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Abstract. We study the automorphisms of a graph product of finitely generated abelian groups
W . More precisely, we study a natural subgroup Aut�W of AutW , with Aut�W D AutW
whenever vertex groups are finite and in a number of other cases. We prove a number of struc-
ture results, including a semi-direct product decomposition Aut�W D .InnW Ì Out0W / Ì
Aut1W . We also give a number of applications, some of which are geometric in nature.
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1. Introduction

The graph product of groups construction was first defined by Green [13]. It inter-
polates between the free product construction, in the case that � is a discrete graph,
and the direct product construction, in the case that � is a complete graph. The class
of graph products of finitely generated abelian groups contains a number of impor-
tant subclasses that are often treated separately, including finitely generated abelian
groups, graph products of primary cyclic groups, right-angled Coxeter groups and
right-angled Artin groups. In the present article we pursue a unified treatment of the
automorphisms of such groups. Our methods are combinatorial. Our results have a
number of applications which are geometric in nature.

The class of graph products of finitely generated abelian groups is identical to
the class of graph products of directly indecomposable cyclic groups, and it is more
convenient to consider the latter. Groups in this class are in one-to-one correspondence
with the labeled-graph isomorphism classes of non-trivial finite simplicial graphs in
which vertices are labeled by either a prime power or infinity [16]. Such a labeled
graph � determines a canonical group presentation of a groupW D W.�/, where the
vertices of � are in one-to-one correspondence with the generators of W , the label
on each vertex specifies the order of the corresponding generator, and adjacency in
the graph determines when generators commute. In the case that each vertex of � is
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labeled by a prime power, we say thatW is a graph product of primary cyclic groups.
Note that a right-angled Coxeter group is a graph product of primary cyclic groups.

A subgroup of W which is generated by the vertices in a maximal complete sub-
graph� � � is called a maximal complete subgroup. Such subgroups are important
to our study because if W is a graph product of primary cyclic groups, then the
maximal complete subgroups are a set of representatives for the conjugacy classes
of maximal finite subgroups of W [13], Lemma 4.5, and each automorphism of W
maps each maximal complete subgroup to a conjugate of some maximal complete
subgroup. This is not true in an arbitrary graph product of directly indecomposable
cyclic groups, but we may pretend that it is by restricting our attention to a natural
subgroup of AutW . By doing so we are able to extend the application of ideas which
work for the automorphisms of graph products of primary cyclic groups.

Definition 1.1. Write Aut�W for the subgroup of AutW consisting of those auto-
morphisms which map each maximal complete subgroup to a conjugate of a maximal
complete subgroup.

While studying Aut�W is not the same as studying AutW in all cases, we note
that the equality Aut�W D AutW holds in the case that W is a graph product of
primary cyclic groups, and in many other interesting cases (see Lemma 2.8 below).
In particular, our study includes the study of the full automorphism groups of right-
angled Coxeter groups.

We are now ready to report the main results of the present article. They concern
the structure of Aut�W and shall make reference to the subgroups and quotients of
AutW defined in Table 1.1 It is natural to expect that a unified treatment of a class of
groups will give results which generalize results known for subclasses. While some
of our results and applications do this, each of our main theorems, and a number of
their applications, offers something new even in the case that W is a right-angled
Coxeter group.

In Section 3 we exhibit an iterated semidirect product decomposition of Aut�W .

Theorem 1.2. Aut�W D .InnW Ì Out0W /„ ƒ‚ …
Aut0W

Ì Aut1W .

Tits [30] proved that AutW D Aut0W Ì Aut1W in the special case that W
is a right-angled Coxeter group. That Aut0W D InnW Ì Out0W was recently
established in the special case that W is a right-angled Coxeter group satisfying
certain graph restrictions [14], and is also apparent in the special case considered in
[9]. We use different methods to establish our more general result. In particular, the

1In writing Aut0W for the subgroup of ‘conjugating automorphisms’, we follow Tits [30]. Mühlherr
[28] writes Spe.W / for the same subgroup. Charney, Crisp and Vogtmann [6] use the notation Aut0W and
Out0W for different subgroups of the automorphism group of a right-angled Artin group than described
here.
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Table 1. Subgroups and quotients of AutW .

Group Description

Aut�W Those automorphisms of W which map each maximal complete
subgroup to a conjugate of a maximal complete subgroup

Aut1W Those automorphisms of W which map each maximal complete
subgroup to a maximal complete subgroup

Aut0W Those automorphisms of W which map each vertex vi 2 V
to a conjugate of itself

InnW The inner automorphisms of W

OutW The quotient AutW= InnW

Out�W The quotient Aut�W= InnW

Out0W The quotient Aut0W= InnW

new technical tool we use to prove Theorem 1.2 is the Restricted Alphabet Rewriting
Lemma of Subsection 3.2. It is a combinatorial lemma which establishes that certain
subgroups of Aut0W are convex inside Aut0W in a particularly strong way: by
looking at the images of generators under an automorphism � 2 Aut0W , one may
immediately identify certain letters in a word for � as unnecessary.

In a mild abuse of notation, we shall identify Out0W , which is defined as a
quotient group, with a particular subgroup of Aut0W , as suggested by Theorem 1.2.

Theorem 1.2 has application to the theory of group extensions, as discussed in
Section 3.4. It also serves to identify the subgroup Out0W as the key to understanding
Aut�W and Out�W , since the subgroups InnW and Aut1W are, at least in some
sense, well-understood (see Lemma 2.7 and Remark 2.10). Our method of proof
suggests a convenient set of generators P 0 for Out0W (see Definition 3.16).

In Section 4 we investigate the structure and cardinality of Out0W . In particular,
we identify a simple type of subgraph whose presence or absence determines much
about the automorphism groups of W . In the following, we write Li for the link of
a vertex vi .

Definition 1.3 (SIL). We say that � contains a separating intersection of links (SIL)
if there exist vertices vi and vj such that the following conditions hold:

(1) d.vi ; vj / � 2;
(2) there exists a connected component R of � n .Li \ Lj / such that vi ; vj 62 R.



128 M. Gutierrez, A. Piggott and K. Ruane

Theorem 1.4. If W is a graph product of directly indecomposable cyclic groups,
then the following are equivalent:

(1) Out0W is an abelian group;

(2) � does not contain a SIL.

If W is a graph product of primary cyclic groups, then the following is also equivalent
to properties (1) and (2) above:

(3) OutW is finite.

Levitt [23] showed that, for a one-ended word hyperbolic group G, Out.G/ is
infinite if and only if G splits over a virtually cyclic subgroup with infinite center,
either as an arbitrary HNN extension or as an amalgam of groups with finite center.
It follows from our results that such splittings are not possible in the case thatW is a
graph product of primary cyclic groups (see Corollary 4.8). This illustrates the utility
of a result like Theorem 1.4: once one has identified a property of a labeled graph
which characterizes a property of the associated graph product of groups, then one
may examine the combined effect of the existence (or absence) of that graph property
and other graph properties known to characterize group properties. We follow this
program to examine the combined effect of the existence (or absence) of an SIL
and certain graph properties which are known to determine geometric properties of
W . The properties we consider include the isolated flats property (Corollary 4.11)
and whether or not W can act on a CAT.0/ space with locally-connected visual
boundary (Corollary 4.12). We also characterize when AutW is word hyperbolic
(Corollary 4.14).

In Section 5 we investigate the special case that � is a tree, in which our study of
Out0W can proceed much further. We prove the following.

Theorem 1.5. If W is a graph product of directly indecomposable cyclic groups and
� is a tree with vertices v1; v2; : : : ; vN , then

Out0W Š Ab � � NQ
iD1

Out0W.Li /
�

for a finitely generated abelian group Ab as described in Remark 5.6. In particular:

(1) if W is a right-angled Artin group, then Ab is a free abelian group;

(2) if W is a graph product of primary cyclic groups, then Ab is a finite abelian
group.

From this, we are able to determine a finite presentation for Aut�W (Remark 5.6),
to calculate the virtual cohomological dimension of OutW in the case that W is a
graph product of primary cyclic groups (Corollary 5.7) and to prove the existence of
regular languages of normal forms for Out0W and Aut0W in the case that W is a
right-angled Artin group (Corollary 5.8).
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Because we are attempting a unified treatment of a class of groups which has a
number of much studied subclasses, our results overlap with those of many authors.
We mention that Laurence [21] and Mühlherr [28] independently determined finite
presentations for Aut0W in the case thatW is a right-angled Coxeter group. Castella
[5] determined a finite presentation of Aut1W for a certain subclass of right-angled
Coxeter groups. Proving a conjecture of Servatius [29], Laurence [22] determined a
finite generating set for AutW in the case that W is a right-angled Artin group – a
generating set for Aut�W can be deduced from this list – and Day [10] determined a
finite presentation for AutW in this case. In a recent series of papers, Bux, Charney,
Crisp and Vogtmann have developed a new topological approach to the study of
OutW in the case thatW is a right-angled Artin group [6], [7], [4]. To the best of the
authors’ knowledge, Laurence’s unpublished Ph.D. thesis [21] is the only previous
work to consider the automorphisms of graph products of abelian groups in a unified
way.

2. Preliminaries

In this section we establish notation, remind the reader of some fundamental results
concerning graph products of groups and justify several statements made in the intro-
duction. Our notation is tailored specifically to the class of graph products of directly
indecomposable cyclic groups, and we have stated the results for this class of groups
only. The results appear, in more general form, in Elisabeth Green’s Ph.D. thesis [13]
and Michael Laurence’s Ph.D. thesis [21], proved by different methods.

A non-trivial finite simplicial graph � D �.V;E/ is a pair consisting of a non-
empty finite set V D fv1; v2; : : : ; vN g (the vertices) and a set E (the edges) of
unordered pairs from V . We say that vertices vi ; vj are adjacent if fvi ; vj g 2 E.
We consider � to be a metric object in the usual way, with d� denoting the distance
function. An order map (on �) is a function

m W f1; 2; : : : ; N g ! fp˛ j p prime and ˛ 2 Ng [ f1g:
A pair .�;m/ is called a labeled graph and determines a group W.�;m/ with the
following presentation (by convention, the relation v1

i is the trivial relation):

hV j vm.i/
i ; vj vkv

�1
j v�1

k .1 � i; j; k � N; j < k; d�.vj ; vk/ D 1/i: (1)

We say that W.�;m/ is a graph product of directly indecomposable cyclic groups.
Following an established convention, we do not distinguish between a vertex of �
and the corresponding generator of W.�;m/.

Restricting � or m, or both, gives the important subclasses mentioned in the
opening paragraph of the introduction, namely: abelian groups (� a complete graph);
graph products of primary cyclic groups (m.i/ < 1 for each i ); right-angled Coxeter
groups (m.i/ D 2 for each i ); and right-angled Artin groups (m.i/ D 1 for each i ).
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The class of graph products of directly indecomposable cyclic groups is identical
to the class of graph products of finitely generated abelian groups for the following
reason: if G is group and G is isomorphic to a graph product of finitely generated
abelian groups, then there exists a unique isomorphism class of labeled graphs .�;m/
such that G Š W.�;m/ [16]. Empowered by this fact, we usually omit mention of
� and m from the notation, writing W ´ W.�;m/.

By a subgraph of � we shall always mean a full subgraph. Thus a subgraph
� D .V�; E�/ is determined by a subset V� � V and the rule E� D ffvi ; vj g 2
E j vi ; vj 2 V�g.

Definition 2.1. Let 1 � i1; : : : ; ik � N be such that ij ¤ ijC1 and let ˛1; : : : ; ˛k be
non-zero integers. Each v j̨

ij
is a syllable of the word v˛1

i1
v
˛2

i2
: : : v

˛k

ik
, and we say that

the word is reduced if there is no word with fewer syllables which spells the same
element of W . We say that consecutive syllables v j̨

ij
, v j̨ C1

ij C1
are adjacent if vij and

vij C1
are.

Lemma 2.2 (The deletion condition). Let 1 � i1; : : : ; ik � N be such that ij ¤ ijC1
and let ˛1; : : : ; ˛k be non-zero integers. If the word v˛1

i1
v
˛2

i2
: : : v

˛k

ik
is not reduced,

then there exist p; q such that 1 � p < q � k, vip D viq and vip is adjacent to each
vertex vipC1

; vipC2
; : : : ; viq�1

.

Lemma 2.3 (Normal form). Let 1 � i1; : : : ; ik; j1; : : : ; jk � N and ˛1; : : : ; ˛k ,
ˇ1, ˇ2; : : : ; ˇk 2 Z n f0g. If v˛1

i1
v
˛2

i2
: : : v

˛k

ik
and wˇ1

j1
w
ˇ2

j2
: : : w

ˇk

jk
are reduced words

which spell the same element of W , then the first word may be transformed into the
second by repeatedly swapping the order of adjacent syllables.

The centralizer of a vertex is easily understood.

Lemma 2.4. For each 1 � j � N , the centralizer of vj inW is the special subgroup
generated by Sj .

For a full subgraph� of � , we writeW.�/ for the subgroup (known as a special
subgroup) of W generated by the vertices in �. We write MCS.�/ for the set of
maximal complete subgraphs (or cliques) of � . As mentioned in the introduction, the
subgroups W.�/, � 2 MCS.�/, are called the maximal complete subgroups of W .
The following three results witness the importance of special subgroups to the study
of W .

Lemma 2.5. Let � be a subgraph of � . The map V� ! W.�/ defined by

v 7!
´
v if v 2 V�;
1 otherwise;

extends to a retraction homomorphism pr� W W.�/ ! W.�/. Further, the natural
map W.�/ ! W.�/ is an embedding.
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Lemma 2.6. A special subgroupW.�/ has finite order if and only if� is a complete
graph and each vertex of� has finite order. Further, if a subgroupH of W has finite
order, thenH is contained in some conjugate of a special subgroup of finite order.

Lemma 2.7. The center of W is the special subgroup generated by the vertices
fvi 2 V j d�.vi ; vj / � 1 for each 1 � j � N g. Further, the center of W is finite in
the case that W is a graph product of primary cyclic groups.

It follows that InnW is isomorphic to the special subgroup generated by the
vertices fvi 2 V j d�.vi ; vj / > 1 for some 1 � j � N g. Further, InnW is
isomorphic to a finite-index subgroup of W in the case that W is a graph product of
primary cyclic groups.

We now justify two statements made in the introduction. First we demonstrate
many interesting cases in which the equality Aut�W D AutW holds. Recall from
the introduction that, for each 1 � i � N , we write Li for the link of vi ; that is,
Li is the subgraph of � generated by the vertices fvj 2 V j d.vi ; vj / D 1g. We
shall also write Si for the star of vi ; that is, Si is the subgraph of � generated by the
vertices fvj 2 V j d.vi ; vj / � 1g. The main result of [22] is that the automorphism
group of a right-angled Artin group W.�/ is generated by the partial conjugations
(see Section 3), automorphisms of the group induced by symmetries of the graph � ,
and “transvections”. A right transvection is an automorphism �ij such that i ¤ j ,
Lj � Si (in particular, d.vi ; vj / � 2), �ij .vj / D vj vi and �ij .vk/ D vk if k ¤ j ;
left transvections are defined similarly. Of these generating automorphisms, only the
transvections where d.vi ; vj / D 2 are not contained in Aut�W . Cases (2) and (3)
of the lemma below follow immediately from this observation, , since they simply
describe conditions on � which ensure that d.vi ; vj / D 1 if Lj � Si .

Lemma 2.8. IfW is a graph product of directly indecomposable cyclic groups, then
Aut�W D AutW in each of the following cases:

(1) W is a graph product of primary cyclic groups;

(2) W is a right-angled Artin group and Li 6� Lj for each pair of distinct non-
adjacent vertices vi ; vj 2 V ;

(3) W is a right-angled Artin group and � contains no vertices of valence less than
two and no circuits of length less than 5.

Remark 2.9. Case (2) can be substantially generalized to groups that are not right-
angled Artin groups.

Remark 2.10. In this remark we justify the statement that the subgroup Aut1W
is, at least in some sense, well-understood. If Wab denotes the abelianization of W ,
then Aut1W is isomorphic to the image of Aut�W under the natural map AutW !
AutWab. In particular, Aut1W is finite in the case that W is a graph product of
primary cyclic groups.
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3. A decomposition of Aut� W

In this section we prove Theorem 1.2. Our proof is presented in three parts. In
Subsection 3.1 we prove the following.

Theorem 3.1 (cf. [30]). If W is a graph product of directly indecomposable cyclic
groups, then Aut�W D Aut0W Ì Aut1W .

As noted in the introduction, Tits [30] proved Theorem 3.1 in the special case thatW
is a right-angled Coxeter group. Although one could generalize the argument of [30]
to prove Theorem 3.1 (see Remark 3.8), we take a different, but related, approach.

In Subsection 3.2 we prove the Restricted Alphabet Rewriting Lemma. This is
the new technical tool which allows us to achieve many of our aims.

In Subsection 3.3 we complete our task, with the help of the Restricted Alphabet
Rewriting Lemma, by proving the following.

Theorem 3.2. If W is a graph product of directly indecomposable cyclic groups,
then

Aut0W D InnW Ì Out0W:

Before we begin, we describe an important set of generators for Aut0W . For
1 � i � N andK a non-trivial connected component of � nSi , we write �iK for the
automorphism of W determined by

�iK.vj / D
´
vivj v

�1
i if vj 2 K;

vj if vj 62 K:
Such an automorphism is called a partial conjugation with operating letter vi and do-
mainK. We write P for the set of partial conjugations. Laurence [21], Theorem 4.1,
proved that Aut0W is generated by P .

3.1. A splitting of Aut� W . In this section we prove that Aut�W D Aut0W Ì
Aut1W (Theorem 3.1). We shall prove the result by exhibiting a retraction homo-
morphism Aut�W ! Aut1W with kernel Aut0W .

Firstly we note that a conjugacy class in W contains at most one element which
can be written as a commuting product of generators (that is, only using generators
from some complete subgraph). This can be seen as a consequence of Lemma 2.5 as
follows: if u;w 2 W are commuting products of generators and they are conjugate
in W , then prfvg.u/ and prfvg.w/ are conjugate in hvi, and hence equal, for each
v 2 V ; thus u and w are commuting products of generators which use exactly the
same generators and the same exponents of generators (modulo the orders of the
respective generators). If u 2 W is conjugate to a commuting product of generators,
then we write Œu� for the unique element of W which can be written as a commuting
product of generators.
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Let � 2 Aut�W . The definition of Aut�W implies immediately that �.v/ is
conjugate to a commuting product of generators for each vertex v 2 V� . We define
r.�/ W V ! W by the rule v 7! Œ�.v/�.

Lemma 3.3. For each automorphism � 2 Aut�W , the map r.�/ W V ! W extends
to an endomorphism of W .

Proof. It suffices to show that the relations used to defineW are ‘preserved’ by r.�/.
Let 1 � i � N be such that m.i/ < 1. Since the order of an element is preserved

under automorphisms and conjugation,
�
r.�/.vi //

m.vi / D 1 and r.�/ preserves the

relation vm.vi /
i D 1.

Let 1 � j < k � N be such that d.vj ; vk/ D 1. There exist w 2 W and
� 2 MCS.�/ and a; b 2 W.�/ such that �.vj / D waw�1 and �.vk/ D wbw�1.
Recall that W.�/ is an abelian group. Then

.r.�/.vj //.r.�/.vk//.r.�/.vj //
�1.r.�/.vk//�1 D aba�1b�1 D 1:

Thus r.�/ preserves the relation vj vkv�1
j v�1

k
D 1.

We abuse notation by writing r.�/ W W ! W for the endomorphism determined
by r.�/ W V ! W .

Lemma 3.4. For each automorphism ı 2 Aut�W and� 2 MCS.�/ and a 2 W.�/,
we have r.ı/.a/ D Œı.a/�.

Proof. We have a D d
�1

1 : : : d
�q
q for some vertices d1; : : : ; dq in� and some integers

	1; : : : ; 	q . By the definition of Aut�W , there exist w 2 W and ‚ 2 MCS.�/
such that ı.W.�// D wW.‚/w�1. Hence there exist t1; : : : ; tq 2 W.‚/ such that
ı.di / D wtiw

�1 for each 1 � i � q. Then

r.ı/.a/ D r.ı/.d1/
�1 : : : r.ı/.dq/

�q

D t
�1

1 : : : t
�q
q D Œwt

�1

1 w
�1 : : : wt�q

q w
�1� D Œı.a/�:

as required.

Lemma 3.5. For each pair of automorphisms �; ı 2 Aut�W , we have r.ı�/ D
r.ı/r.�/.

Proof. Let �; ı 2 Aut�W and let 1 � i � N . There exist � 2 MCS.�/ and
a 2 W.�/ and w1 2 W such that �.vi / D w1aw

�1
1 . There exist ‚ 2 MCS.�/,

b 2 W.‚/ and w2 2 W such that ı.W.�// D w2W.‚/w
�1
2 and ı.a/ D w2bw

�1
2 .

By Lemma 3.4 we have that r.ı/.a/ D b. Then

r.ı�/.vi / D Œı�.vi /� D Œı.w1/w2bw
�1
2 ı.w1/

�1� D b D r.ı/.a/ D r.ı/r.�/.vi /;

as required.
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Lemma 3.6. For each � 2 Aut�W , r.�/ 2 Aut1W .

Proof. Let � 2 Aut�W . By Lemma 3.5, r.��1/r.�/ D r.��1 B �/ D r.id/ D id

and r.�/ is an automorphism ofW . It is clear from the definitions that r.�/ 2 Aut1W .

Proposition 3.7. The map r is a retraction homomorphism Aut�W ! Aut1W with
kernel Aut0W .

Proof. By Lemmas 3.5 and 3.6, r is a homomorphism Aut�W ! Aut1W . It is
clear from the definitions that r restricts to the identity map on Aut1W and r has
kernel Aut0W .

Remark 3.8 (Tits’ approach and Theorem 3.1). For each � 2 MCS.�/, we may
consider W.�/ as a subgroup of Wab. Then the union

G D S
�2MCS.�/

W.�/ � Wab

is a groupoid in the usual way. In case W is a right-angled Coxeter group, Tits [30]
identifies Aut1W with the groupoid automorphisms AutG of G and constructs a
section of the obvious homomorphism Aut�W ! AutG. This identification carries
over in the case that W is an arbitrary graph product of directly indecomposable
groups and a section of the homomorphism Aut�W ! AutG is defined similarly.

3.2. TheRestrictedAlphabetRewritingLemma. For a subgraph
 � � , we write
pr� for the retraction homomorphismW ! W.
/ and P� ´ f�iQ 2 P j vi 2 
g.
For � 2 Aut0W and w1; : : : ; wN 2 W such that �.vi / D wiviw

�1
i for each

1 � i � N , we write �� for the map V ! W defined by

vi 7! pr�.wi / � vi � pr�.wi /
�1 for each 1 � i � N:

We shall show that �� extends to an automorphism of W , also denoted by ��. In
fact, the following theorem and its immediate corollary hold.

Theorem 3.9. For each subgraph 
 � � , the map � 7! �� is a retraction homo-
morphism Aut0W ! hP�i.

Corollary 3.10 (The Restricted Alphabet Rewriting Lemma). If � 2 Aut0W and
there exist z1; : : : ; zN 2 W.
/ such that �.vj / D zj vj z

�1
j for each 1 � j � N ,

then any word for � in the alphabet P ˙1 may be rewritten as a word in the alphabet
P ˙1
� (a word which still spells � but only uses partial conjugations whose operating

letter is in 
, or their inverses) by simply omitting those generators not in P ˙1
� .
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Remark 3.11. The Restricted Alphabet Rewriting Lemma implies that the subgroup
hP�i is convex in Aut0W . That is, for each automorphism � 2 hP�i, the shortest
ways to spell � in the alphabet P ˙1 only use letters from the alphabet P ˙1

� .

This subsection is devoted to proving Theorem 3.9. We also illustrate the power of
The Restricted Alphabet Rewriting Lemma by proving that P is a minimal generating
set for Aut0W . Throughout, we fix a subgraph 
 � � .

Lemma 3.12. The map � 7! �� is well defined.

Proof. Let � 2 Aut0W and w1; : : : ; wN 2 W and u1; : : : ; uN 2 W be such that
�.vi / D wiviw

�1
i D uiviu

�1
i for each 1 � i � N . Fix 1 � i � N . We must show

that pr�.wi / �vi �pr�.wi /
�1 D pr�.ui / �vi �pr�.ui /

�1. Sincewiviw�1
i D uiviu

�1
i ,

we have that u�1
i wi is in the centralizer of vi . Recall that the centralizer of vi is

generated by Si (Lemma 2.4). Thus there exists zi 2 hSi i such that wi D uizi .
Since pr�.Si / � Si [ fidg, pr�.zi / 2 hSi i and we have

pr�.wi / � vi � pr�.wi /
�1 D pr�.uizi / � vi � pr�.uizi /

�1

D pr�.ui / � pr�.zi / � vi � pr�.zi /
�1 � pr�.ui /

�1

D pr�.ui / � vi � pr�.ui /
�1:

Lemma 3.13. For each � 2 Aut0W , the map �� W V ! W extends to a homomor-
phism �� W W ! W .

Proof. Let � 2 Aut0W and w1; : : : ; wN 2 W be such that �.vi / D wiviw
�1
i for

each 1 � i � N . We must show that the map �� ‘preserves’ the defining relations
of W .

Let 1 � i � N . Since ��.vi / is conjugate to vi , it has the same order as vi and
the relation vm.i/

i is preserved.
Let 1 � i < j � N be such that vi and vj are adjacent. Since � 2 Aut0W , it

follows that there exists w 2 W such that �.vi / D wviw
�1 and �.vj / D wvjw

�1.
Then wi D wzi for some zi 2 hSi i and wj D wzj for some zj 2 hSj i. So
w�1
i wj D z�1

i zj and pr�.w
�1
i / � pr�.wj / D pr�.z

�1
i / � pr�.zj /. We have

��.vi / � ��.vj / � ��.vi /�1 � ��.vi /�1
D pr�.wi / � vi � pr�.w

�1
i / � pr�.wj / � vj � pr�.wj /

�1

� pr�.wi / � v�1
i � pr�.wi /

�1 � pr�.wj / � v�1
j � pr�.wj /

�1

D pr�.wi / � vi � pr�.z
�1
i / � pr�.zj / � vj � pr�.zj /

�1

� pr�.zi / � v�1
i � pr�.zi /

�1 � pr�.zj /:v
�1
j � pr�.wj /

�1

D pr�.wi / � pr�.z
�1
i / � vivj v�1

i v�1
j � pr�.zj / � pr�.wj /

�1
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D pr�.wiz
�1
i / � 1 � pr�.wj z

�1
j /�1

D pr�.w/ � pr�.w/
�1

D 1;

and the relation vivj v�1
i v�1

j is preserved.

Lemma 3.14. For �; � 2 Aut0W , .� B �/� D �� B ��.

Proof. Fix 1 � i � N . It suffices to show that .� B �/�.vi / D .�� B ��/.vi /.
Write V � for the set of (not necessarily reduced) words in the alphabet V ˙1. Let
W1; : : : ;WN 2 V � and U1; : : : ;UN 2 V � be such that �.vj / D Wj vjW�1

j (with
equality in W ) and �.vj / D Uj vjU�1

j (with equality in W ) for each 1 � j � N .
Let Ti be the word constructed from Wi as follows:

(1) for each 1 � j � N and ı D ˙1, replace each occurrence of vıj by Uj v
ı
j U�1

j ;
(2) append the word Ui to the resulting word;
(3) omit those letters not in 
 from the resulting word.

It is clear that Ti D pr�.�.Wi /Ui / and hence .��/�.vi / D TiviT
�1
i (with equality

in W ). Observe the following in the construction of Ti :

(OB1) if vj 62 
, then each occurrence of vıj in Wj is eventually replaced by the
word pr�.Uj / � pr�.Uj /

�1, which is, of course, trivial in W ;
(OB2) if vj 2 
, then each occurrence of vıj in Wj is eventually replaced by the

word pr�.Uj / � vıj � pr�.Uj /
�1.

Let T 0
i be the word constructed from Wi as follows:

(1) for each 1 � j � N such that vj 62 
 and each ı D ˙1, omit each occurrence
of vıj ;

(2) for each 1 � j � N such that vj 2 
 and each ı D ˙1, replace each occurrence
of vıj by pr�.Uj / � vıj � pr�.Uj /

�1;
(3) append the word pr�.Ui / to the resulting word.

It follows from (OB1) and (OB2) that T 0
i D Ti (with equality in W ). It is clear

from the construction of T 0
i that T 0

i D .�� B pr�.Wi //: pr�.Ui / (with equality in
W ). We calculate the following (with all equalities in W ):

.��/�.vi / D TiviT
�1
i

D T 0
i vi .T

0
i /

�1

D .�� B pr�.Wi // � pr�.Ui / � vi � pr�.Ui /
�1 � .�� B pr�.Wi //

�1

D ��.pr�.Wi // � ��.vi / � ��.pr�.Wi /
�1/

D ��.pr�.Wi / � vi � pr�.Wi /
�1/

D �� B ��.vi /:
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We now prove the main result of the subsection.

Proof of Theorem 3.9. By Lemma 3.14, .��1/�B�� D .��1B�/� D id� D id and
�� is an automorphism of W . So the map � 7! �� is a map Aut0W ! Aut0W . It
also follows from Lemma 3.14 that� 7! �� is a homomorphism Aut0W ! Aut0W .
It is clear from the definitions that

.�iK/� D
´
�iK if �iK 2 P�;

id if �iK 62 P�:

It follows that � 7! �� is a retraction homomorphism Aut0W ! hP�i.
We conclude this subsection by noting the following immediate application of

The Restricted Alphabet Rewriting Lemma.

Corollary 3.15. The set P is a minimal generating set for Aut0W .

Proof. Let �iK 2 P and let U be a word in the alphabet P ˙1 such that U D �iK
(with equality in Aut0W ). It follows from the Restricted Alphabet Rewriting Lemma
that, simply by omitting some letters, U may be rewritten as a word U0 in the alphabet

f�iQ j Q a connected component of � n Sig˙1:

But the letters in U0 commute pairwise, so we must have that �iK appears with
exponent sum 1 in U0 and hence also with exponent sum 1 in U. Thus no word in
the alphabet

.P n f�iKg/˙1

can spell �iK .

3.3. A splitting of Aut0 W . In this subsection we define a subset P 0 � P which
generates a complement of InnW in Aut0W . Thus we show that hP 0i Š Out0W
and Aut0W D InnW Ì Out0W (Theorem 3.2). Informally, one might understand
the construction of P 0 from P as removing ‘just enough’ automorphisms to prevent
the elements of .P 0/˙1 from spelling a non-trivial inner-automorphism.

Let � denote the following set of inner automorphisms

� D fw 7! viwv
�1
i j 1 � i � N and � n Si ¤ ;g:

It is clear that � generates InnW . The commuting product
Q
K �iK , taken over

all nontrivial connected components K of � n Si , is the inner automorphism .w 7!
viwv

�1
i / 2 �. If, starting with P , we remove one�iK for each i such that�nSi ¤ ;,

then the union of the resulting set and � is a generating set for Aut0W . We now do
so systematically.
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Definition 3.16 (P 0). For each 1 � i � N such that � n Si ¤ ;, let ji be minimal
such that vji

2 � n Si . Define

P 0 ´ f�iK 2 P j vji
62 Kg:

Remark 3.17. Observe the following properties of P 0:

(1) As in Corollary 3.15, the Restricted Alphabet Rewriting Lemma may be used to
show that the set � [ P 0 is a minimal generating set for Aut0W .

(2) For each 1 � i � N , either � n Si D ; or the set P n P 0 contains exactly one
element of the form �iK .

(3) If �iK 2 P 0, then v1 62 K. If �iK 2 P 0 and d.v1; vi / � 1, then v2 62 K. In
general, if �iK 2 P 0 and d.vj ; vi / � 1 for each 1 � j � k, then vkC1 62 K.

(4) The set P 0 depends on the ordering of V defined by the indexing, but the
isomorphism type of Out0W does not. For the following proof, the ordering is
unimportant.

Lemma 3.18. hP 0i \ InnW D fidg.

Proof. For each 1 � i � N , write �i ´ f�jK 2 P 0 j vj 2 Sig and write
� ´ \NiD1�i . Suppose that � 2 InnW \ Out0W , say �.vj / D wvjw

�1 for each
1 � j � N . We shall use induction to show that � 2 h�i. We shall then show that
� D ;.

Since � 2 hP 0i, � may be written as a word ˆ0 in the alphabet .P 0/˙1. By
Remark 3.17 (3), each element of P 0 acts trivially on v1. It follows from The Deletion
Condition that w is in the centralizer of v1. By Lemma 2.4, w 2 W.S1/. By the
Restricted Alphabet Rewriting Lemma, � may be written as a product ˆ1 in the
alphabet �˙1

1 (starting with ˆ0, delete those letters not in �˙1
1 ). Now let i be an

integer such that 1 � i < N and suppose that � may be written as a productˆi in the
alphabet .�1 \ � � � \ �i /

˙1. By Remark 3.17 (3), each element of �1 \ � � � \ �i acts
trivially on viC1. It follows thatw is in the centralizer of viC1. Hencew 2 W.SiC1/.
By the Restricted Alphabet Rewriting Lemma, � may be written as a product ˆiC1
in the alphabet .�1 \ � � � \ �i \ �iC1/˙1 (starting with ˆi , delete those letters not in
�˙1
iC1). By induction we have that � may be written as a product ˆN in the alphabet

�˙1.
Now �jK 2 � if and only if vj is adjacent to each vertex in � . But for such vj ,

� n Sj D ; and P (and hence P 0) contains no partial conjugations with operating
letter vj . Thus � D ;,ˆN is the empty word and � is the trivial automorphism.

Proof of Theorem 3.2. This follows immediately from Lemma 3.18, Remark 3.17 (1)
and the fact that InnW is a normal subgroup of Aut0W .

3.4. Anapplication to group extensions. The authors of [14] considered the special
case thatW is a right-angled Coxeter group. They give sufficient conditions (distinct
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from those below) for Aut0W to split as InnW Ì Aut0W= InnW , and show that
this splitting is compatible with the splitting AutW D Aut0W Ì Aut1W of [30]. It
follows that their conditions ensure AutW D InnW ÌOutW and that each extension
of W is a split extension. We now follow an analogous program for graph products
of directly indecomposable cyclic groups. We give conditions, distinct from those in
[14], which ensure that each group extension of W is a split extension.

For each 1 � i � N , we write �i ´ fvj 2 V j Si D Sj g (note that �i is a
complete subgraph for each 1 � i � N ).

Lemma 3.19. If W is a graph product of directly indecomposable cyclic groups and
�.W.�i // D W.�i / for each 1 � i � N and � 2 Aut1W , then the splittings of
Theorems 3.1 and 3.2 are compatible; that is, one may write

Aut�W D InnW Ì .Out0W Ì Aut1W / Š InnW Ì Out�W:

Proof. Let � 2 Aut1W and � 2 Out0W . If � is not the identity, then the product
�� is not an inner automorphism since it acts non-trivially on the set of conjugacy
classes of cyclically reduced involutions in W . If � is the identity but � is not,
then the product �� D � is not an inner automorphism by Lemma 3.18. Thus, to
show that InnW \ Out�W D fidg and hence the result, it suffices to show that
Out�W D Out0W:Aut1W .

Let � 2 Aut1W and �iK 2 P 0. It suffices to show that ��1�iK� 2 hP 0i. Let
1 � j � N . If vj 62 K, then �j \K D ; and the support of �.vj / is disjoint from
K. Hence

��1�iK�.vj / D ��1.�iK.�.vj /// D ��1�.vj / D vj :

If vj 2 K, then �j � K and the support of �.vj / is contained in K. Hence

��1�iK�.vj / D ��1.�iK.�.vj /// D ��1.vi�.vj /v�1
i / D ��1.vi /vj .��1.vi //�1:

Thus we have

��1�iK�.vj / D
´
vj if vj 62 K;
��1.vi /vj

�
��1.vi /

��1
if vj 2 K:

By hypothesis, ��1.vi / 2 W.�i /. For each v` 2 �i , the least element of � n Si
is also the least element of � n S` and, since �iK 2 P 0, we have �`K 2 P 0. Thus
��1�iK� may be written as a product of elements in .P 0/˙1.

Recall that the center of W is the special subgroup generated by those vertices
adjacent to every other vertex. Recall also that Lemma 2.8 gives sufficient conditions
for the equality Aut�W D AutW .

Corollary 3.20. If W is a graph product of directly indecomposable cyclic groups
and the conditions
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(1) W has trivial center,

(2) Aut�W D AutW ,

(3) �.W.�i // D W.�i / for each 1 � i � N and each � 2 Aut1W

are satisfied, then each group extension of the form 1 ! W ! E ! G ! 1 is a
split extension.

Proof. Conditions (2) and (3) and Lemma 3.19 give that AutW D InnW Ì OutW .
Thus each homomorphism  W G ! OutW lifts to a homomorphism y W G !
AutW and hence determines a semidirect product W Ì y G. Condition (1) of the
hypothesis ensures that there is exactly one extension ofG byW (up to equivalence)
corresponding to any homomorphism  W G ! OutW [3], Corollary IV.6.8, p. 106.

4. The structure and cardinality of Out0 W

We now turn our attention to Out0W . In subsection 4.1 we prove Theorem 1.4 by
examining the combinatorics of partial conjugations. In Section 4.2 we describe a
number of applications of the theorem.

4.1. The proof of Theorem 1.4. Theorem 1.4 is essentially a consequence of the
ways in which the connected components of � nSi and � nSj may interact for i ¤ j .
In this subsection we record some graph-theoretic lemmas which help us understand
these interactions, and eventually prove the result. First though, we shall describe a
construction and record some properties of the construction which allow us to make
a strong assumption about � without loss of generality.

Construction 4.1. Write .�C;mC/ for the labeled graph obtained from .�;m/ as
follows:

(1) introduce a new vertex v0 and extend m to a function mC with domain
f0; 1; 2; : : : ; N g by making a choice

m.0/ 2 fp˛ j p prime and ˛ 2 Ng [ f1gI
(2) add an edge from v0 to vi for each 1 � i � N .

Write W C ´ W.�C;mC/ and write SC
i for the star of vi in �C.

It follows from Lemma 2.7 that the construction is easily understood in a group
theoretic way: passing from W to W C corresponds to passing from the group W to
the group W C Š W � C , where C is the cyclic group of order m.0/.

Lemma 4.2. Let W C and �C be as in Construction 4.1. Then
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(1) Aut0W Š Aut0W C;
(2) Out0W Š Out0W C;
(3) �C has a SIL if and only if � has a SIL.

Proof. For each 1 � i � N , the connected components of � n Si are identical to
the connected components of �C n SC

i . The subgraph �C n SC
0 is empty. Since

P generates Aut0W , it follows that Aut0W Š Aut0W C. It also follows from the
construction of P 0 that Out0W Š Out0W C. Property (3) is immediate from the
definitions.

Thus we do not limit the scope of our study by assuming that there exists a vertex
v 2 V� which is adjacent to every other vertex. We shall make this assumption for
the remainder of this subsection. It follows that if vi and vj are vertices of � , then
d.vi ; vj / 2 f0; 1; 2g.

We now record some results which describe the ways in which the connected
components of � n Si and � n Sj may interact for i ¤ j .

Lemma 4.3. Let �iK ; �jQ 2 P . If d.vi ; vj / D 2 and vj 62 K, then K \Q D ; or
K � Q.

Proof. Assume that d.vi ; vj / D 2, vj 62 K and K \Q ¤ ;. Suppose that K 6� Q.
Let vm 2 K \ Q, let vk 2 K n Q and let ˛ be a path in K from vm to vk . Since
vm 2 Q but vk 62 Q, there exists a vertex va on ˛ such that d.vj ; va/ D 1. Since
vj ; va 2 � n Si and d.vj ; va/ D 1, the vertices va and vj are contained in the same
connected component of � n Si . Hence vj 2 K, contradicting the hypothesis.

Corollary 4.4. Let �iK ; �jQ 2 P . Then exactly one of the following nine cases
holds:

(1) d.vi ; vj / � 1;

(2) d.vi ; vj / D 2, vi 2 Q, vj 2 K, K \Q D ;;

(3) d.vi ; vj / D 2, vi 2 Q, vj 2 K, K \Q ¤ ;;

(4) d.vi ; vj / D 2, vi 2 Q, vj 62 K, K \Q D ;;

(5) d.vi ; vj / D 2, vi 2 Q, vj 62 K, K � Q;

(6) d.vi ; vj / D 2, vi 62 Q, vj 2 K, K \Q D ;;

(7) d.vi ; vj / D 2, vi 62 Q, vj 2 K, K � Q;

(8) d.vi ; vj / D 2, vi 62 Q, vj 62 K, K \Q D ;;

(9) d.vi ; vj / D 2, vi 62 Q, vj 62 K, K D Q.

The next two lemmas illustrate the relationship between the connected components
of � n Si and � n Sj and the connected components of � n .Li \ Lj /.
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Lemma 4.5. Let 1 � i < j � N be such that d.vi ; vj / D 2 and letR be a subgraph
of � . Then R is a connected component of both � n Si and � n Sj if and only if R is
a connected component of � n .Li \ Lj / and vi ; vj 62 R.

Proof. Assume that R is a connected component of both � n Si and � n Sj . Clearly,
vi ; vj 62 R. Since R is a connected subgraph of � n Si and Li \ Lj � Si , R is a
connected subgraph of � n .Li \Lj /. Suppose that R is not a connected component
of � n .Li \ Lj /. Then there exist vx 2 R, vy 2 � n .R [ .Li \ Lj // such that
d.vx; vy/ D 1. Since vx 2 R and vy 62 R andR is a connected component of � nSi ,
vy 2 Si . Similarly, vy 2 Sj . Thus vy 2 Si \Sj D Li \Lj – a contradiction. Hence
R is a connected component of � n .Li \ Lj /.

Now assume that R is a connected component of � n .Li \ Lj / and vi ; vj 62 R.
Since vi 62 R, Si \R D ; and R is a connected subgraph of � n Si . Suppose that R
is not a connected component of � nSi . Then there exist vx 2 R, vy 2 � n .R[Si /
such that d.vx; vy/ D 1. Since vx 2 R and vy 62 R and R is a connected component
of � n .Li \ Lj /, vy 2 Li \ Lj � Si – a contradiction. Hence R is a connected
component of � n Si . Similarly, R is a connected component of � n Sj .

Lemma 4.6. Assume that � does not contain a SIL. Let 1 � i < j � N be such
that d.vi ; vj / D 2, let Kj be the connected component of � n Si which contains
vj and let Qi be the connected component of � n Sj which contains vi . Then
� D Kj [Qi [ .Li \ Lj /.

Proof. Since � does not contain a SIL, � n .Li \ Lj / has at most two connected
components. If� n.Li\Lj / has two connected components, they areKj andQi and
the result is clear. Assume that � n .Li \Lj / is connected. Let vx 2 � n .Li \Lj /
and let ˛ be a minimal length path in � n .Li \Lj / from vx to vi . If ˛ passes through
Sj , then vx 2 Kj . If ˛ does not pass through Sj , then vx 2 Qi . Hence the result.

We now consider the algebraic consequences of the graph-theoretic information
assembled above. It is convenient to make a list of those cases from Corollary 4.4 in
which the relation �iK�jQ D �jQ�iK holds and those in which it fails.

Lemma 4.7. We assume the notation of Corollary 4.4. The relation �iK�jQ D
�jQ�iK holds in cases (1), (5), (7) and (8); it fails in cases (2), (3), (4), (6) and (9).

Proof. In case (1) the hypothesis immediately gives that vi and vj commute; the
relation follows immediately. For the remaining cases we determine whether or
not the relation holds by computing the images under �iK�jQ��1

iK�
�1
jQ of arbitrary

vertices from whichever of the sets K, Q, K nQ and Q nK are appropriate (noting
that �iK�jQ��1

iK�
�1
jQ.v/ D v for each vertex v 2 � n .K [ Q/); if the image of

each such vertex is the vertex itself, then the relation holds. We examine two cases
in detail, and leave the reader to verify the others using similar methods.
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In case (2) we have vi 2 QnK, vj 2 K nQ and we consider an arbitrary element
vk 2 K nQ. Then

vk
��1

jQ			! v�1
j vkvj

��1
iK		! v�1

j v�1
i vkvivj

�jQ			! v�1
j v�1

i vj vkv
�1
j vivj

�iK		! v�1
j v�1

i vj vivkv
�1
i v�1

j vivj :

It follows from the hypotheses thatv�1
j v�1

i vj vi is not contained inW.Sk/. Lemma 2.4
gives that v�1

j v�1
i vj vi is not in the centralizer of vk . Hence the relation fails.

In case (5) we have K � Q, vi 2 Q n K, vj 2 � n .K [ Q/ and we consider
arbitrary elements vk 2 K and vq 2 Q nK. Then

vk
��1

jQ			! v�1
j vkvj

��1
iK		! v�1

j v�1
i vkvivj

�jQ			! v�1
i vkvi

�iK		! vk

and

vq
��1

jQ			! v�1
j vqvj

��1
iK		! v�1

j v�1
q vj

�jQ			! vq
�iK		! vq:

Hence the relation holds.

We are now ready to prove the main result of the section.

Proof of Theorem 1.4. Assume thatW is a graph product of directly-indecomposable
cyclic groups. By Lemma 4.2, we may assume without loss of generality that there
exists a vertex v 2 V� which is adjacent to every other vertex.

Suppose that � contains a SIL with i , j andR as in Definition 1.3. LetKj denote
the connected component of � n Si which contains vj and let Qi denote the the
connected component of � n Sj which contains vi . By Lemma 4.5, �iR; �jR 2 P .
If R does not contain the least element of � n Li \ Lj , then �iR; �jR 2 P 0; the
pair �iR; �jR fits into case (9) of Corollary 4.4, so �iR�jR ¤ �jR�iR by Lemma 4.7.
If R contains the least element of � n Li \ Lj , then �iKj

; �jQi
2 P 0; the pair

�iKj
; �jQi

fits into case (2) or case (3) of Corollary 4.4, so �iKj
�jQi

¤ �jQi
�iKj

by Lemma 4.7. Hence Out0W is not abelian and property (1) implies property (2).
Now assume that� does not contain a SIL and let�iK ; �jQ 2 P 0. By Lemma 4.7,

the relation �iK�jQ D �jQ�iK holds whenever d.vi ; vj / � 1. Assume that
d.vi ; vj / D 2. By Lemma 4.6, � D Kj [ Qi [ .Li \ Lj / for Kj and Qi as
in the statement of the lemma. Without loss of generality, assume that the least ele-
ment of � n .Li \ Lj / is contained in Kj . By the definition of P 0, K ¤ Kj . Thus
vj 62 K and K � Qi . If Q D Qi , then K � Q and case (5) of Corollary 4.4 holds.
If Q 6D Qi , then vi 62 Q and K \ Q D ; and case (8) of Corollary 4.4 holds. In
either case, the relation �iK�jQ D �jQ�iK holds by Lemma 4.7. Thus Out0W is
an abelian group and property (2) implies property (1).

Next we assume that W is a graph product of primary cyclic groups. Since
each partial conjugation has finite order, it is clear that property (1) implies property
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(3). Suppose that � contains a SIL with i , j and R as in Definition 1.3. Let vr
be a vertex in R. Calculation confirms that .�iR�jR/n.vr/ D .vj vi /

nvr.vj vi /
�n

and .�iR�jR/n.vi / D vi for each positive integer n. It follows that no power of
�iR�jR is an inner automorphism. Hence OutW , and Out0W , have infinite order
and property (3) implies property (2).

4.2. Geometric applications of Theorem 1.4. In this subsection we describe a
number of applications of Theorem 1.4.

As mentioned in the introduction, Levitt [23] showed that for a one-ended word
hyperbolic group G, Out.G/ is infinite if and only if G splits over a virtually cyclic
subgroup with infinite center, either as an arbitrary HNN extension or as an amalgam
of groups with finite center. The following corollary demonstrates that such splittings
are not possible in the case that W is a graph product of primary cyclic groups. The
proof uses the fact that a graph product of primary cyclic groups is word hyperbolic
if and only if every circuit in � of length four contains a chord [25] and the fact that
each separating subgraph of � corresponds to a splitting ofW as a free product with
amalgamation (with the separating subgraph generating the amalgamated subgroup).

Corollary 4.8. If W is a graph product of primary cyclic groups and W is a one-
ended word hyperbolic group, then OutW is finite.

Proof. Let W be a graph product of primary cyclic groups which is one-ended and
word hyperbolic. Suppose that � contains a SIL. By Theorem 1.4, there exist i; j; R
as in Definition 1.3. If Li \ Lj is a complete graph, then W.Li \ Lj / is finite
and it follows from the Ends Theorem of Hopf and Stallings (see, for example, [2],
Theorem I.8.32) thatW has infinitely many ends – a contradiction to the hypothesis.
ThusLi\Lj is not a complete subgraph and there exist non-adjacent vertices vx; vy 2
Li \ Lj . Then vivxvj vy is a non-chordal square and W is not word hyperbolic –
again, a contradiction to the hypothesis.

Remark 4.9. In [27], the authors construct one-ended hyperbolic groups with fi-
nite outer automorphism group and a non-trivial JSJ decomposition in the sense of
Bowditch (that is, the group has a non-trivial graph of groups decomposition with two-
ended edge groups and vertex groups which are either two-ended, maximal “hanging
Fuchsian”, or non-elementary quasiconvex subgroups not of the previous two types
– for more details, see [1]). Such groups necessarily have only the trivial JSJ decom-
position in the sense of Sela since the outer automorphism groups are finite. Using
Corollary 1.4, one may construct examples of right-angled Coxeter groups with sim-
ilar properties to the groups described in [27]. In particular, if W is a right-angled
Coxeter group and the properties

(1) � n� is connected for each complete subgraph �,
(2) every circuit in � of length four contains a chord,
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(3) � nƒ is disconnected for some subgraphƒ which generates a virtually abelian
group,

(4) � has no SIL

hold, then W is a one-ended hyperbolic group with a non-trivial JSJ decomposition
in the sense of Bowditch and OutW is finite. For example, the graph � of Figure 1
has the desired properties (with ƒ D fv1; v4g).

v1

v3v2

v4

v5v6

v7 v8

v9v10

Figure 1. The graph � for Remark 4.9.

If W is a graph product of primary cyclic groups, then there exists a geometric
action of W on a CAT.0/ space [25]. We say that W has isolated flats if there exists
a geometric action of W on a CAT.0/ space with isolated flats (see [18]). To prove
the lemma below we shall need only the following property of such groups, which
follows from the results in [18]:

(
) ifW has isolated flats and S1; S2 � W are subgroups isomorphic to Z � Z and
S1 \ S2 ¤ fidg, then hS1; S2i is virtually abelian.

Lemma 4.10. If W is a graph product of primary cyclic groups andW is one-ended
with isolated flats and 1 � i < j � N are such that d.vi ; vj / D 2, thenW.Li \Lj /
is virtually abelian.

Proof. LetW , i and j be as in the hypothesis of the lemma. Suppose thatW.Li\Lj /
is not virtually abelian. Graph products of primary cyclic groups are subgroups of
Coxeter groups [19], Corollary 5.11, and hence linear and satisfy the Tits Alterna-
tive. Further, since W acts geometrically on a CAT.0/ space, each virtually solv-
able subgroup is virtually abelian [2], p. 249. It follows that there exist elements
a; b 2 W.Li \ Lj / such that ha; bi is a free group of rank two. The subgroups
S1 D hvivj ; ai and S2 D hvivj ; bi witness thatW does not have property .
/, since
hS1 [ S2i contains the subgroup ha; bi.
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Corollary 4.11. If W is a graph product of primary cyclic groups and W is one-
ended with isolated flats and OutW is infinite, then W splits as a free product with
amalgamation W D A 
C B , where

(1) A and B are special subgroups, and

(2) C is an infinite virtually abelian special subgroup.

Proof of Corollary 4.11. Let W and OutW be as in the hypothesis of the corollary.
By Theorem 1.4, there exist 1 � i < j � N such that d.vi ; vj / D 2 and Li \ Lj
separates� . By Lemma 4.10,W.Li\Lj / is virtually abelian. SinceW is one-ended,
W.Li \ Lj / is not finite. The result follows, with C D Li \ Lj .

We say thatW has property (NLC) if for every CAT.0/ spaceX on whichW acts
geometrically, the visual boundary @X (see [2], p. 264) is not locally connected.

Corollary 4.12. If W is a right-angled Coxeter group and OutW is infinite, thenW
has property (NLC).

Proof. Assume that OutW is infinite. By Theorem 1.4, there exist i; j; R as in
Definition 1.3. It follows that W is not finite or two-ended. If W has infinitely
many ends, then W has property (NLC). Assume that W is one-ended. Since
.Li \ Lj ; Li \ Lj ; fvi ; vj g/ is a ‘virtual factor separator’ [26], Definition 3.1, and
Li \ Lj is not a ‘suspended separator’ [26], Definition 3.1, we may apply [26],
Theorem 3.2 (2), to conclude that W has property (NLC).

Remark 4.13. We now demonstrate that the converse to Corollary 4.12 does not hold.
Let W be the right-angled Coxeter group corresponding to the graph � in Figure 2.
Observe that � does not contain a SIL, but .fv2; v3; v4g, fv2; v3; v4g, fv1; v6g/ is a
virtual factor separator and fv2; v3; v4g is not a suspended separator. Thus OutW is
finite, by Theorem 1.4, and W has property (NLC), by [26], Theorem 3.2 (2).

v1

v2

v3

v4

v5

v6

v7

Figure 2. The graph � for Remark 4.13.

The following application offers a glimpse of some geometry of AutW .
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Corollary 4.14. Let W be a graph product of primary cyclic groups. Then AutW
is word hyperbolic if and only if the following conditions are satisfied:

(1) � has no SIL;

(2) every circuit in � of length four contains a chord.

Proof. Assume that� has an SIL. Let i; j; R be as in Definition 1.3 and let �vivj
denote

the inner automorphism w 7! vivjwv
�1
j v�1

i . Since d.vi ; vj / � 2, �vivj
has infinite

order. The product �jR�iR also has infinite order and h�vivj
; .�jR�iR/i Š Z � Z.

Thus AutW is not hyperbolic.
Assume that � has no SIL. By Corollary 1.4, OutW is finite and InnW is a

finite-index subgroup of AutW . But InnW is also a finite-index subgroup ofW (see
Section 2). Thus AutW and W are commensurable, and hence quasi-isometric (see
[2], Example I.8.8.20 (1)). The result follows immediately from the characterization
of word hyperbolic graph products of primary cyclic groups described above and
the fact that word-hyperbolicity is a quasi-isometry invariant [2], Theorem III.H.1.9.

5. The special case that � is a tree

In this section we pursue a more detailed understanding of Out0W in the special
case that � is a tree with at least three vertices. Recall that Li denotes the link of the
vertex vi . Since � is a tree, each W.Li / is a free product of cyclic groups. These
subgroups are the building blocks of the direct product decomposition of Out0W in
Theorem 1.5. We prove the theorem in Subsection 5.1. We describe some applications
of the theorem in Subsection 5.2.

5.1. The proof of Theorem 1.5. For each 1 � i � N we define

L0
i ´ f�jQ 2 P 0 j d.vi ; vj / D d.vi ;Q/ D 1g:

So �jQ 2 L0
i if vi is the unique vertex between vj and Q, in which case we say that

vi is the link point of �jQ. Since � is a tree, each partial conjugation has a unique
link point, so the nonempty sets in the list L0

1; : : : ;L
0
N form a partition of P 0. Note

that some of sets L0
i are empty. For example, L0

i is empty if vi is a leaf (that is,
adjacent to exactly one vertex).

Lemma 5.1. If �iK ; �jQ 2 P 0 have distinct link points, then �iK and �jQ commute.

Proof. We prove the contrapositive. Let �iK ; �jQ 2 P 0 be elements which do not
commute. By Lemma 4.7, one of cases (2), (3), (4), (6) or (9) in Corollary 4.4 must
hold. We leave the reader to verify that the definition of P 0, combined with the
simple geometry of a tree, imply that case (3) is impossible, and cases (2), (4), (6)
and (9) may only hold if �iK ; �jQ have a common link point. Thus the result.
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Corollary 5.2. Out0W D hL0
1i � hL0

2i � � � � � hL0
N i (with some factors trivial).

The following proposition completes the proof of Theorem 1.5. In the statements
below, we write Zm.j / for the cyclic group of order m.j /.

Proposition 5.3. Suppose that � is a tree with at least three vertices. Let 1 � i � N

and let Li D fvk1
; vk2

; : : : ; vkM
g with k1 < k2 < � � � < kM . If M D 1 (that is, vi

is a leaf) orM > 1 and vk2
is the minimal element of � n Sk1

, then

hL0
i i Š Out0W.Li /I

otherwise,

hL0
i i Š Zm.k1/ � Out0W.Li /:

Proof. Reindexing the vertices changes the generating set P 0, but does not change
the isomorphism class of Out0W (because any two complements of InnW in Aut0W

are isomorphic). So, by reindexing if necessary, we may assume that indices have
been assigned to elements of V so that v1 is a leaf and if d.v1; vi / < d.v1; vj /, then
i < j .

If M D 1, then L0
i D ;, Out0W.Li / is trivial and the result holds. So we

may assume that M > 1. Let 
i W hL0
i i ! AutW.Li / denote the homomorphism

determined by restriction, that is, �iK 7! �iK jW.Li /.
In this paragraph we show that 
i is injective. Let � 2 L0

i be such that � acts as
the identity on W.Li /. It is immediate from the definition of L0

i that �.vi / D vi .
We must show that �.vj / D vj for each j such that vj 2 � n Si . Fix such an integer
j . Let vi D vj0

; vj1
; : : : ; vj`

D vj 2 V be the successive vertices of the unique
geodesic from vi to vj . So vj1

2 Li . Let wj0
; wj1

; : : : ; wj`
2 W be minimal length

elements such that �.vjk
/ D wjk

vjk
w�1
jk

. By hypothesis, wj0
D wj1

D 1. For each
k D 1; 2; : : : ; ` 	 1, we have that there exists uk such that �.vjk

/ D ukvjk
u�1
k

and
�.vjkC1

/ D ukvjkC1
u�1
k

. Since ukvjk
u�1
k

D wjk
vjk
w�1
jk

, we have w�1
jk
uk is in

the centralizer of vjk
; that is, w�1

jk
uk 2 hSjk

i. Similarly, w�1
jkC1

uk 2 hSjkC1
i. So

w�1
jkC1

wjk
2 hSjk

[ SjkC1
i. But wjk

; wjkC1
2 W.Li /, so w�1

jkC1
wjk

2 W.Li / \
hSjk

[ SjkC1
i. It follows that w�1

jkC1
wjk

2 hvj1
i for k � 2 and w�1

jkC1
wjk

D 1 for
k � 3. Then it follows thatwj2

D 1 andwjk
2 hvj1

i for each k � 3. We may assume
that ` � 3. Let Kj denote the connected component of � n Sj1

which contains vj .
Then K \ Li D ;, so �j1K 62 P 0

i . It follows that vj1
must have zero exponent

sum in wjk
for each 3 � k � `. Hence wjk

D 1 for 3 � k � ` and, in particular,
�.vj / D vj .

Finally, we show that the image 
i .hL0
i i/ is as described in the conclusion of the

Proposition. Assume first that the minimal element of � n Sk1
is vk2

. Using the
notation �kj fk`g ´ �kj fvk`

g, the image 
i .L0
i / is as follows:


i .L
0
i / D f�kj fk`g j 1 � j; ` � M; j ¤ `g n f�k1fk2g; �k2fk1g; : : : ; �kM fk1gg:



On the automorphisms of a graph product of abelian groups 149

This is a generating set for Out0W.Li /. Now assume that vk2
is not the minimal

element of � n Sk1
(so the minimal element of � n Sk1

is not contained in Li ). The
image 
i .L0

i / is as follows:


i .L
0
i / D f�kj fk`g j 1 � j; ` � M; j ¤ `g n f�k2fk1g; : : : ; �kM fk1gg:

If we replace �k1fk2g by the product �k1fk2g : : : �k1fkM g, then the resulting set still
generates h
i .L0

i /i. Observe that�k1fk2g : : : �k1fkM g commutes with each element in
the set 
i .L0

i /nf�k1fk2gg and 
i .L0
i /nf�k1fk2gg generates Out0W.Li /. Thus 
i .L0

i /

generates a subgroup of Aut0W.Li / which is isomorphic to Zm.k1/ � Out0W.Li /.

Remark 5.4. Our hypotheses on the indexing of V ensure that v1 and vN are leaves.
One may omit the corresponding terms Out0W.L1/ and Out0W.LN / (and any other
terms corresponding to leaves) from the statement of Theorem 1.5. However, by
including these terms we ensure that the statement stays valid even if the hypotheses
on the indexing is dropped.

Remark 5.5. Consider the case that � is an arbitrary connected graph. Without loss
of generality, assume that indices have been assigned to elements of V so that if
d.v1; vi / < d.v1; vj /, then i < j . Unlike the tree case, a partial conjugation may
have more than one link point and the sets L0

i do not partition P 0. However, taking
inspiration from the tree case, we define a partition P 0 inductively as follows: write
M1 ´ P 0 and for each 1 � i � N ,

L0
i ´ f�jQ 2 Mi j vi is a link point of �jQg; MiC1 ´ Mi n L0

i :

In some cases, but not all, this partition corresponds to a semi-direct product decom-
position of Out0W .

5.2. Applications of Theorem 1.5. We now consider some applications of Theo-
rem 1.5.

Remark 5.6 (Presenting Aut�W in the case that � is a tree). Since Ab is the direct
product

Q
k2K Zm.k/, where K is the set

fk j there exists i such that 1 � i; k � N; vk is the minimal vertex in Li and

Li does not contain the minimal vertex of � n Skg;
one may write down a finite presentation of Ab. Since eachW.Li / is a free product of
cyclic groups, one may use work of Fouxe-Rabinovitch [11] (see also [24], footnote 1,
p. 1) and Gilbert [12] to write down a finite presentation for Out0W.Li /. Combining
these presentations in the standard way for presenting a direct product gives a finite
presentation for Out0W . Further, a finite presentation for InnW is well-known



150 M. Gutierrez, A. Piggott and K. Ruane

(cf. Lemma 2.7) and, because each maximal complete subgroup is a direct product of
two cyclic groups, it is an easy exercise to write down a finite presentation of Aut1W .
Combining the presentations of InnW , Out0W and Aut1W in the standard way for
presenting semi-direct products (including computing the image of each generator of
the normal factor under conjugation by each generator of the other factor) one is then
able to write down a finite presentation of Aut�W (cf. [21], [28]).

Recall that we write V (resp. E) for the set of vertices (resp. edges) of � and
N D jV j. Let V1 � V denote the set of vertices which have valence one (the ‘leaves’
of �).

Corollary 5.7. If W is a graph product of primary cyclic groups and � is a tree,
then OutW is virtually torsion-free and

vcd.OutW / D jV1j 	 2:

Proof. First it follows from Lemma 2.8 (1) and Theorem 1.5 that the productQN
iD1 Out0W.Li / is isomorphic to a subgroup of finite index in OutW . Thus it

suffices to calculate the virtual cohomological dimension of this product.
For each i ,W.Li / is a free product of finite groups and so Out0W.Li / is virtually

torsion-free [8] and vcd.Out0W.Li // D maxf0; jLi j	2g [20] [24], p. 67. The direct
product of virtually torsion-free groups is virtually torsion-free, so

QN
iD1 Out0W.Li /

is virtually torsion-free.
It follows from [3], PropositionVII.2.4 (b), p. 187 (see also [3],VIII.11, Exercise 2,

p. 229) that the virtual cohomological dimension of a direct product is at most the
sum of the virtual cohomological dimensions of the factors. Thus we have

vcd
� NQ
iD1

Out0W.Li /
�

�
NP
iD1

maxf0; jLi j 	 2g:

For each 1 � i � N , Out0 W.Li / contains a free abelian subgroup of rank
maxf0; jLi j 	 2g (if the subgraph Li D fvj1

; : : : ; vjM g, then f.�j2fj3g�j1fj3g/; : : : ;
.�j2fjM g�j1fjM g/g generates a free abelian subgroup). It follows that the productQN
iD1 Out0W.Li / contains a free abelian subgroup of rank

NP
iD1

maxf0; jLi j 	 2g;

and

vcd
� NQ
iD1

Out0W.Li /
�

D
NP
iD1

maxf0; jLi j 	 2g:
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Finally,

NP
iD1

maxf0; jLi j 	 2g D
� NP
iD1
.jLi j 	 2/

�
C jV1j

D
� NP
iD1

jLi j
�

	 2N C jV1j
D 2 jEj 	 2 jV j C jV1j
D 2 jEj 	 2.jEj C 1/C jV1j
D jV1j 	 2:

(the first equality holds because jLi j	2 < 0 if and only if vi 2 V1 and jLi j	2 D 	1,
the third equality holds because each edge in � contributes to jLi j for two values of
i and the fourth equality holds because jV j D jEj C 1).

The following corollary extends the main results from [15].

Corollary 5.8. If W is a right-angled Artin group and � is a tree, then there exist
regular languages of normal forms for Out0W and Aut0W .

Proof. Consider the structure of Out0W as described in Theorem 1.5. For each
1 � i � N ,W.Li / is a free group and there exists a regular language of normal forms
Ni for Out0W.Li / [15]. Since Ab is a finitely generated free abelian group, there is
a regular language of normal forms NAb for Ab. The language NAbN1N2 : : :NN is
a regular language of normal forms for Out0W .

Further, InnW is a right-angled Artin group and hence is automatic [17], The-
orem B. It follows that there is a regular language of normal forms NI for InnW .
By Theorem 3.2, the language NINAbN1N2 : : :NN is a regular language of normal
forms for Aut0W .
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