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Abstract. We describe sufficient conditions which guarantee that a finite set of mapping classes
generate a right-angled Artin group quasi-isometrically embedded in the mapping class group.
Moreover, under these conditions, the orbit map to Teichmüller space is a quasi-isometric
embedding for both of the standard metrics. As a consequence, we produce infinitely many
genus h surfaces (for any h at least 2) in the moduli space of genus g surfaces (for any g at
least 3) for which the universal covers are quasi-isometrically embedded in the Teichmüller
space.
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1. Introduction

Let S denote a surface and Mod.S/ its mapping class group. Given independent
pseudo-Anosov mapping classes f1; : : : ; fn 2 Mod.S/, McCarthy [35] and Ivanov
[21] proved that by passing to sufficiently high powers, these mapping classes generate
a free subgroup. This is the primary ingredient in the proof that Mod.S/ satisfies
the “Tits alternative”; see also [14], [32] for quantitative versions of this. Farb and
Mosher [13] defined a notion of convex cocompactness for subgroups of Mod.S/

by way of analogy with Kleinian groups, and proved that f1; : : : ; fn could be raised
to sufficiently high powers to further guarantee that the subgroup they generate is
convex cocompact; see also [37], [22], [18].

Given an arbitrary set of elements f1; : : : ; fn 2 Mod.S/, we cannot expect that
they generate a free group upon raising to sufficiently high powers. However, Koberda
[25] has recently proven that the powers do generate a subgroup of a right-angled
Artin subgroup of Mod.S/; see also [9], [12], [8] for partial results in this direction.

1Partially supported by NSF grant DMS-1006898.
2Partially supported by NSF grant DMS-0905748.
3Partially supported by NSF RTG grant 0602191.



250 M. T. Clay, C. J. Leininger and J. Mangahas

In this paper, we are interested in geometric properties of right-angled Artin sub-
groups of the mapping class group. As convex cocompact subgroups are necessarily
Gromov hyperbolic, we must consider other geometric properties for non-free right-
angled Artin subgroups of Mod.S/. For example, Crisp and Wiest [12] produced
quasi-isometric embeddings of certain right-angled Artin groups into braid groups
(and hence also mapping class groups). In this paper we show that this is possible
in much greater generality, and furthermore, one can often conclude even stronger
geometric statements for the corresponding subgroups. Here we state our main the-
orem, and refer the reader to Section 2 for necessary terminology and a more precise
statement (Theorem 2.2).

Theorem 1.1. Suppose that f1; : : : ; fn 2 Mod.S/ are fully supported on overlapping
nonannular subsurfaces. Then after raising to sufficiently high powers, these elements
generate a quasi-isometrically embedded right-angled Artin subgroup of Mod.S/.
Furthermore, the orbit map to the Teichmüller space is a quasi-isometric embedding
for both of the standard metrics, namely the Teichmüller and Weil–Petersson metrics.

Remarks. (1) We note that for the second statement to hold, the assumption that
the support of each fi is not an annulus is necessary. On the other hand, it seems
likely that the homomorphism to Mod.S/ is a quasi-isometry without this additional
assumption.

(2) There are a number of other “natural” metrics on Teichmüller space besides
the two we have mentioned; the Bergman metric, Carathéodory metric, McMullen
metric, Kähler–Einstein metric, Ricci metric and perturbed Ricci metric. However,
each of these is quasi-isometric to the Teichmüller metric (see [36], [42], [29], [30]),
and so the conclusion of Theorem 1.1 also holds for any of these metrics.

In Section 6 we use the ideas from the proof of this theorem to describe the
Thurston type of any element in the right-angled Artin subgroup of Mod.S/ we
construct, and we see that it is pseudo-Anosov on the largest possible subsurface.
In particular, we describe exactly which elements are pseudo-Anosov on S ; see
Theorem 6.1.

The hypotheses in Theorem 1.1 are general enough to easily provide quasi-
isometric embeddings of any right-angled Artin group into some mapping class group
(see the end of Section 2.4). In particular we have the following.

Corollary 1.2. Any right-angled Artin group admits a homomorphism to some map-
ping class group which is a quasi-isometric embedding, and for which the orbit map
to Teichmüller space is a quasi-isometric embedding with respect to either of the
standard metrics.

The fundamental group of a closed orientable surface (of genus h � 2) is called a
(genus h) surface subgroup. Many right-angled Artin groups contain quasi-isomet-
rically embedded surface subgroups; see [40], [11] (though the question of exactly
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which right-angled Artin groups contain surface subgroups is still open; see for exam-
ple [16], [23], [24], [10], [39]). There are also constructions of surface subgroups of
the mapping class group [1], [26], [15]. In [27], infinitely many nonconjugate surface
subgroups were constructed with geometric properties akin to geometric finiteness
in the setting of Kleinian groups. From an explicit version of Corollary 1.2, and
the aforementioned examples of surface subgroups of right-angled Artin groups, we
obtain the following. See Section 5 for the proof.

Corollary 1.3. For any closed surface S of genus at least 3 and any h � 2, there
exist infinitely many nonconjugate genus h surface subgroups of Mod.S/, each of
which acts cocompactly on some quasi-isometrically embedded hyperbolic plane in
the Teichmüller space T .S/, with either of the standard metrics.

This corollary is in contrast to the work of Bowditch [5] who proves finiteness, for
any fixed h � 2, for the number of conjugacy classes of genus h surface subgroups
of Mod.S/ which are purely pseudo-Anosov (we note that surface subgroups of
the mapping class group which arise as subgroups of right-angled Artin groups can
never be purely pseudo-Anosov; see Proposition 7.1 below). While these surface
subgroups are not purely pseudo-Anosov, by the corollary, they do have the closely
related property that every nontrivial element has positive translation length on T .S/.

Finally, we remark that while Bowditch’s result mentioned above is an example
of a kind of rank-1 phenomenon for Mod.S/, our examples illustrate higher rank be-
havior. Specifically, we could compare our results with those of Wang [41], who finds
infinitely many conjugacy classes of discrete, faithful representations of right-angled
Artin groups (hence surface subgroups) into higher rank Lie groups. Furthermore,
Long, Reid and Thistlethwaite [31], find infinitely many conjugacy classes of Zariski
dense, purely semi-simple representations of a surface group into SL.3; Z/. In fact,
these surface groups are very closely related to the ones we study, in the sense that
every nontrivial element has positive translation length on the associated symmetric
space.

1.1. Plan of the paper. We begin in Section 2 by setting up the relevant definitions
and notation we will use throughout. The section ends with a more precise version
of our main theorem (Theorem 2.2). In Section 3 we describe an alternative space on
which Mod.S/ acts, namely Masur and Minsky’s graph of markings [34]. We also
state the required distance formulas (Theorems 3.1, 3.2 and 3.3) which provide the
coarse estimates for the distances in the desired spaces, Mod.S/ and T .S/, in terms
of sums of “local distances” between pairs of markings. These local distances are
precisely the subsurface distances, also described in this section.

The idea of the proof of Theorem 2.2 is as follows. The hypothesis implies that
each of the generators of the right-angled Artin group corresponds to a mapping
class which makes progress in some subsurface – that is, it contributes nontrivially to
some local distance. A geodesic in the Cayley graph of the right-angled Artin group
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determines a sequence of mapping classes, each of which makes progress in some
subsurface. We need only ensure that this progress accumulates (that is, we need to
avoid cancellation of local distances). This is verified by Theorem 5.2, which relates
a partial order on the set of syllables in a minimal length representative for an element
of the right-angled Artin group (see Section 4) with the partial order from [3] on the
set of subsurfaces “between” a marking and its image under the associated mapping
class (see Section 3.4). The details of the proof of Theorem 5.2 are carried out in
Section 5, followed by the proof of Theorem 2.2.

In Section 6 we find the Thurston type of each element in the right-angled Artin
subgroups of Mod.S/ we are considering. We show that by conjugating to use the
minimal number of generators to represent the element, it will be pseudo-Anosov on
the smallest subsurface filled by the supports of the generators. For this, we use Masur
and Minsky’s Bounded Geodesic Image Theorem [34] to prove that the element acts
with positive translation distance on the curve complex of the appropriate subsurface.

We end with a discussion of surface subgroups and the proofs of Corollary 1.3
and Proposition 7.1.

Acknowledgements. We would like to thank Richard Kent, Alan Reid, Thomas
Koberda and Jason Behrstock for helpful conversations, and Sergio Fenley for care-
fully reading and commenting on an earlier version of this paper. We would also like
to thank the Hausdorff Research Institute for Mathematics in Bonn, Germany, for its
hospitality while this work was being completed.

2. Notation and terminology

2.1. Quasi-isometries. Given A � 1 and B � 0, we write x
A,B� y to mean

y � B

A
� x � Ay C B

If .X1; d1/ and .X2; d2/ are metric spaces and A � 1, B � 0, then an .A; B/-
quasi-isometric embedding from X1 to X2 is a map

F W X1 ! X2

with the property that for all x; y 2 X1, we have

d1.x; y/
A,B� d2.F.x/; F.y//:

If F is an .A; B/-quasi-isometric embedding for some A and B , then we will say that
F is a quasi-isometric embedding.

If F W X1 ! X2 is a quasi-isometric embedding and there is a constant D > 0

so that any point of X2 is within D of some point of F.X1/, then F is called a
quasi-isometry.
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2.2. Right angled Artin groups. Let � be a graph with vertex set fs1; : : : ; sng.
The associated right-angled Artin group G D G.�/ is defined to be the group with
presentation

G D hs1; : : : ; sn j Œsi ; sj � D 1 if fsi ; sj g is an edge of �i:
We will always work with the word metric on G with respect to this generating set,
and will denote it dG .

Examples of right-angled Artin groups are free groups and direct products of free
groups (in particular, free abelian groups). A simple example of a right-angled Artin
group which is neither free nor a product of free groups is G.�/ where � is the cyclic
graph with 5 vertices shown in Figure 1.

Figure 1. The cyclic graph with 5 vertices.

2.3. Surfaces. Given a connected surface S of genus g with n punctures, the com-
plexity is defined to be �.S/ D 3g � 3 C n. Unless otherwise stated, we will assume
throughout that �.S/ > 0. The mapping class group of S is the group of isotopy
classes of orientation preserving homeomorphisms of S and is denoted Mod.S/. By
a curve in S , we mean the isotopy class of an essential (non-null-homotopic and
non-peripheral) simple closed curve. A pants decomposition of S is a maximal col-
lection of distinct pairwise disjoint curves in S . Since �.S/ > 0, a nonempty pants
decomposition exists and has precisely �.S/ curves in it.

A subsurface X � S is essential if it is either a regular neighborhood of an
essential simple closed curve, or else a component of the complement of an open
regular neighborhood of a (possibly empty) union of pairwise disjoint essential simple
closed curves. In particular, we assume that essential subsurfaces are connected. We
will generally not distinguish between punctures and boundary components, and if
X � S has genus h with k punctures and b boundary components, then we will write
�.X/ D 3h � 3 C k C b. Finally, we will assume that an essential subsurface X has
�.X/ ¤ 0, thus excluding a pair of pants as an essential subsurface. The set of all
isotopy classes of essential subsurfaces X of S with �.X/ ¤ 0 will be denoted �.S/.

We will often refer to the isotopy class of an essential subsurface simply as a
subsurface. Furthermore, we will choose a nice representative for each curve and
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Figure 2. A genus 2 surface with 1 puncture S , a subsurface X (shaded) and a curve � .

each subsurface, and will not distinguish between a representative and its isotopy
class when it is convenient. To be precise, we choose representatives as follows
(annuli will play essentially no role in our discussion, so we do not bother describing
their preferred representatives).

Fix a complete hyperbolic metric on S , and realize each curve by its unique
geodesic representative. These representatives minimize the number of intersections
(that is, they realize geometric intersection number). For each curve ˛, we may
choose some �˛-neighborhood N.˛/ so that for any curves ˛ and ˇ, the intersections
of N.˛/ and N.ˇ/ correspond precisely to the intersections of ˛ and ˇ, and each
such intersection is a “product square” (see Figure 4). For any nonannular subsurface
X , which is a component of the complement of an open regular neighborhood of
˛1 [� � �[˛k , we take its representative to be defined as the corresponding component
of the complement of the interior of the neighborhood N.˛1/ [ � � � [ N.˛k/.

Suppose that X; Y ¨ S are representative subsurfaces. Observe that X \ Y D ;
if and only if X and Y cannot be isotoped to be disjoint. If X \ Y ¤ ;, X 6� Y and
Y 6� X , then we say that X and Y are overlapping, and write X t Y .

One can check that this notion of overlapping agrees with that defined in [3],
which is to say that X t Y if and only if some component of @X cannot be isotoped
disjoint from Y and some component of @Y cannot be isotoped disjoint from X .

2.4. Realizing a graph. Given a graph � , a surface S , and a collection of nonannular
subsurfaces X1; : : : ; Xn � S , we say that X D fX1; : : : ; Xng realizes � nicely in S

if

(1) Xi \ Xj D ; if and only if fsi ; sj g is an edge of � , and
(2) whenever Xi \ Xj ¤ ;, then Xi t Xj .

As Figure 3 indicates, there is a nice realization of the cyclic graph of length 5

in a genus 3 surface obtained from a branched cover of the sphere, branched over 8

points. By adding more points to this picture and taking a branched cover, we can
produce nice realizations of this graph in any surface of genus g � 3. Moreover,
given any graph it is easy to find some surface and a collection of subsurfaces which



The geometry of right-angled Artin subgroups of mapping class groups 255

provide a nice realization (see [9], [11] for this kind of construction). We sketch one
such construction here.

Figure 3. This figure represents a sphere with 8 punctures containing five curves, each of which
bounds a disk with 3 punctures. These five 3-punctured disks provide a nonannular realization
of the cyclic graph with 5 vertices. Taking a two-fold branched cover over the 8 points, we
obtain a nonannular realization on a genus 3 surface (by 1-holed tori).

Starting with a graph � , we take a disjoint union of annuli, one for each vertex
of � . Next, glue together the annuli along product squares whenever the associated
vertices of � are not connected by an edge. In each annulus, remove a disk and glue
in a 1-holed torus. Finally, cap off the boundary components of the resulting surface
with disks. See Figure 4 for a particular example.

6
1

2

3
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5

1

4

3

2

Figure 4. A graph � and the associated annuli glued together along product squares as pre-
scribed by � . At the bottom, we glue in a 1-holed torus to an annulus with a disk removed.

If X is a nonannular subsurface of S and f 2 Mod.S/ is the identity outside
X , we say that f is supported on X . We say that f is fully supported on X if we
also have that f is pseudo-Anosov on X . If f is supported on X , then f acts on
C.X/, the curve complex of X , and we let �X .f / denote the translation length of f
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on C.X/. This is defined by

�X .f / D lim
k!1

dX .˛; f k.˛//

k
;

where ˛ is any curve in X , and dX is the distance in C.X/ – see Section 3.3. The
following result of Masur and Minsky [33], Proposition 4.6, says that if f is supported
on X , then it is fully supported on X if and only if �X .f / > 0.

Theorem 2.1 (Masur–Minsky). Given X there exists c > 0 so that if f 2 Mod.X/

is pseudo-Anosov, then
dX .˛; f k.˛// � cjkj

for all ˛ 2 C.X/.

2.5. Homomorphisms. Suppose now that X D fX1; : : : ; Xng nicely realizes � in
S and that F D ff1; : : : ; fng � Mod.S/ are mapping classes. We say that F is
(fully) supported on X if fi is (fully) supported on Xi for each i D 1; : : : ; n. Since
homeomorphisms on disjoint subsurfaces commute, there is a unique homomorphism

	F W G ! Mod.S/

defined by 	F .si / D fi .
We now state a more precise version of our main theorem. We write T .S/ for the

Teichmüller space, and we denote its two standard metrics by dT for the Teichmüller
metric and dWP for the Weil–Petersson metric.

Theorem 2.2. Given a graph � and a nice realization X D fX1; : : : ; Xng of � in
S , there exists a constant C > 0 with the following property. If F D ff1; : : : ; fng
is fully supported on X and �Xi

.fi / � C for all i D 1; : : : ; n, then the associated
homomorphism

	F W G.�/ ! Mod.S/

is a quasi-isometric embedding. Furthermore, the orbit map G ! T .S/ is a quasi-
isometric embedding for both dT and dWP.

Remark. We reiterate for the casual reader that the subsurfaces Xi are assumed to
be essential, connected, and nonannular.

The proof of Theorem 2.2 will be carried out in Section 5. Theorem 2.2 easily
implies Theorem 1.1.

3. Projections and distance estimates

Our proof of Theorem 2.2 uses results from [34], [6], [38] and [3]. The main con-
struction we will use is that of subsurface projection, which we now briefly recall.
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3.1. Projections. Given a nonannular subsurface X of S and a curve � , we define
the projection of � to X , denoted 
X .�/, to be the subset of C.X/ constructed as
follows. If � \ X ¤ ;, then either � is an essential simple closed curve in X , and we
define 
X .�/ D f�g, or else � \X is a disjoint union of essential arcs in X . For each
arc, consider N , the regular neighborhood of the union of this arc and the boundary
components of X which it meets. Then the boundary of N is a union of curves in X

(and components of @X ), and we define 
X .�/ to be the set of all such curves in X ,
over all arcs of � \ X . See Figure 5.

Figure 5. The projection 
X .�/, where S , X and � are as in Figure 2.

In general, the curves in 
X .�/ need not be disjoint, but the set has diameter at
most 2; see [34].

When X is an annulus and � a curve, there is also a notion of a projection to X ,
which assigns to � a diameter one subset of the arc complex of X , denoted C.X/,
and again we denote this by 
X .�/. For our purposes, simply the existence of this
projection will suffice, so for the details of its definition, we refer the reader to [34].

If � is a disjoint union of curves �1 [� � �[�k , then we define 
X .�/ to be the unionS
i 
X .�i /. This set also has diameter at most 2. If � \ X D ;, then 
X .�/ D ;.

3.2. Markings. Another object we will need is a marking. For us, this will mean a
complete clean marking in the sense of Masur and Minsky [34]. More precisely, a
marking � is a pants decomposition called the base of �

base.�/ D f˛1; : : : ; ˛�.S/g;
together with a transversal for each curve ˛i 2 base.�/: this is a diameter at most
one subset of C.Xi /, where Xi is the annular neighborhood of ˛i , together with some
additional properties which we will not use explicitly; see [34] for a discussion.

Masur and Minsky [34] identify the set of all markings with the vertex set of a
graph zM.S/ called the marking graph of S . The edges of this graph correspond to
certain elementary moves one can perform on a marking. We denote the resulting
path metric on zM.S/ by d zM

. The graph zM.S/ is locally finite, and Mod.S/ acts by
isometries on it. In particular, the orbit map of this action is a quasi-isometry. We
will use zM.S/ as a model for Mod.S/.
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Any marking � can be projected to a subsurface. If X is a nonannular subsurface,
then 
X .�/ is defined to be 
X .base.�//. For annuli, the projection is defined
differently; see [34].

3.3. Distances. Given a subsurface X and curves or markings � and �0, we define
their distance in X to be

dX .�; �0/ D diam.
X .�/ [ 
X .�0//

where the diameter is computed in C.X/.
A trivial observation is that if �, �0 are curves or markings on S , f 2 Mod.S/ is

supported on X , and Y is a nonannular subsurface disjoint from X such that � and
�0 have nonempty projection to Y , then

dY .�; f .�0// D dY .�; �0/:

Remark. We note that the validity of this observation relies on the assumption that
Y is nonannular.

Given K > 0 and �; �0 2 zM.S/, define

�.K; �; �0/ D fX 2 �.S/ j dX .�; �0/ � Kg:
It is convenient to decompose �.K; �; �0/ into the annular subsurfaces �a.K; �; �0/
and the nonannular subsurfaces �n.K; �; �0/.

The following theorem is proven in [34].

Theorem 3.1 (Masur–Minsky). There exists K0 > 0 (depending on S ) so that if
K � K0, then there exist A � 1, B � 0 with the following property. For any
�; �0 2 zM.S/ then

d zM
.�; �0/ A,B� P

X2�.K;�;�0/

dX .�; �0/:

A theorem of Brock [6] states that the Weil–Petersson metric on Teichmüller space
is quasi-isometric to the pants graph. In [34], Masur and Minsky give a formula
similar to that of the previous formula for distance in the pants graph. In particular
combining these two results one obtains the following.

Theorem 3.2 (Brock, Masur–Minsky). There exist K0 > 0 (depending on S ) so
that if K � K0, then there exists A � 1, B � 0 with the following property. If
�; �0 2 zM.S/ are shortest markings for m; m0 2 T .S/, respectively, then

dWP.m; m0/ A,B� P
X2�n.K;�;�0/

dX .�; �0/:
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A shortest marking for m is just a marking for which the pants decomposition
has the shortest total length among all pants decompositions, and the transversals are
projections of the shortest curves among those which can be used for transversals.
For this theorem, the transversals are unimportant.

The analogous result for the Teichmüller metric was proven by Rafi in [38].

Theorem 3.3 (Rafi). There exists K0 > 0 (depending on S ) so that if K � K0 and
� > 0 then there exist A � 1, B � 0 with the following property. If �; �0 2 zM.S/

are shortest markings for m, m0 in the �-thick part of T .S/, respectively, then

dT .m; m0/ A,B� P
X2�n.K;�;�0/

dX .�; �0/ C P
X2�a.K;�;�0/

log.dX .�; �0//:

Remarks. (1) The special case of Theorem 2.2 in which G.�/ is abelian now follows
immediately from the preceding three theorems and Theorem 2.1. Our proof is an
extension of this idea.

(2) Strictly speaking, Theorems 3.1 and 3.2 would suffice for our purposes since,
up to a constant, dWP provides a lower bound for dT by a result of Linch [28], and the
lower bound on distortion is the only nontrivial inequality we need to prove. However,
it seems worthwhile to include Theorem 3.3 as this illustrates a common interpretation
for all of the metric spaces zM.S/ (or Mod.S/), .T .S/; dT /, and .T .S/; dWP/.

One final result about distances and subsurface projections which we will need is
the following Bounded Geodesic Image Theorem [34].

Theorem 3.4 (Masur–Minsky). There exists K0 > 0 (depending on S ) so that if
fv1; : : : ; vng is a geodesic in C.S/ and X 2 �.S/, then either 
Y .vj / D ; for some
j or else

diamX .f
X .v1/; : : : ; 
X .vn/g/ < K0:

In particular, note that if v; v0 2 C.S/ are two curves with dX .v; v0/ � K0, then
any geodesic between v and v0 in C.S/ must pass through a curve v00 disjoint from
X (for example, it may pass through a curve in @X ).

For simplicity, we will assume, as we may, that K0 is the same constant in all of
the theorems in this section.

3.4. Partial order on subsurfaces. In [3], Behrstock, Kleiner, Minsky and Mosher
defined a partial order on �.K; �; �0/ (for K sufficiently large) which is closely
related to the time-order constructed in [34] (see also [4]). However, as is noted
in [3], while the time-order in [34] (which is defined on geodesics in hierarchies)
requires a fair amount of the hierarchy machinery to describe it, the partial order
on �.K; �; �0/ is completely elementary. As this is the basic tool we will use, we



260 M. T. Clay, C. J. Leininger and J. Mangahas

include the construction and verification of the necessary properties of this partial
order, for the sake of completeness.

The starting point is the “Behrstock inequality” [2] (see also [32], Lemma 2.5, for
the version stated here).

Proposition 3.5 (Behrstock). Suppose that X and Y are overlapping subsurfaces of
S and � is a marking on S . Then

dX .@Y; �/ � 10 H) dY .@X; �/ � 4:

Suppose that K � 20. We define the partial order on �.K; �; �0/ as follows.
Given X; Y 2 �.K; �; �0/ with X t Y , then we write X 	 Y if

dX .�; @Y / � 10:

That this is a strict partial order is a consequence of the following useful description
of 	.

Proposition 3.6 (Behrstock–Kleiner–Minsky–Mosher). Suppose that K � 20 and
X; Y 2 �.K; �; �0/ with X t Y . Then X and Y are ordered and the following are
equivalent:

.1/ X 	 Y; .5/ dY .�0; @X/ � 10;

.2/ dX .�; @Y / � 10; .6/ dY .�0; @X/ � K � 4;

.3/ dX .�; @Y / � K � 4; .7/ dY .�; @X/ � 4:

.4/ dX .�0; @Y / � 4;

Proof. Assume the hypothesis of the proposition. Since X t Y , we know that

X .@Y / ¤ ; and 
Y .@X/ ¤ ;. To verify the equivalences, first observe that (1) and
(2) are equivalent by definition, and since K �4 > 10, (3) implies (2) and (6) implies
(5). Next, since dX .�; �0/; dY .�; �0/ � K, the triangle inequality guarantees that (4)
implies (3) and (7) implies (6). Furthermore, since K � 4 > 10, Proposition 3.5 tells
us that (2) implies (7) and (5) implies (4). This proves all the required implications.

Finally, we prove that X and Y are ordered. By the triangle inequality we have

20 � K � dX .�; �0/ � dX .�; @Y / C dX .�0; @Y /:

and so one of dX .�; @Y / or dX .�0; @Y / is at least 10. If dX .�; @Y / � 10 then
X 	 Y . If dX .�0; @Y / � 10, then reversing the roles of X and Y in each of the seven
equivalent statements we see that Y 	 X , as required.

Corollary 3.7 (Behrstock–Kleiner–Minsky–Mosher). Suppose that K � 20. Then
the relation 	 is a strict partial order.
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Proof. Since we never have X t X , it follows that 	 is non-reflexive. Furthermore,
the equivalence of (2) and (7) in Proposition 3.6 means that X 	 Y implies Y 6	 X ,
so 	 is antisymmetric. Finally, if X 	 Y and Y 	 Z then we know 
Y .@X/ and

Y .@Z/ are nonempty, and appealing to Proposition 3.6 and the triangle inequality
we have

20 � K � dY .�; �0/ � dY .�; @X/CdY .@X; @Z/CdY .�0; @Z/ � dY .@X; @Z/C8

and so
dY .@X; @Z/ � 12 > 10:

In this case, @X and @Z intersect nontrivially in Y , so in particular, X t Z.
Now we apply Proposition 3.5 to the preceding inequality to obtain

dX .@Y; @Z/ � 4

and hence by the triangle inequality

16 � K � 4 � dX .@Y; �/ � dX .@Y; @Z/ C dX .@Z; �/ � 4 C dX .@Z; �/:

Therefore, dX .@Z; �/ � 12 > 10, and X 	 Z, proving transitivity.

4. Normal forms in right-angled Artin groups

Here we describe the normal forms in G D G.�/ as defined by Green [17], and
Hermiller and Meier’s procedure for obtaining these normal forms [19]. We refer the
reader to Charney’s survey article [7] for a discussion.

Suppose that w D x
e1

1 : : : x
ek

k
is a word in the generators xi 2 fs1; : : : ; sng, where

ei 2 Z. Each x
ei

i is called a syllable of w. We consider the following moves which
can be applied to w (see also [20]):

(1) Remove a syllable x
ei

i if ei D 0.

(2) If xi D xiC1, then replace consecutive syllables x
ei

i x
eiC1

iC1 by x
ei CeiC1

i .

(3) If Œxi ; xiC1� D 1, then replace x
ei

i x
eiC1

iC1 with x
eiC1

iC1 x
ei

i .

Let Min.�/ be the set of words representing � 2 G with the fewest number of
syllables. Green’s normal form for � is a certain type of element of Min.�/ obtained
by stringing together, from left to right, maximal collections of commuting syllables.
For us, we will consider any element of Min.�/ as a normal form, and we will shortly
impose some additional structure on the set of syllables. First, we state the following
from [19].

Theorem 4.1 (Hermiller–Meier). Any word representing � 2 G can be transformed
to any element of Min.�/ by applying a sequence of the moves above. In particular,
in any such sequence, the number of syllables and the length does not increase.
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It follows that the words in Min.�/ determine geodesics in (the Cayley graph of)
G with respect to s1; : : : ; sn. Moreover, note that any two elements of Min.�/ differ
by moves of type (3).

Let w D x
e1

1 : : : x
ek

k
2 Min.�/ and consider the set of syllables syl.w/ D

fxei

i gk
iD1. We consider this as a set of k distinct elements: for example, we can

artificially write this as f.xei

i ; i/gk
iD1. If we have two elements w; w0 2 Min.�/ that

differ by a single application of move (3) above, then there is an obvious bijection
between syl.w/ and syl.w0/. Moreover, any sequence of these types of moves results
in a sequence of bijections between the syllables of consecutive words in Min.�/.
Observe that any such bijection between syl.w/ and syl.w0/ sends a syllable of w to
one of w0 representing the same element of G.

From this it follows that if any such sequence of moves ever brings a word w

back to itself, then the bijection from syl.w/ to itself is the identity. The reason is
that if x

ei

i and x
ej

j are syllables of w which represent the same element in G (so

xi D xj , ei D ej ), then if x
ei

i precedes x
ej

j in w, any of the bijections will preserve
this property: a sequence of type (3) moves which would theoretically accomplish
a swap of their positions, making x

ej

j precede x
ei

i , would require a move where x
ei

i

and x
ej

j are adjacent, at which time a type (2) move could be applied to reduce the
number of syllables, and this is impossible. We use these bijections to identify the
syllables of any two words w; w0 2 Min.�/, and simply write syl.�/ for this set of
syllables.

We can define a strict partial order on syl.�/ by declaring x
ei

i 	 x
ej

j if and only

if x
ei

i precedes x
ej

j in every word w 2 Min.�/. So for any w 2 Min.�/, the order
of the syllables is a refinement of the partial order (and the partial order is the largest
partial order having this property for every w 2 Min.�/).

5. The proof of Theorem 2.1

Throughout this section, we will assume X D fX1; : : : ; Xng realizes � nicely in S ,
F D ff1; : : : ; fng is fully supported on X, and 	F W G D G.�/ ! Mod.S/ is the
associated homomorphism; see Sections 2.4 and 2.5 for notation.

Given a word x
e1

1 : : : x
ek

k
with xi 2 fs1; : : : ; sng for all i , let J.i/ 2 f1; : : : ; ng

be the unique number for which xi D sJ.i/. For any � 2 G and w D x
e1

1 : : : x
ek

k
2

Min.�/, set
Xw.x

ei

i / D 	F .x
e1

1 : : : x
ei�1

i�1 /.XJ.i//

for i D 2; : : : ; k and define Xw.x
e1

1 / D XJ.1/. We think of this as defining a map

Xw W syl.�/ ! �.S/:

Lemma 5.1. Suppose that � , X and F are as above. If � 2 G.�/ and w; w0 2
Min.�/, then Xw D Xw0 W syl.�/ ! �.S/.
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Proof. Since any two words w; w0 2 Min.�/ differ by a sequence of moves of type
(3), that is, in which adjacent commuting syllables are exchanged, it suffices to verify
the lemma in the case that w and w0 differ by such a move:

w D x
e1

1 : : : x
ei

i x
eiC1

iC1 : : : xen
n and w0 D x

e1

1 : : : x
eiC1

iC1 x
ei

i : : : xen
n :

For j ¤ i or i C 1, we clearly have Xw.x
ej

j / D Xw0

.x
ej

j /, and so we must show

Xw.x
ei

i / D Xw0

.x
ei

i / and Xw.x
eiC1

iC1 / D Xw0

.x
eiC1

iC1 /:

Interchanging the roles of w and w0, it suffices to prove just one of these equations,
say Xw.x

ei

i / D Xw0

.x
ei

i /.
We have

Xw.x
ei

i / D 	F .x
e1

1 : : : x
ei�1

i�1 /.XJ.i//

whereas

Xw0

.x
ei

i / D 	F .x
e1

1 : : : x
ei�1

i�1 x
eiC1

iC1 /.XJ.i// D 	F .x
e1

1 : : : x
ei�1

i�1 /	F .x
eiC1

iC1 /.XJ.i//:

Since x
ei

i and x
eiC1

iC1 commute, XJ.iC1/, the support of 	F .x
eiC1

iC1 / D f
eiC1

J.iC1/
, is

disjoint from XJ.i/. Therefore,

	F .x
eiC1

iC1 /.XJ.i// D XJ.i/;

and the lemma follows.

By this lemma we can unambiguously define X� D Xw , independent of the
choice of w 2 Min.�/.

The main technical theorem we prove is the following. From this, together with
Theorems 3.1, 3.2 and 3.3, our Theorem 2.2 (and hence also Theorem 1.1) follows
easily.

Theorem 5.2. Suppose that � and X are as above and � 2 zM.S/. Then there exists
a constant K � K0 with the following property.

Suppose that F D ff1; : : : ; fng is fully supported on X and that �Xj
.fj / � 2K

for all 1 � j � n, and let 	F W G ! Mod.S/ be the associated homomorphism.
Then, for any � 2 G with x

e1

1 : : : x
ek

k
2 Min.�/, we have:

(1) d
X� .x

ei
i

/
.�; 	F .�/�/ � Kjei j for each i D 1; : : : ; k. Consequently,

X� .syl.�// � �.K; �; 	F .�/�/:

(2) X� . � / W syl.�/ ! �.K; �; 	F .�/�/ is an order-preserving injection.

Proof. Let
K D K0 C 20 C 2 � maxfdXj

.@Xi ; �/ j i ¤ j g:
Throughout the proof, we let 	 D 	F .

In what follows, we prove statements (1) and (2) separately. For both, the proof
is by induction on the number of syllables in w 2 Min.�/.
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Proof of statement (1). To make the ideas in the proof more transparent, we introduce
simplified notation. Given w D x

e1

1 : : : x
ek

k
2 Min.�/, define

gi D 	.x
ei

i / D f
ei

J.i/
and Yi D XJ.i/:

Then X� .x
e1

1 / D Y1, X� .x
e2

2 / D g1Y2, and in general X� .x
ei

i / D g1g2 : : : gi�1Yi .
In this notation, statement (1) claims that

dg1:::gi�1Yi
.�; g1 : : : gk�/ � Kjei j

for i D 2; : : : ; k, and also dY1
.�; g1 : : : gk�/ � Kje1j.

Suppose that w has only one syllable. The claim only states that dY1
.�; g1�/ �

Kje1j, which holds because, letting j D J.1/, we know

dY1
.�; g1�/ D dXj

.�; f
e1

j .�//

D diamXj
.
Xj

.�/ [ 
Xj
..f

e1

j /�//

D diamXj
.
Xj

.�/ [ f
e1

j .
Xj
.�///

� �Xj
.f

e1

j /

� 2Kje1j:
Now suppose we have proved the claim for elements of G D G.�/ whose mini-

mal representatives have at most k � 1 syllables. Let � 2 G with w D x
e1

1 : : : x
ek

k
2

Min.�/ having k syllables. Define gj and Yj as above. Fix any 1 � i � k and sep-
arate the product g1 : : : gk into subproducts, as illustrated below, with the additional
possibility that a, b, or c might be the empty word:

a‚ …„ ƒ
g1 : : : g`

b‚ …„ ƒ
g`C1 : : : gi�1 gi

c‚ …„ ƒ
giC1 : : : gk :

The subproducts a, b, and c are defined as follows. By Lemma 5.1, we may assume
that either gi and giC1 fail to commute, or by replacing w with another word in
Min.�/, that i D k. In the first case, let c D giC1 : : : gk; in the latter case, let c

be the empty word. If there exists some syllable to the left of gi which does not
commute with gi , let ` < i be the largest index such that gi and g` do not commute,
and let a D g1 : : : g`. Otherwise let a be the empty word. Let b D g`C1 : : : gi�1 if
` C 1 < i , and otherwise let b be the empty word; observe that by construction, b

commutes with gi .
Because g1 : : : gk D abgic, we have

dg1:::gi�1Yi
.�; g1 : : : gk�/ D dabYi

.�; abgic�/ D dYi
.b�1a�1�; gic�/:

By the triangle inequality and the fact that dYi
.gic�; c�/ � 2Kjei j,

dYi
.b�1a�1�; gic�/ � 2Kjei j � dYi

.b�1a�1�; c�/:
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To control the last term we again employ the triangle inequality:

dYi
.b�1a�1�; c�/ � dYi

.b�1a�1�; �/ C dYi
.�; c�/:

Because b is the (possibly empty) product of syllables gj that commute with gi ,
b acts as the identity on Yi . Therefore we have

dYi
.b�1a�1�; �/ D dYi

.a�1�; b�/

D diamYi
.
Yi

.a�1�/ [ 
Yi
.b�//

D diamYi
.
Yi

.a�1�/ [ 
Yi
.�//

D dYi
.a�1�; �/:

So far we have shown

dg1:::gi�1Yi
.�; g1 : : : gk�/ � 2Kjei j � dYi

.a�1�; �/ � dYi
.�; c�/:

To finish, we prove that the last two terms on the right are each less than K=2.
Since the signs of the ei never come into play, the proof is very similar for either term,
so we focus on dYi

.�; c�/. If c is the empty word, then dYi
.�; c�/ D diamYi

.�/ �
2 � K=2. Otherwise c D giC1 : : : gk . Because subwords of minimal words are
also minimal, c D 	.�c/ for some �c 2 G with minimal word x

eiC1

iC1 : : : x
ek

k
, which

has strictly less than k syllables. Let x0
1 D x

eiC1

iC1 be the first syllable. Applying the
induction hypothesis, we have

dYiC1
.�; giC1 : : : gk�/ D dYiC1

.�; c�/ D dX�c .x0
1

/.�; 	.�c/�/ � KjeiC1j:
By our choice of K, dYiC1

.�; @Yi / D dXJ.iC1/
.�; @XJ.i// � K=2. Since gi and

giC1 do not commute, Yi t YiC1, so we may apply the triangle inequality to obtain

dYiC1
.@Yi ; giC1 : : : gk�/ � KjeiC1j � dYiC1

.�; @Yi /

� KjeiC1j � K=2 � K=2 � 20=2 D 10:

Appealing to Proposition 3.5, we know that dYi
.@YiC1; giC1 : : : gk�/ � 4. By our

choice of K, dYi
.�; @YiC1/ D dXJ.i/

.�; @XJ.iC1// � K=2 � 4, so combining, we
have

dYi
.�; c�/ � dYi

.�; @YiC1/ C dYi
.@YiC1; c�/

D dYi
.�; @YiC1/ C dYi

.@YiC1; giC1 : : : gk�/

� K=2 � 4 C 4 D K=2:

The entire argument can be mirrored for dYi
.a�1�; �/, starting with the observation

that either a�1 is the empty word or a�1 D g�1
`

: : : g�1
1 , where g` and gi do not

commute.
To summarize, we have shown

dg1:::gi�1Yi
.�; g1 : : : gk�/ � 2Kjei j � K=2 � K=2 � Kjei j;

completing the induction for statement (1).
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Proof of statement (2). We will now show that X� is an order-preserving injection.
The base case for the induction is when � has one syllable, and then the conclusion
is trivially verified. We assume that the conclusion holds for elements � with at most
k � 1 syllables, and prove that it also holds for elements with k syllables.

The subwords winit D x
e1

1 : : : x
ek�1

k�1
and wterm D x

e2

2 : : : x
ek

k
of w are clearly

minimal representatives of the elements �init; �term 2 G they represent. Furthermore,
the partial order on the syllables of winit and wterm is the restriction of the partial order
on the syllables of w.

By the inductive hypothesis, the conclusion of the theorem holds for �init and
�term. By construction we have

X� .x
ei

i / D
´

X�init .x
ei

i / if i ¤ k;

	.x
e1

1 /.X�term .x
ei

i // if i ¤ 1:

If i is neither 1 nor k, then the two defining expressions are indeed equal. In particular,
notice that to establish injectivity, we need only show that X� .x

e1

1 / ¤ X� .x
ek

k
/.

Suppose that x
ei

i 	 x
ej

j for two syllables of � . If j ¤ k, then both are syllables of

�init and hence by induction X�init .x
ei

i / 	 X�init .x
ej

j /. Thus X�init .x
ei

i / t X�init .x
ej

j /

and
d

X�init .x
ei
i

/
.�; @X�init .x

ej

j // � 10:

Since X�init .x
ei

i / D X� .x
ei

i / and X�init .x
ej

j / D X� .x
ej

j /, we have X� .x
ei

i / 	
X� .x

ej

j /. If i ¤ 1, then we can make a similar argument using the induction
hypothesis applied to �term. In this case we appeal to condition (4) of Proposition 3.6
to conclude that

d
X�term .x

ei
i

/
.@X�term .x

ej

j /; 	.�term/�/ � 4;

so that, applying 	.x
e1

1 /, this becomes

d
X� .x

ei
i

/
.@X� .x

ej

j /; 	.�/�/ � 4;

and so X� .x
ei

i / 	 X� .x
ej

j /, as required.

Now suppose x
e1

1 	 x
ek

k
. There are two cases.

Case 1. There is a syllable x
ei

i such that x
e1

1 	 x
ei

i 	 x
ek

k
.

Arguing as above, by induction we have X� .x
e1

1 / 	 X� .x
ei

i / and X� .x
ei

i / 	
X� .x

ek

k
/ in �.K; �; 	.�// and hence by Corollary 3.7 we have that X� .x

e1

1 / 	
X� .x

ek

k
/.

Case 2. There is no syllable x
ei

i such that x
e1

1 	 x
ei

i 	 x
ek

k
.

Then there is a word w 2 Min.�/ of the form

w D w1x
e1

1 x
ek

k
w2;
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where Œw1; x1� D 1 and Œxk; w2� D 1 (and either or both of wi may be the empty
word). Now

dXJ.1/
.�; @X� .x

ek

k
// D dXJ.1/

.�; 	.w1/	.x
e1

1 /@XJ.k//

D dXJ.1/
.�; 	.x

e1

1 /@XJ.k//

� dXJ.1/
.�; 	.x

e1

1 /�/ � dXJ.1/
.	.x

e1

1 /�; 	.x
e1

1 /@XJ.k//

� 2Kje1j � .K � 20/=2 � 10;

where the second equality comes from the fact that w1 commutes with x1, and so
	.w1/ is the identity on XJ.1/. Thus, by Proposition 3.6 (2), we have X� .x

e1

1 / 	
X� .x

ek

k
/.

In particular, if x
e1

1 	 x
ek

k
then X� is injective.

All that remains now is to show that if x
e1

1 and x
ek

k
are not comparable by 	,

then X� .x
e1

1 / ¤ X� .x
ek

k
/. If they are not comparable, then � is represented by a

word of the form w D w1x
e1

1 x
ek

k
w2, where as above Œw1; x1� D 1 and Œxk; w2� D 1.

Furthermore, x
e1

1 and x
ek

k
must commute, and hence it is clear that X� .x

ek

k
/ is disjoint

from X� .x
e1

1 /. In particular, X� .x
e1

1 / ¤ X� .x
ek

k
/.

This completes the proof of Theorem 5.2.

We can now prove the main theorem.

Theorem 2.2. Given a graph � and a nice realization X D fX1; : : : ; Xng of � in
S , there exists a constant C > 0 with the following property. If F D ff1; : : : ; fng
is fully supported on X and �Xi

.fi / � C for all i D 1; : : : ; n, then the associated
homomorphism

	F W G.�/ ! Mod.S/

is a quasi-isometric embedding. Furthermore, the orbit map G ! T .S/ is a quasi-
isometric embedding for both dT and dWP.

Proof. We first prove that given � 2 zM.S/, we can choose C > 0 so that if �Xi
.fi / �

C for each i , then the orbit map G.�/ ! zM.S/ given by � 7! 	F .�/� is a quasi-
isometric embedding. Since the orbit map Mod.S/ ! zM.S/ is a quasi-isometry, this
will suffice to prove the first statement. Let K > 0 be as in the proof of Theorem 5.2
and let C D 2K.

First observe that for any metric space .X; d /, any x 2 X and any �; � 2 G.�/,
the triangle inequality implies

d.� � x; � � x/ � A dG.�; �/

as long as A � maxfd.si � x; x/gn
iD1 (here si are the generators for G).
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In particular, given � 2 zM.S/, to prove that the orbit map to zM.S/ is a quasi-
isometry, it suffices to find A � 1 and B � 0 so that

dG.1; �/ � A d zM
.�; 	F .�/.�// C B

for all � 2 G (we increase A if necessary so that A � maxfd zM
.�; 	F .si /�/gn

iD1).
Since K � K0, from Theorem 3.1 there exist A and B so that for all � 2 G,P

X2�.K;�;�F .�/.�//

dX .�; 	F .�/.�// � A d zM
.�; 	F .�/.�// C B:

On the other hand, if we let w D x
e1

1 : : : x
ek

k
2 Min.�/ then by Theorem 5.2, since

�Xi
.fi / � C D 2K (and since K � 1), we have

dG.1; �/ D
kP

iD1

jei j �
kP

iD1

Kjei j

�
kP

iD1

d
X� .x

ei
i

/
.�; 	F .�/.�//

� P
X2�.K;�;�F .�//

dX .�; 	F .�/.�//:

� A d zM
.�; 	F .�/.�// C B;

which completes the proof of the first statement.
The proof of the statements regarding Teichmüller space are essentially identi-

cal. For this, we observe that the topological types of the surfaces in X� .syl.�//

are the same as those of X, and hence all are nonannular. That is, X� .syl.�// �
�n.K; �; 	F .�//. So the above proof can be carried out replacing the use of Theo-
rem 3.1 with the use of Theorems 3.2 and 3.3.

6. Elements of the constructed subgroups

We now assume the hypothesis of Theorem 2.2 (and hence also Theorem 5.2) on � ,
X D fX1; : : : ; Xng, C D 2K > 0, and F D ff1; : : : ; fng, and let

	F W G.�/ ! Mod.S/

denote the associated homomorphism. In this section we describe, in terms of the
Thurston classification, the mapping class image of any � 2 G.�/. In particular, we
identify all pseudo-Anosov elements in the image.

Conjugate elements in G.�/ map to conjugate elements in Mod.S/, and conjuga-
tion preserves mapping class type, displacing the support of a mapping class by the
homeomorphism corresponding to the conjugating element. Therefore to understand
the image of � 2 G.�/, we may assume it is an element with the minimal number of
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syllables among members of its conjugacy class (there may be more than one such
element, but we just pick one). We represent � by a word w 2 Min.�/. By changing
the indices if necessary, we can assume that w is a word in the first r D r.�/ gener-
ators s1; : : : ; sr , and r is the least number of generators needed to write w (note that
a conjugate also having the minimal number of syllables will be written in terms of
this same set of generators).

Remark. In what follows, we will always assume that the indices on the generators
are of this type for the particular element � we are interested in.

We write Fill.X1; : : : ; Xr/ to denote the minimal union of subsurfaces, ordered
by inclusion, which contains all of the subsurfaces X1; : : : ; Xr . Alternatively,
Fill.X1; : : : ; Xr/ is the unique union of subsurfaces containing X1 [ � � � [ Xr with
the property that for every essential curve � contained in it, the projection of � to at
least one of X1; : : : ; Xr is nontrivial. Write FillX.�/ D Fill.X1; : : : ; Xr/.

Now, if � 0 D �0���1
0 , then we define FillF .� 0/ D 	F .�0/.FillX.�//. Note that

if �0 is the identity so � 0 D � , then FillF .�/ D FillX.�/ depends only on X, whereas
otherwise, it may also depend on F .

It follows easily from the discussion above that for any � , 	F .�/ is supported on
FillF .�/. That is, 	F .�/ is represented by a homeomorphism which is the identity
outside FillF .�/. In this section, we prove the following.

Theorem 6.1. Suppose that � , X D fX1; : : : ; Xng, C D 2K > 0, F D ff1; : : : ; fng
satisfy the hypotheses of Theorem 2.2, and let

	F D 	 W G.�/ ! Mod.S/

denote the associated homomorphism. Then 	.�/ is pseudo-Anosov on each compo-
nent of FillF .�/. In particular, 	.�/ is pseudo-Anosov if and only if FillF .�/ D S .

Remark. We note that this theorem gives a sufficient condition (which may be of some
independent interest) for a composition of mapping classes to be pseudo-Anosov.

Before we begin the proof, we explain a few reductions which will greatly simplify
the exposition. First, as noted above, we need only consider the case that � has the
minimal number of syllables among all its conjugates, so we assume this is the case
from now on. Therefore FillF .�/ D FillX.�/.

Next, we wish to further reduce to the case that FillX.�/ is connected. To describe
this reduction, first let � 0 denote the subgraph spanned by s1; : : : ; sr . Since the other
generators play no role in this discussion, we assume as we may that � 0 D � . Let
�c be the complement of � . That is, �c is the graph with the same vertex set as �

and where two vertices span an edge in �c if and only if they do not span an edge in
� . Note that generators/vertices si and sj in different components of �c commute.
Therefore, we may write � D �1 : : : �`, where ` is the number of components of �c
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and each �i is in the group generated by vertices in a single component of �c . In
particular, Œ�i ; �j � D 1 for all i and j .

Now observe that the vertices of a path in �c correspond to a chain of overlapping
subsurfaces in S , and hence the components of FillX.�/ correspond precisely to the
components of �c . In fact, one easily checks that each �i also has the least number
of syllables in its conjugacy class, and fFillX.�1/; : : : ; FillX.�`/g is precisely the set
of components of FillX.�/. So, restricting attention to one of the subwords �i , we
may assume that FillX.�/ is connected.

Finally, we note that we can in fact restrict to the case that FillX.�/ D S . To see
that this is possible, note that 	.G.�// is the identity outside S 0 D FillX.�/. So, 	

“restricts” to a homomorphism

y	 W G.�/ ! Mod.S 0/

and y	.�/ is pseudo-Anosov if and only if 	.�/ is pseudo-Anosov on S 0 D FillX.�/.
We now set out to prove Theorem 6.1 assuming (1) that � has the least number

of syllables in its conjugacy class and (2) FillX.�/ D S . The proof makes use of the
partial order on syl.�/ and syl.�n/, and the order-preserving injection X� . � / of the
previous section. Regarding these, let us set down a series of lemmas.

Lemma 6.2. For � as above, Fill.X� .syl.�/// D S .

Proof. Fix a minimal word x
e1

1 : : : x
ek

k
2 Min.�/. Given a curve � � S , we must

show that � intersects some X� .x
ei

i / D 	.x
e1

1 : : : x
ei�1

i�1 /XJ.i/. As FillX.�/ D
Fill.X1; : : : ; Xr/ D S , the curve � intersects some Xj . Let i be the minimal index
such that � intersects XJ.i/.

If i D 1, then � intersects XJ.1/ D X� .x
e1

1 /. Else, 	.x
e1

1 : : : x
ei�1

i�1 /.�/ D � .
Hence � intersects X� .x

ei

i /. As � was arbitrary, the lemma holds.

Lemma 6.3. For � as above, w 2 Min.�/, and n 2 Z, we have wn 2 Min.�n/.

Proof. Clearly wn represents the element �n; what needs to be shown is that this
word is minimal.

Write w D x
e1

1 : : : x
ek

k
and assume that wn is not a minimal word representing �n.

Thus we have a sequence of the three moves described in Section 4 which reduces the
number of syllables in wk . We can label the syllables of wn by x

e1

1;1 : : : x
ek

1;k
x

e1

2;1 : : :x
ek

n;k

where each block x
e1

j;1 : : :x
ek

j;k
D w. As w is minimal, each of the ei ¤ 0, hence in

order to reduce the number of syllables of wk we have some sequence of type (3)
moves followed by a type (2) move.

Also as w is minimal, the type (2) cannot occur between syllables of the form
x

ei

j;i and x
ei0

j;i 0 . Therefore, after applying some type (3) moves, we have a type (2)

move between syllables of the form x
ei

j;i and x
ei0

j 0;i 0 where j < j 0. We claim that
we can assume that j 0 D j C 1. For if not, then Œxi ; x`� D 1 for all ` and hence
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after a sequence of type (3) moves we could apply the move x
ei

i x
ei0

i 0 7! x
ei Cei0

i ,
contradicting the fact that w is minimal.

As the set of indices ` such that Œxj;i ; x`� D 1 and the set of indices ` such
that Œxj 0;i 0 ; x`� D 1 are the same, the above assumptions give a sequence of type
(3) moves on w such that brings w to a word of the form x

ei0

i 0 x
e1

1 : : : x
ek

k
x

ei

i . But
now conjugating � by x

ei

i results in an element with fewer syllables than � which
contradicts our assumption that jsyl.�/j is minimal among conjugates of � . Thus
wn 2 Min.�n/.

The above lemma allows us to define syllable shift maps �n W syl.�n/ ! syl.�nC1/

by �n.x
ei

j;i / D x
ei

j C1;i using the notation from the proof of the lemma. Notice that
the maps �n preserve the partial order. For n > m we use the notation �m;n D
�n�1 : : : �m. The map �m;n W syl.�m/ ! syl.�n/ shifts syllables by n � m blocks
and also preserves the partial order. The lemma also allows us to view syl.�m/ as a
subset of syl.�n/, if m � n, via the obvious inclusion of wm as a prefix of wn.

Under the assumption that Fill.X1; : : : ; Xr/ D S , we have that �c is connected.
In particular for any syllable x

ei

i there is another syllable x
ej

j such that Œxi ; xj � ¤ 1.

Lemma 6.4. For � as above, and all x
ei

i 2 syl.�/, we have x
ei

i 	 �1;2.x
ei

i / 2
syl.�2/.

Proof. This is similar to the proof of Lemma 6.3. If the conclusion is wrong, then
Œxi ; xj � D 1 for all syllables x

ej

j 2 syl.�/. This contradicts the fact that �c is
connected.

Lemma 6.5. For � as above, and all x
ei

i ; x
ej

j 2 syl.�/, there exists n, 1 � n � r C1,

such that x
ei

i 	 �1;n.x
ej

j /. In particular, for all syllables x
ei

i ; x
ej

j 2 syl.�/ we have

x
ei

i 	 �1;rC1.x
ej

j /.

Proof. Fix a minimal sequence of generators xi D xi1 ; : : : ; xim D xj such that
Œxi` ; xi`C1

� ¤ 1. Such a sequence exists as �c is connected. Further, notice that
m � r . We will prove the lemma by induction on m. Specifically, we will prove that
if there is a path of length m between vJ.i/ and vJ.j / in �c , then x

ei

i 	 �1;mC1.x
ej

j /.

Suppose that m D 1, hence as generators xi D xj . The case when x
ei

i D x
ej

j as

syllables in syl.�/ is covered by Lemma 6.4. Else, we must have that x
ei

i 	 x
ej

j or

x
ej

j 	 x
ei

i . In the first case using Lemma 6.4 we have x
ei

i 	 x
ej

j 	 �1;2.x
ej

j /. In

the second case, if x
ei

i 6	 �1;2.x
ej

j / we can argue as in the proof of Lemma 6.3 that
jsyl.�/j is not minimal among conjugates of � .

Now by induction, we have that x
ei

i 	 �1;m.x
eim�1

im�1
/. Since Œxim�1

; xj � ¤
1, we must have �1;m.x

eim�1

im�1
/ 	 �1;mC1.x

ej

j /. Hence x
ei

i 	 �1;m.x
eim�1

im�1
/ 	

�1;mC1.x
ej

j /. This completes the proof of the lemma.
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Proof of Theorem 6.1. We assume � is as above, so FillX.�/ D S , and prove 	.�/

is pseudo-Anosov. For this, it suffices to prove the following.

Claim. For every integer N > 0 we have

dS .@XJ.1/; 	.�N.2rC1//.@XJ.1/// � N:

Indeed, this claim says that 	.�/ acts with positive translation length on C.S/ as
required.

Proof of the claim. According to Lemma 6.5 we have, for any j ,

x
e1

1 	 �1;rC1.x
ej

j / 	 �rC1;2rC1.�1;rC1.x
e1

1 // D �1;2rC1.x
e1

1 /:

Now, from the definitions, we see that X�n B �1;n D 	.�n�1/ B X� for all n > 1,
and since X� and X�n

are order preserving by Theorem 5.2 we also have

XJ.1/ 	 	.� rC1/.X� .x
ej

j // 	 	.�2rC1/.XJ.1//

This implies that no curve � � S is disjoint from both @XJ.1/ and 	.�2rC1/@XJ.1/.
Indeed, suppose otherwise. According to Lemma 6.2, the collection of subsurfaces
	.� rC1/X� .syl.�// fill S , so there is some subsurface, say 	.� rC1/X� .x

ej

j /, where
� has nonempty projection. Hence,

d
�.�rC1/X� .x

ej

j
/
.@XJ.1/; 	.�2rC1/@XJ.1// � 4:

However, since XJ.1/ 	 	.� rC1/.X� .x
ej

j // 	 	.�2rC1/.XJ.1// it follows from
Proposition 3.6 and the triangle inequality that

d
�.�rC1/X� .x

ej

j
/
.@XJ.1/; 	.�2rC1/@XJ.1// � K � 8 > 4;

which is a contradiction.
By the same reasoning, no curve � can be disjoint from more than one of the

following sets of curves

f@XJ.1/; 	.�2rC1/.@XJ.1//; : : : ; 	.�N.2rC1//.@XJ.1//g:
On the other hand, since XJ.1/ 	 	.�`.rC1//.XJ.1/// 	 	.�N.2rC1//.XJ.1// for all
0 < ` < N , Proposition 3.6 and the triangle inequality again imply

d�.�`.rC1//.XJ.1//.@XJ.1/; 	.�N.2rC1//@XJ.1// � K � 8 � K0;

where the last inequality comes from the choice of K in the proof of Theorem 5.2.
Now it follows from Theorem 3.4 that any geodesic in C.S/ from @XJ.1/ to

	.�N.2rC1//.@XJ.1// must contain a curve disjoint from each 	.�`.2rC1//.@XJ.1//,
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for each ` D 0; : : : ; N . Since these curves must all be distinct by the previous
paragraph, we see that this geodesic contains at least N C 1 vertices, so

dS .@XJ.1/; 	.�N.2rC1//.@XJ.1/// � N

as required.
This completes the proof of the claim, and also the proof of Theorem 6.1.

7. Surface subgroups

In this final section we prove the following corollary of Theorem 2.2 and briefly
discuss surface subgroups of right-angledArtin subgroups of the mapping class group.

Corollary 1.3. For any closed surface S of genus at least 3 and any h � 2, there
exist infinitely many nonconjugate genus h surface subgroups of Mod.S/, each of
which acts cocompactly on some quasi-isometrically embedded hyperbolic plane in
the Teichmüller space T .S/, with either of the standard metrics.

Proof. Let � be the cyclic graph of length 5 and G.�/ the associated right-angled
Artin group. It was shown in [11] that G.�/ contains a quasi-isometrically embedded
genus 2 surface subgroup, and hence surface subgroups of all genus h � 2 (it had
been previously shown to contain a genus 5 surface subgroup in [40]). As described
in [11], this example has a nice description as follows.

Suppose that the generators of G.�/ are a, b, c, d , e with Œe; a� D Œa; b� D
Œb; c� D Œc; d � D Œd; e� D 1. Then the homomorphism from the fundamental group
of a genus two surface to G.�/ is described by Figure 6 as follows. The figure shows
a system of curves on the surface with labels from the set fa; b; c; d; eg and transverse
orientations. Choosing a basepoint in the complement of the curve system shown,
a loop will cross the curves in the system, and one reads off an element of G.�/

according to the curves one crosses, and in which direction (crossing in the direction
opposite the given transverse orientation, one should read an inverse of the generator);
see [11] for more details.

In Section 2.4 we observed that � has a nice realization X D fX1; : : : ; X5g in any
closed surface S of genus g � 3. Let C > 0 be the constant from Theorem 2.2 and
F D ff1; : : : ; f5g be any mapping classes fully supported on X with �Xi

.fi / � C .
For every n > 0 let Fn D ff n

1 ; : : : ; f n
5 g so that we also have �Xi

.f n
i / � nC . The

family of right-angled Artin subgroups 	Fn.G.�// necessarily contains infinitely
many distinct conjugacy classes – observe that the proof of Theorem 2.2 implies that
the minimal translation length on T .S/ of any element of 	Fn.G.�// is tending to
infinity as n ! 1. Similarly, the set of surface subgroups described above, thought
of as subgroups of Mod.S/ via the homomorphisms 	Fn , have minimal translation
length on T .S/ tending to infinity as n ! 1. Consequently, there are infinitely
many pairwise nonconjugate genus h surface subgroups.
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a

c

b

c

d
d

e

Figure 6. A curve system on a genus 2 surface which defines an embedding into G.�/, where
� is the cyclic graph of length 5.

That each of these stabilizes a quasi-isometrically embedded hyperbolic plane
H � T .S/ follows from the fact that the surface group itself is quasi-isometric to H,
and the orbit map defines a quasi-isometric embedding by Theorem 2.2. The surface
group clearly acts cocompactly on this plane.

It follows that these surface groups all have positive translation length on Te-
ichmüller space. However, as we have already mentioned, they cannot be purely
pseudo-Anosov. In fact, for surface subgroups of right-angled Artin groups, this is
always the case.

Proposition 7.1. Suppose that G.�/ < Mod.S/ is a right-angled Artin subgroup
and 
1.†/ < G.�/ is a surface subgroup. Then as a subgroup of Mod.S/, 
1.†/

contains a nontrivial reducible element.

Proof. As was shown in [11], every homomorphism from a surface group 
1.†/ into a
right-angled Artin group G.�/ arises as in the proof of the previous corollary. That is,
there is a curve system on †, each curve is endowed with a transverse orientation, the
components are labeled by generators of G.�/, and the homomorphism is obtained
by taking a loop and reading off the generators as one crosses the curves in the system.

Furthermore, one may assume that each of the curves in the system is essential,
and if the homomorphism H ! G.�/ is injective then these curves cut † into disks.
Now consider a loop � which runs parallel to, without crossing, one of the curves in
the system. Call this curve 
1 and suppose the associated generator of G.�/ is s1. The
loop � crosses other curves 
i1 ; : : : ; 
ik and so determines some word s˙1

i1
: : : s˙1

ik
,

which is the image of � in G.�/. Choosing � to run very close to 
1, we can assume
that the curves 
i1 ; : : : ; 
ik which � crosses are also nontrivially intersected by 
1.
As noted in [11], each of the associated generators si1 ; : : : ; sik must commute with
s1, and be different from it.

Now we are essentially done. The image of � is an element which commutes with
s1, and in fact, the image of � and s1 in G.�/ generate a subgroup isomorphic to Z2.
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If G.�/ < Mod.S/, then the image of � in Mod.S/ has centralizer which contains
Z2. As is well known, the image of � cannot be pseudo-Anosov; see [21].

Remark. In fact, the assumption that 
1.†/ is a surface group can be relaxed con-
siderably. Indeed, a similar proof shows that any finitely presented 1-ended subgroup
of a right-angled Artin group G.�/ < Mod.S/ contains a reducible element.

In [25], Koberda observes that Mod.Sg/ is not commensurable with a right-angled
Artin group if g � 3 (in fact, he proves the stronger statement that Mod.Sg/ cannot
virtually embed in a right-angled Artin group). This is also true for genus 2 as the
following shows.

Proposition 7.2. The group Mod.S2/ is not commensurable with a right-angledArtin
group.

Proof. Suppose that Mod.S2/ is commensurable with G.�/, with ƒ isomorphic to
a finite index subgroup of both. Let 
1.†/ < Mod.S2/ be a surface subgroup as
constructed in [27]. In this surface group, there is exactly one element of 
1.†/, up
to conjugacy and powers, which is not pseudo-Anosov. Moreover, this one element
represents a simple closed curve ˛ on †.

Now, 
1.†/ \ ƒ is a finite index subgroup of 
1.†/ and so corresponds to a
covering space p W z† ! †, and we write 
1.z†/ < 
1.†/ for the image under
p�. Note that the reducible elements of 
1.z†/ in Mod.S2/ represent a finite set of
pairwise disjoint simple closed curves on z†, namely p�1.˛/.

On the other hand, a closer inspection of the proof of the previous proposition
shows that, viewing ƒ < G.�/, there are actually two elements �1; �2 2 
1.z†/ which
represent curves on z† which nontrivially intersect, whose centralizers in G.�/ contain
Z2. These must represent reducible elements in Mod.S/, and this is a contradiction.

Remark. This same proof also works to show that the mapping class group of an
n-punctured sphere, with n � 6, is not commensurable with any right-angled Artin
group. The point is that the examples from [27] can be chosen to descend to the
quotient by the hyper-elliptic involution, and then one of the punctures can be erased
(with the exception of the genus 2 case).
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