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1. Introduction

Dehn functions have a long and rich history in group theory and topology. The germ
of the notion of Dehn function was expounded by Max Dehn in his solution to the
word problem for the fundamental groups of closed hyperbolic surfaces in [10], [11].
Gromov [13], [14] further developed the notion of Dehn function as a filling invariant
for a finitely presented group, and proposed the investigation of higher dimensional
filling invariants.

A function ı W N ! N is called the (1-dimensional) Dehn function of a finite
presentation if it is the minimal function with the following property. Every word of
length at most x in the generators representing the identity element of the group can be
expressed as a product of at most ı.x/ conjugates of relators and their inverses. Stated
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more geometrically, every loop of combinatorial length at most x in the universal
cover of a presentation 2-complex for the group, can be null-homotoped using at
most ı.x/ 2-cells. The adjective 1-dimensional refers to the fact that the function ı.x/

measures the area of efficient disk fillings of 1-dimensional spheres. It is customary
to drop the adjective 1-dimensional, and to simply talk about Dehn functions of finite
presentations. It is known that, up to coarse Lipschitz equivalence, the Dehn function
is a well-defined geometric invariant of a finitely presented group.

Dehn functions are intimately connected to the solution of the word problem in
finitely presented groups. For example, a group has a solvable word problem if
and only if its Dehn function is bounded by a recursive function. In particular, the
existence of groups with unsolvable word problem implies that there are groups with
Dehn function not bounded above by any recursive function. We now have a greater
understanding, thanks to the intense research activity of the past two decades and
in particular to the deep work of [16], of which functions can be Dehn functions of
finitely presented groups. For example, combining the results of [4] and [16], we
know that the set of exponents ˛ for which x˛ is coarse Lipschitz equivalent to a
Dehn function is dense in f1g [ Œ2; 1/.

Following Gromov, for each integer k � 1 one can define k-dimensional Dehn
functions for groups G of type FkC1 (that is, G admits a K.G; 1/ with finite
.k C 1/-skeleton). Roughly speaking, a k-dimensional Dehn function, ı

.k/
G .x/, gives

a minimal upper bound for the number of .k C1/-cells needed in a .k C1/-ball filling
of a singular k-sphere in X of k-volume at most x. As in the case of ordinary Dehn
functions, the coarse Lipschitz equivalence class of a k-dimensional Dehn function is
an invariant of a group of type FkC1. The k-dimensional Dehn functions are exam-
ples of Gromov’s higher dimensional filling invariants of groups. Precise definitions
of the ı

.k/
G .x/ are given in Section 2.

In recent years, there has been considerable progress in our understanding of
which functions are (k-dimensional) Dehn functions of groups [1], [2], [5], [6], [8],
[17]. Combining the results of [5], [6], one now knows that for each k � 2, the set
of exponents ˛ for which x˛ is coarse Lipschitz equivalent to a k-dimensional Dehn
function is dense in Œ1; 1/. Young [18] has shown that for k � 3 there are groups with
k-dimensional Dehn function not bounded above by any recursive function. What
Young actually shows is that for k � 2 there exist groups for which the Dehn functions,
defined in terms of admissible .k C 1/-dimensional manifold fillings of admissible
k-tori, are not bounded above by any recursive function. For k � 3, he then uses
the trick introduced in Remark 2.6(4) of [5] to conclude that the Dehn functions
ı.k/ of these groups have the same property. In contrast, Papasoglu [15] shows that
2-dimensional Dehn functions are all bounded above by recursive functions. In the
case k D 2, Young’s example together with Papasoglu’s result show that the Dehn
function based on admissible 3-manifold fillings of 2-tori is different from the Dehn
function ı.2/ introduced above. In summary, Dehn functions based on admissible
.k C 1/-ball fillings of admissible k-spheres do not have to be bounded above by
recursive functions for k 6D 2. The case k D 2 is indeed special.
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Papasoglu asked if there were examples of groups with super-exponential 2-
dimensional Dehn functions. See also the remarks by Gromov in 5.D.(6) on page 100
of [14]. Pride and Wang [17] produced an example of a group whose 2-dimensional
Dehn function lies between e

p
x and ex . The purpose of the current paper is to

describe two families of groups fGng1
nD2 and fHng1

nD2 whose 2-dimensional Dehn
functions display a range of super-exponential behavior.

Theorem 1.1. For every n > 0, there exist groups Hn and Gn of type F3, with
ı

.2/
Hn

.x/ ' expn.
p

x/ and ı
.2/
Gn

.x/ ' expn.x/.

Here expn denotes the n-fold composition of exponential functions.

Remark 1.2. The combination-subdivision techniques of the current paper are one
way of producing groups with super-exponential 2-dimensional Dehn functions.
There are other strategies that have the potential to produce groups of type F3 whose
2-dimensional Dehn functions have super-exponential behavior. The following was
suggested to the second author by Steve Pride.

Take a group A of type F3 with polynomially bounded ordinary Dehn function
and containing a finitely presented subgroup B whose ordinary Dehn function is some
tower of exponentials. Now let G be the HNN extension with base group A, edge
group B , and both edge maps are just the inclusion B ! A. Because of the finiteness
properties of A and B , we know that G is of type F3. Finally take a word in B that
has very large area filling in B , and efficient filling in A. The product of this word
with the HNN stable letter gives an annulus, whose ends can be capped off using the
efficient A-fillings. This gives a 2-sphere in the HNN space with small area but large
3-dimensional filling.

So the whole problem reduces to finding groups with subgroups whose area
is highly distorted. It is tempting to use the remarkable constructions of Birget–
Ol’shanskii–Rips–Sapir [3] to this end. However, it is likely that the ambient groups
in [3] are not of type F3. In particular, using the notation of [3], start with the
Baumslag–Solitar group BS.1; 2/ D ha; t j tat�1 D a2i as the group Gb , and then
construct the group HN .S/. The Cayley graph of Gb is contained in that of HN .S/.
Consider the loop Œa; tnat�n�, which is filled by a disk of the form shown in Figure 6
of [3]. (This figure is viewed as a punctured sphere diagram, with the small loop la-
beled ub as the boundary, where the disk fillings track the behavior of the S -machine
that reduces Œa; tnat�n� to the identity.) This disk filling has polynomial area. On the
other hand, this loop is a product of exponentially many loops of the form tat�1a�2,
each of which admits a disk filling of the form in Figure 6. These two methods of
filling the word Œa; tnat�n� produce a 2-sphere in the Cayley complex of HN .S/,
indicating the possibility that HN .S/ is not of type F3. Indeed, it is likely that the
group GN .S/ of [3] is not of type F3 either.

This paper is organized as follows. In Section 2 we give the definitions of k-
dimensional Dehn functions, and remind the reader of a few standard techniques that
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are useful for establishing lower bounds. Section 3 gives a geometric overview of
the groups, and the inductive construction of the ball-sphere pairs that are used to
establish the lower bounds for the Dehn functions. Since the precise definitions of
the groups are somewhat involved, it is important that the reader keep the overview
in mind when reading the later sections. In Section 4 we give the precise definitions
of the groups Hn and Gn. These are defined recursively, and the details are recorded
in Table 1 for the reader’s convenience.

The proof of Theorem 1.1 is broken into two parts. We establish the appropriate
lower bounds in Section 5 by exhibiting sequences of embedded ball-sphere pairs in
the universal covers of 3-dimensional K.G; 1/-complexes. In Section 6 we obtain
upper bounds on 2-dimensional Dehn functions of general graphs of groups in terms
of information about their vertex and edge groups. These are then used to prove the
desired upper bounds for ı

.2/
Hn

and ı
.2/
Gn

. This proof depends on a key area distortion
result, which is established in Section 7.

We thank the referee for helpful comments and corrections.

2. Preliminaries

In this section we define k-dimensional Dehn functions, and describe two useful
techniques for establishing lower bounds for Dehn functions. As in the case of
ordinary (or 1-dimensional) Dehn functions, one must work with coarse Lipschitz
classes of functions in order to obtain a geometric invariant of a group.

We begin with a discussion of coarse Lipschitz equivalence. Given two functions
f; g W Œ0; 1/ ! Œ0; 1/ we define f � g to mean that there exists a positive constant
C such that

f .x/ � C g.Cx C C / C Cx C C

for all x � 0. If f � g and g � f then f and g are said to be coarse Lipschitz
equivalent (or simply equivalent), denoted f ' g.

We work with the same definition of higher dimensional Dehn functions as in [5],
which is equivalent to the notions in [8] and in [2]. In order to give a formal definition
of ı.k/.x/, one needs to work with a suitable class of maps that facilitates the counting
of cells. In [5] the class of admissible maps is used, and we use this class here.

If W is a compact k-dimensional manifold and X a CW complex, an admissible
map is a continuous map f W W ! X .k/ � X such that f �1.X .k/ � X .k�1// is a
disjoint union of open k-dimensional balls, each mapped by f homeomorphically
onto a k-cell of X . The key fact about admissible maps is that every continuous map
is homotopic to an admissible one.

Lemma 2.1 (Lemma 2.3 of [5]). Let W be a compact manifold (smooth or PL) of
dimension k and let X be a CW complex. Then every continuous map f W W ! X

is homotopic to an admissible map. If f .@W / � X .k�1/ then the homotopy may be
taken rel @W .
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Given an admissible map f W W ! X from a compact k-manifold to a CW
complex X , the k-volume of f , denoted Volk.f /, is defined to be the number of
open k-balls in W mapping to k-cells of X . We now have all the ingredients for a
formal definition of the k-dimensional Dehn function.

Given a group G of type FkC1, fix an aspherical CW complex X with fundamental
group G and finite .kC1/-skeleton. Let zX be the universal cover of X . If f W Sk ! zX
is an admissible map, define the filling volume of f to be the minimal volume of an
admissible extension of f to BkC1:

FVol.f / D minfVolkC1.g/ j g W BkC1 ! zX; gj@BkC1 D f g:
Note that extensions of f exist since zX is contractible, and that we may assume these
extensions are admissible by Lemma 2.1.

Now, the k-dimensional Dehn function of X is defined to be

ı.k/.x/ D supf FVol.f / j f W Sk ! zX; f is admissible, Volk.f / � x g:
This definition is the one given in [5], which is equivalent to the definitions given

in [2], [8]. It is shown in [2] that, up to equivalence, ı.k/.x/ is a quasi-isometry
invariant of zX . In particular, the equivalence class of ı.k/.x/ does not depend on the
particular K.G; 1/ complex used. Therefore, we will often write ı.k/.x/ as ı

.k/
G .x/.

Remark 2.2. We are concerned in this paper primarily with 2- and 3-dimensional
volume, which for clarity we write as Vol2.f / D Area.f / and Vol3.f / D Vol.f /.
We also abuse notation in the standard way by writing, for example, Vol.Y / to mean
Vol.f / for some understood f W Y ! X .

We recall two very useful techniques from [5] for computing lower bounds for
k-dimensional Dehn functions.

Remark 2.3. The first technique follows from the fact (see Remark 2.7 of [5]) that the
volumes of top-dimensional embedded balls in a contractible complex are precisely
the filling volumes of their boundary spheres. More precisely, if zX is a contractible
.k C1/-complex, and g W BkC1 ! zX is an embedding, such that g and gjSk D f are
both admissible, then FVol.f / D VolkC1.g/. The proof is a standard homological
argument; see [5] for details.

Remark 2.4. See Remark 2.1 of [5]. In order to establish the relation f � g

between non-decreasing functions, it suffices to consider relatively sparse sequences
of integers. For if .ni / is an unbounded sequence of integers for which there is a
constant C > 0 such that n0 D 1 and niC1 � C ni for all i , and if f .ni / � g.ni /

for all i , then f � g. Indeed, given x 2 Œ0; 1/ there is an index i such that
ni � x � niC1, whence f .x/ � f .niC1/ � g.niC1/ � g.C ni / � g.Cx/.
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In the case of the groups Hj in this paper, we produce a sequence of embedded balls
fB3

r g1
rD1 and spheres fS2

r g1
rD1 in the universal cover of a 3-dimensional, aspherical

K.Hj ; 1/ complex. By Remark 2.3Vol.B3
r / provides a lower bound for ı.2/ evaluated

at Area.S2
r /. In Lemma 5.17 we prove that there exist constants A1; A2 so that

A1r2 � Area.S2
r / � A2r2 :

The sequence of numbers fArea.S2
r /g1

rD1 satisfies the conditions of Remark 2.4, and

so one obtains a lower bound for the function ı
.2/
Hj

.x/.
The situation is similar for the groups Gj , although the inequalities are a bit more

subtle. We show directly in Lemma 5.18 that the sequence fArea.S2
r /g1

rD1 satisfies

the conditions of Remark 2.4, and so lower bounds for ı
.2/
Gj

.x/ evaluated at Area.S2
r /

(given by the 3–volume of the corresponding embedded 3-balls), translate into a
general lower bound for the function ı

.2/
Gj

.x/.

3. Overview and geometric intuition

In Section 4 we define a sequence of groups Gn and Hn (for n � 1) with ı
.2/
Gn

.x/ '
expn.x/ and ı

.2/
Hn

.x/ ' expn.
p

x/. In Section 5 lower bounds for these Dehn func-
tions are established by exhibiting sequences of embedded 3-balls and boundary 2-
spheres in the universal covers of 3-dimensional K.Gn; 1/ and K.Hn; 1/ complexes.
Some of the details in these two sections may appear a little daunting on first reading.
In order to motivate these groups and the sequences of 3-balls, we first investigate a
classical construction for producing groups whose 1-dimensional Dehn functions are
iterated exponentials.

3.1. A 1-dimensionalDehn function example and schematic diagrams. Consider
how one may construct finitely presented groups whose 1-dimensional Dehn functions
are iterated exponential functions. The following examples are part of the folklore,
but only appear to have been written down relatively recently [7]. Consider the family
of finitely presented groups BSn (for each positive integer n), defined by taking BS1

to be the Baumslag–Solitar group

BS1 D ha; t1 j t1at�1
1 D a2i

and defining the BSn (n � 2) as iterated HNN extensions

BSnC1 D hBSn; tnC1 j tnC1tnt�1
nC1 D t2

ni :

The group BSn has Dehn function equivalent to the iterated exponential function
expn.x/.

The intuition is as follows. The commutator word

w1;m1
D Œt

m1

1 at
�m1

1 ; a�
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has linear length in m1 and has area exp.m1/ in BS1.
Now BS1 < BS2, and the extra relation in the presentation of BS2 ensures that

one can replace the segments t
m1

1 in the commutator word above by words of the
form t

m2

2 t1t
�m2

2 of length approximately log2.m1/. Thus, the word

w2;m2
D Œ.t

m2

2 t1t
�m2

2 /a.t
m2

2 t1t
�m2

2 /�1; a�

has length a linear function of m2, but area exp2.m2/ in BS2.
Continuing in this fashion, one can keep replacing subwords of the form t

mj

j by

t
mj C1

j C1 tj t
�mj C1

j C1 where mj C1 is approximately log.mj /. One obtains a word wn;mn

representing the identity in BSn whose length is a linear function of mn and whose
area is expn.mn/. The lower bound on the area of the word wn;mn

is obtained by
realizing wn;mn

as the boundary of an embedded van Kampen disk in the universal
cover of the standard presentation 2-complex for BSn. One verifies that the area
of the embedded disk is expn.mn/. Since this universal cover is contractible, the
standard homological argument from Remark 2.3 enables one to conclude that any
van Kampen filling disk for wn;mn

has at least as much area as the embedded one.
Figure 3.1 contains schematic diagrams of these embedded disks. In these sche-

matics, we ignore all syllables of length 1, so the original commutator w1;m1
appears

as a square. Each replacement rule

t
mj

j 7! t
mj C1

j C1 tj t
�mj C1

j C1

is represented by a triangle with base attached along an edge of the previous schematic
diagram. The original square schematic for w1;m1

becomes the octagon schematic
for w2;m2

, and this becomes the 16-gon schematic for w3;m3
, and so on.

w1;m1
w2;m2 w3;m3

Figure 3.1. Schematic van Kampen disks for the words wi;mi
.

We reformulate the geometric intuition and combinatorics of these examples in
terms of schematic diagrams. Start with a quadrilateral whose area is an exponential
function of its perimeter length. Now take logs of the perimeter length by attaching
triangles via their base edges. Metrically, we think of the two remaining edges of
each triangle as having length that is approximately a log of the length of the base
edge. We attach a generation of 4 triangles, then a second generation of 8 triangles, a
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third generation of 16 triangles and so on. Repeat this procedure as often as necessary
to obtain a diagram whose area is an n-fold composite of exponential functions of its
perimeter length.

The combinatorics of the boundary circles of the schematic diagrams changes in
a very simple fashion. Edges get subdivided into two at each stage. Topologically
this subdivision is achieved by attaching triangular 2-disks along their base edges.
This is shown in Figure 3.2.

log.m/

log.m/

log.m/

log.m/

m m

Figure 3.2. The subdivision rule and associated triangular disk.

Remark 3.1. Note that for each i the schematic diagram for wi;mi
is a template for

an infinite family of embedded van Kampen diagrams in the universal cover of the
presentation 2-complex for BSi . The infinite family is obtained by letting the integer
mi range from 1 to infinity.

3.2. The 2-dimensional Dehn function schematic procedure. What complica-
tions arise when one tries to mimic the procedure of the previous subsection in higher
dimensions? We will focus on the case of 2-dimensional Dehn functions. Start with
a schematic 3-dimensional ball and then try to reduce the areas of portions of its
boundary 2-sphere by attaching new 3-balls along its boundary. Each new 3-ball
attaches along a 2-disk. The boundary of such a disk is a circle that survives on the
boundary of the new 3-ball. A collar neighborhood of such a circle contributes to
the area of the new boundary 2-sphere.

In order to be able to reduce area repeatedly by attaching successive generations
of 3-balls, we will need to ensure that future generations of 3-balls attach in such a
way as to cover up (large portions of) the boundary circles of the attaching disks of a
given generation of 3-balls. This is a very basic complication in the combinatorics of
attaching 3-balls that does not occur in the case of 1-dimensional Dehn functions and
the examples of the previous subsection. In the 1-dimensional case the new 2-disks
attach along 1-disks, the boundary of a 1-disk is a 0-sphere, and a collar neighborhood
of a 0-sphere makes no significant contributions to length of the new boundary circle.

We first describe the combinatorics of our approach for dealing with the difficulty
outlined in the preceding paragraph. We construct a sequence of schematic 3-balls
Bi whose boundary 2-spheres Si have the following properties.

(i) Each Si has a tiling into triangular regions.
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(ii) The boundary edges of these regions have two colors, labeled .i � 1/ and i .
(iii) Each tile contains exactly one .i � 1/-edge.

Now SiC1 is obtained from Si by a combination-subdivision move as shown in
Figure 3.3. Unlike the 1-dimensional case, where a simple subdivision procedure
was sufficient, in this case one combines two cells together to form a quadrilateral
region, and then one subdivides that region.

Each edge of color .i �1/ is the diagonal of a quadrilateral (combine two adjacent
triangular regions). Delete this diagonal edge and retriangulate this quadrilateral by
adding a barycenter and coning to the four vertices. Each new edge is of color
.i C 1/. Note that this gives a triangulation of the sphere SiC1 with just two colors,
i and .i C 1/, and now each triangle contains exactly one edge of color i . Thus one
can repeat this procedure inductively.

i

ii

i

i

i

ii

i

i

i

i � 1

i � 1

i C 1

i C 1

i C 1

i C 1

i C 1

Figure 3.3. The combination-subdivision rule and associated 3-ball.

We think of each sphere Si as being the boundary of a 3-ball Bi . We think of each
old quadrilateral as the back half of a 2-sphere and each new (subdivided) quadrilateral
as the front half of the same 2-sphere. This 2-sphere bounds a 3-ball, as indicated
in the lower half of Figure 3.3. The 3-ball BiC1 is obtained from Bi by attaching
a collection of such 3-balls along the quadrilateral neighborhoods of the edges with
color .i � 1/.
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As in the case of the 1-dimensional Dehn function examples, the combination-
subdivision moves have geometric content. Now we are concerned with areas as well
as lengths. There are two geometric versions of the combination-subdivision rule.
These are indicated in Figure 3.4, and details are given in Section 5.

(i) In a Type I rule, edges of color i have length equal to m, edges of color .i � 1/

have length em, and the new edges of color .i C 1/ have length m. Each of the
two old triangles have area em and the new triangles each have area m2.

(ii) In a Type II rule, edges of color i and .i � 1/ have length equal to m, and the
new edges of color .i C 1/ have length log.m/. Each of the two old triangles
have area m2 and the new triangles each have area of order m.

I

II

m

m

m

m

m

m

mm
m

m

m

m

m

m

m

m

m

m

m

log.m/

log.m/

em

Figure 3.4. Geometric versions of the combination-subdivision rule.

These two types are designed so that one can alternate families of each type. In
Section 5 we construct families of embedded balls and boundary spheres with the
following schematic diagrams. The base 2-sphere S1 is the join S0 � S0 � S0, with
the equator S0 �S0 being comprised of 4 edges of color 0, and the remaining 8 edges
having color 1. We alternate these versions of the geometric combination-subdivision
rule as we progress along the sequence of schematic 2-spheres. Figure 3.5 shows three
fourths of the sphere S1, and the effect of the first few combination-subdivision rules.

The geometry of these families is as follows. The sphere S1 bounds a 3-ball
whose volume is a quadratic function of the area of S1. Applying a generation of
Type I moves, we see that the sphere S2 bounds a 3-ball whose volume is the square of
exp.

p
Area.S2//, which is equivalent to exp.

p
Area.S2//. The sphere S3 is obtained

by applying Type II moves, and so bounds a 3-ball whose volume is exp.Area.S3//,
and so on.
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I

I

II

S1 S2

S3
S4

Figure 3.5. Alternating the combination-subdivision rules.

Remark 3.2. These schematic diagrams are related to the groups Gi and Hi (i � 0)
of Section 4 as follows. For each integer i � 0, the sphere S2iC1 is a template
for 2-spheres in the universal cover of a 3-dimensional K.Gi ; 1/-complex, and the
sphere S2iC2 is a template for 2-spheres in the universal cover of a 3-dimensional
K.Hi ; 1/-complex.

Remark 3.3. In the case of the 1-dimensional Dehn function the schematic diagrams
ignored syllables of length one. So a vertex may correspond to an edge of length 1
in a corresponding van Kampen diagram.

Similarly, vertices in these schematic sphere diagrams Si may correspond to
(several) 2-cells of the corresponding embedded spheres, and an edge may correspond
to corridors on the corresponding spheres.

Remark 3.4. By analogy with the 1-dimensional case, one might be tempted in
constructing the groups Gi and Hi to use Baumslag–Solitar type relations to provide
the exponential scaling required by the Type I moves. For example, thinking of
each of the triangles in the base quadrilateral of a Type I move as similar to the
triangle in Figure 3.2, we could take the base quadrilateral to have boundary word
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tnat�nsna�1s�n in the group

B D ha; t; s j as D at D a2i:
This quadrilateral is composed of two triangles (each with area exp.n/) with boundary
words tnat�n D a2n

and snas�n D a2n
.

The Type I move is executed by adding a stable letter u that acts on B via the
endomorphism ' given by: s 7! s; t 7! t; a 7! a2. The word tnat�nsna�1s�n is
the boundary of a new quadrilateral, composed of four triangles (each of area n2),
and the new-color edges are un, .s�1u/n, un, and .t�1u/n. (See Figure 3.3.)

Observe, however, that the group

P D hB; u j gu D '.g/; .g 2 B/i
is not an HNN extension with base B since the map ' is not injective. For instance
t�1ats�1a�1s 2 Ker.'/.

It is important that each of groups in the present paper admits a graph-of-groups
decomposition. This facet of our construction is exploited heavily in Section 5 where
the graph of groups structure is used to conclude the existence of 3–dimensional
classifying spaces, and these 3–dimensional spaces are used to establish lower bounds
for the 2-dimensional Dehn functions.

In Section 4 below the graph-of-groups structure is guaranteed by using mapping
tori of free groups of rank 2 in place of Baumslag–Solitar groups.

4. The groups

Let F2 denote the free group on two generators. To construct the two families of
groups Gn and Hn, we start with the base group F2 � F2 � F2 and then alternate two
procedures, coning and attaching suspended wings, which are described below. The
base group is of type F3, and we shall see from the definitions of the two procedures
that the groups obtained at each stage are also of type F3.

As indicated in Remark 3.4 we will need to use an exponentially growing auto-
morphism ' of F2 repeatedly in the construction. It will be important (in Section 5.3)
that ' be palindromic.

Definition 4.1 (The palindromic automorphism '). Setting F2 D h�; �i, we define
the automorphism ' W F2 ! F2 by

'.�/ D ��� and '.�/ D �:

Remark 4.2 (Vector notation for free group bases). We use the vector notation y
to denote the basis fy1; y2g for a free group of rank two. In Table 1, the vectors
themselves may have subscripts. For example, u1 denotes the basis fu11; u12g and
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a23 denotes the basis fa231; a232g. Furthermore, an ordered list of k vectors describes
an ordered basis of F2k . For example, in Table 1, hu0; yi denotes F4 with the ordered
basis fu01; u02; y1; y2g.

We also use product notation to denote coordinatewise multiplication of basis
elements. For example, u�1

0 a21 denotes the basis fu�1
01 a211; u�1

02 a212g.
We say that two vectors v and w commute if the two basis elements represented

by v commute with the two represented by w .

The following definition provides the algebraic framework for the Type II moves
from Section 3. We shall see explicit examples of these moves in Section 5.1.

Definition 4.3 (Coning). Suppose G is a group with a subgroup � isomorphic to
.F2 � F2 � 	 	 	 � F2/ � F2. We define the cone of G over � to be the fundamental
group of the graph of groups in Figure 4.1.

G

��

Figure 4.1. The cone of G over � .

For each edge group, one of the edge maps is inclusion and the other edge map is
.' � ' � 	 	 	 � '/ � '. This map is clearly injective, as ' is injective. Thus the cone of
G over � is simply a double HNN extension of G. If G is of type F3, then the cone
of G over � is also of type F3.

Example 4.4. In the first step of the inductive procedure, we start with G D F2 �
F2 � F2, where the three F2 factors are generated by the 2-vectors a01, a02 and y .
The subgroup � is F2 � F2 D ha01i � ha02i. Thus the presentation for G0 D the
cone of G over � is given by

G0 D hG; u0 j .g; h/u01 D .g; h/u02 D .'.g/; '.h// for all .g; h/ 2 �i

The next definition provides the algebraic framework for the Type I moves from
Section 3. We shall see explicit examples of these moves in Section 5.1.

Definition 4.5 (Attaching suspended wings). Let G be a group containing a collection
of subgroups f�1; : : : ; �ng, each isomorphic to F2 Ì� F4, where the map � W F4 !
Aut.F2/ is defined on the ordered basis fx1; x2; x3; x4g as follows:

x1 7! '; x2 7! '; x3 7! id; x4 7! id :

Consider the fundamental group of the graph of groups in Figure 4.2. For each edge
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G

�1

�1

�2

�2

�n

�n

Figure 4.2. Attaching suspended wings to the subgroups �i .

group F2 Ì� F4, the two edge maps are the inclusion map and the map ' � id, which
acts by ' on the F2 factor and the identity on the F4 factor. It is easy to check that the
latter map is an injective homomorphism. We say that this group is obtained from G

by attaching suspended wings to the collection of subgroups �i .
Note that the edge groups �i are all of type F2. Thus, if G is of type F3, then the

new group is also of type F3.

Example 4.6. In the group G0 above, the subgroup �1 D ha01; u0; yi is isomorphic
to the group F2 Ì� F4 from Definition 4.5. Then the group obtained from G0 by
attaching suspended wings to �1 has the presentation�

G0; a11

ˇ̌̌̌
ga111 D ga112 D '.g/ for all g 2 F.a01/;

ga111 D ga112 D g for all g 2 F.u0/ � F.y/

�
:

Example 4.7. The group H1 in the inductive construction is obtained from G0 by
attaching suspended wings to �1 and �2, where �1 D F2 Ì� F4 D ha01i Ì� hu0; yi
as in Example 4.6, and �2 D F2 Ì� F4 D ha02iÌ� hu0; yi. The pair of stable letters
in H1 corresponding to the edge group �1 is denoted by a11 and the pair of stable
letters corresponding to the edge group �2 is denoted by a12. This is the summarized
in the H1-row of Table 1.

4.1. Inductive definition of the groups Gn and Hn. In Example 4.4, the group G0

was defined by applying the coning procedure to the base group G D F2 � F2 � F2.
In Example 4.7 the group H1 was obtained from G0 by attaching suspended wings.
The groups Gn, n � 1 and Hn, n � 2 are defined inductively by alternating these
two procedures.

The group Gn is obtained from Hn by coning over a subgroup of Hn that is
isomorphic to F2nC1 � F2, where F2nC1 is a free product of 2n copies of F2. The
pair of new stable letters is denoted by un. The F2 factor of the subgroup F2nC1 �F2

is generated by un�1. The generators of the F2nC1 factor are listed in the Gn-row of
Table 1.
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Table 1

Group Stable letters Edge groups ı.2/.s/

H0 a01; a02; y x3=2

G0 u0 ha01i � ha02i x2

H1
a11

a12

ha01i Ì� hu0; yi
ha02i Ì� hu0; yi

e
p

x

G1 u1 ha11; a12i � hu0i ex

H2

a21

a22

a23

a24

ha11i Ì� hu1; yi
ha12i Ì� hu1; yi

hu�1
0 a11i Ì� hu1; a01i

hu�1
0 a12i Ì� hu1; a02i

ee
p

x

G2 u2 ha21; a22; a23; a24i � hu1i eex

H3

a31

a32

a33

a34

a35

a36

a37

a38

ha21i Ì� hu2; yi
ha22i Ì� hu2; yi

ha23i Ì� hu2; a01i
ha24i Ì� hu2; a02i

hu�1
1 a21i Ì� hu2; a11i

hu�1
1 a22i Ì� hu2; a12i

hu�1
1 a23i Ì� hu2; u�1

0 a11i
hu�1

1 a24i Ì� hu2; u�1
0 a12i

eee

p
x

:::
:::

:::
:::

Hn

.n � 1/

ani

1 � i � 2n�1

ani

2n�1 < i � 2n

ha.n�1/i i Ì� hun�1; Ln.i/i
1 � i � 2n�1

hu�1
n�2a.n�1/j i Ì� hun�1; Ln.j C 2n�1/i

1 � j � 2n�1; j D i � 2n�1

expn
p

x

Gn

.n � 1/

un hanj i2n

j D1
� hun�1i expn x
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The group Hn is obtained from Gn�1 by attaching suspended wings to a collection
of 2n subgroups of Gn�1, each of which is isomorphic to F2Ì� F4 from Definition 4.5.
Note that each of these subgroups labels two edges of the rose in Figure 4.2, so that
there are actually 2nC1 new stable letters in Hn. These are labeled by 2n vectors in
the Hn-row of Table 1.

Lemma 4.11 establishes that the edge groups listed in Column 3 of Table 1 are
indeed isomorphic to F2i �F2 or F2Ì� F4, depending on the case. By induction, the
groups Gn and Hn are of type F3 for all n. Table 1 also includes the 2-dimensional
Dehn functions of the resulting groups.

4.2. Further details about Table 1. This subsection provides a precise description
of the edge groups F2 Ì� F4 in the definition of Hn. On a first reading the reader
may wish to focus on the first few groups in Table 1 (up to G2). The arguments for
the lower bounds for the first few groups (Section 5.1) and for the upper bounds in
general (Sections 6 and 7) can be worked through without a thorough knowledge of
the general labeling.

Recall that Hn is obtained from Gn by attaching suspended wings along a collec-
tion of 2n subgroups of the form F2 Ì� F4. These are labeled as follows:

ha.n�1/i i Ì� hun�1; Ln.i/i; with 1 � i � 2n�1

and
hu�1

n�2a.n�1/j i Ì� hun�1; Ln.j C 2n�1/i; with 1 � j � 2n�1 :

Lemma 4.11 establishes that these groups are indeed isomorphic to F2 Ì� F4. Note
that the generators of the F2 factors are either the stable letters of Hn�1 or are u�1

n�2

times these stable letters. Note also that two of the generators of the F4 factor are
always un�1, the stable letters in the definition of Gn�1. The remaining generators
of the F4 factor are described using the ordered list Ln, which is defined recursively
as follows:

L1 D fy; yg;
L2 D fy; y; a01; a02g;
Ln D fLn�1; a.n�2/1; : : : ; a.n�2/2n�2 ; u�1

n�3a.n�2/1; : : : ; u�1
n�3a.n�2/2n�2g;

where this last equation is for n � 3. We let Ln.i/ denote the i th element of Ln. For
n D 1; 2, and 3 these labels are given explicitly in Table 1.

We now establish a few facts that will be used repeatedly in the proof of Lem-
ma 4.11. Let M.G; t/ denote a multiple HNN-extension with base group G and stable
letters represented by the vector t (which may have more than two coordinates).

Observation 4.8. If H is a subgroup of G such that the intersection of H with any
of the edge groups of M.G; t/ is trivial, then the subgroup hH; ti inside M.G; t/ is
isomorphic to H � hti.
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In the following lemma, we use the notation of Remark 4.2.

Lemma 4.9. Let M.M.G; t/; s/ be an iterated multiple HNN-extension. Let b and c
be vectors consisting of elements of G with the following properties.

(i) The intersection of hci with each edge group of M.M.G; t/; s/ is trivial.

(ii) The vector b has the same number of coordinates as t.

Then hbti is a free group whose rank equals the number of coordinates of t and

hbti \ hs; ci D 1:

Proof. There is a retraction � of M.G; t/ onto the free group F on t, such that
�.g/ D 1 for all g 2 G. The subgroup hbti of M.G; t/ has the same number of
generators as F and maps onto F under this retraction. It is therefore free.

Now suppose w1 D w1.s; c/ and w2 D w2.bt/ are words that represent the same
element of M.M.G; t/; s/. Note that w1 is contained in hs; ci, which is isomorphic
to hsi � hci, by Condition (i) above and Observation 4.8. Moreover, w1 represents an
element of the base group for M.M.G; t/; s/, since w2 does. These two facts imply
that w1 can be freely reduced to a word that does not involve any coordinates of s, say
to w3 D w3.c/. Note that w3 actually represents an element of G, so that �.w3/ D 1.
This implies that �.w2/ D 1. Since w2 is a word in bt, this can only happen if w2 is
trivial.

Remark4.10. The subgroup hti of M.G; t/ is free. Since M.G; t/ ! M.M.G; t/; s/
is an injection, the stable letters t also generate a free group in M.M.G; t/; s/. This
will be used repeatedly in the proof of Lemma 4.11.

Lemma 4.11 (Structure of edge groups). The subgroup ha0i ; u0; yi (where i D 1

or 2) of G0 is isomorphic to F2 Ì� F4. Further, for each n � 1, the following
statements hold.
Coning:

(1) The subgroup han1; : : : ; an2n ; un�1i of Hn is isomorphic to F2nC1 � F2, where
the F2 factor has basis un�1.

Suspended wings:

(2) For1 � i � 2n the subgroup hani ; un; LnC1.i/iofGn is isomorphic toF2Ì� F4,
where F2 has basis ani and F4 has ordered basis fun; LnC1.i/g.

(3) For 1 � j � 2n, the subgroup hu�1
n�1anj ; un; LnC1.j C 2n/i of Gn is iso-

morphic to F2 Ì� F4, where F2 has basis u�1
n�1anj and F4 has ordered basis

fun; LnC1.j C 2n/g.
Proof. The proof is by induction on n.

For the base case, (the subgroup ha0i ; u0; yi of G0 with i D 1 or 2) note that the
subgroups ha0i i, and hyi are free factors of the base group .F2/3 (see Table 1). By
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Remark 4.10, hu0i ' F2 since it is generated by the stable letters of G0. Now hu0; yi
is isomorphic to F4 by Observation 4.8. The fact that hu0; yi acts on ha0i i via � is
obvious by construction. Note that G0 can be thought of as a single multiple HNN
extension M.F2 � F2; y; u0/. Then hu0; yi, consisting of stable letters, intersects the
subgroup ha0i i of the edge group trivially. This shows that ha0i ; u0; yi is isomorphic
to F2 Ì� F4.

Inductive step for (1): The group Hn is a multiple HNN extension

M.Gn�1; an1; : : : ; an2n/:

So by Remark 4.10, the subgroup han1; : : : ; an2ni is isomorphic to F2nC1 . Further,
it intersects Gn�1, and hence hun�1i, trivially. Lastly, hun�1i is isomorphic to F2

since it consists of stable letters introduced in the construction of Gn�1. It follows
that han1; : : : ; an2n ; un�1i of Hn is isomorphic to F2nC1 � F2, where the F2 factor
has basis un�1.

Suspended wings: We first analyze the subgroups hLnC1.i/i. Note that for k � n,
the subgroups haki i, where 1 � i � 2k , and huki of Gn are isomorphic to F2 by
Remark 4.10. Then the diagonal subgroups hu�1

k�1
aki i are isomorphic to F2 as well.

Since every vector LnC1.i/ is either aki or u�1
k�1

aki for some k � n�1, the subgroup
hLnC1.i/i of Gn is isomorphic to F2 for 1 � i � 2nC1.

Note that, as shown above, the edge group in the construction of Gn is isomorphic
to hanj i2n

j D1 �hun�1i. In particular, hLnC1.i/i does not intersect the edge group, and
Observation 4.8 implies that hun; LnC1.i/i is isomorphic to F4 for all 1 � i � 2nC1.

Inductive step for (2): Let 1 � i � 2n. By construction, the stable letters un

for Gn act on ani via '. The vector LnC1.i/ is the same as Ln.i/, and the fact
that Ln.i/ commutes with ani follows from the construction of Hn. This shows
that hun; LnC1.i/i acts on hani i via � . Since Gn D M.M.Gn�1; an1 : : : an2n/; un/,
Lemma 4.9 (with b trivial and c D LnC1.i/) shows that hun; LnC1.i/i \ hani i is
trivial. Thus the subgroup hani ; un; LnC1.i/i of Gn is isomorphic to F2 Ì� F4.

Inductive step for (3): Let 1 � j � 2n. Then un acts on anj and un�1 (and hence
on u�1

n�1anj ) via '. Recall that

LnC1.j C 2n/ D
´

a.n�1/j for 1 � j � 2n�1;

u�1
n�2a.n�1/.j �2n�1/ for 2n�1 < j � 2n

and observe (from the definitions of Gn�1 and Hn) that both un�1 and anj act on
LnC1.j C 2n/ via '. It follows that LnC1.j C 2n/ commutes with u�1

n�1a.n/j . Thus
hun; LnC1.j C 2n/i acts on hu�1

n�1anj i via � . The fact that these two groups have
trivial intersection follows from Lemma 4.9 (with b D u�1

n�1 and c D LnC1.j C2n/).
Thus hu�1

n�1anj ; un; LnC1.j C 2n/i is isomorphic to F2 Ì� F4.

4.3. The cell structure in KGn and KHn . In this section we describe 3-dimensional
K.�; 1/’s for Gn and Hn. Start with the standard cell structure (one 0-cell and two
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1-cells) on a bouquet of two circles. The product of three copies of this with the
product cell structure is defined to be KH0

.
Since Gn and Hn are defined recursively as graphs of groups with 2-dimensional

edge groups and 3-dimensional vertex groups, the complexes KGn
and KHn

are
constructed inductively as total spaces of graphs of 3-dimensional vertex spaces and
2-dimensional edge spaces.

Here is the model situation. Let X .3/ be a 3-dimensional cell complex and let
Y

.2/
1 ; : : : ; Y

.2/

k
� X .3/ be �1-injective 2-dimensional subcomplexes. For each i , let

ˆi W Y
.2/

i ! Y
.2/

i be a cellular map inducing an automorphism in �1. We define a
new 3-complex Z.3/ by

Z.3/ D X .3/ t � ti Y
.2/

i � Œ0; 1�
�

= 


where 
 identifies Y
.2/

i � 0 with Y
.2/

i (via the inclusion map) and Y
.2/

i � 1 with

ˆ.Y
.2/

i / for 1 � i � k. Each Y
.2/

i � Œ0; 1� is given the product cell structure with a

subdivision at the Y
.2/

i � 1 end, obtained by pulling back the standard cell structure

on Y
.2/

i via ˆi .
To get KGn

from KHn
we apply this model situation, taking X .3/ to be KHn

and the Y
.2/

i to be the subcomplexes corresponding to the edge groups listed in the
Gn-row of the third column of Table 1.

To get KHn
from KGn�1

we first apply this model situation taking X .3/ to be

KGn�1
and the Y

.2/
i to be the subcomplexes corresponding to the edge groups listed

in the Hn-row of the third column of Table 1. We subdivide the resulting 3-complex
by introducing edges labeled u�1

n�1anj and 2-cells corresponding to the commutation
relations Œu�1

n�1anj ; LnC1.j C 2n/� D 1. (Refer to the edge groups in the HnC1-row
of Table 1 for these commutation relations.) Note that the anj run over the stable
letters of Hn. Figure 4.3 demonstrates such subdivisions in the case of KH1

.

a121

a121
a121

u0

u0
u0

u�1
0

a1ji

a021

a021

a021

a021

a022

a022

a021

'.a021/

'2.a021/

Figure 4.3. Typical new 1- and 2-cells in eKH1
.



20 J. Barnard, N. Brady and P. Dani

5. Lower bounds

5.1. Some spheres. As preparation for the general case, we explicitly describe some
spheres in the first few groups. The computations of area and volume will be only
roughly sketched, to help give a general idea. Formal verification of these computa-
tions will come later.

Spheres in G0. Fix N 2 N and consider the slab in eKH0
(the universal cover of

KH0
) of the form 'N .a011/�'N .a021/�y1 (the equatorial slab in Figure 5.1 below).

The volume of this slab is j'N .�/j2 (cf. Lemma 5.9).
Each of the top and bottom faces of this slab consists of 2-cells corresponding to

relations in the edge group ha01i�ha02i in the definition of G0. Allowing u�N
01 to act

on both faces produces the 3-ball shown in Figure 5.1. Let us call the boundary sphere

y1

'N .a021/

a021

a011

uN
01

'N .a011/

Figure 5.1. The sphere S1.N / in eKG0
.

of this ball S1.N / in correspondence to Figure 3.5. Each of the eight trapezoidal
faces of S1.N / is a van Kampen diagram for an equality of the form 'N .a0j1/ D
uN

01a0j1u�N
01 . In particular, each vertical side of the trapezoid has length N , the top

has length one, and the bottom has length j'N .�/j, which is exponential in N . Thus
the transition from the slab to S1.N / corresponds to two Type II moves, one on each
face of the slab.

We can think of each trapezoidal face on S1.N / as a stack of horizontal strips.
Because of the exponential growth of ', the lengths of these strips approximate a
geometric series (Lemma 5.4). Thus the area of a trapezoid is approximately equal to
the length of its base edge, which is the same as the length of one piece of the equatorial
band about the sphere. We deduce that Area.S1.N // ' j'N .�/j (Lemma 5.15). The
volume of the 3-ball is bounded below by the volume of the slab, which is j'N .�/j2,
from which it follows that ı

.2/
G0

.x/ � x2 (cf. Remarks 2.3 and 2.4).
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Spheres in H1. Looking at S1.N / from a different point of view, we see that it
consists of four belted-trapezoid pairs, each of which has the geometry marking the
beginning of a Type I move (see Figure 3.4). Each such trapezoid pair is contained
in a group of the form ha0j i Ì� hu0; yi, an edge group in H1. We again think of
each trapezoid as comprised of a stack of horizontal strips with boundary labeled
u01 'i�1.a0j1/ u�1

01 'i .a�1
0j1/, where 1 � i � N . The result of allowing a�i

1j1 to act

on each such strip and a�N
1j1 to act on the four belts is the 3-ball shown in Figure 5.2.

We call the boundary of this ball S2.N /.

y1

.a�1
111

u01/N

aN
111

a021

aN
121

.a�1
121

u01/N

a011

Figure 5.2. The sphere S2.N / in eKH1
.

The long sides of the horizontal strips in Figure 5.2 represent words of the form
aN

1j1, giving each such strip an area equal to N . The angled strips connected to the

poles have long sides representing words of the form .a�1
1j1u01/N , so that these strips

also have area equal to N (recall from Section 4.3 that edges labeled a�1
1j1u01 are

introduced into the cell structure on KH1
). Each triangular region is a van Kampen

diagram for an equation of the form a�N
1j1 uN

01 D .a�1
1j1u01/N (recall that a1j1 com-

mutes with u01). The area of such a triangle is essentially the number of commutation
relations required to achieve this equality, which is of order N 2 (Lemma 5.2). Thus
the area of S2.N / is of order N 2. On the other hand, the volume of the 3-ball is
again bounded below by the volume of the slab, which is j'N .�/j2 ' .eN /2 ' eN .
It follows that ı

.2/
H1

.x/ � e
p

x .

Spheres in G1. To form S3.N / in eKG1
, we alter the previous constructions slightly.

We still begin with a slab of the form 'N .a011/ � 'N .a021/ � y1, but now we set
N D j'M .�/j for some M , so that the volume of the slab, as a function of M , is
j'j'M .�/jj ' eeM

. We next allow the word 'M .u�1
01 / (instead of u�N

01 ) to act on
the top and bottom faces of the slab, producing a sphere analogous to the one in
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Figure 5.1. Performing Type I moves as before, but with 'M .a1j1/ acting on the
belts instead of aN

1j1, produces a sphere analogous to the one in Figure 5.2, but with
labels changed as indicated in Figure 5.3.

'M .a111/ 'M .a121/

'M .u01/

Figure 5.3. A portion of a variation of the sphere in eKH1
shown in Figure 5.2. The triangle

pair admits an action by u�M
11

. Note that 'M .u01/ and 'M .a�1
1j1

/ have the same word length.
The labels on the diagonal edges in the figure above are formed by alternating the letters of
these words.

The triangles in this sphere can be grouped in pairs to form eight quadrilaterals,
each with the geometry marking the beginning of a Type II move. Each of these
quadrilaterals is a van Kampen diagram labeled by elements of the group ha11; a12i�
hu0i, the edge group for G1. We now allow u�M

11 to act on each of these quadrilaterals.
As in G0, this will produce trapezoids representing equalities of the form uM

11gu�M
11 D

'M .g/, where g is of the form either a1j1 or a�1
1j1u01. These relations have area of

order j'M .�/j ' eM , which gives the area of the sphere. The volume of the slab is
' eeM

, so that ı
.2/
G1

.x/ � ex .

5.2. Iteration notation. Before moving on to the general case, we pause briefly to
develop the iteration notation necessary to avoid unwieldy towers of exponents.

Recall that the map ' W h�; �i ! h�; �i has the form '.�/ D ��� and '.�/ D � .
We inductively define functions wn W N ! N, setting w0.r/ D r for all r 2 N, and

wn.r/ D j'wn�1.r/.�/j:

The growth of j'N .�/j is determined by the matrix
�

2 1
1 0

�
, which has positive eigen-

value 1 C p
2. More precisely, we have that

j'N .�/j D
�����
	
2 1

1 0


N 	
1

0


�����
1

� 1

2
.1 C p

2/N C1:
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This implies that

lim
k!1

j'kC1.�/j
j'k.�/j D 1 C p

2:

It follows easily that
NX

kD0

j'k.�/j ' j'N .�/j;

as this sum is approximately geometric. From this discussion we deduce the follow-
ing.

Lemma 5.1 (Growth of wn). For each n we have

wn�1.r/X
iD0

j'i .�/j ' wn.r/ ' expn.r/:

5.3. The van Kampen diagrams for moves. We now describe the van Kampen
diagrams that will make up the surface of our spheres, and we explain how they
correspond to the schematic diagrams and the subdivision-combination moves.

Given two words W1 D b1b2 : : : bm and W2 D c1c2 : : : cm, we let ı.W1; W2/

denote the word b1c1b2c2 : : : bmcm. With this notation, we define 	n
ij .wk.r//, for

k � 1, n � 0, and 1 � i; j � 2n, to be the van Kampen diagram in eKHn
shown in

Figure 5.4.

ı

� '
w

k
�1

.r
/ .a

�1

n
i1
/;

'
w

k
�1

.r
/ .u

.n
�1

/1
/

� ı �
' w

k�
1 .r

/
.a �

1nj
1 /; ' w

k�
1 .r

/
.u

.n�
1
/1 /

�

'wk�1.r/.ani1/ 'wk�1.r/.anj1/

'wk�1.r/
�
u.n�1/1

�

Figure 5.4. The van Kampen diagram 	n
ij

.wk.r//.

Such a van Kampen diagram will be found in the initial stage of a Type II move.
The following lemma establishes the existence and geometry of such van Kampen
diagrams.
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Lemma 5.2. The van Kampen diagram 	n
ij .wk.r// exists. Moreover,

Area.	n
ij .wk.r/// ' Œwk.r/�2:

Proof. Because ' is palindromic, we may write

'wk�1.r/.ani1/ D b1 : : : bpbpC1bp : : : b1;

where for j ¤ p C 1 we have bj 2 faṅi1; aṅi2g, and bpC1 2 faṅi1; aṅi2; eg. We
similarly write

'wk�1.r/.u.n�1/1/ D c1 : : : cpcpC1cp : : : c1:

Recall from Table 1 that anij commutes with u.n�1/j for 1 � i � 2n and j D 1; 2.
Then

'wk�1.r/.a�1
ni1/'wk�1.r/.u.n�1/1/

D .b1 : : : bpbpC1bp : : : b1/�1.c1 : : : cpcpC1cp : : : c1/

D .b�1
1 c1/ : : : .b�1

p cp/.b�1
pC1cpC1/.b�1

p cp/ : : : .b�1
1 c1/

D ı.'wk�1.r/.a�1
ni1/; 'wk�1.r/.u.n�1/1//:

The area claim follows by counting the number of commutation relations involved
in this equality, remembering that each such relation provides two 2-cells due to the
diagonal subdivision in the cell structure. We obtain

Area.	n
ij .wk.r/// D 2

� 2pX
j D1

j C .2p C 1/ C
2pX

j D1

j
�

D 2.2p C 1/2 D 2j'wk�1.r/.g1/j2 ' Œwk.r/�2:

Remark 5.3. The reason ' is chosen to be palindromic is to ensure the existence of
such van Kampen diagrams. To understand the mechanics behind 	n

ij .N /, consider
the subgroup hg�1

1 h1; g�1
2 h2i Š F2 of the group hg1; g2i � hh1; h2i Š F2 � F2.

The action of ' � ' on F2 � F2 restricts to an automorphism of this subgroup exactly
when ' is palindromic, and in this case the induced action is the same as the action
of ' coming from the isomorphism hg�1

1 h1; g�1
2 h2i ' F2. Note that the diagonal

sides of 	n
ij .wk.r// are labeled by the generators of such subgroups, and are in fact

of the form 'wk�1.r/.g�1
1 h1/. This fact is crucial for performing future generations

of the iterative procedure.

When k D 0 we define 	n
ij .w0.r// to be the van Kampen diagram obtained

from the one in Figure 5.4 by replacing all labels of the form 'wk�1.r/.g/ by gr .
Also the notation 	0

12.wk.r// will make sense with the definition above if we de-
fine u�1 D a01a�1

02 . For then we have ı.'wk�1.r/.a�1
011/; 'wk�1.r/.a011a�1

021// D
'wk�1.r/.a�1

021/ D Œ'wk�1.r/.a021/��1. Each of these diagrams has geometry identi-
cal to that of the others, up to '-equivalence. See Figure 5.5.
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'
wk�1.r/

.a�1
011

a021/

'
w k

�1
.r

/ .a
0
1
1
/

'
w k

�1
.r

/ .a
0
1
1
/

' w
k�

1 .r
/
.a

0
2
1 /

' w
k�

1 .r
/
.a

0
2
1 /

a021

a021

a021

a021

a021

a022

a022

a011

a011

a011

a011

a011

a012

a012

Figure 5.5. The van Kampen diagrams 	0
12

.wk.r// and 	0
12

.w0.2//.

For the other van Kampen diagram with which we will be concerned, we first
recall that Ln.i/ denotes the i th element of the list Ln. This element is a 2-vector
h�; �i. It will be useful in what follows to let L

.1/
n .i/ denote the first element � of this

vector. With this notation we define ‚n
i .wk.r//, for k � 1, n � 0, and 1 � i � 2n,

to be the van Kampen diagram in eKGn
shown in Figure 5.6. (Recall that each vector

in the list LnC2 consists of elements in Gn.) When k D 0 we define ‚n
i .w0.r// to

L
.1/

nC2.i C 2nC1/

L
.1/

nC2.i C 2nC1/

L
.1/

nC2.i/

'
w

k
�1

.r
/ .u

n
1
/

' w
k�

1 .r
/
.u

n
1 /

'wk.r/
�
L

.1/

nC2.i C 2nC1/
�

a121

u11

u11

u12

y1

Figure 5.6. The van Kampen diagrams ‚n
i

.wk.r// and ‚1
2
.w0.1//.

be the van Kampen diagram obtained from that in Figure 5.6 by replacing all labels
of the form 'wk�1.r/.g/ by gr .

We establish the existence and geometry of such diagrams in the following lemma.
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Lemma 5.4. The van Kampen diagram ‚n
i .wk.r// exists. Moreover,

Area.‚n
i .wk.r/// ' wkC1.r/:

For the intuition behind this result, see ‚1
2.w0.1// in Figure 5.6. The crucial

ingredient for the area claim is the exponential growth of '.

Proof. To establish the existence of the van Kampen diagram, note that each of
un1 and un2 acts on L

.1/
nC2.i C 2nC1/ via '. Thus as elements of Gn, the word

'wk�1.r/.un1/L
.1/
nC2.i C 2nC1/'wk�1.r/.u�1

n1 / and the word labeling the long sides
of the central strip in ‚n

i .wk.r// are equal. This establishes the top and bottom
trapezoids of ‚n

i .wk.r//.

For the middle strip, we simply need to observe that L
.1/
nC2.i/ commutes with

LnC2.i C 2nC1/. To see this, note that each LnC2.i C 2nC1/ term is also the first
factor in an edge group for HnC1, while each L

.1/
nC2.i/ term is the third factor in the

corresponding group. These commute, by definition of the action of � .
We now compute the area of ‚n

i .wk.r//. Note that the area obtained when '

acts on a positive word W is exactly jW j. Since ' is applied j'wk�1.r/.�/j ' wk.r/

times in each trapezoid, its area is

1 C j'.�/j C j'2.�/j C 	 	 	 C j'wk.r/�1.�/j;
so that Area.‚n

i .wk.r/// ' j'wk.r/.�/j D wkC1.r/, as required.

The geometry of the van Kampen diagrams can be summarized as shown in
Figure 5.7, where the labels on the edges indicate lengths.

wk.r/wk.r/

wk.r/ wk.r/

wk.r/

wk.r/

wk.r/wk.r/

wk.r/
wkC1.r/

Area ' Œwk.r/�2 Area ' wkC1.r/

Figure 5.7. The geometry of 	n
ij

.wk.r// and ‚n
i

.wk.r//.
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5.4. Geometry of the moves

5.4.1. Type II. As indicated above, the geometry of the van Kampen diagram
	n

ij .wk.r// is that of the schematic quadrilateral with which a Type II move be-
gins, in that each side has equivalent length, and the area is equivalent to the square
of this length. We now explain how such a move is performed in the group Gn. Note
that 	n

ij .wk.r// is contained in the edge group for Gn. As such it admits an action
by the stable letters un.

Lemma 5.5. Assume k � 1, and suppose W is a positive word in the unj of length
wk�1.r/, and let B denote the abstract 3-ball obtained by allowing W �1 to act on
	n

ij .wk.r//. Let S denote the 2-sphere boundary of B . Then

Vol.B/ � w2
k.r/

and
Area.S � 	n

ij .wk.r/// ' wk.r/:

Proof. Note that w2
k
.r/ is exactly the area of the van Kampen diagram 	n

ij .wk.r//.
In the bottom layer of the 3-ball there is at least one 3-cell for every nine 2-cells in
	n

ij .wk.r//. The volume claim follows.

The boundary of 	n
ij .wk.r// consists of four words of the form 'wk�1.r/.g/ for

some g 2 fani1; anj1; a�1
ni1u.n�1/1; a�1

nj1u.n�1/1g. The action of W �1 on each of these
words has the geometry of one trapezoid of a ‚n

i .wk�1.r//. As such the area claim
follows from the argument in the proof of Lemma 5.4.

Remark 5.6. When k � 2 and W D 'wk�2.r/.un1/, the action of W �1 on each of the
four boundary words of 	n

ij .wk.r// produces precisely a trapezoid of ‚n
i .wk�1.r//,

as shown in Figure 5.8. When k D 1 and W D ur
n1, it produces a trapezoid of

‚n
i .w0.r//.

5.4.2. Type I. The geometry of ‚n
i .wk.r// is that of the schematic quadrilateral

with which a Type I move begins, in that each side of the quadrilateral has equivalent
length, while the length of the diagonal and the total area are both exponential in
the outer edge length. We now explain how a Type I move is performed on such
a van Kampen diagram in HnC1. Note that each ‚n

i .wk.r// is contained in some
single edge group for HnC1 (depending on i ). As such it admits an action by the
stable letters a.nC1/j , for some j depending on i . In particular, given a word V in
the a�1

.nC1/j i
, we may perform the procedure analogous to the one performed on each

belted trapezoid pair of S1.N / in the construction of S2.N / (cf. Section 5.1). In the
following lemma, this is referred to as allowing V to act on ‚n

i .wk.r//.
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'
w

k
�2

.r
/ .u

n1
/

' w
k�1 .r/.ani1/

Figure 5.8. A view from above of the action of W on 	n
ij

.wk.r//, as well as the resulting 3-ball

in the case that W D 'wk�2.r/.un1/. Note that each vertical quadrilateral on the boundary of
the 3-ball is identical to a portion of ‚n

i
.wk�1.r//.

Lemma 5.7. Suppose W is a positive word in the anji of length wk.r/, and let B

denote the 3-ball in HnC1 obtained by allowing W �1 to act on ‚n
i .wk.r//. Let S

denote the 2-sphere boundary of B . Then

Vol.B/ � wkC1.r/ and Area.S � ‚n
i .wk.r/// ' Œwk.r/�2:

Proof. The lower volume bound is trivial, as this is the length of the central strip, and
there is at least one 3-cell for every three 2-cells in this strip.

Suppose first that k � 1. Then the boundary of ‚n
i .wk.r// consists of four

copies of the word 'wk�1.r/.un1/ along with four words of length one (those from
LnC2). The action of 'wk�1.r/.a�1

nj1/ on 'wk�1.r/.un1/ has the geometry of one-half
of a 	n

ij .wk.r// diagram. As such the area of each of the corresponding pieces of

S � ‚n
i .wk.r/// is ' Œwk.r/�2. Because each letter in 'wk�1.r/.a�1

nj1/ commutes
with each of the letters in LnC2, the area resulting from the action on these words is
' wk.r/. The area claim follows for this case.

For the case that k D 0, the same argument applies with 'wk�1.r/.g/ replaced
by gr .

Remark 5.8. When W D 'wk�1.r/.anj1/, the action of W �1 on 'wk�1.r/.un1/

produces precisely one half of 	n
ij .wk.r//.
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5.5. Lower bound estimates. Base Cases. We now inductively compute lower
bounds for ı

.2/
Gn

.x/ and ı
.2/
Hn

.x/. For the base cases, we return to the spheres described
in Section 5.1 and point out how the claims made there are verified by the computations
just obtained. The only ingredient we lack is the following.

Lemma 5.9 (Slab volume). The volume of the slab 'wk.r/.a011/�'wk.r/.a021/�y1

is ŒwkC1.r/�2.

Proof. As a cell-complex this slab is isomorphic to 	0
12.wkC1.r// � Œ0; 1� with the

product cell structure. The result then follows from Lemma 5.2.

For G0 we take k D 0, and so begin with the slab 'r.a011/ � 'r.a021/ � y1 with
volume Œw1.r/�2. The boundary of this slab is a topological sphere containing two
copies of 	0

12.w1.r//. Let BG0
.r/ denote the 3-ball obtained by allowing u�r

01 to act
on both of these. Let SG0

.r/ denote the 2-sphere boundary of BG0
.r/.

Lemma 5.10 (Area and volume in G0). Area.SG0
.r// ' w1.r/ and Vol.BG0

.r// �
Œw1.r/�2.

Proof. The volume claim follows immediately from the volume of the slab, computed
above. For the area, we note that the band around the slab consists of four pieces,
each with area j'r.�/j D w1.r/. The remaining area is shown to be ' w1.r/ by
applying Lemma 5.5 with k D 0.

We now consider H1. Note that SG0
.r/ consists of four copies of ‚0

i .w0.r// (two
with i D 1, two with i D 2) plus two additional 2-cells. We define BH1

.r/ to be the
3-ball obtained by allowing ar

111 and ar
121 to act on the corresponding van Kampen

diagrams. We let SH1
.r/ denote the 2-sphere boundary of this ball.

Proposition 5.11 (Area and volume in H1). Area.SH1
.r// ' r2 and Vol.BH1

.r// �
Œw1.r/�2.

Proof. We again obtain Vol.BH1
.r// � Œw1.r/�2 from the volume of the central slab.

For the area we use Lemma 5.7 to compute

Area.SH1
.r// D 8Area.	1

12.r// C 16r C 6 ' r2:

Proposition 5.12 (Lower bounds for G0 and H1).

ı
.2/
G0

.x/ � x2 and ı
.2/
H1

.x/ � e
p

x :

Proof. By Remark 2.3, (and assuming Lemmas 5.17 and 5.18 below), it suffices now
to show that BG0

.r/ and BH1
.r/ are embedded in eKG0

and eKH1
, respectively (but

see Remark 5.13 below).
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Note that BG0
.r/ consists of three component balls, each of which is embedded

by construction: the initial equatorial slab and the two balls resulting from the two
Type II moves. Call these latter two Type II balls. If we label a vertex in the slab with
the identity element e 2 G0, the other vertices in BG0

.r/ naturally inherit labels by
group elements. To show that BG0

.r/ is embedded, it suffices to show that any two
vertices in the cones that carry the same label must lie in the same Type II ball.

Elements g 2 G0 labeling vertices in a Type II ball satisfy g D hs, for some
h 2 H0 and s 2 hu0i (this is because hu0i acts by automorphisms). If two such
elements g1 and g2 are equal in G0, then h1s1 D h2s2. By considering the natural
retraction G0 ! hu0i, we see then that s1 D s2, from which it follows that h1 D h2.
Note that h1 and h2 label vertices on the embedded sphere boundary of the slab.
Because distinct Type II balls are attached to this sphere along disjoint disks, h1 D h2

implies that the vertices labeled by g1 and g2 lie in the same Type II ball.
For BH1

.r/ the argument is similar. We think of BH1
.r/ as having five component

balls: BG0
.r/ and four Type I balls. As before, it suffices to show that any two vertices

in the Type I balls carrying the same label must lie in the same Type I ball.
Elements h labelling vertices in a Type I ball satisfy h D gs, where g 2 G0

and h 2 ha1j i. If two such elements h1 and h2 are equal in H1, we deduce as
before that s1 D s2. In particular, the two corresponding vertices lie in Type I balls
corresponding to the same stable group. Such balls are attached along disjoint disks
on the embedded sphere SG0

.r/. As before we deduce that h1 D h2 only if the
corresponding vertices lie in the same Type I ball.

Remark 5.13. The equivalence relation ' behaves poorly under composition. In
particular, one cannot always deduce the nature of volume as a function of area given
(in)equivalencies of each as functions of r . It is not difficult to show, however, that
these difficulties do not arise for the particular pairs of functions we encounter.

5.6. Induction steps. Here we put together the pieces of the previous subsections
to compute lower bounds for ı

.2/
Hn

.x/ and ı
.2/
Gn

.x/.

Lower Bounds in Hn. Begin with a slab in .F2/3 of the form

'wn�1.r/.a011/ � 'wn�1.r/.a021/ � y1;

and note that the volume of this slab is Œwn.r/�2. Assume by induction that a sphere
SGn�1

.r/ has been built upon this slab via alternating Type I and Type II moves, so
that SGn�1

.r/ consists of

� 22n copies of ‚n�1
i .w0.r//; and

� P2n�1
kD1 2k individual 2-cells.

These hypotheses are verified above for G0 (n D 1). Let BHn
.r/ denote the 3-ball

obtained by applying a Type II move using a�r
nij to each copy of ‚n�1

i .w0.r//, and
let SHn

.r/ denote its boundary 2-sphere.
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Lemma 5.14. The 2-sphere SHn
.r/ consists of

� 22nC1 copies of 	n
ij .w0.r//;

� 22nC2 strips with dimensions r � 1;

� P2n
kD1 2k individual 2-cells.

Moreover, we have the following estimates:

Vol.BHn
.r// � Œwn.r/�2 and Area.SHn

.r// ' Œw0.r/�2 D r2:

Proof. The volume claim is immediate from the volume of the slab. For the area, we
first note that each Type I move produces four halves of some 	n

ij .w0.r//, as pointed
out in Lemma 5.7. There are as many Type I moves involved in creating SHn

.r/ as
there are copies of ‚n�1

i .w0.r// in SGn�1
.r/, namely 22n. This gives the correct

number of copies of 	n
ij .w0.r// assuming we can show that these half-diagrams join

up in pairs to form genuine copies of 	n
ij .w0.r//. But this follows immediately from

the fact that any two adjacent half-diagrams are adjacent along an edge of the form
.u.n�1/1/r lying along the boundary of some original ‚n�1

i .w0.r// on SGn�1
.r/.

See Figure 5.9.

 

'wk�1.r/.un1/

'wk�1.r/.a.nC1/i1/

ı
�
'wk�1.r/.a�1

.nC1/i1
/; 'wk�1.r/.un1/

�

Figure 5.9. A view from above of the action of W on ‚n
i

.wk.r//, as well as the resulting
3-ball in the case that W D 'wk�1.r/.a.nC1/i1/. Note that each triangle on the boundary of
the 3-ball is identical to a portion of 	nC1

ij
.wk.r//.

On SGn�1
.r/ there is one strip in the middle of each ‚n�1

i .w0.r//, each of which
is covered by a Type I move. Each Type I move gives rise to four new strips with
dimensions r � 1.
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Finally we have the original
P2n�1

kD1 2k individual 2-cells from SGn�1
.r/, plus

one more for each Type I move. Thus the number of individual 2-cells in SHn
.r/ isP2n

kD1 2k .
Adding up the areas of these pieces, we obtain

Area.SHn
.r// ' 22nC1r2 C 22nC2r C

2nX
kD1

2k ' r2:

Lower Bounds in Gn. Begin with a slab in .F2/3 of the form

'wn.r/.a011/ � 'wn.r/.a021/ � y;

and note that the volume of this slab is ŒwnC1.r/�2. Assume by induction that a sphere
SHn

.r/ has been built upon this slab via alternating Type I and Type II moves so that
SHn

.r/ consists, as shown in the previous lemma, of

� 22nC1 copies of 	n
ij .w1.r//;

� 22nC2 strips with dimensions r � 1;

� P2n
kD1 2k individual 2-cells.

See Figure 5.2 for confirmation of these hypotheses in the case n D 1.
Let BGn

.r/ denote the 3-ball obtained by applying a Type I move using u�r
ni to

each copy of 	n
ij .w1.r//, and let SGn

.r/ denote its boundary 2-sphere.

Lemma 5.15. The 2-sphere SGn
.r/ consists of

� 22nC1 copies of ‚n
i .w0.r//;

� P2nC1
kD1 2k individual 2-cells.

Moreover, we have the following estimates:

Vol.BGn
.r// � ŒwnC1.r/�2 and Area.SGn

.r// ' w1.r/:

Proof. The volume claim is immediate from the volume of the slab. For the area, we
first note that each Type II move produces four halves of some ‚n

i .w0.r// (minus
the equatorial strip), as pointed out in Lemma 5.5. There are as many Type II moves
involved in creating SGn

.r/ as there are copies of 	n�1
ij .w1.r// in SHn

.r/, namely
22nC1. This gives the correct number of copies of ‚n

i .w0.r// assuming we can
show that these half-diagrams join up in pairs across strips to form genuine copies of
‚n

i .w0.r//. But this follows immediately from the fact that any two adjacent half-
diagrams are adjacent across a strip from some previous Type I move. See Figure 5.8.

Finally we have the original
P2n

kD1 2k individual 2-cells from SHn
.r/, plus one

more for each Type II move. Thus the number of individual 2-cells in SGn
.r/ isP2nC1

kD1 2k .



Super-exponential 2-dimensional Dehn functions 33

Adding up the area of these pieces, we obtain

Area.SGn
.r// ' 22nC1w1.r/ C

2nC1X
kD1

2k ' w1.r/:

Remark 5.16. Note that the constants involved in verifying lower bounds for the
'-class of ı.2/.x/ for Gn and Hn grow exponentially as functions of n. This is due
to the exponential increase in the number of faces in the spheres created in these
groups.

The proof that these balls are embedded in their respective spaces follows exactly
as in the base cases, Proposition 5.12, because Type II balls and Type I balls with
identical stable groups lie in distinct cosets of the stable group. Thus it remains only
to show that the estimates obtained for these particular spheres suffice to establish
the lower bounds (cf. Remark 2.4).

Lemma 5.17. Let SHn
.r/ denote the sphere defined above in KHn

with parameter r .
For each n, there exist constants A1, A2 so that

A1r2 � Area.SHn
.r// � A2r2:

Proof. We use the combinatorial structure of SHn
.r/ described in Lemma 5.14. From

the proof of Lemma 5.2, we have thatArea.	n
ij .w0.r/// D 2r2, where this is an actual

equality. It follows that

Area.SHn
.r// D 22nC2r2 C 22nC2r C 22nC1 � 2:

It follows (since r � 1) that we may choose A1 D 22nC2 and A2 D 3 	 22nC2.

Lemma 5.18. Let SGn
.r/ denote the sphere defined above in KGn

with parameter r .
For each n, there exists a constant C > 0 so that

Area.SGn
.r C 1// � CArea.SGn

.r//:

Proof. The proof of Lemma 5.4 can be refined to give the estimate

w1.r/ � Area.‚n
i .w0.r/// � 3w1.r/:

Combining this with the combinatorial structure of SGn
, we then have

22nC1w1.r/ C 22nC2 � 2 � Area.SGn
.r// � 3 	 22nC1w1.r/ C 22nC2 � 2:
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From this we compute

Area.SGn
.r C 1// � 3 	 22nC1w1.r C 1/ C 22nC2 � 2

� 3 	 22nC2w1.r C 1/ D 3 	 22nC2 w1.r C 1/

w1.r/
w1.r/

� 3 	 22nC2 w1.r C 1/

w1.r/
w1.r/

� 3 	 2
w1.r C 1/

w1.r/
Area.SGn

.r//:

Note that the ratio w1.r C 1/=w1.r/ is never larger than three (w1.k/ is the length of
'k.�/, and each application of ' multiplies length by no more than three). It follows
that

Area.SGn
.r C 1// � 18Area.SGn

.r//

as required.

We are finally able to deduce lower bounds for the 2-dimensional Dehn functions
of Hn and Gn.

Proposition 5.19 (Lower bounds). For n � 1 we have ı
.2/
Hn

.x/ � expn.
p

x/ and

ı
.2/
Gn

.x/ � expn.x/.

6. Upper bounds for graphs of groups

In this section we show that the 2-dimensional Dehn functions of the groups Gn and
Hn are bounded above by the functions listed in Table 1. In the inductive construction,
each group is obtained from the the previous group as a multiple HNN extension.
The upper bounds are obtained inductively using two general results about graphs
of groups (Propositions 6.1 and 6.2 below). A version of Proposition 6.1 appears in
[17]. We give a different proof using admissible maps.

Proposition 6.1. Let G be the fundamental group of a graph of groups with the
following properties:

(i) All the vertex groups are of type F3 and their 2-dimensional Dehn functions are
bounded above by the superadditive increasing function f .

(ii) All the edge groups are of type F2 and their 1-dimensional Dehn functions are
bounded above by the superadditive increasing function g.

Then ı
.2/
G .x/ � .f B g/.x/.

The upper bound obtained in the above proposition may not always be the optimal
one. Proposition 6.2 below gives another way to obtain an upper bound. It relies on
the existence of a function bounding the area-distortions of the edge groups in G.
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Proposition 6.2. Let G be the fundamental group of a graph of groups with the
following properties:

(i) All the vertex groups are of type F3 and their 2-dimensional Dehn functions are
bounded above by the superadditive increasing function f .

(ii) All the edge groups are of type F2.

(iii) There exists a function h such that if w is a word representing 1 in an edge group
� , then Area� .w/ � h.AreaG .w//.

Then ı
.2/
G .x/ � f .xh.x//.

Sections 6.1 and 6.2 contain some preliminaries for the proofs of these proposi-
tions. The proofs are contained in Sections 6.3–6.5. The propositions are used to
prove upper bounds for ı

.2/
Gn

.x/ and ı
.2/
Hn

.x/ in Section 6.6.

6.1. The 3-complex KG . We start with the standard total space KG of the graph of
spaces associated with G. Recall that KG is a quotient map

q W t Kv t .tKe � Œ0; 1�/ ! KG ; (6.1)

where the Kv are indexed by the vertex set of the graph and the Ke are indexed by
its edge set. Note that q identifies each Ke � i (where i D 0; 1) with its image in a
vertex space Kv under a map induced by the edge inclusion Ge ! Gv .

The vertices of KG are exactly the vertices of the Kv . For 1 � i � 3, an i -cell ofKG is either an i -cell of some Kv or of the form c � Œ0; 1�, where c is an .i � 1/-cell
of some Ke .

Labeling on KG . Each 1-cell of KG of the first type mentioned above is labeled
by a generator of the corresponding vertex group. All 1-cells of the second type are
labeled by the letter e.

The boundary of a 2-cell of the first type is labeled by a relation in the correspond-
ing vertex group. A 2-cell of the second type is homeomorphic to E � Œ0; 1�, where
E is an edge of some Ke . Then E corresponds a generator, say g, of the edge group
Ge . Let Gu and Gv be the vertex groups adjacent to Ge , and let X and Y be words
in the generators of Gu and Gv respectively, which represent the images of g under
the edge inclusion maps. Then the 2-cell E � Œ0; 1� has boundary label eXe�1Y �1.
Note that any boundary label that contains e is of this form.

Within each piece of KG of the form Ke � Œ0; 1�, we identify the slice Ke � 1=2

with Ke . Every cell c � Œ0; 1� in Ke � Œ0; 1� contains an embedded copy c � 1=2 of
a cell of Ke . If c is a 1-cell, we label c � 1=2 by the generator of the edge group Ge

that labels c. We use this additional cell structure and labeling in the course of the
construction below (to define central words of annuli), but we do not think of these
as cells of KG .
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6.2. Transverse maps. In proving upper bounds for 1-dimensional Dehn functions,
one often uses the notion of an e-corridor or e-annulus in a van Kampen diagram.
To facilitate the definition of an analogous object in the present setting, we require
maps f W S2 ! KG to be transverse. Transversality, a condition more stringent than
admissibility, gives rise to a generalized handle decomposition of S2. We summarize
a few essential facts here and refer to [6] for more details.

An index i handle of dimension n is a product †i �Dn�i , where †i is a compact,
connected i -dimensional manifold with boundary, and Dn�i is a closed disk. A
generalized handle decomposition of an n-dimensional manifold M is a filtration
; D M .�1/ � M .0/ � 	 	 	 � M .n/ D M by codimension-zero submanifolds, such
that for each i , M .i/ is obtained from M .i�1/ by attaching finitely many index i

handles. Each i -handle †i � Dn�i is attached via an embedding @†i � Dn�i !
M .i�1/. A map f from M to a CW complex X is transverse to the cell structure of
X if M has a generalized handle decomposition such that the restriction of f to each
handle is given by projection onto the second factor, followed by the characteristic
map of a cell of X . We say that X is a transverse CW complex if the attaching map
of every cell is transverse to the cell structure of the skeleton to which it is attached.
We will need the following result of Buoncristiano, Rourke, and Sanderson.

Theorem 6.3 ([9]). Let M be a compact smooth manifold and f W M ! X a
continuous map into a transverse CW-complex. Suppose f j@M is transverse. Then
f is homotopic rel @M to a transverse map g W M ! X .

In order to apply this theorem, one needs a transverse complex. The complex KG

defined above can be made transverse by inductively applying the theorem to attaching
maps of cells. This procedure can be done in way that preserves the homeomorphism
type of the complex and its partition into cells. (See Section 3 of [6] for the details
of this procedure.)

Lastly, if one applies the theorem to an admissible map to make it transverse, its
combinatorial volume does not change. (This is because the preimages of n-cells do
not change during the course of the homotopy, except possibly by shrinking slightly)

Existence of e-annuli. We are concerned with transverse maps 
 W S2 ! KG . Such
a map induces a decomposition of S2 into handles of index 0, 1, and 2, and each i -
handle maps to a .2 � i/-dimensional cell of KG . Each 1-handle inherits the label of
the 1-cell that it maps onto. If there is a 1-handle labeled e, there are two possibilities:
either the 1-handle is of the form S1 � I (an annulus) or it is adjacent to a 0-handle.
In the latter case, the 0-handle is mapped homeomorphically to a 2-cell in KG whose
boundary is labeled by a word of the form eXe�1Y �1, and is therefore adjacent to
exactly one other 1-handle labeled e. This new 1-handle is, in turn, adjacent to another
0-handle. Continuing this process, we obtain a finite concatenation of alternating 1-
handles (labeled e) and 0-handles, which forms an annulus. In either case, we call
the annulus an e-annulus. Note that an e-annulus can consist of a single 1-handle of
the form S1 � I .
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The only handles adjacent to an e-annulus are 1-handles that are not labeled e and
2-handles. Thus e-annuli never intersect each other. (In particular, such an annulus
never intersects itself.)

The central and boundary words of an e-annulus. Any 0-handle in an e-annulus
is mapped homeomorphically to a 2-cell of the form E � Œ0; 1�, where E is an edge in
an edge space, say K� , and E � 1=2 is labeled by a generator of the edge group G� .
Concatenating such labels from successive 0-handles, we obtain the central word
of the e-annulus. We think of the central word as labeling a central circle C that
runs through the interior of the annulus. The circle C is simply the union of the
segments Œ0; 1� � f1=2g through the center of each 1-handle of the annulus and the
curves 
�1.E � 1=2/ in each 0-handle. Note that 
.C / � K� � 1=2.

The boundary of the 2-cell is labeled by eXe�1Y �1, where X and Y are words
in the generators of the two adjacent vertex groups. Concatenating such words from
successive 0-handles in the e-annulus gives the two boundary words of the annulus.

6.3. General strategy for the proofs. We assume that KG has been made transverse
by applying the procedure mentioned after Theorem 6.3. Given any admissible map

� W S2 ! KG

.2/
with Area.�/ D x, we construct an admissible filling N� W D3 !KG whose volume is bounded above by a function '-equivalent to f .g.x// (for

Proposition 6.1) or f .xh.x// (for Proposition 6.2).
To construct the admissible filling N� , we think of D3 as a cone S2 � Œ0; 1�=S2 � 1

and decompose it into two pieces, A D S2 � Œ0; 1=2� and a closed ball B D S2 �
Œ1=2; 1�=S2 � 1. It follows from Theorem 6.3 that there is a homotopy ‰ W S2 �
Œ0; 1=2� ! KG

.2/
such that ‰0 D � , and ‰1=2 D 
 is a transverse map with

Area.
/ D Area.�/. In Section 6.4 we construct an admissible filling N
 W B ! KG .
Then

N� D
´

‰ on A;

N
 on B:
(6.2)

(See Figure 6.1.) Note that N� is admissible and that Vol. N�/ D Vol. N
/.
To construct the filling N
 we decompose the ball B into two families of balls with

disjoint interiors. The first family consists of “slabs” homeomorphic to D2 � I . The
lateral boundary @D2 � I of each slab lies on @B . The space formed by deleting the
interiors and lateral boundaries (i.e. D2 � .0; 1/) of the slabs is a disjoint union of
balls, which make up the second family. We construct admissible maps on each of
the component balls in the two families in such a way that they agree on common
boundaries and agree with 
 on @B .

Under the standard map from KG to the associated Bass–Serre tree, the image
in KG of a slab from the first family above maps to an edge of the tree, while the
image of a ball from the second family maps to a vertex of the tree. The volume of
a slab is related to the areas of its boundary disks D2 � 0 and D2 � 1. The volume
of a ball of the second type is controlled using the 2-dimensional Dehn function of
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A A1

B
B

@B

N


D2 � Œ0; 1�

‰

Figure 6.1. Filling the admissible map � W S2 ! KG .

the corresponding vertex group. The details of the volume estimates are given in
Section 6.5.

6.4. The admissible filling N�. An admissible filling of the transverse map 
 W @B !KG

.2/
is constructed as follows. If @B has no e-annuli, the image of 
 lies completely

in one of the (3-dimensional) vertex spaces Kv . Since f is an upper bound for the
2-dimensional Dehn functions of the vertex groups (in both propositions), there exists
an admissible filling N
 W B ! Kv , with Vol. N
/ � f .Area .
//.

If @B has e-annuli, then N
 is constructed inductively. The induction is on the
number of e-annuli. If A1 is an e-annulus, form a new space B1, by gluing a slab
D2 � Œ0; 1� to @B along A1, i.e.

B1 D @B t .D2 � Œ0; 1�/ = A1 
 .@D2 � Œ0; 1�/:

If A1 consists of a single 1-handle, then it is homeomorphic to S1 � Œ0; 1�. With
this identification, the restriction of 
 to A1 is simply projection onto the second
factor, followed by the characteristic map of a 1-cell. Then 
 extends to a map on
D2 �Œ0; 1� whose image is the same 1-cell. (The map is constant on each disk D2 �t .)
This defines an admissible map 
1 W B1 ! KG

Otherwise let w1 and C1 be the central word and central circle of A1. Now 
 jC1

is an admissible map into some K� . The circle C1 divides @B into two components,
and the restriction of 
 to the closure of one of these components is a filling of 
 jC1

.
Thus w1 represents the identity in G (and hence in the edge group G�). It follows
that w1 can be filled in K� , i.e., there is an admissible map D2 ! K� that agrees
with 
 jC1

on @D2. Extend this to a map � W D2 � Œ0; 1� ! K� � Œ0; 1� (by defining it
to be the identity on the second factor). Restrict the quotient map q from Section 6.1
to K� � Œ0; 1� and let Qq denote the unique lift to universal covers so that Qq B � agrees
with 
 on A1.
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Now define 
1 W B1 ! KG by


1 D
´


 on @B;

Qq B � on D2 � I:

Note that 
1 is an admissible map of B1 into KG (i.e. 
1 restricted to a component of
the inverse image of an open 3-cell is a homeomorphism). Moreover, the restrictions

of 
1 to the boundary disks D2 � i , where i D 0; 1, are admissible maps into KG

.2/
.

(In fact the boundary disks are mapped into the 2-skeletons of vertex spaces.)
The complement B1 n D2 � .0; 1/ is a disjoint union of two spheres, which we

call the complementary spheres. The restrictions of 
1 to the complementary spheres

are admissible maps into KG

.2/
. Note that even though 
 was a transverse map, we

do not require 
1 to be transverse. The transversality of 
 was only used to conclude
that the e-annuli on @B are all well-defined, embedded, and mutually disjoint. This is
clearly the case for the restrictions of 
1 to each of the complementary spheres. Note
that, since the boundary disks D2 � i do not contain any 2-cells labeled e, no new
e-annuli are added in the course of the above procedure. Now we repeat the procedure
with 
 replaced by each of the restrictions of 
1 to the complementary spheres.

Let N be the total number of e-annuli on @B . By induction we obtain an admissible
map 
N W BN ! KG , and complementary spheres S1; : : : SN C1 (since in each step
one of the complementary spheres is divided into two). Let 
N i denote the restriction
of 
N to Si . Then 
N i is an admissible map into the 2-skeleton of some vertex space.

As before, for each i , there is an admissible extension N
N i of 
N i defined on D3
i ,

a 3-dimensional ball with boundary Si , such that Vol. N
N i / � f .Area .
N i //. Note
that the ball B D [N C1

iD1 D3
i [ BN , and define N
 W B ! KG by

N
 D
´


N on BN ;

N
N i on D3
i ; for 1 � i � N C 1:

Note that N
 is an admissible extension of 
 . Finally, the admissible filling N� of the
original map � is defined as in Equation 6.2.

6.5. Filling volumes in graphs of groups. Let A1; : : : ; AN , w1; : : : ; wN and
eKe1

; : : : ; eKeN
denote the e-annuli on @B , their central words and the corresponding

edge spaces respectively. For any Ai , the restriction of 
N to the slab that it bounds
has volume equal to AreaKei

.wi /. (If Ai is an e-annulus of the form S1 � Œ0; 1� for
some i , then wi is empty and AreaKei

.wi / D 0.)
There exists a constant M , which depends only on G, such that if h is a boundary

word of one of the e-annuli, say Ai , (so that h is a word in the generators of a vertex
group, say Gv), then AreaKv

.h/ � M AreaKei
.wi /. This ensures that at the i th

step of the procedure, (i.e., when a slab is glued in along Ai to form Bi ), the total
area of the complementary spheres increases by at most 2M AreaKei

.wi /. Using the
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superadditivity of f , and the fact that the fillings N
N i of the complementary spheres
were chosen so that Vol. N
N i / � f .Area .
/N i /, we have

Vol. N�/ D Vol. N
/

D Total volume of slabs C Total volume of balls

�
NX

iD1

AreaKei
.wi / C

N C1X
iD1

f .Area .
N i //

�
NX

iD1

AreaKei
.wi / C f

� N C1X
iD1

Area .
N i /
�

�
NX

iD1

AreaKei
.wi / C f

�
Area .
/ C 2M

NX
iD1

AreaKei
.wi /

�
(6.3)

We are now ready to complete the proofs of Propositions 6.1 and 6.2. We retain
the notation developed above.

Proof of Proposition 6.1. Let � W S2 ! KG

.2/
be an admissible map with area x. We

obtain an admissible filling N� W D3 ! KG as described in the procedure above. Equa-
tion (6.3) estimates the volume of this filling. By the assumption on the 1-dimensional
Dehn functions of the edge groups, we have that AreaKei

.wAi
/ � g.jwAi

j/. So by
the superadditivity of g, we have

P
AreaKei

.wAi
/ � g.

P jwAi
j/ � g.x/, since the

total lengths of central words of annuli cannot be more than the total area of � . So
the estimate for the volume is Vol. N�/ � g.x/ C f .x C 2Mg.x//: This gives

ı
.2/
G .x/ � g.x/ C f .x C 2Mg.x//:

However, since x � f .x/, and x � g.x/, we have g.x/ C f .x C 2Mg.x// �
f .g.x//. This is the required upper bound.

Proof of Proposition 6.2. As in the previous proof, let � W S2 ! KG

.2/
be an admis-

sible map with area x and let N� be the admissible filling from the procedure above.
This time, we have the condition AreaKei

.wAi
/ � h.AreaKG

.wAi
// for each i . The

restriction of 
 to a “hemispherical” piece of @B gives a filling of wAi
of size at most

x. Since there are at most x annuli, the estimate in Equation 6.3 becomes

Vol. N�/ �
NX

iC1

AreaKei
.wAi

/ C f
�
x C 2M

NX
iC1

AreaKei
.wAi

/
�

� xh.x/ C f .x C 2Mxh.x//:

This give ı
.2/
G .x/ � f .xh.x//.
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6.6. Upper bounds for the super-exponential examples. The proof of the upper
bounds for the super-exponential examples is by induction. We have an alternating
sequence of groups

H0 < G0 < H1 < G1 < H2 < G2 < 	 	 	
where H0 D F2 � F2. (Note that this is different from the H0 defined in Table 1. In
Section 4, Example 4.4, the group G0 was obtained from F2 �F2 �F2 by coning over
F2 � F2. This can also be viewed as a multiple (4-fold) HNN extension with base
F2 � F2 D H0, where two stable letters act via the identity and two act via ' � '.)

All of the above groups are of type F3. Apart from H0, they all have 3-dimensional
K.�; 1/’s. As described in Section 4.1, each group in the sequence is a multiple HNN
extension of the previous one.

Proof of upper bounds for ı
.2/
Hn

and ı
.2/
Gn

. Since F2 �F2 has a 2-dimensional K.�; 1/

we have ı
.2/
H0

.x/ D ı
.2/
F2�F2

.x/ ' x. This starts the induction.

Step 1. Deducing ı
.2/
Gn

.x/ upper bounds from ı
.2/
Hn

.x/ upper bounds (n � 0). This
is a straightforward application of Proposition 6.1. The group Gn is the fundamental
group of a graph of groups where the underlying graph is a bouquet of two circles
(four if n D 0), the vertex group is Hn and the edge groups are F2nC1 � F2. Further,

(i) ı
.2/
H0

.x/ ' x (base case) and ı
.2/
Hn

.x/ ' expn.
p

x/ for n > 0 (induction hypoth-
esis).

(ii) ı
.1/
F

2nC1 �F2
.x/ ' x2.

Proposition 6.1 now implies that ı
.2/
G0

.x/ � x2 and ı
.2/
Gn

.x/ � expn.x/ for n > 0.

Step 2. Deducing ı
.2/
Hn

.x/ upper bounds from ı
.2/
Gn�1

.x/ upper bounds (n > 0).
This is more involved than the previous step. The group Hn is the fundamental group
of a graph of groups where the underlying graph is a wedge of 2nC1 circles, the vertex
group is Gn�1 and the edge groups are all isomorphic to F2 Ì F4. The result will
follow from Proposition 6.2 together with the following lemma, which describes how
areas in the edge groups get distorted in Hn.

Lemma 6.4 (Area-distortion of � in Hn). Let � be an edge group in the graph of
groups description of Hn. Then there exists a constant ˇn, which depends only on n,
such that for any word w in the generators of � that represents 1,

Area� .w/ � .ˇn AreaHn
.w/e

p
ˇn AreaHn .w//2: (6.4)

Section 7 is devoted to the proof of this lemma. We now have:

(i) ı
.2/
G0

.x/ � x2 (Step 1) and ı
.2/
Gn�1

.x/ � expn�1.x/ for n > 1 (induction hypoth-
esis)
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(ii) By Lemma 6.4, the function h.x/ D .ˇnxe
p

ˇnx/2 satisfies the third condition
in the statement of Proposition 6.2.

Proposition 6.2 and the fact that h.x/ ' e
p

x now imply that ı
.2/
H1

.x/ � .xe
p

x/
2

and

ı
.2/
Hn

.x/ � expn�1.xe
p

x/ for n > 1. Since xe
p

x ' e
p

x and .e
p

x/
2 ' e

p
x , we

have ı
.2/
Hn

.x/ � expn.
p

x/ for all n � 1.
This completes the proof of the upper bounds for the super-exponential examples.

7. Proof of the area-distortion lemma

This section provides a detailed proof of Lemma 6.4. Let � be any of the 2n groups
isomorphic to F2 Ì� F4 listed in the row corresponding to Hn in Table 1. In this
section we will use the following notation for �:

� D hai Ì� hu; bi
Here u D un�1. (Note that each of the 2n edge groups has hun�1i as a subgroup.)
Either a D a.n�1/i with b D L.i/ or a D u�1

n�2a.n�1/i with b D L.i C 2n�1/ for
some 1 � i � 2n�1. The F4 generated by u and b acts on hai via � , as defined in
Definition 4.5.

As we are concerned only with areas in this section, we work with van Kampen
diagrams, rather than admissible or transverse maps, and combinatorial complexes
rather than transverse ones. Since we are working with fixed presentations, we will
use the phrase “van Kampen diagram over G” to mean “van Kampen diagram over
the fixed presentation for G.”

7.1. Strategy. Let w be a word in the generators of � that represents 1. Then
there exists a van Kampen diagram D for w over Hn, which is area-minimizing, i.e.
Area .D/ D AreaHn

.w/. First realize D as a union of u-corridors and complemen-
tary regions. Next, use this structure to produce a van Kampen diagram 	 for w

over � , which has the same combinatorial decomposition into u-corridors and com-
plementary regions. Finally show that Area .	/, and hence Area� .w/, is bounded
above by the quantity on the right hand side of inequality (6.4).

Remark 7.1. For the rest of this section, we assume that the van Kampen diagram
D has the property that every edge on the boundary of D belongs to a 2-cell in D.
We can restrict to this case using the superadditivity of the function .Cx3

p
Cx/2.

Remark 7.2. Throughout this proof we abuse notation and use boldfaced letters to
denote either a pair of generators for a free group or a single one of these generators;
it will be clear from the context which of these we mean. For example, “u-corridor”
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is used to mean u.n�1/i -corridor, where i is 1 or 2, as we do not need to distinguish
between these. When we refer to, say, “the word uxu�1” it is understood that both
instances of u in the word refer to the same generator (either u.n�1/1 or u.n�1/2).

7.2. Geometry of u-corridors. The following is a complete list of the relations
involving the generators u D un�1 in the presentation for Hn.

(i) Let E D ha.n�1/1; : : : ; a.n�1/2n�1 ; un�2i ' F2n � F2. Recall that Gn�1 is the
cone of Hn�1 over E with stable letters u and relations

u g u�1 .'.g//�1 D 1 where g D any generator for E:

(ii) Recall that Hn is a multiple HNN-extension of Gn�1 with stable letters anj , with
1 � j � 2n. The new relations involving u.n�1/ are the commuting relations:

u anj u�1 a�1
nj D 1 for 1 � j � 2n:

Since these are all the relations involving the u, it makes sense to talk about u-
corridors and u-annuli in van Kampen diagrams over Hn. The reader may refer to
Section 7.2 of [7] for the definitions and properties of corridors and annuli (called
rings in [7]). By the assumption on D in Remark 7.1, every edge labeled u in @D

is part of a non-trivial u-corridor in D. Although D may contain u-annuli, only
u-corridors will play a key role in the argument below.

Area-length inequality for u-corridors in D and �. The boundary of a u-corridor
C over Hn or � is labeled by a word of the form uX1u�1X2. We call the Xi the
horizontal boundary words of C . From the presentations of Hn and � , we see that
a horizontal boundary of a single 2-cell involving u has length at most 3. (For � we
measure lengths in the intrinsic metric, which may differ from the inherited one by a
factor of 2.) Thus

jXi j
3

� Area .C/ � jXi j; for i D 1; 2: (7.1)

Exponential distortion of corridors. The following lemma produces a u-corridor
over � corresponding to a given u-corridor in D, and relates their lengths.

Lemma 7.3 (Exponential distortion of corridors). Let CD be a u-corridor in D

with boundary label uX1u�1X2. Then there exists a u-corridor C� over � , with
boundary label uY1u�1Y2 such that the Yi are words in a with Yi DHn

Xi for
i D 1; 2. Furthermore,

jYi j � 3 .33jXi j/: (7.2)

Proof. Let � 0 D ha0iÌhu; b0i be a group from the list of edge groups for Hn (possibly
different from �), and let E be as defined in the beginning of subsection 7.2. The
following two properties will be used repeatedly to construct C� .

Property 1. E \ � 0 D ha0i
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Proof. It is easy to see (using the normal form for semidirect products) that this is
equivalent to the statement E \ hu; b0i D 1. The latter statement follows easily from
an elementary argument using u-corridors.

Property 2. ha0i is a retract of E.

Proof. If ha0i is generated by a.n�1/i for some i , then the retraction is simply the
projection of E onto ha0i. If it is a subgroup generated by u�1

n�1a.n�1/i for some i ,
then observe that the following map is a retraction:

a.n�1/j 7! 1 .j ¤ i/I a.n�1/i 7! u�1
n�1a.n�1/i I un�1 7! 1:

Since the horizontal boundary X1 of CD has endpoints on the boundary of D,
there is a subword W of w such that W �1X1 represents 1. By Britton’s Lemma
applied to the multiple HNN extension description of Hn in Table 1, we conclude
that X1 must have an innermost subword of the form aniva�1

ni or ani
�1vani for some

i . Here v is a word in the generators of E that represents an element of the edge
group corresponding to ani , say � 0 D ha0i Ì hu; b0i. By Property 1, there exists
a (reduced) word v0 in the generators a0 representing the same element as v. By
Property 2 we have jv0j � jvj (since retracts are length-non-increasing). Then if the
innermost subword is of the form aniva�1

ni , it can be replaced with '.v0/, and if it
is of the form ani

�1vani , it can be replaced with '�1.v0/. Both '.v0/ and '�1.v0/
have length at most 3jvj.

Repeat this procedure (at most jX1j=2 times) until all instances of ani have been
eliminated. We obtain a word X 0

1 in the generators of E of length jX 0
1j � 3jX1j=2 �

3jX1j.
Since X 0

1 represents the same word as W , which is a word in � , Properties 1 and 2
again apply to produce a word Y1 in the generators a, representing the same group
element as X 0

1. Furthermore, jY1j � jX 0
1j � 3jX1j.

Let Y2 be the word '.Y1/ (where ' simply acts individually on each generator).
Then uY1u�1Y2 is the boundary of a corridor (i.e. a van Kampen diagram consisting
of a single corridor) over � , which we call C� . Since jY2j � 3jY1j and jX1j � 3jX2j,
we have jY2j � 3.33jX2j/. Clearly X1 and Y1 also satisfy this inequality.

7.3. Construction of �. A van Kampen diagram 	 for w over � is obtained from
D by the following sequence of moves.

(i) Remove from D all of the open cells of D n @D except for open 1-cells labeled
u and open 2-cells whose closures have an edge labeled u. The result is a circle
labeled w, with a finite collection of “open” u-corridors attached. Each open
u-corridor is topologically Œ0; 1�� .0; 1/, with 0� .0; 1/ and 1� .0; 1/ identified
with open 1-cells in the circle. Complete this to get a band complex, i.e. a circle
with a collection of closed u-corridor bands attached. The u-corridor structure
on the closed bands is obtained by pulling back the cell structure and labeling
from D as in Section 7.2 of [7].
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(ii) Replace each u-corridor in this band complex with the corresponding corridor
over � , guaranteed by Lemma 7.3. The result is another band complex, which
we denote by B .

(iii) Remove the open 1-cells labeled u and the open 2-cells of B to obtain a disjoint
union of circles. The labels of these circles are called complementary words.
The complementary words wi are words in the generators a and b that represent
the trivial element of � . Let 	i be an area-minimizing van Kampen diagram
over � for wi .

(iv) Define
	 D .B t .ti	i // = 


where 
 identifies the loop corresponding to wi in B with @	i for each i .

Note that if there are no u-corridors in D, the band complex B is just a circle,
and there is just one complementary word w1 D w.

7.4. Upper bound for Area .�/. The area of 	 is simply the sum of the areas of
the u-corridors and the areas of the 	i .

We first obtain an upper bound on the total area contribution of the u-corridors.
Define

L D
´

max ¹jvj j v a horizontal boundary word of a u-corridor in 	º;
1 if there are no u-corridors:

It follows from inequality (7.1) that Area .C/ � L for any u-corridor C . Since
each u-corridor intersects the boundary of 	 in two edges labeled u, there are at most
jwj=2 such corridors. Thus

total area of the u-corridors � jwjL
2

: (7.3)

Since ha; bi < � is isomorphic to F2 � F2, and the complementary words wi are
words in a and b, we haveX

i

Area .wi / �
X

i

.jwi j/2 �
� X

i

jwi j
�2

: (7.4)

From the definition of the wi , we haveX
i

jwi j � 2.#fu-corridorsg/L C .jwj � 2#fu-corridorsg/ � jwjL: (7.5)

Putting together the inequalities (7.3), (7.4) and (7.5), we have

Area .	/ � jwjL
2

C .jwjL/2 � .2jwjL/2:
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The proof of Lemma 6.4 will now follow easily from the above estimate, together
with the following two facts. (Just take ˇn D 20ˇ, where ˇ is the constant from
Fact 2, and recall that Area .D/ D AreaHn

.w/.)

Fact 1. jwj � 10 Area .D/.

Proof. The assumption that D is a topological disk implies that each edge of @D is
part of the boundary of a 2-cell in D. Since the maximum length of a relation in Hn

is 10, the area of D is at least jwj
10

.

Fact 2. There exists a constant ˇ, independent of w, such that

L � ˇ3
p

ˇ Area .D/: (7.6)

Proof. There are two cases, depending on the relative sizes of jwj and L.

Case (i): jwj > .log3 L/2.
By Fact 1 we have L < 3

pjwj � 3
p

10 Area .D/, and so inequality (7.6) holds with
ˇ � 10.

Case (ii): jwj � .log3 L/2.
In this case, we establish inequality (7.6) by obtaining a lower bound on Area .D/.

More precisely, we show that for sufficiently large L, Area .D/ � .log3 L/2=144.
Recall that L is the maximal length of a horizontal boundary word of a u-corridor in
	. The idea of the proof is as follows: since j@	j D jwj is relatively small compared
to L, the existence of a u-corridor of length L forces 	 to have a large number of
long u-corridors. This implies that D also has a large number (order log3 L) of long
(length order log3 L) u-corridors in D. The areas of these corridors of D add up to
the required lower bound on Area .D/.

We first introduce the notion of the level of a u-corridor in order to compare
lengths of corridors and obtain the above estimates.

Levels for u-corridors. Choose a base corridor C0 of 	 that has a horizontal bound-
ary word of maximal length L, and define this to be at level 0. Now define a corridor
C of 	 to be at level i if

(i) C is not at level 0; : : : ; i � 1 and
(ii) There exists a path in 	 connecting C to a corridor at level i � 1 which does not

intersect any other u-corridors.

Define the level of a u-corridor in D to be the level of the corresponding u-corridor
in 	.

Each u-corridor in 	 other than C0 inherits a notion of top and bottom (with the
convention that the horizontal boundary closer to C0 is the bottom). For i > 0 define
Mi (resp. Li ) to be the set of edges which are part of the bottom (resp. top) boundary
of a u-corridor at level i . Define L0 to be the set of edges which are part of the
boundary of C0.
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In what follows, jLi j is referred to as the total u-corridor length at level i . Note
that for i > 0,

jLi j
3

� total area of u-corridors at level i � jLi j:

Recall that in the construction of 	 in Section 7.3 we obtain a band complex B ,
basically a circle cut by u-corridors. Consider a topological circle in B corresponding
to a complementary word wj . Assigning to each u-corridor in B the level it earns
in 	, we see that each such circle passes along the top of a single corridor at level
i � 1 and the bottom of possibly several corridors at level i , for some i . We say that
such a complementary word wj , as well as its van Kampen diagram 	j , lies between
levels i � 1 and i . We define Bi to consist of those edges in @	 that are also part of a
complementary word lying between levels i � 1 and i . Note that Bi includes edges
of @	 \ Li�1, and @	 \ Mi . See Figure 7.1.

Level i corridor Level i corridor

Level i corridor

Level i � 1 corridor

The van Kampen diagram �j

Figure 7.1. A piece of 	. The dashed lines lie in Bi , while the bold line lies in Li�1. Note
that the van Kampen diagram 	j consists of the rounded rectangle along with all the other
edges in Li�1, Mi , and Bi .

Iterated scaling inequality. For i � 0, consider an edge in Li�1. Recall that all
such edges have labels in a. If it is not adjacent to a 2-cell in some 	j , then it must
belong either to Mi (adjacent to a level i corridor) or to Bi (part of @	).

On the other hand, suppose this a-edge is part of the boundary of a 2-cell in
some 	j . Since every such 2-cell is labeled by a commuting relation of the form
aba�1b�1, this 2-cell is the start of an a-corridor through 	j , with boundary of the
form aX1a�1X2, where the Xi are words in b.

Assuming the a term in the expression above corresponds to the original edge in
Li�1, we claim that the edge corresponding to the a�1 term must lie either in Mi

or Bi .
To see this, note that from the description of the complementary words above, it is

clear that the only other option is that this edge lies in the same component of Li�1,
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along the same u-corridor (forming an arch in Figure 7.1). Suppose for contradiction
that this is the case. Then this a-corridor forms, along with a portion of the original
u-corridor, an annulus of 2-cells in 	, the inner boundary of which corresponds to a
product of a nontrivial word in a with a nontrivial word in b. As no such product can
be trivial � , we deduce that any a-corridor with one boundary a-edge in Li�1 has its
other boundary a-edge in either Mi or Bi .

It follows from this analysis that jLi�1j � jMi j C jBi j, for i � 1. Since con-
jugation by u˙1 scales a-words by at most a factor of 3, we have jMi j � 3jLi j.
Combining these two inequalities, we have

jLi�1j � 3jLi j C jBi j:

By iterating this and noting that L < jL0j, we obtain

L < jL0j � 3i jLi j C
iX

j D1

3j �1jBj j; for i > 0:

Since
Pi

j D1 jBj j � jwj for each i , this implies

L < 3i jLi j C 3i jwj: (7.7)

Large L implies many long levels. Now we show that if L is sufficiently large, then
there are at least log3 L

4
levels in 	, each with total u-corridor length at least

p
L.

Since limL!1 .log3 L/2p
L

D 0, there exists P > 0 such that .log3 L/2 � p
L for

all L � P . Note that P depends only on the functions .log3 x/2 and
p

x and not on
w. For L � P , inequality (7.7) and the base inequality of Case (ii) give

L � 3i jLi j C 3i jwj
� 3i jLi j C 3i .log3 L/2

� 3i jLi j C 3i
p

L:

Rearranging gives jLi j � 3�iL�p
L. The reader can now verify that if i � log3 L

4

and L � 16, then 3�iL � 2
p

L. As a consequence, we have:

jLi j � p
L:

In summary, if L � maxfP; 16g, then there are at least log3 L

4
levels in 	, each

with total u-corridor length at least
p

L.
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Relating Area .D/ and .log3 L/2 for large L. Now we can estimate the area of D

from below using u-corridors.

Area .D/ � total area of u-corridors in D

� total area of u-corridors in D at or below level
log3 L

4

�
�

log3 L

4

� �
log3.

p
L=3/

9

�
D .log3 L/2

72
� log3 L

36

� .log3 L/2

144
provided L � 34:

The second term in the third inequality above is obtained as follows. Note that
p

L is
a lower bound for the total u-corridor length at level i in 	, and hence is a lower bound
for a sum

P jYj j, where j runs over an index set for all u-corridors at level i , and
the Yj are horizontal boundary words of these corridors. Thus, by inequality (7.2),

p
L �

X
jYj j �

X
3 .33jXj j/ � 3 .33

P jXj j/;

and so the total u-corridor length at level i in D (which is
P jXj j in the inequality

above) is at least log3.
p

L=3/=3. Finally, by inequality (7.1), the total area of u-
corridors at level i in D is at least log3.

p
L=3/=9.

Summary. We have shown that in Case (i), we have L � 3
p

10 Area .D/, and in Case
(ii), we have L � 3

p
144 Area .D/, provided L � maxf34; 16; P g. Thus inequality (7.6)

holds for all L, provided we take ˇ D maxf10; 144; 34; 16; P g D maxf144; P g.
Since P was independent of w, so is ˇ.

Remark 7.4. The notion of area distortion as a group invariant is defined in Section 2
of [12]. Lemma 6.4 provides an upper bound for the area distortion of � in Hn. The
reader can verify that the boundary words for the van Kampen diagrams ‚n

i .N / from
Section 5 establish the lower bounds for this distortion. Thus the distortion of � in Hn

is f .x/ ' e
p

x . It would be interesting to find other pairs .G; H/ of type .F3; F2/

where area distortion can be explicitly computed. For example, the subgroup of the
group Hn which is generated by faki j k � n; i D 1; 2g should have area distortion
expn

p
x.
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