since our
concern in this paper will be with convex hulls of limit sets of quasiconvex subgroups
in rank one symmetric spaces, we can therefore assume that each fn is a smooth map.
Note that approximating by Lipschitz maps is a considerably less delicate issue than
approximating by bi-Lipschitz maps (cf. [Why99]).

Now consider a sequence fn of uniform quasi-isometries of (the vertex set of
the Cayley graph) of G acting freely and cocompactly by isometries on a convex
contractible manifoldX (possibly with boundary) of pinched negative curvature. By
the above discussion, we may approximatefn by smooth uniformly Lipschitz uniform
self-quasi-isometries.

Then the coarse version of Lemma 2.10 is

Lemma 4.12. Given (a) a proper finite dimensional, locally finite simplicial complex
structure on a smooth convex manifold X (possibly with boundary) of pinched nega-
tive curvature with auxiliary simplicial metric inherited from the simplicial structure,
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equipped with a proper simplicial cocompact action by a Poincaré duality Gromov-
hyperbolic group G, and (b) a sequence fn of simplicial uniform .K; "/ quasi-
isometries of X converging uniformly on compact sets to the identity, there exists a
positive integer N such that for all n � N and all k � 0, fn induces the identity on
the locally finite homologyHLF

k
.X/.

Proof. By the discussion preceding this lemma, we can assume, without loss of
generality, that eachfn can be approximated by smooth maps. Further, iffn converges
uniformly on compact sets to the identity, it follows (from the barycentric simplex
construction of Kleiner [Kle99] outlined above) that so do the smooth approximants.
Hence without loss of generality we may assume that fn’s are smooth uniform self
quasi-isometries of X .

Also, since thefn’s are uniform .K; "/quasi-isometries, there existA1 � A2 � 10

(say) and a positive integer N such that for n � N large enough, no point outside a
ball of radius A1 is mapped inside a ball of radius A2 under fn. Further (taking N
larger if necessary), we may assume by Lemma 2.10 (since each fn is sufficiently
close to the identity map on the ball B10 of radius 10 about a fixed origin 0) that fn

restricted toB10 is homotopic to the identity with small tracks. By using a homotopy
on a slightly smaller ball (of radius 9, say) we may assume that each fn is the identity
on B9, and using straightening homotopies, we may also assume that no point of
the complement Bc

9 gets mapped to B9 under fn. But then the degree of the map
induced by fn on locally finite homology HLF

k
.X/ is the same as the degree of the

map f� W Hk.X;X nA1/ ! Hk.X;X nA2/, by Theorem 4.9. This is the same as the
local degree of fn (see [Hat02] for the local degree formula) at 0, which in turn is 1.
Note that ifG is a hyperbolic Poincaré duality group of dimensionm,Hk.X;X nA1/

vanishes for k ¤ m and A1 sufficiently large. This proves the lemma.

Now if qn D @fn is a sequence of boundary values of uniform quasi-isometries
fn, such that qn converges uniformly to the identity map, then we may assume that
there is a point 0 such that each fn moves 0 through a uniformly bounded amount.
By composing with bounded track homotopies if necessary, we may homotope fn to
maps which satisfy the hypotheses of Lemma 4.12.

Corollary 4.13. Let L D @X be the boundary of a PD.n/ hyperbolic group.
(1) Then L is a compact homology manifold with the singular (co)homology

groups of a sphere Sd .
(2) Let qi be a uniformly Cauchy sequence of homeomorphisms of L D @X (i.e.,

for all " > 0 there exists N such that for all x 2 L, d.qm.x/; qk.x// < " for all
m; k � N ) induced by (uniform)K; " quasi-isometries fi ofX such that ( for a fixed
base-point o) fi .o/ lies in a uniformly bounded neighborhood of o. Then there exists
a positive integer N such that qi and qj induce the same isomorphism on homology
groups of L for all i; j � N .
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Proof. Assertion (1) of the corollary follows from Theorem 2.11. We provide some
details here. One of the main results of [BM91] asserts that the (reduced) Čech coho-
mology groups ofL vanish except in dimension .n�1/. Bestvina [Bes96] also shows
that the (reduced) Steenrod homology groups ofL vanish except in dimension .n�1/.
Since L is compact metrizable, Steenrod homology coincides with Čech homology
(see for instance [Mil95]). Further, for locally connected metrizable compacta such
as L, the Čech (co)-homology groups coincide with singular (co)-homology groups
(see p. 107 of [Lef42b]). Hence both the singular (as well as Čech) homology and
cohomology of L coincide with that of a sphere of dimension .n � 1/.

Using the functoriality of Remark 4.11, the second assertion of the corollary now
follows from the first assertion and Lemma 4.12.

Scheme. Our strategy to extend the techniques of Theorem 4.3 (b) beyond spheres
to Poincaré duality PD.2nC 1/ groups (to ensure even dimensional boundary) is as
follows:

1) Recall a consequence of an old theorem of Lefschetz [Lef34], [Lef37], [Lef42a],
p. 324 (for what Lefschetz calls quasicomplexes that partly generalize ANR’s) gen-
eralized by Thompson [Tho67] (to weak semicomplexes that embrace quasicom-
plexes, ANR’s and homology manifolds in the sense of Wilder [Wil79]) and also
Knill [Kni72], Corollary 4.3 (in the general context of what Knill calls Q-simplicial
complexes) that in modern terminology says that the Lefschetz Fixed Point Theorem
holds for generalized co(homological) manifolds (in the sense of Wilder [Wil79]).

2) Use Theorem 2.11 (or Corollary 4.13, assertion 1) due to Bestvina that the
boundary of a hyperbolic PD.m/-group over the integers is a homological manifold
(in fact a homology sphere) with locally connected boundary.

3) Finally use Corollary 4.13, assertion 2, to conclude that the homeomorphisms
of the homological manifolds we have, moving points through very small distances,
induce the identity map on homology.

We shall need the following result.

Theorem 4.14 (Lefschetz [Lef34], [Lef34], [Lef42a], p. 324, Thompson [Tho67],
and Corollary 4.3 of Knill [Kni72]). If Y is a compact locally connected generalized
homology manifold then for any continuous map f W Y ! Y , if the Lefschetz number
A.f / ¤ 0, then f .y/ D y for some y 2 Y .

Combining Theorem 4.14 with assertion (1) of Corollary 4.13, we get

Corollary 4.15. If Y is the boundary of a PD.m/Gromov-hyperbolic group, then for
any continuous map f W Y ! Y if the Lefschetz number A.f / ¤ 0, then f .y/ D y

for some y 2 Y .

Corollary 4.15 and Corollary 4.13 combine to give the following.
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Proposition 4.16. Let L D @X be the boundary of a PD.n/ hyperbolic group. Let
qi be a uniformly Cauchy sequence of homeomorphisms of L D @X induced by
(uniform) K, " quasi-isometries fi of X such that ( for a fixed base-point o) fi .o/

lies in a uniformly bounded neighborhood of o. Then there exists a positive integer
N such that q�1

i B qj W L ! L for all i; j � N and also qi W L ! L has a fixed
point.

Proof. The second assertion of Corollary 4.13 shows that the there exists a positive
integerN such that for all i � N , the maps qi induce the identity map on the singular
homology group.

Using the pairing between top dimensional singular homology and cohomology,
the Lefschetz number of qi or q�1

i B qj (for all i; j � N ) computed via singular
cohomology (or equivalently, via Čech cohomology) is also the Euler characteristic.
Corollary 4.15 now furnishes the desired conclusion.

The conclusion of Theorem 4.3 (b) for (symmetric patterns of convex hulls of limit
sets of) PD.2kC1/ subgroups now follows exactly along the lines of Theorem 4.3 (b):

Theorem 4.17. Let n � 3. Suppose that J0
i ( for i D 1; 2) are symmetric patterns

of closed convex (or quasiconvex) sets in hyperbolic space Hn D H such that the
stabilizers of limit sets of J0

i are PD.2kC1/ quasiconvex subgroups of G. Then any
proper bijection � between J0

1 and J0
2 is induced by a hyperbolic isometry.

5. Consequences and questions

5.1. Rank one symmetric spaces. As explained by Schwartz in Section 8 (specif-
ically Lemma 8.1) of [Sch95], Lemmas 3.1, 3.5 and 3.6 generalize to complex hy-
perbolic space. So do Lemmas 3.3 and 4.1 (which are generalizations of lemmas of
Schwartz [Sch97] ). Thus Theorem 1.4 generalizes to the following.

Theorem 5.1. Suppose that Ji ( for i D 1; 2) are symmetric patterns of closed
convex (or quasiconvex) sets in complex hyperbolic space H of (real) dimension n,
n > 2. For i D 1; 2, let Gi be the corresponding uniform lattices. Let Hi � Gi be
infinite index quasiconvex subgroups stabilizing the limit set of some element of Ji

and satisfying one of the following conditions:

(1) Hi is a codimension one duality group.

(2) Hi is anodd-dimensionalPoincaré duality groupPD.2kC1/with2kC1 � n�1.
Then any proper bijection between J1 and J2 is induced by a hyperbolic isometry.

Remark 5.2. For other rank one symmetric spaces (quaternionic and Cayley hyper-
bolic spaces), any quasi-isometry is a bounded distance from an isometry by work of
Pansu [Pan89]. Hence Theorem 5.1 goes through for all rank one symmetric spaces.
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5.2. Special disconnected limit sets and intersections. All of what we have done
so far goes through with minor modifications for disconnected limit sets, at least one
of whose components has a stabilizerH of the form (1) or (2) in Theorem 5.1 above.
To see this, let us retrace the argument in Theorems 4.3. There we showed that for
large enoughm, n,��1

n B�m preserves limit sets that are spheres. The same argument
shows that for large enough m, n, ��1

n B �m preserves components of limit sets of
diameter bigger than (some fixed) ". Since the limit set ofH has components whose
stabilizers are of the form (1) or (2), the arguments for Theorems 4.8 and 4.17 go
through to prove the existence of fixed points for ��1

n B �m. This is enough to show
the following.

Corollary 5.3. Let n � 3. Suppose Ji ( for i D 1; 2) are symmetric patterns of
closed convex (or quasiconvex) sets in hyperbolic space Hn D H or more generally
a rank one symmetric space H of (real) dimension n. For i D 1, 2, let Gi be the
corresponding uniform lattices in H. Let Hi � Gi be an infinite index quasiconvex
subgroup stabilizing the (possibly disconnected) limit set of some element of Ji and
satisfying the condition that the limit set ofHi has components whose stabilizersH 0

i

(obviously containingHi ) are of one of the following forms:

(1) H 0
i is a codimension one duality group.

(2) H 0
i is anodd-dimensionalPoincaréduality groupPD.2kC1/with2kC1 � n�1.

Then any proper bijection between J1 and J2 is induced by a hyperbolic isometry.

We next state a generalization of Theorem 1.4 when the intersection of some
finitely many conjugates of Hi � Gi is of the form (1) or (2) above.

Corollary 5.4. Letn � 3. Suppose Ji ( for i D 1; 2) are symmetric patterns of closed
convex (or quasiconvex) sets in hyperbolic space Hn D H or more generally a rank
one symmetric space H of (real) dimension n. For i D 1, 2, letGi be the correspond-
ing uniform lattices in H. Let Hi � Gi be an infinite index quasiconvex subgroup
and g1; : : : gm 2 G be finitely many elements such that H 0

i D T
j D1;:::;m gjHig

�1
j

is of one of the following forms:

(1) H 0
i is a codimension one duality group.

(2) H 0
i is anodd-dimensionalPoincaréduality groupPD.2kC1/with2kC1 � n�1.

Then any proper bijection between J1 and J2 is induced by a hyperbolic isometry.

Sketch of proof. The condition H 0
i D T

j D1:::m gjHig
�1
j implies (by theorems of

Short [Sho91] and Gitik–Mitra–Rips–Sageev [GMRS98]) that H 0
i is quasiconvex

and that ƒ0
i D T

j D1:::m gjƒi , where ƒ0
i (resp. ƒi ) represents the limit sets of H 0

i

(resp.Hi ). Since the maps ��1
n B�m preserve limit sets and hence their intersections

it follows that the collection of translates of joins of limit sets of H 0
i is a symmetric

pattern preserved by ��1
n B �m. The rest of the argument proving pattern rigidity is

as in Theorem 4.3.
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5.3. Quasi-isometric rigidity. Let G be a graph of groups with Bass–Serre tree of
spaces X ! T . Let G D �1G .

(We refer the reader to [MSW04] specifically for the following notions: depth
zero raft, crossing graph condition, coarse finite type and coarse dimension, finite
depth.)

Combining Theorems 1.5, 1.6 of [MSW04] with the Pattern Rigidity Theo-
rem 1.4 we have the following QI-rigidity theorem along the lines of Theorem 7.1
of [MSW04].

Theorem 5.5. Let G be a finite, irreducible graph of groups such that for the associ-
ated Bass–Serre tree T of spaces no depth zero raft of T is a line. Further suppose
that the vertex groups are fundamental groups of compact hyperbolic n-manifolds,
or, more generally, uniform lattices in rank one symmetric spaces of dimension n,
n � 3, and edge groups are all of exactly one the following types:

(a) A duality group of codimension one in the adjacent vertex groups. In this case
we require in addition that the crossing graph condition of Theorems 1.5, 1.6
of [MSW04] be satisfied and that G is of finite depth.

(b) An odd-dimensional Poincaré duality group PD.2k C 1/ with 2k C 1 � n � 1.
IfH is a finitely generated group quasi-isometric toG D �1.G / thenH splits as

a graph G 0 of groups whose depth zero vertex groups are commensurable to those of
G and whose edge groups and positive depth vertex groups are respectively quasi-
isometric to groups of type (a), (b).

Proof. By the restrictions on the vertex and edge groups, it automatically follows
that all vertex and edge groups are PD groups of coarse finite type. In case (b), G is
automatically finite depth, because an infinite index subgroup of a PD.n/ groups has
coarse dimension at most n � 1. Also the crossing graph is empty in this case hence
the crossing graph condition of Theorems 1.5 and 1.6 of [MSW04] is automatically
satisfied.

Then by Theorems 1.5 and 1.6 of [MSW04], H splits as a graph of groups G 0
with depth zero vertex spaces quasi-isometric to H D Hn and edge groups quasi-
isometric to the edge groups of G and hence respectively type (a), (b). Further, the
quasi-isometry respects the vertex and edge spaces of this splitting, and thus the
quasi-actions of the vertex groups on the vertex spaces of G preserve the patterns of
edge spaces.

By Corollary 1.5 the depth zero vertex groups in G 0 are commensurable to the
corresponding groups in G .

Using Theorem 5.1 or Corollary 5.3, we could get the corresponding generaliza-
tions to quasiconvex subgroups covered by these theorems.

5.4. Questions. Note that our proof of Lemma 4.13 does not answer the following.
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Question 5.6. Let G be a PD.m/ hyperbolic group. Let @G be its (Gromov) bound-
ary equipped with a visual metric d . Does there exist " > 0 such that if f is a
homeomorphism of @G satisfying d.x; f .x// < " for all x 2 @G, then f induces
the identity map on homology?

Kapovich [Kap07a] constructs convex projective representations of the Gromov–
Thurston examples; it is conceivable that these may be realized as convex cocompact
subgroups of uniform hyperbolic lattices. But there is a dearth of examples of higher
dimensional Kleinian groups in general (see [Kap07b] for a survey). In particu-
lar, there is a dearth of examples in higher dimensional Kleinian groups to which
Theorem 5.1 applies.

There are non-ANR examples of hyperbolic Coxeter group boundaries coming
from work of Davis [Dav83]. These boundaries are not locally simply connected.
Doubling some of these examples (in dimension � 5) along their boundaries gives
the standard topological sphere Sn. Thus exotic (non-ENR) homology spheres might
conceivably arise as limit sets. The following seems interesting in its own right.

Question 5.7. Does there exist a convex cocompact (i.e., geometrically finite) PD.n/
hyperbolic group G with non-ENR Gromov boundary acting on H D HnC1? Can
such a G appear as a codimension one quasiconvex subgroup of a uniform lattice
in H?

Fischer [Fis03] has further investigated these examples.

Observation 5.8. Note that Theorem 1.4 combined with Corollary 5.3 implies that
pattern rigidity holds for all quasiconvex subgroups of hyperbolic 3-manifolds that
are not virtually free. Hence a test-case not covered by the work in this paper is that
of symmetric patterns in hyperbolic 3-manifolds corresponding to free quasiconvex
subgroups. This is the subject of work in progress.

Another test case is the case of symmetric patterns of quasiconvex surface sub-
groups in hyperbolic 4-manifolds, or, at the level of limit sets, copies of S1 in S3.

Remark 5.9. Much of what has been done in the context of Poincaré duality groups
might as well have been done in group-free language in the context of coarse Poincaré
duality spaces. (See Kapovich–Kleiner [KK05].)
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