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Abstract. We study branching random walks on Cayley graphs. A first result is that the trace
of a transient branching random walk on a Cayley graph is almost surely (a.s.) transient for
the simple random walk. In addition, it has a.s. critical percolation probability less than one
and exponential volume growth. The proofs rely on the fact that the trace induces an invariant
percolation on the family tree of the branching random walk. Furthermore, we prove that
the trace is a.s. strongly recurrent for any (non-trivial) branching random walk. This follows
from the observation that the trace, after appropriate biasing of the root, defines a unimodular
measure. All results are stated in the more general context of branching random walks on
unimodular random graphs.
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1. Introduction

A branching random walk (BRW) is a cloud of particles that move on an underlying
graph G in discrete time. The process starts with one particle in the root o of the
graph. At each time step each particle splits into offspring particles, which then move
one step according to a random walk on G. Particles branch and move independently
of the other particles and the history of the process. A first natural question is to ask
whether the process eventually fills up the whole graph, i.e., if every finite subset will
eventually be full or free of particles. If the BRW visits the whole graph it is called
recurrent and transient otherwise. In the transient case, the set of visited vertices and
traversed edges defines a proper random subgraph of G and its properties become of
interest. This subgraph is called the trace of the BRW.

One motivation of this note comes from the fact that the trace of a simple random
walk (SRW) on a connected graph is a.s. recurrent with respect to the SRW; see [3].
Recall that a random walk on G is called recurrent if it returns a.s. an infinite number
of times to the origin (or any finite subset of G) and transient otherwise. In [3] it
was conjectured that this phenomenon still holds true for BRWs. First, we prove
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that the trace of a transient BRW on a unimodular random graph (URG) is in fact
a.s. transient for SRW, see Theorem 3.1, and then that it is a.s. (strongly) recurrent for
every BRW, see Corollary 3.8. Our proofs rely on mappings of the family tree into the
base graph of the BRW. In particular, we prove that there exists a unimodular random
version of the trace. The proof of Theorem 3.1 uses the fact that the trace defines an
invariant percolation on the family tree. This idea is also used to prove that the trace
of a transient BRW on a URG has a.s. critical percolation probability less than 1 and
exponential volume growth; see Theorem 3.2 and Proposition 3.3. Besides this, we
suggest a list of questions and conjectures about structural properties of the trace of
BRWs.

2. Preliminaries

2.1. Branching random walks. We use the standard notation for a rooted graph
G D .V; E/: V is the set of vertices, E is the set of edges, deg.x/ is the degree of
x, we write x � y if .x; y/ 2 E, and denote o for the root. We always assume the
graph to be infinite, connected, and of bounded degree.

The branching random walk (BRW) starts with one particle in the root o of the
graph and is defined inductively: at each time step each particle splits into offspring
particles, which then move one step according to a random walk on G. Particles
branch and move independently of the other particles and the history of the process.
We denote .pk/k2N for the offspring distribution; pk is the probability that a particle
splits into k offspring. Let m D P

k kpk be the mean number of offspring. We will
always assume that p0 D 0 and p1 < 1, i.e., that particles have at least one offspring,
which guarantees the survival of the process, and that the process is not reduced to
a non-branching random walk. The movement of the particles is described by the
transition kernel P D .p.x; y//x;y2V of a simple random walk (SRW) denoted by
.Sn/n�1. Recall that SRW means that p.x; y/ D 1=deg.x/ if x � y and 0 otherwise,
and that the connectedness of the graph assures the irreducibility of the random walk.
The probability distribution and expectation will be denoted by Px and Ex for both
the SRW and the BRW started in x. If not mentioned otherwise the processes always
start in the root of the graph, and we write P and E.

There is an alternative description of BRWs that uses the concept of tree-indexed
random walks introduced in [5]. Let T be a rooted infinite tree. Denote by v the
vertices of T and let jvj be the (graph) distance from v to the root r . The tree-indexed
process .Sv/v2T is defined inductively such that

Sr D o and P .Sv D xjSv� D y/ D p.x; y/;

where v� is the unique predecessor of v, i.e., v� � v and jv�j D jvj � 1. A
tree-indexed random walk becomes a BRW if the underlying tree is a realization of
a Galton–Watson process with offspring distribution p D .pk/k�1. We call T the
family tree and G the base graph of the BRW.
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An important class of unimodular (random) graphs, see Section 2.2, are Cayley
graphs. In this case the BRW can be described as a labelled Galton–Watson tree. Let
G be a finitely generated group with group identity o and write the group operations
multiplicatively. Let q be the uniform probability measure on a finite symmetric
generating set of G. The SRW on G is the Markov chain with state space G and
transition probabilities p.x; y/ D q.x�1y/ for x; y 2 G. Equivalently, the process
(starting in x) can be described as

Sn D xX1 � � � Xn; n � 1;

where the Xi are independent and identically distributed (i.i.d.) random variables
with distribution q. Now label the edges of T with i.i.d. random variables Xv with
distribution q; the random variable Xv is the label of the edge .v�; v/. Define
Sv D o � Q

i Xvi
where hv0 D r; v1; : : : ; vn D vi is the unique geodesic from r

to v at level n.

2.2. Unimodular random graphs. Unimodular random graphs (URG) or stochas-
tic homogeneous graphs have several motivations and origins. In this note we con-
centrate on the probabilistic motivations since these give rise to the tools we are going
to use. For more details on the probabilistic viewpoints we refer to [1], and to [14]
for an introduction to the ergodic and measure theoretical origins.

One motivation to consider unimodular random graphs is the use of a general
Mass-Transport Principle (MTP); this was established in [6] under the name of “In-
trinsic Mass-Transport Principle”. It was motivated by the fact the Mass-Transport
Principle is heavily used in the study of percolation and therefore lifts many results
on unimodular graphs to a more general class of graphs. In [1] a probability measure
on rooted graphs is called unimodular if this general form of the MTP holds. In [13]
a different language and a more general approach is used. In particular, unimodular
measures on rooted graphs correspond to invariant measures of graphed equivalence
relations, and unimodular graphs are called stochastic homogeneous graphs.

Let us now give a definition of a unimodular random graph (URG). We write
.G; o/ for the graph G with root o. A rooted graph .G; o/ is isomorphic to .G0; o0/
if there is an isomorphism of G onto G0 which takes o to o0. We denote by G�
the space of isomorphism classes of rooted graphs and write ŒG; o� for the equiv-
alence class that contains .G; o/. The space G� is equipped with a metric that is
induced by the following distance between two rooted graphs .G; o/ and .G0; o0/:
d..G; o/; .G0; o0// D 1

1C˛
. Here ˛ is the supremum of those r > 0 such that there

is some rooted isomorphism of the balls of radius brc (in graph distance) around the
roots of G and G0. In this metric G� is separable and complete. In the same way
one defines the space G�� of isomorphism classes of graphs with an ordered pair of
distinguished vertices. A Borel probability measure � on G� is called unimodular if
it obeys the Mass-Transport Principle: for all Borel function f W G�� ! Œ0; 1�, we
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have Z X
x2V

f .G; o; x/d�.ŒG; o�/ D
Z X

x2V

f .G; x; o/d�.ŒG; o�/: (1)

Observe that this definition can be extended to labelled graphs or networks. A network
is a graph G D .V; E/ together with a complete metric space M and maps from E

and V to M . While the definition of the above equivalence classes for networks is
straightforward, one has to adapt the metric between two networks as follows: the ˛

is chosen as the supremum of those r > 0 such that there is some rooted isomorphism
of the balls of radius brc around the roots of G and G0 and such that each pair of
corresponding labels has distance at most 1=r .

Another way to look at unimodular measures uses random walks on rooted graphs.
Instead of considering a random walk on a graph and observing its position on the
graph, we keep track of the environment seen from the point of view of the particle.
The state space is then the space of rooted graphs, where the position of the random
walk corresponds to the root. Furthermore, there is a one-to-one correspondence be-
tween stationary measures of the environment seen from the particle and unimodular
measures on rooted graphs: the density of the stationary measure with respect to the
unimodular measure is the vertex degree function, see [13]. Observe that in [13] this
connection is given in terms of invariant measures for treed-equivalence relations.

To illustrate this connection let us consider an example that is important for us:
the Galton–Watson measure. Let p D fpkgk2N be a probability distribution on the
integers. The Galton–Watson tree is defined inductively: start with one vertex, the
root of the tree. Then, the number of offspring of each particle (vertex) is distributed
according to p. Edges are between vertices and their offspring. We denote by GW the
corresponding measure on the space of rooted trees. We always assume that p0 D 0

which implies that the tree is infinite a.s. and has no leaves. In this construction
the root clearly plays a special role. In [21] the augmented Galton–Watson measure
(AGW) was introduced where the root has k C 1 offspring with probability pk and
they showed that AGW is the stationary measure for the environment seen from the
point of view of the SRW. In the unimodular Galton–Watson measure (UGW) the
root has a degree biased distribution: the probability that the root has degree k C 1

is 1
c

� pk

kC1
with c D P

i .pi=.i C 1//. In cases where we use the UGW measure
instead of the standard GW measure to define the family tree of the BRW we denote
the BRW by UBRW.

2.3. Basic results. One first question to ask is whether the trace is a proper random
subgraph of the base graph. This is equivalent to the question of recurrence of
the process. Recall that a (non-branching) random walk is called recurrent if it
returns infinitely many times to its starting point and transient if it eventually leaves
every finite set. This definition can be generalized to BRWs modulo the following
observation. Let ˛.x/ be the probability that a BRW started in x visits x an infinite
number of times. Now, irreducibility of the underlying SRW guarantees that the
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following terms are well-defined: a BRW is called strongly recurrent if ˛.x/ D 1

for all (some) x 2 G; weakly recurrent if 0 < ˛.x/ < 1 for all (some) x 2 G; and
transient if ˛.x/ D 0 for all (some) x 2 G. We say the BRW is recurrent if it is
not transient. (Notice that strong recurrence is equivalent to guaranteed return, i.e.,
the process returns to the starting position almost surely.) While in general a BRW
may be weakly recurrent, in homogeneous cases, see [25] and Theorem 2.2 below, a
recurrent BRW is always strongly recurrent. We refer to [25] where more references
and details about the different types of BRWs can be found.

It turns out that recurrence and transience depend on local properties of the graph
and can be classified using the spectral radius of the random walk:

�.P / D lim sup
n!1

.p.n/.x; y//1=n:

Note that, due to the irreducibility, lim sup.p.n/.x; y//1=n does not depend on x

and y. We write �.G/ for the spectral radius of the SRW on G.

Theorem 2.1 ([10]). The BRW with underlying irreducible Markov chain P is re-
current if m > 1=�.P / and transient otherwise.

Remark 2.1. Recall the well-known amenability criterion of Kesten: a finitely gen-
erated group is amenable if and only if the SRW on its Cayley graph has spectral
radius 1; see e.g. Section 12.A in [27]. An immediate consequence of the latter result
and Theorem 2.1 is that a finitely generated group is amenable if and only if any BRW
with m > 1 is recurrent on its Cayley graph.

In homogeneous cases, as Cayley graphs, quasi-transitive graphs, i.i.d. random
environment, a zero-one law for ˛ is established in [25]. This fact generalizes to
BRWs on unimodular random graphs.

Theorem 2.2. Let � be a unimodular measure. Then, for �-a.a. G, the BRW is
strongly recurrent if m > 1=�.G/ and transient otherwise.

Proof. The fact that m � 1=�.G/ implies transience is just one part of Theorem 2.1.
The other part of this Theorem ensures that m > 1=�.G/ implies recurrence and hence
that ˛.x/ > 0 for all x. Now, as in [25], the idea of the proof is to find a (random)
sequence .yj /j 2N of vertices that are visited by the BRW and satisfy ˛.yj / > c for
some c > 0. This implies that at least one of the yj will be visited infinitely many
times. Eventually, the irreducibility of the SRW implies that every vertex is visited
infinitely many times, hence ˛.x/ D 1 for all x.

Let us fix one geodesic hr; v1; v2; : : : i in the family tree. The values of Sv along
the geodesic correspond to the values of a (non-branching) random walk. Denote
by .Gn; on/ the environment process with .G0; o0/ D .G; o/ of this random walk.
Observe that unimodularity of the base graph implies that the environment process
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is stationary and recall that on corresponds to the position of the SRW at time n. In
particular, the ˛n D ˛.on/ form a stationary and strictly positive sequence. Hence
there exists some constant c > 0 such that there exists some (random) subsequence
yj D xnj

of on with ˛.yj / > c. At each time nj , k � 1 new independent BRWs are
started from the geodesic (in yj ) with probability pk . Each of those has probability
˛.yj / > 0 that infinitely many particles visit yj , hence there exists a random element
y� of .yj /j 2N such that y� is visited infinitely many times.

Remark 2.2. Note that one also could use a seed-argument introduced in [7] together
with the MTP. A seed is a finite subset of G such that the process restricted to this
set is a supercritical Galton–Watson process. By MTP it follows that infinitely many
seeds are visited.

Remark2.3. While �.G/ in Theorem 2.2 may in general be random, it is deterministic
if the measure � is extremal.

3. Properties of the trace

Before asking whether the trace, denoted by Tr, is recurrent for BRWs it is appropriate
to ask if it is transient for the SRW. For BRWs on homogeneous trees it was shown
in [12] that the trace is a.s. transient for the SRW. We extend this result to BRWs on
unimodular random graphs.

Theorem 3.1. The trace of a transient BRW on a unimodular random graph is
a.s. transient for the SRW.

Proof. The proof relies on the interpretation of the BRW as a tree-indexed random
walk. The main idea is roughly the following. Since the SRW on the Galton–Watson
tree is transient there exists a unit flow with finite energy from r to infinity. We map
this flow into the base graph in order to obtain a unit flow. The crux is then to show
that the flow in the base graph has finite energy. In order to control the latter energy
we consider appropriate subgraphs of the family tree.

Let us just recall the basic definitions and notations; we refer to [22] for more
details. Directed edges are denoted by e D he�; eCi. A flow � is an antisymmetric
real valued function on the edge set. The energy of a flow is defined as

E.�/ D k�k2
r D 1

2

X
e

r.e/�.e/2;

where r. � / denotes the resistances of the edges. A flow � is a unit flow from a 2 V

to infinity if
P

e�Dx �.e/ D 1fag.x/ for all x 2 V . There is the well-known criterion
for recurrence and transience for electrical networks due to [23]: the random walk on
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a countable infinite connected network G is transient iff there exists a unit flow with
finite energy on G from some (every) vertex to infinity.

We can use the tree-indexed random walk to define a random mapping of the
family tree T to G: the edge hv�; vi in T is mapped to the edge hSv� ; Svi in G.
The above mapping enables us to define a percolation on the tree T . Let N > 0 and
define TN as the induced subgraph that consists of all edges

fhv�; vi W jThSv� ;Svij � N g;
where

Thx;yi D fv 2 T W hSv� ; Svi D hx; yig:
Let us first assume that the family tree T is a homogeneous tree. Since G is

a unimodular random graph TN defines an invariant percolation of the family tree.
A similar kind of observation already appeared in the proof of Schramm’s Lemma,
see e.g. [17]. We refer to [17], Lemma 3, for more details on the proof that TN

is invariant to the automorphisms of T . Now Theorem 1.6 in [11] guarantees the
existence of infinite clusters in this percolation process with sufficiently high marginal
(N sufficiently large). Furthermore, by Theorem 1.3 and Theorem 1.5 in [11], the
branching number of an infinite component is strictly larger than 1. Note that in
order to apply Theorem 1.3 in [11] the percolation TN has to satisfy the finite energy
condition. This can be easily achieved by replacing T by a Bernoulli(p)-percolation
of T . Hereby we have to choose p sufficiently large to ensure that TN has sufficiently
large marginal.

The fact that the branching number of an infinite component of TN is strictly
larger than 1 implies the transience of the SRW on infinite clusters of TN for N

sufficiently large. We can assume that the root r is part of an infinite cluster and let
�N be a unit flow of finite energy from r to infinity in TN . A flow on TN induces a
flow �N;G on G: let hx; yi be an edge in G and define

�N;G.hx; yi/ D P
v2TN;hx;yi

�.hv�; vi/;

where
TN;hx;yi D fv 2 TN W hSv� ; Svi D hx; yig:

Due to the construction of TN the induced flow �N;G in G is a unit flow of finite
energy. Hence the subgraph of the trace that consists of all edges that were visited
less then N times and contains the origin is transient for the SRW. Since the existence
of a transient subgraph implies transience of the whole graph, see e.g. Corollary 2.15
in [27], the trace of the BRW is transient too.

For the general family tree we use Theorem 2 in [8]: there exists some constant
K such that the family tree contains a full binary tree whose edges are stretched to a
path of length K. Now we can argue as above by considering the trace of the random
walk indexed by the stretched binary tree.
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We want to highlight the usefulness of the concept that underlies the proof of
Theorem 3.1 and give several applications: Theorem 3.2, Proposition 3.3, and Lem-
mata 3.4 and 3.5.

Let us consider Bernoulli.p/ percolation on a locally finite graph G; for fixed
p 2 Œ0; 1�, each edge is kept with probability p and removed otherwise independently
of the other edges. The random subgraph that remains after percolation is denoted
by !. Denote Pp for the corresponding probability measure and define the critical
probability

pc.G/ D supfp W Pp.there exists an infinite component of !/ D 0g:

Theorem 3.2. Let Tr be the trace of a transient BRW on a URG. Then

pc.Tr/ < 1 a.s.

Proof. We have to prove that for some p < 1 the trace contains an infinite connected
cluster. Consider TN defined in the proof of Theorem 3.1 and recall that TN defines
an invariant percolation. Let us define yet another invariant percolation TN;p via
the Bernoulli percolation on the trace: TN;p consists of those vertices of TN that
are mapped to an edge of Tr that remains after percolation of the trace. Observe,
that erasing an edge of Tr corresponds to erasing at most N edges of TN . Using
Theorem 1.6 in [11] we can choose first N and then p < 1 sufficiently large such
that the marginal of the percolation defined by TN;p is sufficiently large to guarantee
the existence of an infinite cluster. We conclude by observing that an infinite cluster
of TN;p is mapped onto an infinite subgraph of the percolated trace.

In a rooted graph, let B.n/ be the ball of radius n around the root and define
Tr.n/ D Tr \ B.n/.

Proposition 3.3. The trace of a transient BRW on a URG has a.s. exponential volume
growth, i.e., there exist c > 0 and r > 1 such that jTr.n/j � crn for all n � 1.

Proof. Let us assume that the family tree is a binary tree; the case of a general family
tree is treated as in the proof of Theorem 3.1. There exists some N such that the
infinite components of TN have branching number greater than 1 and hence grows
exponentially fast. This means that there exist some constants b > 0 and r > 1 such
that jTN \B.n/j � brn. Now, by mapping TN to the base graph, we obtain a subgraph
of the trace that we denote by TrN . Observe that each edge hv�; vi is mapped to the
edge hSv� ; Svi with jvj � jSvj, where jSvj is the graph distance in the base graph
from Sv to the root o. Eventually, jTrN \ B.n/j � jTN \ B.n/j=N � .b=N /rn. We
conclude by observing that Tr.n/ � Tr.n/

N .

Lemma 3.4. The trace of a transient BRW on a URG has a.s. only finitely many
cutpoints, i.e., points that separate the root from infinity.
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Proof. Let us put in the setting of the proof of Proposition 3.3 and choose N such
that the infinite components of TN have a branching number greater than 1. Recall a
definition of the branching number of a tree that uses cutsets of trees. A cutset … of
a tree is a subset of vertices that separates the root r from infinity, i.e., every infinite
geodesic path starting from r goes through a vertex of …. Now the branching number
of a tree T is defined as

br.T / ´ sup
˚
� � 1 W inf… cutset

P
v2… ��jvj > 0

�
:

Since the branching number of an infinite component of TN is larger than 1 there
exists some � > 1 and " > 0 such that

P
v2… ��jvj > " for all cutsets …. Define the

height of a cutset … as h.…/ D minfjvj W v 2 …g. Now
P

v2… ��jvj � j…j��h.…/

and hence j…j � "�h.…/.
Assume that x 2 TrN is a cutpoint and denote n for its distance to the origin in

TrN . Observe that all v 2 TN are mapped to a vertex Sv with jSvj � jvj. Hence,
there exists some cutset of TN such that h.…/ � n and j…j � N . Together with
j…j � "�h.…/ for all cutsets …, this implies that the trace TrN corresponding to TN

has a.s. only a finite number of cutpoints. We can conclude by observing that no
vertex of Tr n TrN can be a cutpoint of Tr; the root o is connected to 1 through TrN .

The next result concerns ends of the trace of BRWs. Recall the basic notations.
A ray is an infinite path .x0; x1; : : : / of distinct vertices. A set F separates sets of
vertices A and B if any path from any vertex in A to any vertex in B contains an
element of F . Two rays are equivalent if they cannot be separated by a finite set of
vertices. The equivalence classes of rays are called ends.

There are several approaches to define the thickness of ends; we follow the one
that uses cuts, see e.g. [18]. Denote @C the (interior) boundary of a subset of vertices,
i.e., @C ´ fx 2 C W there exists y … C with y � xg. If @C is finite we call the
set C a cut. A ray R lies in a set of vertices C if all but finitely many vertices of
R are elements of C . An end ! lies in a set of vertices C if all rays in ! lie in
C . We say that a set of vertices F separates two ends !1 and !2 if there exist R1

in !1 and R2 in !2 separated by F . If a ray R lies in a cut then the end which R

belongs to lies in C . Furthermore, each pair of distinct ends is separated by a finite
set of vertices. The thickness of an end ! is the smallest t .!/ 2 N [ f1g with the
following property: there is a descending sequence of cuts .Cn/n2N which contain
! such that j@Cnj � t .!/ and

T
n Cn D ;. An end is called thin if t .!/ < 1 and

thick otherwise.

Lemma 3.5. The trace of a BRW on a URG with infinitely many thin ends and no
thick ends has a.s. infinitely many ends.

Proof. We proof the claim by contradiction. Assume that the trace has finitely many
ends, say !1; : : : ; !k . Then for each of these ends there exists a sequence of cuts



240 I. Benjamini and S. Müller

C
.i/
n , 1 � i � k, verifying the conditions above. Now Cn D S

i C
.i/
n defines a cut

that separates o from infinity for n large enough. Note that jCnj � P
i t .!i / for

all n and that the distance from o to Cn goes to infinity. Arguing as in the proof of
Lemma 3.4 leads to a contradiction with the fact that the branching number of TN is
greater than 1 for some N .

The next observation is about the spectral radius of the trace of a transient BRW
(say with mean offspring m) on a general graph. Together with Theorem 2.1 it implies
that for every m0 > 1 with positive probability the trace is recurrent for a BRW with
mean offspring m0.

Lemma 3.6. Let G D .V; E/ be a locally finite graph and Tr the trace of a transient
BRW on G. Denote by �.Tr/ the spectral radius of the SRW on Tr. Then

P .�.Tr/ � 1 � "/ > 0:

for all " > 0.

Proof. Let F be a subset of V and let PF be the substochastic matrix over F defined
as pF .x; y/ D p.x; y/ if x; y 2 F and 0 otherwise. We use the finite approximation
property of the spectral radius: �.P / D supjF j<1 �.PF /, where �.PF / is the largest
eigenvalue of PF . Denote Q for the transition matrix of the SRW on Z and let Lk be
the line segment of length k. It is well known that �.Q/ D 1; hence for each m > 1

there exists some k such that �.QLk
/ > 1=m.

We say that the trace contains a line segment Lk if there exists a sequence of
vertices x0; x1; : : : ; xk such that xi � xiC1 for i D 0; : : : ; k � 1 and deg.xi / D 2

for all i D 1; : : : ; k � 1. It remains to prove that for each k the trace contains line
segments of length k with positive probability.

Since the BRW is transient there exists some vertex xk with jxkj D k such that the
BRW started in xk does not hit the ball B.k�1/ around o with positive probability. Let
.o; x1; x2; : : : ; xk/ be a path from o to xk of length k and imin the smallest integer i

such that pi > 0. Now, with positive probability the following can happen: the BRW
starts in o with one particle that produces imin offspring. These offspring particles all
jump to x1 and each of them produces imin offspring that all jump to x2. We proceed
in this way such that at time k all existing ik

min particles are at xk and no vertex
outside the set fo; x1; x2; : : : ; xkg was visited. The rest of the process behaves like
ik
min independent BRWs started at xk . Hence, with positive probability no particle

ever returns to B.k�1/ and the trace contains a line segment of length k.

Theorem 3.7. The trace of a UBRW on a URG is a.s. a unimodular random graph.

Proof. As in the proof of Theorem 3.1 we consider the mapping of the family tree to
the graph. Now every set of edges in the tree that is mapped to the same edge in the
base graph gets the same label. In other words, all elements of Thx;yi are labelled
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the same. This labelling is invariant under re-rooting and thus the labelled tree is
a unimodular random labelled tree. This shows in particular that the trace does not
depend on the choice of the root.

Another way to see this is to check that the generalized MTP, equation (1), holds.
First, consider BRWs on Cayley graphs. We denote by T the labelled UGW-tree with
corresponding measure �; the labels are taken from the set of generators according to
the definition of the UBRW as a tree-indexed random walk. Define a labelled version
of the trace: an edge of the trace is labelled by the number of traversal of the BRW.
We will prove that this labelled trace is a random unimodular network. We also use
Tr for the notation of the labelled version and write � for its probability measure.

We write fT  Tr; rg or just fT  Trg for the set of rooted trees that generate
the rooted trace Tr. The root of T is denoted by r and the one of Tr by o. For any
given Tr, QT 2 fT  Trg, and x 2 Tr, let E.x/ be the set of vertices of QT that map
to x and define

g. QT ; r; v/ D f .Tr; o; x/jE.x/j�1 if v 2 E.x/;

and g. QT ; r; v/ D 0 otherwise. Since jE.x/j is constant and finite on fT  Trg for
a given x, the latter is well defined. NowZ

Tr

X
x2Tr

f .Tr; o; x/d�ŒTr; o�

D
Z

Tr

X
x2Tr

f .Tr; o; x/d�ŒT  Tr; r�

D
Z

Tr

Z
QT2fT Trg

X
x2Tr

X
v2E.x/

g. QT ; r; v/
d�Œ QT 2 fT  Tr; rg�

�ŒT  Tr; r�
d�ŒT  Tr; r�

D
Z

T

X
v2T

g.T ; r; v/d�ŒT ; r�;

and unimodularity of � follows by unimodularity of �. The proof for the more
general case of unimodular random graphs is in the same spirit. Denote by BRWG;T

the measure for the tree-indexed process with family tree T and base graph G. Let
Tr be a labelled trace and define for .G; o/, .T ; r/ and x 2 G, v 2 T ,

g.G; T ; o; x; r; v/ D
Z

f .Tr; o; x/jE.x/j�2dBRWG;T

if v 2 E.x/ and 0 otherwise. We can conclude as above using the unimodularity and
independence of the measures of the family tree and the base graph.

Now we just have to combine Lemma 3.6 and Theorem 2.2:

Corollary 3.8. Consider a transient BRW on a URG. Then, the spectral radius of the
trace is a.s. 1. Furthermore, every BRW on a.e. trace is strongly recurrent.
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Proof. As in the proof of Lemma 3.6 let " > 0 and k such that the spectral radius of
the line segment Lk is greater than 1�". The proof of Lemma 3.6 shows that the root
of the trace belongs to a line segment Lk with positive probability. Since the trace
is a unimodular random graph it follows that it contains such a line segment a.s. and
hence that �.Tr/ � 1 � " a.s.. The fact that any BRW is strongly recurrent on the
trace is now a consequence of Theorem 2.2 and Theorem 3.7.

Remark 3.1. In Theorem 3.7 we proved that the labelled trace is a random unimod-
ular network. Recall that the labels have been the number of times an edge was
visited. Denote N.x; y/ for the label of the edge hx; yi and define a random walk
where the probability to take hx; yi is proportional to N.x; y/, i.e., pN .x; y/ D
N.x; y/.

P
z�x N.x; z//�1. The above arguments apply to this model and we obtain

that for a.a. labelled traces of transient BRWs (on URG) the BRW with transition
kernel PN and mean offspring m > 1 is strongly recurrent.

4. Discussion

We want to use the opportunity to briefly discuss some questions and conjectures
that are related to our results above and may stimulate further research on BRW on
graphs.

4.1. Unimodular random graphs and Cayley graphs. In [4] the speed of SRWs
on Bernoulli percolation clusters on non-amenable Cayley graphs was studied. The
trace of BRWs on non-amenable graphs share some similarities with percolation
clusters. Even though the trace turns out to be an amenable graph we believe due to
exponential growth that the SRW on the trace has positive speed:

Conjecture 4.1. The SRW on a.e. trace of a transient BRW on a URG has positive
speed.

Note that the speed of the SRWs on traces of transient BRWs on URG exists, and
is deterministic if the unimodular measure is extremal. This follows from the fact that
the environment seen from the point of view of the particle is stationary, and ergodic
if the unimodular measure is extremal; see e.g. [1]. In fact, Lemma 3.5 together with
Proposition 4.9 and Theorem 6.2 in [1] implies that the SRW has positive speed on
the trace of a transient BRW on a unimodular random tree with infinitely many ends.
The question of positive speed is connected to non-amenability of the unimodular
measure: Theorem 8.15 in [1] states that for unimodular and non-amenable measures
� concentrated on graphs with bounded degrees the speed of SRW is �-a.s. positive.
The measure of the trace of a transient BRW on a unimodular random tree with
infinitely many ends is non-amenable; see Lemma 3.5 and Corollary 8.10 in [1]. We
conjecture this to hold more generally:
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Conjecture 4.2. Let � be the measure of the trace of a transient BRW on a URG.
Then � is non-amenable.

On Cayley graphs positive speed is equivalent to admitting non-constant bounded
harmonic functions, see [15]. In [2] this equivalence was extended to URG. Thus if
Conjecture 4.1 is true, we expect non-constant bounded harmonic functions on the
trace. It is of interest to study the Poisson and Martin boundary. In particular, one
might ask if the result of Lemma 3.5 holds in general:

Question 4.1. Does the trace of a transient BRW on a Cayley graph have a.s. infinitely
many topological ends?

Theorem 3.2 states that the critical percolation probability is strictly less than 1.
Observe that Conjecture 4.2 would imply (under a first moment condition) that
a.s. there is no infinite cluster in Bernoulli(pc) percolation of the trace, see Theo-
rem 8.11 in [1]. Due to exponential growth and unimodularity of the trace one might
expect mean-field criticality for percolation on the trace.

Question 4.2. Does the triangle condition hold for percolation on the trace of a
transient BRW on URG? Is there mean-field criticality for percolation on the trace?
We refer to and [16] and [26] for further details on these questions.

Hueter and Lalley [12] studied BRWs on homogeneous trees. Observe that in
their setting and notation weak survival is equivalent to transience in our language.
In the transient regime the BRW eventually vacates every finite subset and the particle
trails converge to the geometric boundary � of the tree. Let ƒ, called limit set of the
BRW, be the random subset of the boundary that consists of all ends that are visited
infinitely often by the process. In [12] it is shown that the limit set has Hausdorff
dimension no larger than one half the Hausdorff dimension of the entire boundary �.

Recall that a vertex x is a furcation point if removing x would split the trace
into at least 3 infinite clusters. An application of the MTP shows that the number
of furcation points is a.s. 0 or 1. Furthermore, one might conjecture that the trace
of a transient BRW has infinitely many ends, compare with Question 4.1. Hence, it
would be interesting to know how the Hausdorff dimensions of the limit sets compare
in general to the one of the full boundary.

We suspect that the Hausdorff dimension of the limit set (observe that for m >

1=�.P / the BRW is recurrent and the limit set equals the full boundary) depends on
the decay of the return probabilities. We make the following conjecture in believing
that there is a more explicit connection between the Hausdorff dimension and the
decay of the return probabilities, compare with [12] and [19].

Conjecture 4.3. Consider BRW on a non-amenable Cayley graph. Then the Haus-
dorff dimension of the limit set is continuous for m ¤ 1=�.P / and discontinuous at
m D 1=�.P /.
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4.2. General graphs. One natural direction to generalize our results is to consider
general graphs (with bounded degrees). Since our results depend on the homogeneity
of the graph, there are basic questions that were not yet treated or are still unsolved.

One first question to ask about the trace of a BRW is whether the process eventually
visits the whole graph almost surely. This is equivalent to the question of strong
recurrence of the process and until now no nice criterion for strong recurrence in
general is known. In [24] they give a rather implicit criterion in terms of Lyapunov
functions. Another attempt in order to understand strong recurrence of BRWs is made
in [25] where more references and details about this problem can be found. We state
the conjecture made in [25]: let Q�.P / D inf �.PF /, where inf is over all induced
connected subgraphs F � G with finite boundaries.

Conjecture 4.4. Let G be a graph with bounded degrees. Then, the BRW is strongly
recurrent iff the mean number of offspring m is larger than 1= Q�.P /.

Connected to the question of recurrence is the question if the trace is always a
proper subgraph of the base graph. If the BRW is strongly recurrent, then P .Tr D
G/ D 1, and if it is weakly recurrent, then 0 < P .Tr D G/ < 1.

Question 4.3. Does the event fTr D Gg coincide with the event that the BRW returns
infinitely many times to the origin?

In view of Lemma 3.6 and the fact that the SRW on the trace of a transient BRW
on a unimodular random graph has spectral radius 1, one might ask the following:

Question 4.4. Is the spectral radius of the SRW on the trace of a BRW equal to 1

a.s.? Is the trace a.s. an amenable graph?

Furthermore, we believe Theorem 3.1 to hold in general:

Conjecture 4.5. The trace of a transient BRW is a.s. transient for SRW.

Eventually, we state the conjecture made in [3] in the following stronger form.

Conjecture 4.6. Every BRW on a.e. trace of a transient BRW is strongly recurrent.

4.3. General family trees. Another way of generalization is to consider more gen-
eral family trees. Theorem 3.7 naturally generalizes to traces of tree-indexed random
walks on Cayley graphs where the family tree is a unimodular random tree. For ex-
ample we could use the trace of a BRW on a homogeneous tree as the family tree for
another BRW or even iterate this procedure. In consideration of the rich behaviour
of tree-indexed random walks in general, see [5], it is interesting to study to which
extent the results presented here hold in a more general setting of family trees.
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4.4. Unimodular randomgraphs. It was recently proven in [9] that any unimodular
measure on the space of rooted trees can be obtained as an appropriate weak limit.
While this question is open for unimodular measures on rooted graphs, one might
be able to construct, e.g. using the mapping of the family tree to the base graph, a
sequence of rooted finite graphs that converge to the trace of BRW.

Question 4.5. Can the trace of a transient BRW on a URG be obtained as the weak
limit of finite rooted graphs?

Until now, no nice examples for unimodular measures on rooted trees except for
UGW have been known, see [14]. Theorem 3.7 applied to BRWs on homogeneous
trees deliver other examples for unimodular random trees. Another candidate is given
by the construction in the proof of Theorem 3.1, as well as the trace of a bi-infinite
SRW on a unimodular random tree. However, the latter has no interesting boundary
properties.

Remark 4.1. In the way trace of BRW was studied here one can consider the same
questions for other related processes that exhibit phase transitions on non-amenable
graphs; see [19], [20].
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