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Profinite completions and Kazhdan’s property (T)

Menny Aka

Abstract. We show that property (T) is not profinite, that is, we construct two finitely gener-
ated residually finite groups which have isomorphic profinite completions, while one admits
property (T) and the other does not. This settles a question raised by M. Kassabov.
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1. Introduction

Two finitely generated groups have isomorphic profinite completions if and only if
they have the same collection of finite quotients.

A property & of finitely generated residually finite groups is called a profinite
property if the following is satisfied: if I'; and I'; are such groups with IR (ie.,
the profinite completion of I'; and I'; are isomorphic) then I'; has & if and only if
I’ has P.

There are various interesting properties which are trivially profinite properties:
e.g., having infinite Abelanization, rate of subgroup growth, etc. But there are other
profinite properties which are in some sense less trivial, for example, having polyno-
mial word growth (this follows from Gromov’s seminal result on polynomial growth)
and, for finitely presented groups, the property of being large (a group is said to be
large if one of its finite index subgroups has a free non-Abelian quotient) [Lac07]. On
the other hand, various other properties are not profinite. In arecent work ((CBW09]),
it is shown that there exist two finitely presented residually-finite groups such that one
is conjugacy separable and the other is not, and yet they have isomorphic profinite
completions; this shows that being conjugacy separable is not a profinite property.
In a work in preparation, Kassabov showed that it follows from [Kas07], [KNO6]
that the property (7) is not a profinite property, and he asked whether the Kazhdan
property (T) is a profinite property. In this note, we show that the Kazhdan property
(T) is not a profinite property. Explicitly we prove:
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Theorem 1. Ler D be a positive square-free integer, k := Q(~/D) and Oy its
ring of integers. Fix an integer n > 6 and let I' = Spin(1,n)(Of) and A =
Spin(5,n — 4)(Og). Then there exist finite-index subgroups 'y < I' and Ay < A
such that the profinite completion of Ty is isomorphic to the profinite completion of
Ao, while Ay admits property (T) and Ty does not. Therefore, Kazhdan’s property
(T) is not profinite.

In particular, there exist non-isomorphic arithmetic groups with isomorphic profi-
nite completions. Note that Spin(1,7n)(Ok) (resp. Spin(5,n — 4)(Oy)) are cen-
tral extensions of irreducible lattices in H; := SO(1,n) x SO(1,n) (resp. H, :=
SO(5,n —4) x SO(5, n — 4)). We can therefore deduce that H, and H, have lattices
I'; and A resp. with isomorphic profinite completions. As R — rank(H;) = 2,
while R — rank(H,) = 10 we see that the rank of the ambient Lie group is also not
a profinite property (see also Remark 3.1 and compare with [PR72]).

While we can construct many non-trivial examples of non-isomorphic arithmetic
groups with isomorphic profinite completions as the one above, we show in [Akal2]
that every set of higher rank arithmetic groups with isomorphic profinite completion
consists of finitely many isomorphism classes.

Our construction is based on a very simple idea. Vaguely speaking, the groups
above have the congruence subgroup property and hence their profinite completions
are essentially a product of the p-adic completions. Their p-adic completions agree
since the quadratic forms (1, #) and (5, n —4) agree in every local field. Nevertheless,
they do not agree over R. Moreover, I'y is a lattice in Spin(1, n) x Spin(1, ) while
Ay is alattice in Spin(5, n — 4) x Spin(5, n — 4). The latter has (T) while the former
does not.

We also note that both groups admit property t.

This note is organized as follows: Much of our construction relies on quadratic
forms theory, their Clifford algebra and their spin groups, so we review the relevant
results and definitions in §2 together with a basic lemma on profinite completions. In
§3 we prove Theorem 1.
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2. Preliminaries

2.1. Quadratic forms and their spin groups. We denote the ring of p-adic integers
by Z.
Lemma 2. The quadratic forms

e 42 2 2 2 P _ 2 2 2 2
qr:=x7+x;+x3+x5 and gy = —q1 = —x7—Xx; —X3—X}

are equivalent over Z, for every prime p, that is, for each prime p there exist
M, € GL4(Zp) such that MyM, = —1I.
Proof. We first note that for any p, the equation

X7+ x5 4+ x5 +x7 = —1

has solutions (xp, yp, zp, Wp) € Z;;. Indeed, for p # 2, this follows from an easy
application of Hensel’s lemma together with the fact that in IF,, each element is a sum
to two squares. For p = 2, we may take (x5, y2, 22, w2) = (2,1, 1, \/—_7). Now, for
each p, consider the matrix

Xp  JIp Zp Wp

M, = —Vp  Xp —Wp  Zp
—Zp Wp Xp —Vp

—Wp —Zp Yp Xp

and note that M), € M4(Zp), M, M 15 = —1. This shows that ¢; and g, are equivalent
over Z, for all primes p. O
Corollary 3. Let gmny = Y 1oy X} — Y iy ¥2. For m > 4, the quadratic form
Gmyn and Gm—a n+4 are integrally equivalent over 7, for all primes p. It follows
that for any number field k and a finite place v, we have that ¢, and qm—4 n+4 are
equivalent over Oy, where Oy is the ring of integers of k.

Proof. Let V; be the quadratic space associated tog;, i = 1,2, and V},, , the quadratic
space associated to g, ,. Then for m > 4,

Vm,n =V e Vm—4,n and Vm—4,n+4 =V, ® Vm—4,n

as quadratic spaces. Since V7 = V), over Z, for all p, this holds for V}, , and
Vin—4 n+4 as well. ]

In order to fix our notation and to fix specific representations of the groups in-
volved, we recall the relevant definitions and give an explicit definition of the Clifford
algebra and the spin group of a quadratic form. All objects and results that are de-
scribed here can be found in [Cas78] (in particular, Chapter 10, §2) or in [FHI1],
§20.
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Given a non-degenerate quadratic space (V, ¢) of dimension n over a field k, there
exists an associative algebra C(V, ¢) over k that contains V' as a linear subspace and
satisfies:

(1) C(V,¢) is of dimension 2" as a vector space.

(2) Forallx € V,x-x = ¢(x).

(3) C(V,¢) is generated as an algebra by V.
Moreover, these properties determine C(V, ¢) uniquely (up-to a k-algebra isomor-
phism that fix V'), and it is called the Clifford algebra of V.

We now give an explicit description of C(V,¢). This description depends on
a choice of a normal basis, that is, a basis which is orthogonal with respect to the
bilinear form associated to the quadratic form (see [Cas78], Chapter 10, §2).

Every non-degenerate quadratic space admits a normal basis and we fix a normal
basis eq, ..., e, for (V,¢). Recall that C(V, ¢) contains V' and let J be any subset
of {1,2,...,n} arranged in ascending order, say

J1<J2<-<Jp

where r < n, let
€(J) =€ €yttt

I

be the multiplication of the ¢;’s, and let () be the unit element. Then the set
{e(J)|J C{1,2,...,n} ordered in ascending order, 0 < |J| < n}

isabasisof C(V, ¢). As C(V, ¢) is also generated by V', the multiplicationin C(V, ¢)
is determined by

eie; = ¢(e;)
and fori # j,

ejej = —eje;.

The even Clifford algebra of C(V, ¢) is the algebra C°(V, ¢) generated by {e(J) |
|J| is even}. There exists an involution

" C(V.¢) > C(V. )

defined on the basis elements by (e(J))" = ej, - ej,_, ---ej, when J is as above,
and extended linearly. Let (C°(V,¢))* denote the group of invertible elements of
C%(V, ¢) and define Spin(V, ¢) by

Spin(V, ¢) := {x € (C°(V,¢))* | xx’ =1, xVx' C V}.

Via right multiplication we obtain a faithful irreducible linear representation
Spin(V, ¢) — GL(C°(V,¢)). We endow GL(C°(V,¢)) with the structure that
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is induced from the basis {e(J) | |J| is even} of C°(V,¢). This gives a represen-
tation Spin(V, ¢) — GL,n-1(C), and we identify Spin(V, ¢) with its image of this
representation.

We now turn to the case of (V,¢) = (Viun, gm.n). Let

Gm,n = Spin(Vm,QO,n) and Cm,n = C(Vm,n, CIm,n)'

We choose the basis ey, ..., emn, €mt1, ... emyn of Vi satisfying
(1) 1 ifl<i<m,
é;) =
DmnleD =0 itm1<i<m+n,

which is normal.

Using this basis we get by the above construction a specific faithful irreducible
representation G, , — GL(C,(,)W =~ GLym+n—1(C) via right multiplication. The
isomorphism GL(C,?l,n) 2 GL,m+n—1(C) depends on our specific choice of a normal
basis and we fix this choice throughout. For any ring R C C, we let Gy, »,(R) =
Gm.n N GLym+n—1(R) and call this group the R-points of G, ,. We remark that
the (conjugacy class of the) representation of G, , is independent of the choice
of a normal basis for the quadratic space, but the group of R-points, for a general
ring R, may depend on this choice. For this reason, we fix throughout the above
representations of Gy, 5.

The group G, , is known to be an almost simple and absolutely simple algebraic
group defined over Q. For any field k C R, k-rank(G,, ,) = min(m,n) (see for
example [FH91], §20). Moreover, we have the following consequence of Corollary 3:

Corollary 4. Let m > 4, n > 0 be natural numbers, k be any number field and v a
discrete valuation on k. Then, under the fixed representations which are described
above, Gy n(Oy) is isomorphic to Gm—4 n+4(Oy), where Oy denotes the ring of
integers in the completion of k with respect to v.

Proof. Using Corollary 3, this follows readily from the definitions in [Cas78], Chap-
ter 10, §2. Moreover, if we had defined these groups in the language of group schemes,
this corollary would have been immediate. Nevertheless, since this is crucial for our
construction, we give a complete proof, which is rather technical.

Letm’ = m—4,n" = n+4, and let k,, denote the completion of k with respect to
v. Let (k"™ qn.n) be the quadratic space associated gy, , with the standard normal
basis eq, ..., €m+n, that is,

I ifl <i <m,

-1 ifm+1<i<m+n.

dm,n (ej) = {

By Corollary 3, there exists M € GLy,4+,(Z,) such that { f; := Me;}"" 1" is also a

i=1
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normal basis of (k""" gy, ») with

dmn(f3) = {_1 =i m ()

1 ifm +1<i<m+n'.

Let C := CO%k™" ¢ppp) and C' = COMk™ " g ). We will show that
GL(C)(0y) = GL(C')(Oy), and the corollary readily follows since Gy, ,(0y) =
Gmn N GL(C)(Oy) (and resp. for Gy p).

The construction above shows that the bases {e;} and { f;} give rise to different
bases on C, which we denote by E and F. The bases E and F gives rise to two
structures on GL(C), i.e., two isomorphisms

q)E, q)F . GL(C) — GLzm—l—n—l (C)

The base E is the base fixed above, and by GL(C)(09,) we mean the O,-points
of GL(C) with respect to the basis E, i.e., @' (GLym+n(Oy)). By equation (1),
GL(C’)(0y) is isomorphic to the O,-points of GL(C) with respect to the basis F.
So we may conclude by showing that the @, -points of GL(C') with respect to E are
isomorphic to the @,-points of GL(C) with respect to F.

Let M denote the base change matrix from E to F, which is called the derived
matrix of M. From the multiplication rules in C and the fact that M has entries in
Zp and g, and qpy v has coefficients in Z,, it follows that M also has entries in
Zp. The inverse of M is the derived matrix of M ~1. which also has entries in Z p by
the same argument. Conjugation by M, which we denote by Int(ﬂ ), identifies the
representations ® g, @ r, that is, Int(]\} )o &g = . It follows that the O,-points
of GL(C) with respect to E and with respect to F are isomorphic by Int(M). [

2.2. A basic lemma on profinite completion

Lemma 5. Let " be a residually finite group. There is a one-to-one correspondence
between the set X of all finite-index subgroups of T and the set ¥ of all open subgroup
of T, given by

XX (XeX), Y>YnT (Ye¥),
where X denotes the closure of X in L. Moreover, X is canonically isomorphic to
X and
C:X]=[T:X].

Proof. See [LS03], Proposition 16.4.3. O



Profinite completions and Kazhdan’s property (T) 227
3. Property (T) is not profinite — proof of Theorem 1

We continue with the notation of Theorem 1 and we let G; := Gp,; and G, =
Gr—4,5 with the fixed representations described above. Let 01, 02 be the two distinct
embeddings of k into R. They induce natural embeddings 61, 65 of G; (O ) to G; (R).
We embed

I':=G1(Ok) = G1(R) x G1(R), x> (61(x),02(x)),
and similarly
A = G2(Ok) — G2(R) x G2(R),  x = (61(x), 62(x)).

It is well known that these embeddings realize I" and A as irreducible lattices.

Now we show that any finite-index subgroup I'g < I' does not have property (T),
while any finite-index subgroup Ag < A does. The group G;(R) = Spin(n, 1)(R),
which is a central extension of SO(#, 1)(R), does not have property (T) ([BAIHVOS],
Theorem 3.5.4) and neither does the direct product of G (R) with itself ((BAIHVO0S],
Proposition 1.7.8). Note that any finite-index subgroup I'y < I'isalattice in G1(R) x
G1(R). Since a lattice in a group has property (T) if and only if the group has
property (T) ([BAIHVO0S], Proposition 1.7.1), it follows that any finite-index subgroup
I'p < I' does not have property (T).

In contrast, the group G,(R) = Spin(n — 4, 5)(R), which is a central extension
of SO(n — 4,5)(R), does have property (T) since it is almost simple of rank > 2
and therefore so does its direct product with itself ((BAIHVO0S8], Proposition 1.7.8).
Again, any finite-index subgroup Ag < A is a lattice in G(R) x G, (R). It follows
that any finite-index subgroup Aoy < A has property (T). In particular, a finite-index
subgroup of I" cannot be isomorphic to a finite-index subgroup of A.

Nevertheless, we will now show that there exist a finite-index subgroup ['g < I
and a finite-index subgroup Ay < A that have isomorphic profinite completions.
First note that, by Corollary 4, G1(0,) = G»(0O,) for any discrete valuation v, so
there exists an isomorphism

O: [[G1(0y) = []G2(0y),

where the product runs over all the discrete valuations of k.
By [Kne79], 11.3, the congruence kernel of G5 is the trivial group and therefore

A = G2(0x) = G2(Op) =[] G2(0y),
v
where the product runs over all discrete valuations of k . For G, by [KAne79], 11.5¢,

the congruence kernel is of size 1 or 2. In any case, it is finite, so I' fits into the
following short exact sequence

1—>C—>f‘—>]_[G1((9v)—>1,
v

where C is a finite group.
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As T is profinite, we can find a finite-index open subgroup that intersects C
trivially and therefore maps to [ [, G1(0,) injectively. By Lemma 5, this subgroup
is necessarily of the form f‘;, for a finite-index subgroup I'g of I".

We identify f‘; with its (faithful) image in [ [, G1(O9y). By Lemma 5, there exists
a finite-index subgroup Ao of A with Ao = CD(f‘B), i.e., Ao fits in the following
commutative diagram:

Thus 1/\\0 and f; are isomorphic. As explained above, A has property (T) and
I'g does not. This concludes the proof of Theorem 1.

3.1. Remark. The above proof also shows that the rank of the Lie group containing
I' as a lattice is not a profinite property. Indeed, using Corollary 4 and induction,
one sees that for arbitrarily large fixed n and every 0 < k < %, the groups G x Gy
with Gy := Spin(4k + 1, n — 4k) have irreducible lattices I'y which share the same
profinite completions but are pairwise non-isomorphic by Mostow’s strong-rigidity
(which may be applied to the images of ['; in SO(4k +1,n—4k)xSO(4k+1, n—4k)).
The rank of Gy x Gy is 2(4k + 1).
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