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Analyticity of the entropy for some random walks
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Abstract. We consider non-degenerate, finitely supported random walks on a free group. We
show that the entropy and the linear drift vary analytically with the probability of constant
support.
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1. Introduction

Let F be a finitely generated group and for x 2 F , denote jxj the word length of x.
Let p be a finitely supported probability measure on F and define inductively, with
p.0/ being the Dirac measure at the identity e,

p.n/.x/ D Œp.n�1/ ? p�.x/ D
X
y2F

p.n�1/.xy�1/p.y/:

Some of the asymptotic properties of the probabilities p.n/ as n ! 1 are reflected
in two non-negative numbers, the entropy hp and the linear drift p̀:

hp ´ lim
n

�1
n

X
x2F

p.n/.x/ lnp.n/.x/; p̀ ´ lim
n

1

n

X
x2F

jxjp.n/.x/:

Erschler asks whether hp and p̀ depend continuously on p ([Er]). In this note, we
fix a finite set B � F such that

S
nB

n D F and we consider probability measures
in P .B/, where P .B/ is the set of probability measures p such that p.x/ > 0 if,
and only if, x 2 B . The set P .B/ is naturally identified with an open subset of the
probabilities on B which is an open bounded convex domain in RjBj�1. We show:

Theorem 1.1. Assume that F D Fd is the free group with d generators, B is a finite
subset of F such that

S
nB

n D F . Then, with the above notation, the functions
p 7! hp and p 7! p̀ are real analytic on P .B/.
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Continuity of the entropy and of the linear drift is known for probabilities with
first moment on a Gromov-hyperbolic group ([EK]). Also in the case when B is a set
of free generators, there are formulas for the entropy and the linear drift which show
that they are real analytic functions of the directing probability (see [De2] or imbed
[DM] in the formulas (1) and (2) below). Similar formulas have been found for braid
groups ([M]) and free products of finite groups or graphs ([MM], [G1], [G2]), but
as soon as the set B is not reduced to the natural generating set, there is no direct
formula for hp or p̀ in terms of p.

The ratio hp= p̀ has a geometric interpretation as the Hausdorff dimension Dp

of the unique stationary measure for the action of F on the space @F of infinite
reduced words. It follows from Theorem 1.1 that this dimension Dp is also real
analytic in p, see Corollary 2.1 below for a more precise statement. Ruelle ([R3])
proved that the Hausdorff dimension of the Julia set of a rational function, as long
as it is hyperbolic, depends real analytically of the parameters and our approach is
inspired by [R3]. We first review properties of the random walk on F directed by a
probability p. In particular, we can express hp and p̀ in terms of the exit measure
p1 of the random walk on the boundary @F (see [Le] and Section 2 for background
and notation). We then express this exit measure using thermodynamical formalism:
if one views @F as a one-sided subshift of finite type, the exit measure p1 is the
isolated eigenvector of maximal eigenvalue for a dual transfer operator L�

p involving
the Martin kernel of the random walk. Finally, from the description of the Martin
kernel by Derriennic ([De1]), we prove that the mapping p 7! Lp is real analytic.
The proof uses contractions in projective metric on complex cones ([Ru], [Du1]),
and I want to thank Loïc Dubois for useful comments. Regularity of p 7! p1 and
Theorem 1.1 follow.

Our argument may apply to other similar settings. For instance, let � W Fd !
SO.k; 1/ be a faithful Schottky representation of the free group Fd as a convex co-
compact group of SO.k; 1/. Namely, SO.k; 1/ is considered as a group of isometries
of the hyperbolic space Hk and there are 2d disjoint open halfspaces Ha associated
to the generators and their inverses in such a way that �.a/ sends the complement of
Ha�1 onto the closure of Ha in Hk . Then another natural asymptotic quantity is the
Lyapunov exponent

�p ´ lim
n

1

n

X
x2F

p.n/.x/ ln k�.x/k;

where k � k is some norm on matrices.

Theorem 1.2. Assume that Fd is represented as a convex cocompact subgroup of
SO.k; 1/ as above, and B is a finite subset B � F such that

S
nB

n D F . Then the
function p 7! �p is a real analytic function on P .B/.

Analyticity of the exponent of an independent random product of matrices is
known for positive matrices ([R2], [P], [H]). Here we show it for matrices in some
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discrete subgroup. It is possible that our approach yield similar results for more
general discrete subgroups of SO.k; 1/ or even for all Gromov-hyperbolic groups.

In the note, the letterC stands for a real number independent of the other variables,
but which may vary from line to line. In the same way, the letter Op stands for a
neighborhood of p 2 P .B/ in CB which may vary from line to line.

2. Convolutions of p

We recall in this section the properties of the convolutions p.n/ of a finitely supported
probability measure p on the free group Fd D F . We follow the notation from
[Le]. Any element of F has a unique reduced word representation in generators
fa1; : : : ; ad ; a�1; : : : ; a�d g. Set ı.x; x/ D 0 and, for x 6D x0, ı.x; x0/ D exp �.x ^
x0/, where .x ^ x0/ is the number of common letters at the beginning of the reduced
word representations of x and x0. Then ı defines a metric on F and extends to the
completion F [ @F with respect to ı. The boundary @F is a compact space which
can be represented as the space of infinite reduced words. Then the distance between
two distinct infinite reduced words � and � 0 is given by

ı.�; � 0/ D exp �.� ^ � 0/;

where .� ^ � 0/ is the length of the initial common part of � and � 0.
There is a natural continuous action of F over @F which extends the left action

of F on itself: one concatenates the reduced word representation of x 2 F at the
beginning of the infinite word � and one obtains a reduced word by making the
necessary reductions. A probability measure� on @F is called stationary if it satisfies

� D
X
x2F

p.x/x��:

There is a unique stationary probability measure on @F , denoted by p1, and the
entropy hp and the linear drift p̀ are given by

hp D �
X
x2F

� Z
@F

ln
dx�1� p1

dp1 .�/dp1.�/
�
p.x/; (1)

p̀ D
X
x2F

� Z
@F

��.x
�1/dp1.�/

�
p.x/; (2)

where ��.x/ D jxj � 2.� ^ x/ D limy!�.jx�1yj � jyj/ is the Busemann function.
Observe that in both expressions, the sum is a finite sum over x 2 B . In the case

of a finitely supported random walk on a general group, formula (1) holds, but with
.@F; p1/ replaced by the Poisson boundary of the random walk (see [Fu], [Ka]);
formula (2) also holds, but with .@F; p1/ replaced by some stationary measure on
the Busemann boundary of the group ([KL]).
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Recall that in the case of the free group the Hausdorff dimension of the measure
p1 on .@F; ı/ is given by hp= p̀ ([Le], Theorem 4.15). So we have the following
corollary of Theorem 1.1:

Corollary 2.1. Assume that F D Fd is the free group with d generators,B is a finite
subset of F such that

S
nB

n D F . Then, with the above notation, the Hausdorff
dimension of the stationary measure on .@F; ı/ is a real analytic function of p in
P .B/.

The Green function G.x/ associated to .F; p/ is defined by

G.x/ D
1X

nD0

p.n/.x/

(see Proposition 3.2 below for the convergence of the series). For y 2 F , the Martin
kernel Ky is defined by

Ky.x/ D G.x�1y/

G.y/
:

Derriennic ([De1]) showed that yn ! � 2 @F if, and only if, the Martin kernelsKyn

converge towards a functionK� , called the Martin kernel at � . We have (see e.g. [Le]
(3.11)):

dx�p1

dp1 .�/ D K�.x/:

3. Random walk on F

The quantities introduced in Section 2 can be associated with the trajectories of
a random walk on F . In this section, we recall the corresponding notation and
properties. Let� D FN be the space of sequences of elements of F ,M the product
probability pN . The random walk is described by the probability P on the space of
paths �, the image of M by the mapping

.!n/n2Z 7! .Xn/n�0;

where X0 D e and Xn D Xn�1!n for n > 0. In particular, the distribution of Xn is
the convolution p.n/. The notation p1 reflects the following.

Theorem 3.1 (Furstenberg, [Le], Theorem 1.12). There is a mappingX1 W � ! @F

such that
lim

n
Xn.!/ D X1.!/

for M -a.e. !. The image measure p1 is the only stationary probability measure
on @F .
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For x; y 2 F , letu.x; y/ be the probability of eventually reaching y when starting
from x. By left invariance, u.x; y/ D u.e; x�1y/. Moreover, by the strong Markov
property, G.x/ D u.e; x/G.e/ so that we have

Ky.x/ D u.x; y/

u.e; y/
: (3)

By definition, we have 0 < u.x; y/ � 1. The number u.x; y/ is given by the sum of
the probabilities of the paths going from x to y which do not visit y before arriving
at y.

Proposition 3.2. Let p 2 P .B/. There are numbers C and 	, 0 < 	 < 1, and a
neighborhood Op of p in CB such that for all q 2 Op , all x 2 F and all n � 0,

jqj.n/.x/ � C	n:

Proof. Let q 2 CB . Consider the convolution operator Pq in `2.F;R/ defined by

Pqf .x/ D
X
y2F

f .xy�1/jqj.y/:

Derriennic and Guivarc’h ([DG]) showed that, for p 2 P .B/, Pp has spectral radius
smaller than one. In particular, there exists n0 such that the operator norm of P n0

p in
`2.F / is smaller than one. Since B and Bn0 are finite, there is a neighborhood Op

of p in CB such that for all q 2 Op , kP n0
q k2 < 
 for some 
 < 1 and kP k

q k2 � C

for 1 � k � n0: It follows that for all q 2 Op , all n � 0,

kP n
q k2 � C
Œn=n0�:

In particular, jqj.n/.x/ D jŒP n
q ıe�.x/j � jP n

q ıej2 � C
Œn=n0�jıej2 � C
Œn=n0� for
all x 2 F .

Fix p 2 P .B/. For x 2 F , V a finite subset of F , and v 2 V , let ˛V
x .v/ be the

probability that the first visit in V of the random walk starting from x occurs at v.
We have 0 <

P
v2V ˛

V
x .v/ � 1 and

Proposition 3.3. Fix x, V , and v. The mapping p 7! ˛V
x .v/ extends to an analytic

function on a neighborhood of P .B/ in CB .

Proof. The number ˛V
x .v/ can be written as the sum of the probabilities ˛n;V

x .v/ of
entering V at v in exactly n steps. The function p 7! ˛

n;V
x .v/ is a polynomial of

degree n on P .B/:

˛n;V
x .v/ D

X
E

qi1qi2 : : : qin ;
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where E is the set of paths fx; xi1; xi1i2; : : : ; xi1i2 : : : in D vg of length n made
of steps in B which start from x and enter V in v. By Proposition 3.2, there is a
neighbourhood Op of p in P .B/ and numbers C , 	, 0 < 	 < 1, such that for q 2 Op

and for all y 2 F ,
jqj.n/.y/ � C	n:

It follows that for q 2 Op ,

j˛n;V
x .v/j � C jqj.n/.x�1v/ � C	n:

Therefore, q 7! ˛V
x .v/ is given locally by a uniformly converging series of polyno-

mials, it is an analytic function on O ´ S
p Op .

4. Barriers and Hölder property of the Martin kernel

Set r D maxfjxj j x 2 Bg. A set V is called a barrier between x and y if ı.x; y/ > r
and if there exist two points z and z0 of the geodesic between x and y, distinct from
x and y such that ı.z; z0/ D r � 1 and V is the intersection of the two balls of radius
r � 1 centered at z and at z0. The basic geometric lemma is the following:

Lemma 4.1 ([De1], Lemme 1). If x and y admit a barrier V , then every trajectory
of the random walk starting from x and reaching y has to visit V before arriving
at y.

For V ,W finite subsets of F , denote by AW
V the matrix such that the row vectors

are the ˛W
v .w/; w 2 W . In particular, if W D fyg, set uy

V equal to the (column)
vector

u
y
V D A

fyg
V D .˛fyg

v .y//v2V D .u.v; y//v2V :

With this notation, Lemma 4.1 and the strong Markov property yield that if x and
y admit V as a barrier, then

u.x; y/ D
X

˛V
x .v/u.v; y/ D h˛V

x ; u
y
V i;

with the natural scalar product on RV . Then Derriennic makes two observations:
first, this formula iterates when one has k successive disjoint barriers between x and
y, and secondly there are only a finite number of possible matrices AW

V when V
and W are successive disjoint barriers with ı.V;W / D 1. This gives the following
formula for u.x; y/:

Lemma 4.2 ([De1], Lemme 2). Let p 2 P .B/. There are N square matrices
with the same dimension A1; : : : ; AN , depending on p, such that for any x; y 2
F : if V1; V2; : : : ; Vk are disjoint successive barriers between x and y such that
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ı.Vi ; ViC1/ D 1 for i D 1; : : : ; k � 1, then there are .k � 1/ indices j1; : : : jk�1,
depending only on the sequence Vi , such that

u.x; y/ D h˛V1
x ; Aj1

: : : Ajk�1
u

y
Vk

i: (4)

By construction, the matrices Aj have non-negative entries and
P

w Aj .v; w/ �
1. Moreover, we have the following properties:

Proposition 4.3 ([De1], Corollaire 1). Assume that the setB contains the generators
and their inverses. Then for each p 2 P .B/, for each j D 1; : : : ; N , the matrix Aj

has all its 0 entries in full columns.

From the proof of Proposition 4.3, if the set B contains the generators and their

inverses and Aj D A
Vj C1

Vj
, columns of 0’s correspond to the subset Wj C1 of points

in Vj C1 which cannot be entry points from paths starting in Vj . In particular, they
depend only of the geometry of B and are the same for all p 2 P .B/.

We may – and we shall from now on – assume that the setB contains the generators
and their inverses. Indeed, since hp.k/ D khp and p̀.k/ D k p̀ , we can replace
in Theorem 1.1 the probability p by a convolution of order high enough that the
generators and their inverses have positive probability. Then, by Proposition 4.3, the
matrices Aj .q/ have the same columns of zeros for all q 2 P .B/.

Proposition 4.4. For each j D 1; : : : ; N , the mapping p 7! Aj extends to an
analytic function on a neighborhood of P .B/ in CB into the set of complex matrices
with the same configuration of zeros as Aj .

Proof. The proof is completely analogous to the proof of Proposition 3.3; one may
have to take a smaller neighborhood for the sake of avoiding introducing new zeros.

We are interested in the function ˆ W @F ! R; ˆ.�/ D � lnK�.�1/: By (3), (4)
and Deriennic’s theorem, we have

ˆ.�/ D � ln lim
n!1K�1�2:::�n

.�1/

D � ln lim
n!1

u.�1; �1�2 : : : �n/

u.e; �1�2 : : : �n/

D � ln lim
k!1

h˛V1.�/

�1
; Aj1

.�/ : : : Ajk�1
.�/u

yk

Vk.�/
i

h˛V1.�/
e ; Aj1

.�/ : : : Ajk�1
.�/u

yk

Vk.�/
i
;

where Ajs
.�/ D A

VsC1.�/

Vs.�/
, the Vs.�/ are successive disjoint barriers between �1 and

� with ı.Vs.�/; VsC1.�// D 1 for all s > 1, ı.�1; V1/ D 1, and yk is the closest point
beyond Vk on the geodesic from �1 to �.
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Define on the non-negative convex coneC0 in Rm the projective distance between
half lines as

#.f; g/ ´ jlnŒf; g; h; h0�j;
where h, h0 are the intersections of the boundaries of the cone with the plane .f; g/
and Œf; g; h; h0� is the cross ratio of the four directions in the same plane. Represent
the space of directions as the sector of the unit sphere D D C0 [ Sm�1; then #
defines a distance on D. Let A be a m �m matrix with non-positive entries, and let
T W D ! D be the projective action of A. Then, by [Bi],

#.Tf; Tg/ � ˇ#.f; g/; where ˇ D tanh.1
4

Diam T .D//: (5)

WhenAj is one of the matrices of Lemma 4.2, it acts on RV and the image Tj .D/ has
finite diameter so that ǰ ´ tanh.1

4
Diam Tj .D// < 1. Set ˇ0 ´ maxj D1;:::;N ǰ :

Then ˇ0 < 1.

Set fk.�/ ´ u
yk
Vk.�/

ku
yk
Vk.�/

k , ˛.�/ ´ ˛
V1.�/
e , ˛1.�/ ´ ˛

V1.�/

�1
. For all � , fk.�/ 2 D

and ˛.�/; ˛1.�/ 2 C0 � f0g. The above formula for ˆ.�/ becomes

ˆ.�/ D � ln lim
k!1

h˛1.�/; Tj1
.�/ : : : Tjk�1

.�/fk.�/i
h˛.�/; Tj1

.�/ : : : Tjk�1
.�/fk.�/i : (6)

Proposition 4.5. Fix p 2 P . The function � 7! ˆ.�/ is Hölder continuous on @F .

Proof. Let �, � 0 be two points of @F with ı.�; � 0/ � exp.�..nC1/rC1//. The points
� and � 0 have the same first .nC 1/r C 1 coordinates. In particular, Vs.�/ D Vs.�

0/
for 1 � s � n. By using (6), we see thatˆ.� 0/�ˆ.�/ is given by the limit, as k goes
to infinity, of

ln
h˛1.�/; Tj1

.�/ : : : Tjk�1
.�/fk.�/i

h˛1.� 0/; Tj1
.� 0/ : : : Tjk�1

.� 0/fk.� 0/i
h˛.� 0/; Tj1

.� 0/ : : : Tjk�1
.� 0/fk.�

0/i
h˛.�/; Tj1

.�/ : : : Tjk�1
.�/fk.�/i :

We have ˛1.�/ D ˛1.�
0/ μ ˛1; ˛.�/ D ˛.� 0/ μ ˛ and Tjs

.�/ D Tjs
.� 0/ μ Tjs

for
s D 1; : : : ; n: Moreover, for any f; f 0 2 D,

#.Tj1
.�/ : : : Tjk�1

.�/f; Tj1
.� 0/ : : : Tjk�1

.� 0/f 0/
D #.Tj1

: : : Tjn�1
gk; Tj1

: : : Tjn�1
g0

k/

for gk D Tjn
TjnC1

.�/ : : : Tjk�1
.�/f; g0

k
D Tjn

TjnC1
.� 0/ : : : Tjk�1

.� 0/f 0.
We have #.gk; g

0
k
/ � Diam Tjn

D < 1 and, by repeated application of (5),

#.Tj1
: : : Tjn�1

gk; Tj1
: : : Tjn�1

g0
k/ � ˇn�1

0 #
�
gk; g

0
k

� � Cˇn
0 : (7)

Using all the above notation, we get

ˆ.�/ �ˆ.� 0/ D ln lim
k

h˛1; Tj1
: : : Tjn�1

g0
k
i

h˛1; Tj1
: : : Tjn�1

gki
h˛; Tj1

: : : Tjn�1
gki

h˛; Tj1
: : : Tjn�1

g0
k
i :
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As � varies, ˛ and˛1 belong to a finite family of vectors ofC0�f0g. It then follows
from (7) that jˆ.�/ � ˆ.� 0/j � Cˇn

0 as soon as ı.�; � 0/ � exp.�..n C 1/r C 1//.

Let us choose ˇ, ˇ1=r
0 < ˇ < 1, and consider the space �ˇ of functions � on

@F such that there is a constant Cˇ with the property that if the points � and � 0 have
the same first n coordinates, then j�.�/� �.� 0/j < Cˇˇ

n: For � 2 �ˇ , denote k�kˇ

the best constant Cˇ in this definition. The space �ˇ is a Banach space for the norm
k�k ´ k�kˇ C max@F j�j: Proposition 4.5 says that for p 2 P .B/, the function

p̂.�/ D � lnK�.�1/ belongs to �ˇ .

5. Regularity of the Martin kernel

We want to extend the mapping p 7! p̂ to a neighborhood Op of p in CB . Firstly,
we redefine�� as the space of complex functions � on @F such that there is a constant
C� with the property that, for all n � 0, if the points � and � 0 have the same first n
coordinates, then j�.�/ � �.� 0/j < C��

n: The space �� is a complex Banach space
for the norm k�k ´ k�k� C max@F j�j; where k�k� the best possible constant C� .
In this section, we find a neighborhood Op and a � D �.p/, 0 < � < 1, such that
formula (6) makes sense on Op and defines a function in �� .

In recent papers, Rugh ([Ru]) and Dubois ([Du1]) show how to extend (5) to the
complex setting. In a complex Banach space X , they define a C-cone as a subset
invariant by multiplication by C, different from f0g and not containing any complex
2-dimensional subspace in its closure. A C-cone C is called linearly convex if each
point in the complement of C is contain in a complex hyperplane not intersecting C .
LetK < C1. A C-cone C is calledK-regular if it has some interior and if, for each
vector space P of complex dimension 2, there is some nonzero linear form m 2 X�
such that, for all u 2 C \ P ,

kmkkuk � Kjhm;uij:

Let C be a linearly convex C-cone. A projective distance #C on .C �f0g/�.C �f0g/
is defined as follows ([Du1], Section 2): if f and g are colinear, set #C .x; y/ D 0;
otherwise, consider the set

E.f; g/ ´ fz; z 2 C j zf � g 62 Cg;
and define

#C .f; g/ D ln
b

a
;

where b D sup jE.f; g/j 2 .0;C1�, a D inf jE.f; g/j 2 Œ0;C1/.
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Proposition 5.1 ([Du1], Theorem 2.7). Let X1, X2 be complex Banach spaces, and
let C1 � X1, C2 � X2 be complex cones. Let A W X1 ! X2 be a linear map with
A.C1 � f0g/ � .C2 � f0g/ and assume that


 ´ sup
f;g2.C1�f0g/

#C2
.Af;Ag/ < C1:

Then, for all f; g 2 C1,

#C2
.Af;Ag/ � tanh.�

4
/#C1

.f; g/: (8)

Proposition 5.2 ([Du1], Lemma 2.6). Let C be aK-regular, linearly convex C-cone
and let f � g if, and only if, there is 
; 
 6D 0 such that 
f D g. Then #C defines
a complete projective metric on C=�. Moreover, if f; g 2 C and kf k D kgk D 1,
then there is a complex number � of modulus 1, � D �.f; g/, such that

k�f � gk � K#C .f; g/: (9)

Proposition 5.3 ([Ru], Corollary 5.6, [Du1], Remark 3.6). For m � 1, the set

CmC D fu 2 Cm j Re.ui Suj / � 0 for all i; j g
D fu 2 Cm j jui C uj j � jui � uj j for all i; j g

is a regular linearly convex C-cone. The inclusion

� W .C0 � f0g; #/ ! .CmC � f0g; #Cm
C
/

is an isometric embedding.

Moreover, [Du1] studies and characterizes the m � m matrices which preserve
CmC . We need the following properties. Let A be am�mmatrix with all 0 entries in
m0 full columns and 
1; : : : ; 
m the .m �m0/-row vectors made up of the nonzeros
entries of the row vectors of A. Set:

ık;l ´ #Cm�m0

C

.
k; 
l/; 
k;l ´ DiamRHP

nh
k; xi
h
l ; xi j x 2 .Cm�m0

C /�; x 6D 0
o
;

where DiamRHP denotes the diameter with respect to the Poincaré metric of the right
half-plane. Observe that Diam#Cm

C

.A.CmC � f0g// D Diam#Cm
C

.A.Cm�m0

C � f0g//:
Then we have ([Du1], Proposition 3.5):

Diam#Cm
C

.A.CmC � f0g// � max
k;l

ık;l C 2max
k;l


k;l � 3Diam#Cm
C

.A.CmC � f0g//:
(10)

From the proof of Proposition 3.5 in [Du1], in particular from equation (3.12), it also
follows that for a real matrix A:

Diam#Cm
C

.A.CmC � f0g// � 3Diam#.A.R
mC � f0g//:
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Fix p 2 P .B/. We choose � D �.p/ < 1 such that

9.tanh/�1ˇ0 < .tanh/�1.�2r/:

Then for the real matrices A D A1.p/; : : : ; AN .p/,

3Diam#Cm
C

.A.CmC � f0g// � 9Diam#.A.R
mC � f0g//

� 36.tanh/�1ˇ0 < 4.tanh/�1.�2r/:
(11)

Proposition 5.4. Fix p 2 P .B/: There is a neighborhood Op of p in CB such that
the mapping p 7! p̂ extends to an analytic mapping from Op into ��.p/.

Proof. We first extend Aj , j D 1; : : : ; N , analytically on a neighborhood Op by
Proposition 4.4. Set S D S2m�1 D ff j f 2 CmC ; kf k D 1g: For each Aj .q/; j D
1; : : : N , q 2 Op , and each f 2 S such that Aj .q/f 6D 0, we define again Tj .q/f

by

Tj .q/f D Aj .q/f

kAj .q/f k :
For p 2 P .B/, the function p̂ is given by the limit from formula (6),

p̂.�/ D � ln lim
k!1

h˛1.�/; Tj1
.�/ : : : Tjk�1

.�/f0i
h˛.�/; Tj1

.�/ : : : Tjk�1
.�/f0i ;

where f0 2 S the column vector f1=pjBj; : : : ; 1=pjBjg: we use the fact that the
limit of Tj1

.�/ : : : Tjk�1
.�/f does not depend on the initial point f .

We have to show that this limit extends on some neighborhood Op of p to an
analytic function into �� . Set

p̂;k.�/ ´ � ln
h˛1.�/; Aj1

.�/ : : : Ajk�1
.�/f0i

h˛.�/; Aj1
.�/ : : : Ajk�1

.�/f0i :

We are going to find Op and k0 such that, for k � k0, the functions p̂;k.�/ extend
to analytic functions from Op into �� and, as k ! 1, the functions p̂;k.�/ con-
verge in �� uniformly on Op . The functions q 7! h˛1.�/; Aj1

.�/ : : : Ajk�1
.�/f0i,

q 7! h˛.�/; Aj1
.�/ : : : Ajk�1

.�/f0i are polynomials in q and depend only on a finite
number of coordinates of �. Therefore, if we can find a neighborhood Op and a k
such that these two functions do not vanish, then p̂;k extends to an analytic function
from Op to �� .

Step 1: Contraction. By (10), (11) and Proposition 4.4, we can choose a neigh-
borhood Op such that for q 2 Op , the diameter 
 of Aj .q/CmC is smaller than
4.tanh/�1.�2r/ for all j D 1; : : : ; N:1 The set D ´ S \ � S

j Aj .p/CmC
�

is com-
pactly contained in the interior of S . We choose a smaller neighborhood Op such
that if q 2 Op , then


 < 4.tanh/�1.�2r/ and 0 62 Aj .D [ ff0g/ for j D 1; : : : ; N:

1One can also use directly [Du2], Theorem 4.5.
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For q 2 Op , the projective images Tj1
.�/ : : : Tjk�1

.�/f0 are all defined and we have,
by repeated application of (8),

#C .Tj1
.�/ : : : Tjk�1

.�/f0; Tj1
.�/ : : : Tjk�1

.�/fk;k0.�// � �2.k�1/r#.f0; fk;k0.�//;

where k0 > k and fk;k0.�/ ´ Tjk
.�/ : : : Tjk0�1

.�/f0:The fk;k0.�/ are all in D . Then
#C .f0; fk;k0.�// � C for all � 2 @F , all k; k0 � 1. Set

g D Tj1
.�/ : : : Tjk�1

.�/f0; g0 D Tj1
.�/ : : : Tjk�1

.�/fk;k0.�/:

For all � 2 @F , all k; k0 � 1, consider the number �.�; k; k0/ associated to g and g0
by Proposition 5.2. We have by (9)

j�.�; k; k0/j D 1 and k�.�; k; k0/g � g0k � KC�2kr :

Since ˛.p; �/ and ˛1.p; �/ take finite many values, it follows that

jh˛.p; �/; gih˛1.p; �/; g
0i � h˛.p; �/; g0ih˛1.p; �/; gij

D jh˛.p; �/; �.�; k; k0/gih˛1.p; �/; g
0i � h˛.p; �/; g0ih˛1.p; �/; �.�; k; k

0/gij
� KC�2kr :

Since g and g0 are in the compact set D [ ff0g, we can, by Proposition 3.3, choose
a neighborhood Op such that

jh˛.�/; Tj1
.�/ : : : Tjk�1

.�/f0ih˛1.�/; Tj1
.�/ : : : Tjk0�1

.�/f0i
� h˛.�/; Tj1

.�/ : : : Tjk0�1
.�/f0ih˛1.�/; Tj1

.�/ : : : Tjk�1
.�/f0ij � KC�2kr

for all q 2 Op , all � 2 @F , and all k < k0.
Step 2: The ˆq;k extend. Recall that D is the set of unit vectors in the positive

quadrant. For g; g0 2 S
j Tj .p/.D/[ff0g, h˛.p; �/; gih˛1.p; �/; g

0i is real positive
and bounded away from 0 uniformly in �; g and g0. Recall the isometric inclusion
� W D ! S of Proposition 5.3. There is a neighborhood C0 of �

� S
j Tj .p/.D/ [

ff0g� in S and ı > 0 such that jh˛.p; �/; gih˛1.p; �/; g
0ij > ı for g; g0 2 C0. Of

course, we can take C0 invariant by multiplication by all z with jzj D 1. More-
over, there exists " > 0 such that if #C m

C
.g; �.

S
j Tj .p/.D/ [ ff0g// < " and

#C m
C
.g0; �.

S
j Tj .p/.D/ [ ff0g// < ", then jh˛.p; �/; gih˛1.p; �/; g

0ij > ı=2:
For q 2 Op and k0 > 1 C ln."=2/=2r ln � , the #Cm

C
-diameter of each one

of the sets Tj1
.q; �/ : : : Tjk0�1

.q; �/S is smaller than "=2, for all � . As � varies,
there is only a finite number of mappings Tj1

.q; �/ : : : Tjk0�1
.q; �/. By continuity

of q 7! Tj (where the Tj s now are considered as mappings from C=� into itself),
there is a neighborhood Op such that for q 2 Op , the Hausdorff distance between
Tj1
.q; �/ : : : Tjk0�1

.q; �/S=� and Tj1
.p; �/ : : : Tjk0�1

.p; �/S=� is smaller than "=2.
It follows that if q 2 Op , and g; g0 are in the same Tj1

.q; �/ : : : Tjk0�1
.q; �/S for

some �, then
jh˛.p; �/; gih˛1.p; �/; g

0ij > ı=2:
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By taking a possibly smaller Op , we have that if q 2 Op , and g; g0 are in the same
Tj1
.q; �/ : : : Tjk0�1

.q; �/S for some �, then

jh˛.q; �/; gih˛1.q; �/; g
0ij > ı=4:

In particular this last expression does not vanish and ˆq;k is an analytic function on
Op for k � k0.

Step 3: The ˆq;k converge uniformly on @F . Take a neighborhood Op and k0

such that for q 2 Op the conclusions of steps 1 and 2 hold. We claim that for all
" > 0, there is k1 such that for k; k0 � k1, q 2 Op , max� jˆq;k.�/ �ˆq;k0.�/j < ".
Suppose that k1 > k0. We have to estimate

max
�

ˇ̌ˇ ln
h˛.�/; Tj1

.�/ : : : Tjk�1
.�/f0i

h˛.�/; Tj1
.�/ : : : Tjk0�1

.�/f0i
h˛1.�/; Tj1

.�/ : : : Tjk0�1
.�/f0i

h˛1.�/; Tj1
.�/ : : : Tjk�1

.�/f0i
ˇ̌ˇ:

By the conclusions of steps 1 and 2, this quantity is smaller that C maxf�2kr ; �2k0rg.
This is smaller than " if k1 is large enough.

Step 4: The ˆq;k converge in norm k � k�.p/. With the same Op , k0, we now
claim that for all " > 0, there is k2 D maxfk0; ln �=r ln "g such that for k; k0 � k2

and q 2 Op , kˆq;k.�/ � ˆq;k0.�/k� < ". Let � , � 0 be two points of @F with
ı.�; � 0/ � exp.�..n C 1/r C 1//. We want to show that there is a constant C
independent on n, such that

jˆq;k.�/ �ˆq;k0.�/ �ˆq;k.�
0/Cˆq;k0.� 0/j � C� .nC1/rC1"

for all q 2 Op , all k; k0 � k2. Since k; k0 � k0, the difference ˆq;k.�/�ˆq;k0.�/ is
given by

ˆq;k.�/ �ˆq;k0.�/ D ln
h˛1; Tj1

: : : Tjk0�1
f0i

h˛1; Tj1
: : : Tjk�1

f0i
h˛; Tj1

: : : Tjk�1
f0i

h˛; Tj1
: : : Tjk0�1

f0i :

For k; k0 � nC1,ˆq;k.�/�ˆq;k0.�/ D ˆq;k.�
0/�ˆq;k0.� 0/, and there is nothing

to prove.
Assume that k0 > k � nC 1. Step 3 shows that both jˆq;k.�/ � ˆq;k0.�/j and

jˆq;k.�
0/ �ˆq;k0.� 0/j are smaller than C�2kr � C�nr�kr � C�nr".

The remaining case, when k0 � k � nC 1 � k0, clearly follows from the other
two, and this shows step 4.

Finally we have that the functions p̂;k are analytic and converge uniformly in
�� on a neighborhood Op of p. The limit is an analytic function on Op .

6. Proof of Theorem 1.1

In this section, we consider @F as a subshift of finite type and let � be the shift
transformation on @F :

�� D �1�2 : : : with �n D �nC1:
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For � < 1 and � 2 �� with real values, we define the transfer operator L� on �� by

L� .�/ ´
X

�2��1�

e�.�/ .�/:

Then L� is a bounded operator in �� and, by Ruelle’s transfer operator theorem (see
e.g. [Bo]), there exists a number P.�/, a positive function h� 2 �� and an unique
linear functional �� on �� such that

L�h� D eP.�/h� ; L�
��� D eP.�/�� and ��.1/ D 1:

The functional �� extends to probability measure on @F and is the only eigenvector
of L�

� with that property. Moreover, � 7! L� is a real analytic map from �� to the
space of linear operators on �� ([R1], p. 91). Consequently, the mapping � 7! ��

is real analytic from �� into the dual space ��
� (see e.g. [Co], Corollary 4.6). By

Proposition 5.4, the mapping p 7! �ˆp
is real analytic from a neighborhood of p in

P .B/ into the space ��
�.p/

.
The main observation is that L�̂

p
p1 D p1 for all p 2 P .B/; this implies that

P. p̂/ D 0 and that the distribution �ˆp
is the restriction of the measure p1 to any

�� such that p̂ 2 �� . Indeed, we have

d��p1

dp1 .�/ D d.�1/�p1

dp1 D K�.�1/ D eˆp.�/

so that, for all continuous  ,
Z
.Lˆp

 /dp1 D
X

a

Z
a�;�1 6Da�1

dp1.a�/
dp1.�/

 .a�/dp1.�/ D
Z
 dp1:

Recall the equations (1) and (2) for hp and p̀ . The linear drift p̀ is given by a finite
sum (in x) of integrals with respect to p1 of the functions � 7! ��.x/. Since these
functions only depend on a finite number of coordinates in @F , they belong to ��

for all � < 1. Since p 7! �ˆp
is real analytic from a neighborhood of p into ��

�.p/
,

p 7! p̀ is real analytic on a neighborhood of p. Since this is true for all p 2 P .B/,
the function p 7! p̀ is real analytic on P .B/.

The argument is the same forhp , since the function ln dx�1
� p1

dp1 .�/ D lnK�.x
�1/ 2

�� for all x and for all �; ˇ < � < 1 and the mappings p 7! lnK�.x
�1/ are real

analytic from a neighborhood of p into ��.p/. Indeed, lnK�.�1/ 2 �ˇ by Proposi-
tion 4.5 and p 7! lnK�.�1/ is real analytic into ��.p/ by Proposition 5.4. Moreover,
if a is a generator different from �1, then lnK�.a/ D � lnKa�1�.a

�1/ also lies in
�ˇ and p 7! lnK�.a/ is real analytic into ��.p/ as well. For a general x 2 F ,
x D a1 : : : at , write

K�.x
�1/ D K�.a

�1
t : : : a�1

1 / D K�.a
�1
t /Kat �.a

�1
t�1/ : : : Ka2:::at �.a

�1
1 /:
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This completes the proof of Theorem 1.1. For the proof of Theorem 1.2, fix an
origin o 2 Hk . Then �.F /o accumulates to the boundary of Hk in a Cantor set ƒ
called the limit set of �.F /. The mapping �o W F ! Hn, �o.x/ D x � o, extends to a
Hölder continuous mapping �o from @F to the limit set ƒ of �.F /. We can express
the exponent �p as

�p D lim
n

1

2n

X
x2F

d.o; �o.x//p
.n/.x/;

where the distance d is the hyperbolic distance in Hk . We obtain, in the same way
as for formula (2),

�p D 1

2

X
x2F

� Z
ƒ

‚	 .�o.x
�1//d..�o/�p1/.	/

�
p.x/

D 1

2

X
x2F

� Z
@F

‚
o.�/.�o.x
�1//d.p1/.�/

�
p.x/;

where‚	 is now the Busemann function of Hk: ‚	 .z/ ´ limw!	 d.w; z/�d.w; o/:
Since, for all x 2 F , the function � 7! ‚
o.�/.�o.x// is a �-Hölder continuous
function for some fixed �, we deduce as above that p 7! �p is real analytic on P .B/.

Note added in proof. Analyticity of the entropy in related circumstances is also
obtained in [G2] and [HMP].
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