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Abstract. Guba and Sapir asked if the simultaneous conjugacy problem is solvable in diagram
groups or, at least, for Thompson’s group F . We give a solution to the latter question using
elementary techniques which rely purely on the description of F as the group of piecewise
linear orientation-preserving homeomorphisms of the unit interval. The techniques we develop
extend the ones used by Brin and Squier allowing us to compute roots and centralizers as well.
Moreover, these techniques can be generalized to solve the same question in larger groups of
piecewise-linear homeomorphisms.
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1. Introduction

Richard Thompson’s group F can be defined by the following presentation:

F D hx0; x1; x2; : : : j xnxk D xkxnC1 for all k < ni:
This group was introduced and studied by Thompson in the 1960s. The standard
introduction to F is [6]. The group F can be regarded as a subgroup of the group
of piecewise linear self-homeomorphisms of the unit interval and this is the point of
view that we will adopt throughout the paper, and that we will introduce in detail in
Section 2.

We say that a group G has solvable ordinary conjugacy problem if there is an
algorithm such that, given any two elements y; z 2 G, we can determine whether
there is, or not, an element g 2 G such that g�1yg D z. Similarly, for fixed
k 2 N, we say that the group G has solvable k-simultaneous conjugacy problem if

�The first author was partially supported by grants from National Science Foundation DMS 0600244,
0635607 and 0900932.
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there is an algorithm such that, given any two k-tuples .y1; : : : ; yk/, .z1; : : : ; zk/ of
elements in G, one can determine whether there is, or not, an element g 2 G such
that g�1yig D zi for all i D 1; : : : ; k. For both these problems, we say that there
is an effective solution if the algorithm produces such an element g, in addition to
proving its existence.

This problem was studied before for various classes of groups. The simultaneous
conjugacy problem was proved to be solvable for the matrix groups GLn.Z/ and
SLn.Z/ by Sarkisyan in 1979 in [14], and independently by Grunewald and Segal in
1980 in [9]. In 1984, Scott [15] constructed examples of finitely presented groups that
have an unsolvable conjugacy problem. In 1976, Collins showed in [7] that the solv-
ability of the conjugacy problem does not imply the solvability of the simultaneous
conjugacy problem. More recently, in their 2005 paper [4], Bridson and Howie con-
structed examples of finitely presented groups where the ordinary conjugacy problem
is solvable, but the k-simultaneous conjugacy problem is unsolvable for every k � 2.

The ordinary conjugacy problem for F was addressed by Guba and Sapir [10]
in 1997, who reduced the solution of the conjugacy problem for diagram groups
to the solution of the word problem in the corresponding semigroup, solving this
last problem for F and many similar groups. Their solution, for general diagram
groups, reduces the problem to the isomorphism problem of planar graphs. We
mention here relevant related work: in 2001, Brin and Squier in [5] produced a
criterion for describing conjugacy classes in PLC.I /, the group of all piecewise-
linear orientation preserving self-homeomorphisms of the unit interval with only
finitely many breakpoints, that contains F as a proper subgroup. In 2007, Gill and
Short [8] extended this criterion to work inF , thus finding another way to characterize
conjugacy classes from a piecewise linear point of view. Using an approach similar to
Guba and Sapir’s original solution, in 2007 Belk and Matucci [2] produced a unified
solution of the conjugacy problem for all three Thompson groups F , T and V .

In 1999, Guba and Sapir [11] posed the question of whether or not the simultaneous
conjugacy problem was solvable for diagram groups. Some of the results of the
present paper are already known, but we deduce all of them using our tools. We will
show that our techniques can be used on a large class of groups of piecewise linear
homeomorphisms.

Theorem 1.1. Thompson’s group F has a solvable k-simultaneous conjugacy prob-
lem for every k 2 N. There is an algorithm which produces an effective solution and
enumerates all possible conjugators.

The same algorithm also solves the k-simultaneous conjugacy problem in many
“Thompson-like” subgroups of PLC.I / (see Section 2.1 for the precise definition).

As an application of the proof of the above theorem we have the following corol-
laries:

Theorem 1.2. For an element x 2 F , we denote by CF .x/ the centralizer of x in F .
Then:
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(i) CF .x/ Š Fm � Zn for some numbers 0 � m � nC 1.

(ii) An element x 2 F has a finite number of roots, which can be effectively com-
puted.

(iii) The centralizer of any finitely generated subgroup A � F decomposes as the
direct product of the groups Ci , where each Ci is either trivial, infinite cyclic or
isomorphic to F .

(iv) The intersection of any number k � 2 centralizers of elements of F is equal to
the intersection of two centralizers.

Parts of the previous theorem were already proved either in the setting of F or
in that of PLC.I /: in particular, parts (i) and (ii) were proved by Guba and Sapir in
[10] for F , and by Brin and Squier for PLC.I / in [5]. All the previous results can be
suitably rephrased for a large class of subgroups of PLC.I / (see Section 2.1 for the
precise definition).

The paper is organized as follows. In Section 2 we will define the groups PLS;G.I /
that generalize Thompson’s group F and give an outline of the solution of simulta-
neous conjugacy problem. In Section 4 we introduce the main algorithm to create
candidate conjugators. In Section 5 we compute centralizers and roots. In Section 6
we show how to construct an approximate conjugator which makes the fixed point
set of y and z coincide. In Section 7 we get the solution of the ordinary conjugacy
problem and a variation of it, the power conjugacy problem. In Section 8 we de-
scribe how to reduce the simultaneous conjugacy problem to a special instance of the
ordinary conjugacy problem. In Section 9 we show interesting instances where the
simultaneous conjugacy problem can be solved.

2. The idea of the argument

In this section we describe the groups that we will study and outline the steps of our
proof. It is intended to give a quick overview of the results that we will prove in the
later sections.

2.1. Notations. We introduce here the notation that will be used across the paper.
Let I D Œ0; 1� be the unit interval. We define PLC.I / to be the group of piecewise
linear1 orientation-preserving homeomorphisms of the unit interval into itself, with
finitely many breakpoints of the derivative function such that slopes are positive real
numbers. The product of two elements is given by the composition of functions.

One can impose additional the requirements on the breakpoints and the slopes to
define subgroups of PLC.I /. Let S be an additive subgroup of R containing 1, let
U.S/ denote the multiplicative group fg 2 R� j gS D S and g > 0g, and let G be
a subgroup of U.S/. Thus, S is a module over the ring ZŒG�. We define PLS;G.I /

1By piecewise linear we mean piecewise affine, although this abuse of language is now common.
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to be the subgroup of PLC.I / consisting of all functions f such that the breakpoints
are in the subgroup S and the slopes are in the subgroup G. We observe that if the
group G is trivial, then so is PLS;G.I /. Therefore in the rest of the paper we will
assume that G is nontrivial, which implies that S is dense in R (with respect to the
usual topology).

If G D U.S/, we write PLS .I / instead of PLS;G.I /. If S D R, then PLS .I / D
PLC.I /. For the special case S D Z

�
1
2

�
, we denote the group PLZŒ 1

2 �
.I / by PL2.I /.

The group PL2.I / is also known as Thompson’s group F and is isomorphic to the
group F defined in the introduction (see [6] for a proof).2 We remark that in order
to make some calculations possible inside the module S and its quotients, we need
to ask for some requirements to be satisfied by S from the computability standpoint
(like the existence of black box algorithms for performing the basic operations in S ).
These will be explicitly stated in Section 3 and will be assumed throughout this paper.

To attack the ordinary and the simultaneous conjugacy problems, we will split the
study into that of some families of functions inside PLC.I /. The reduction to these
subfamilies will come from the study of the fixed point subset of the interval I for a
function f .

Remark 2.1. We would like to define the group PLS;G.J /, where J D Œ�; �� is
any interval contained in I . We consider the group of restrictions of functions in
PLS;G.I / fixing the endpoints of J :

PLRest
S;G.J / ´ ff jJ j f 2 PLS;G.I /; f .�/ D �; f .�/ D �g:

In general, it is not true that PLRest
S;G.J / is a subgroup of PLS;G.I /. Moreover, there

is no natural embedding of PLRest
S;G.J / into PLS;G.I / such that the restriction of the

image of a function is the initial function (see also Remark 9.5). If the endpoints of
J are in S , we will denote the group PLRest

S;G.J / by PLS;G.J /.3

Remark 2.2. Throughout the paper we will always assume the interval J to have
endpoints in S (with the only exception of Lemma 6.5). For the special case S D
Z

�
1
2

�
, it is straightforward to verify that PL2.J / Š PL2.I /. We observe that the

analogous fact may not be true for the groups PLS;G.I / (see Remark 9.5).

2The family of groups PLS;G.I / was first introduced by Bieri and Strebel in [3] and was later popu-
larized through the work of Stein [16].

3There is another natural way to define PLS;G.J /: consider the subgroup of functions of PLS;G.I /

which fix the endpoints of J and are the identity on I n J :

PLFixDInJ

S;G .J / ´ ff 2 PLS;G.I / j f .t/ D t for all t 2 I n J g:
We observe that by definition PLFixDInJ

S;G .J / is a subgroup of PLS;G.I /. In the case where the endpoints

of J are contained in S , the two definitions coincide, i.e., PLFixDInJ

S;G .J / Š PLRest
S;G.J /, and thus the

group PLRest
S;G.J / can be regarded as a subgroup of PLS;G.I /.
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For a function f 2 PLS;G.J / we define the fixed point set of the interval J by

FixJ .f / ´ ft 2 J j f .t/ D tg;
which is a closed set. It follows from the definition that FixJ .f / is a union of finitely
many intervals with endpoints in S and finitely many “isolated” points. We will often
simplify the notation by dropping the subscript J . The motivation for introducing
this subset is easily explained: if y; z 2 PLC.J / are conjugate through g 2 PLC.I /
and t 2 .�; �/ is such that y.t/ D t , then z.g�1.t// D .g�1yg/.g�1.t// D g�1.t/,
that is, if y has a fixed point, then z must have a fixed point.

Definition 2.3. We define PL<S;G.J / and PL>S;G.J / to be the set of all functions in
PLS;G.J /with graph below the diagonal, respectively above the diagonal. Following
Brin and Squier [5], we define a function in x 2 PLS;G.J / to be a one-bump function
if either x 2 PL>S;G.J / or x 2 PL<S;G.J /.

In general it is not true that if f 2 PLS;G.I / then Fix.f / � S , but Fix.f / is
always a subset of the “field of fractions” of S . The example in Figure 1 shows a
function in PL2.I / with a non-dyadic rational fixed point. In order to avoid working
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Figure 1. A function in PL2.I / with a non-dyadic fixed point.

in intervals J where the endpoints may not be in S , we introduce a new definition of
boundary which deals with this situation: for a subset X � Œ0; 1�, we define

@SX ´ @X \ S;
where @X denotes the usual topological boundary ofX inside R. For the special case
S D Z

�
1
2

�
we write @2X . We are going to apply this definition to the setX D Fix.f /

so that @Fix.f / and @S Fix.f / will always be finite.

Definition 2.4. The PL0S;G.J / � PLS;G.J / will denote set of functions f 2
PLS;G.J / such that the set Fix.f / does not contain elements of S other than the
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endpoints of J , i.e., Fix.f / is discrete and @S Fix.f / D @SJ D @J . The elements
in PL0S;G.J / will be called almost one-bump function, although their graphs have
several bumps in general.

2.2. Outline of the strategy. We are now going to describe the general steps and
reductions of the algorithm to solve the simultaneous conjugacy problem in the groups
PLS;G.I /. Most of the time we work in the larger group PLC.I / and we then say
what is necessary to generalize the argument to PLS;G.I /. The following outline
describes the correct order of the steps needed to solve the problem, however we will
start Section 4 by describing the central tool of the paper (the “stair algorithm”) which
is used in Step 2. Let x; y; z 2 PLS;G.I /.

Step 1. Find a g 2 PLS;G.I / such that Fix.y/ D g.Fix.z//. The set Fix.x/
consists of a disjoint union of a finite number of closed intervals and isolated points,
because every x 2 PLS;G.I / has only finitely many breakpoints. As mentioned
before, if g�1yg D z, then Fix.y/ D g.Fix.z//. Thus, as a first step we need to
know if, giveny and z, there exists an elementg 2 PLS;G.I / such that Fix.g�1yg/ D
g.Fix.y// D Fix.z/. In Section 6 we show an algorithm which determines whether
or not there exists a “candidate” conjugator g� such that Fix.g�1� yg�/ D Fix.z/. We
then study the conjugacy problem for g�1� yg� and z.

Step 2. Solve the conjugacy problem if Fix.y/ D Fix.z/. In this case @S Fix.y/ D
@S Fix.y/ D f˛1; : : : ; ˛ng. It is easy to see that any conjugator fixes the points ˛i ;
for this we need to look for conjugators in PLS;G.Œ˛i ; ˛iC1�/ of the restrictions of
y and z to Œ˛i ; ˛iC1�. Thus, we can reduce the conjugacy problem to the intervals
where y and z are “almost one-bump functions”, more precisely they are either in
PL0S;G.J / or equal to the identity. The case y D z D id is trivial, this we can assume
that y and z are “almost one-bump” functions.4 This case will be dealt with through
a procedure called the “stair algorithm” that we provide in Section 4.2.

Step 3. Describe the intersection of centralizers of elements and derive a solution
to the conjugacy problem. Finding centralizers g of an element y is equivalent to find
all elements g such that g�1yg D y. Using similar techniques we can also classify
the structure of intersection of centralizers, which will be useful for the last step.
Since the set of all conjugators for y and z is given by a particular conjugator times
an element in the centralizer of y, steps 1, 2 and 3 give us a solution to the conjugacy
problem.

Step 4. Reduce the simultaneous conjugacy problem to a “restricted” conjugacy
problem. It can be seen that the simultaneous conjugacy problem is equivalent to
solving the conjugacy problem for two elements y and z with the restriction that the
conjugator g must lie in the intersection of centralizers of some elements x1; : : : ; xk .
In Section 8 we will show how to construct such a conjugator if it exists, following
the previous steps.

4One needs to be a bit more careful since y and z can have fixed points in the interval which do not lie
in S .
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3. Computational requirements

In order to effectively solve to conjugacy and the simultaneous conjugacy problem in
the groups PLS;G we need to assume that the additive group S and the multiplicative
group G satisfy some computational requirements. First, we will assume that there
is some representation of the elements in S and G in some data structure M .5 Then
we need to be able to perform the basic operations in S and G, thus we require that
we are given some “oracles” which perform the following operations:

� determine if m 2 M represents an element in S and/or G;
� determine if m;m0 2 M represent the same element in S and/or G;
� perform the basic operations (additions and substraction) in S ;
� given two elements in S , determine which one is bigger;
� given an element of S and a rational number, determine which one is bigger;
� construct an element in S in any given non-empty open interval;
� perform the basic operations (multiplication, division) in G;
� perform multiplication between the elements in G and S .

Using these oracles, one can construct a data structure which represents the elements
in the group PLS;G and new oracles which perform the group operations.

The following additional oracles are needed for the algorithms described in Sec-
tion 6 (here � denote the subgroup of S generated by .g� 1/s for s 2 S and g 2 G):

� given g 2 G and s 2 S , determine if s=.g � 1/ is an element in S ;
� an effective solution of the membership problem in the submodule �, i.e., given
s 2 S , an oracle determines if s 2 I or not, and if s 2 � it produces elements
si and gi such that s D P

.gi � 1/si ;
� an effective solution of the congruence sG D s0G .mod .t � 1/�/, i.e., given
s, s0 and t an oracle constructs a solution of the congruence or determines that
it has no solutions.

These oracles allow us to effectively solve the conjugacy problem in the group
PLS;G.J /, but for an effective solution of the simultaneous conjugacy problem we
need another oracle:

� an effective solution of the equation ak D bci , where k; i 2 Z, i.e., given
a; b; c 2 G construct an integer solution of the equation or determine that there
cannot be any.

5Usually the elements are represented by some finite strings over a given alphabet. If this is the case
we require the sets S andG be countable. But our algorithms do not depend on the data structureM .
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4. The stair algorithm

In this section we carry out the second step of the strategy described in Section 2.2
by restricting our study to a square where the given functions have “no relevant”
intersection with the diagonal, and showing how to construct possible candidates for
conjugator. Our goal for this section is, essentially, to solve the conjugacy problem
in PL<C.J /, where we do not pay attention to the intersection with the diagonal. Our
methods extend the results of Brin and Squier [5], who develop a technique similar
to our algorithm. In this section we develop an algorithm which allows us to recover
Brin and Squier’s analysis and to extend it to the case of PLS;G.J /, together with a
description of the intersection of centralizers.

4.1. The linearity boxes. This and the following section deal with functions in
PLC.J / for an interval J D Œ�; ��: we will reuse them in the discussion on PLS;G.I /.
We start by making the following observation: the map PLC.J / ! RC which sends
a function f to f 0.�C/ is a group homomorphism. The very first thing to check, if y
and z are to be conjugate through a g 2 PLC.J / in neighborhoods of the endpoints
of J , the following trivial lemma says that this can happen only if the graphs of y
and z coincide near the endpoints of J .

Lemma 4.1. Given three functions y; z; g 2 PLC.J / such that g�1yg D z, there
exist ˛; ˇ 2 .�; �/ such that y.t/ D z.t/ for all t 2 Œ�; ˛� [ Œˇ; �� (see Figure 2).

�

�

y D z

y D z

˛ ˇ
�

y

z

Figure 2. y and z coincide around the endpoints.

The next lemma gives us that any function g 2 PLC.J / which conjugates y to z
needs to be linear in a specific neighborhood of each endpoint of J , which depends
only on y and z. This lemma is the main ingredient, which allows us to extend
the methods of Brin and Squier [5] to get a constructive solution of the conjugacy
problem.
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Lemma 4.2. Suppose that y; z; g 2 PLC.J / and g�1yg D z. Let " > 0 and
y0.�C/ D z0.�C/ D c > 1 satisfy

y.t/ � � D z.t/ � � D c.t � �/ for t 2 Œ�; �C "�:

Then the graph of g is linear inside the square Œ�; �C "�� Œ�; �C "� (see Figure 3).

Proof. We can rewrite the conclusion of this lemma by saying that if we define

Q" D supfr j g is linear on Œ�; �C r�g;
then �C Q" � minfg�1.�C "/; �C "g. Assume the contrary, let Q" < " and �C Q" <
g�1.� C "/, and write g.t/ � � D �.t � �/ for t 2 Œ�; � C "� and some constant
� > 0. Let 0 � � < 1 be any number. Since Q" < ", we have �C � Q" < �C " and so
y is linear around �C � Q":

g.y.�C � Q"// D g.�C c� Q"/:
On the other hand, since �C Q" < g�1.�C "/, it follows that g.�C� Q"/ < g.�C Q"/ <
�C " and so z is linear around the point g.�C � Q"/ D �C �� Q":

z.g.�C � Q"// D z.�C �� Q"/ D �C c�� Q":
Since gy D zg, we can equate the previous two equations and write g.�C c� Q"/ D
� C �c� Q", for any number 0 � � < 1. If we choose 1=c < � < 1, we see that g
must be linear on the interval Œ0; c� Q"�, where c� Q" > Q". This is a contradiction to the
definition of Q".

˛

�

�

�

˛

˛

Figure 3. Initial linearity box.

Observe that the lemma also holds when z0.�C/ D y0.�C/ D c < 1 by applying
it to the homeomorphisms y�1; z�1. Thus we can replace the condition z0.�C/ D
y0.�C/ D c > 1 with z0.�C/ D y0.�C/ 6D 1. Note that Lemma 4.2 has an analogue
for the points close to other endpoint of J :
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Remark 4.3. Let y; z; g 2 PLC.J /. Suppose that g�1yg D y. If there exist ˇ 2 J
and c < 1 such that y.t/ D z.t/ D c � .t � �/C � on Œˇ; ��, then the graph of g is
linear inside the square Œˇ; �� � Œˇ; ��.

Lemma 4.2 does not hold when the initial slopes of y and z are equal to 1 because
any function g with a support sufficiently close to the endpoints will conjugate y to
itself.

4.2. The stair algorithm forPL<
C.J /. This section deals with the main construction

of this paper. We show that if, under certain hypotheses, there is a conjugator, then it
is unique. On the other hand, we give a construction of such a conjugator if it exists.
Given two elements y, z the set of their conjugators is a coset of the centralizer of
one of them, thus it makes sense to start by deriving properties of centralizers.

The first lemmas show that if y and z are one-bump functions in PLC.J /, then
the graphs of the conjugators do not intersect.

Lemma 4.4. Let z 2 PLC.J /. Suppose that there exist � � � � � � � such that
z.t/ � � for every t 2 Œ�; ��. Suppose further that g 2 PLC.J / is such that g.t/ D t

for all t 2 Œ�; �� and g�1zg.t/ D z.t/ for all t 2 Œ�; ��. Then g.t/ D t for all
t 2 Œ�; ��.

Proof. The equationg�1zg.t/ D z.t/ implies thatg.t/ D z�1gz.t/ for all t 2 Œ�; ��.
Since z.t/ � � and g.x/ D x for all x � �, we have

g.t/ D z�1.g.z.t/// D z�1.z.t// D t:

Corollary 4.5. Let z 2 PL<C.J / and g 2 PLC.J / be such that g0.�C/ D 1 and
g�1zg D z. Then g.t/ D id, the identity map.

Proof. Since g0.�C/ D 1, we have g.t/ D t for all t 2 Œ�; � C "�. Applying the
previous lemma several times we obtain g.t/ D t for all t 2 Œ�; z�k.�C "/�. Since
z 2 PL<C.J /, we have limk!1 z�k.�C "/ D �, therefore g.t/ D t for t 2 J .

Lemma 4.6. Let z 2 PL<C.J /. Let CPLC.J /.z/ be the centralizer of z in PLC.J /.
Then

'z W CPLC.J /.z/ ! RC; g 7! g0.�C/;

is an injective group homomorphism.

Proof. Clearly 'z is a group homomorphism. Suppose that there exist two elements
g1; g2 2 CPLC.J /.z/ such that 'z.g1/ D 'z.g2/. Then g�1

1 g2 has a slope 1 near �
and is equal to the identity by the previous lemma. Therefore g1 D g2, which proves
the injectivity of 'z .
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Lemma 4.7. Let y; z 2 PL<C.J /, let CPLC.J /.y; z/ D fg 2 PLC.J / j yg D zg be
the set of all conjugators, and let � be an interior point of J . Then the two maps 'y;z
and  y;z;� satisfy

'y;z W CPLC.J /.y; z/ ! RC; g 7! g0.�C/;
 y;z;� W CPLC.J /.y; z/ ! J; g 7! g.�/:

(i) 'y;z is an injective map.
(ii) There is a map 	� W J ! RC such that the diagram

J

��

��
CPLC.J /.y; z/

 y;z;�

��������������
'y;z �� RC

commutes.
(iii)  y;z;� is injective.

Proof. (i) is an immediate corollary of Lemma 4.6.
(ii) Without loss of generality we can assume that the initial slopes of y, z are the

same (otherwise the set CPLC.J /.y; z/ is obviously empty and any map will do). We
define the map 	� W J ! RC by

	�.�/ D lim
n!1

yn.�/ � �
zn.�/ � � :

The above limit exists, because the sequence stabilizes under the assumptions y; z 2
PL<C.J / and y0.�/ D z0.�/.

To prove that the diagram commutes we define � D g.�/ and observe that
yn.�/ ����!

n!1 � and zn.�/ ����!
n!1 �. By hypothesis y.�/ D g.z.�// so that

g.zn.�// D yn.�/, for every n 2 Z. Since g fixes � we have

g.t/ D g0.�C/.t � �/C � on a small interval Œ�; �C "�;

where " depends only on g. LetN D N.g/ 2 N be large enough, so that the numbers
yN .�/; zN .�/ 2 .�; �C "/. This implies that

yn.�/ D g.zn.�// D g0.�C/.zn.�/ � �/C �

for any n � N , and so

'y;z.g/ D g0.�C/ D yn.�/ � �
zn.�/ � � D 	�. y;z;�.g//:

(iii) Since 'y;z D 	� y;z;� is injective by part (i),  y;z;� is injective as well.
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Remark 4.8. Lemma 4.7 shows that for y 2 PL<C.J / the graphs of the elements in
the centralizer CPL<

C
.J /.y/ do not intersect; see Figure 4.

y

g1

g2

0 1

Figure 4. Two elements g1, g2 centralizing a map y 2 PL<
C.J /.

The main tool of this section is the stair algorithm. This procedure constructs
a conjugator (if it exists) with a given fixed initial slope. In order for y and z to
be conjugate, they must have the same initial slope; by Lemma 4.2 this determines
uniquely the first piece of a possible conjugator given the initial slope. Then we “walk
up the first step of the stair” (Lemma 4.9): we identify y and z inside a rectangle next
to the linearity box by taking a suitable conjugator. We then repeat and walk up more
rectangles until we “reach the door” (represented by the final linearity box), and this
happens when a rectangle that we are constructing crosses the final linearity box. This
algorithm finishes in finitely many steps because the interval J D Œ�; �� is bounded.
In other words, we will construct a “section” for the map 'y;z of Lemma 4.7. As a
consequence we will also construct a “section” of the map  y;z;�.

Lemma 4.9. Let y; z 2 PL<C.J / and g 2 PLC.J / be functions such that z D yg

and let ˛ 2 .�; �/. Then the functions y, z and the restriction of g to the interval
.�; ˛/ uniquely determines the restriction of g to the interval .�; z�1.˛//.

Proof. We can rewrite the equation z D yg as g D y�1gz. The value of the right
side of this equation at points inside the interval .�; z�1.˛// depends only on y, z
and restriction of g to the interval .�; ˛/. Therefore they determine uniquely the
restriction of g to the interval .�; z�1.˛//.

Proposition 4.10. Let y; z 2 PL<C.J / and g 2 PLC.J / be functions such that
z D yg . Then the conjugator g is uniquely determined by its initial slope g0.�/.

Proof. By Lemma 4.2, the graph of the conjugator g is linear in the box Œ�; �C "��
Œ�; � C "�. Therefore the slope of g0.�/ uniquely determines the restriction of g to
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the interval .�; ˛/, for some ˛ � �. Applying the previous lemma several times we
see that this also determines the restriction of g to the interval .�; z�n.˛// for any
integer n � 0. However the function z is in PL<C.J /, thus limn!1 z�n.˛/ D �, and
so these restrictions determine the function g.

Remark 4.11. Lemma 4.9 also holds for any (even non-piecewise linear) function
on the interval J . The argument in the previous proposition gives that for any piece-
wise linear functions y and z in PLC.J / and any initial slope there exists a unique
conjugating function g which is linear in a neighborhood of the point �. Although
this function g is piecewise linear on any interval .�; ˛/ for any ˛ < �, it may not be
linear in a neighborhood of the point � and may not be piecewise linear on the entire
interval J .

Using the final linearity box, it is very easy to algorithmically determine whether
the function g is a piecewise linear function. It suffices to construct the restriction of
g to the interval .�; �/ such that the point .�; g.�// is inside the finial linearity box
Œˇ; �� � Œˇ; ��. It follows from Remark 4.3 that if there exists a conjugator, then it
has to be linear in this box, thus we can determine the rest of the graph of g and then
verify that it is indeed a conjugator.

Corollary 4.12. Let y; z 2 PL<C.J /, let Œ�; ˛� be the initial linearity box and let q be
a positive real number. There is an r 2 N such that the unique candidate conjugator
with initial slope q < 1 is given by

g.t/ D y�rg0zr.t/ for all t 2 Œ�; z�r.˛/�

and is linear otherwise, where g0 is any map in PLC.J / which is linear in the initial
box with g0

0.�
C/ D q.

Lemma 4.13. Let y; z 2 PL<C.J /, g 2 PLC.J / and n 2 N. Then g�1yg D z if
and only if g�1yng D zn.

Proof. The “only if” part is obvious. The “if” part follows from the injectivity of 'x
by Lemma 4.6 since g�1yg and z both centralize the element zn and have the same
initial slope.

Corollary 4.14. Let y; z 2 PL<C.J /, and let � be in the interior of J . The map

 y;z;� W CPLC.J /.y; z/ ! J; g 7! g.�/;

admits a section, i.e., if  y;z;�.g/ D � 2 J , then g is unique and can be constructed.

Remark4.15. Suppose thaty; z 2 PL<C.J /[PL>C.J /. Then in order to be conjugate,
they have to be both in PL<C.J / or both in PL>C.J /, because by Lemma 4.1 they must
coincide in a small interval Œ�; ˛�. Moreover, g�1yg D z if and only if g�1y�1g D
z�1, and so, up to working with y�1; z�1, we may reduce to studying the case where
they are both in PL<C.J /.
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Remark 4.16. The stair algorithm for PL<C.J / can be reversed. This is to say that,
given q a positive real number, we can determine whether or not there is a conjugator
g with final slope g0.��/ D q. The proof is the same: we simply start constructing
g from the final linearity box.

Remark4.17. We mention here that all results of Sections 4.1 and 4.2 can be extended
to the case of PLS;G.J /. All the statements can be reformulated and proved by
replacing every appearance of PLC.J / and PL<C.J /with the symbols PLS;G.J / and
PL<S;G.J /, respectively.

The stair algorithm gives a practical way to find conjugators if they exist and we
have chosen a possible initial slope. By analyzing the stair algorithm we can see
that if two elements are in PL<S;G.J / and they are conjugate through an element with
initial slope in G, then the conjugator is an element of PLS;G.J /.

Corollary 4.18. Let y; z 2 PL<S;G.J /, g 2 PLC.J / such that yg D z and g0.�C/ 2
G. Then g 2 PLS;G.J /.

We conclude this section with a lemma which will be used later on.

Lemma 4.19. Let 
; � 2 J , h 2 PLC.J /. Then:

(i) The limit '˙ D lim
n!1h

˙n.
/ exists and h.'˙/ D '˙.

(ii) We can determine whether or not there is an n 2 Z such that hn.
/ D �.

Proof. The two sequences fh˙n.
/gn2N are strictly monotone and they have a limit
limn!1 h˙n.
/ D '˙ 2 J . Thus, by continuity of h,

'˙ D lim
n!1 hnC1.
/ D lim

n!1 h.hn.
// D h.'˙/:

Hence we have fhn.
/gn2Z � .'�; 'C/, and'˙ are the closest intersections of the
graph of hwith the diagonal on the point 
 . It is possible to compute 'C, '� directly,
since the graph of h is piecewise linear. As a first check, we must see if � is between
the points '� and 'C. Then, since the two sequences fh˙n.
/gn2N are monotone,
after a finite number of steps we find n1; n2 2 Z such that h�n1.
/ < � < hn2.
/,
which means that either there is an integer �n1 � n � n2 with hn.
/ D � or not,
but this is a finite check.

4.3. The stair algorithm for PL0
S;G

.J /. In Section 6 it will be proved that we can
reduce our study to y and z such that Fix.y/ D Fix.z/. Recall that an intersection
point ˛ of the graph of z with the diagonal may not be a point in S (for instance,
a dyadic rational in the case of PL2.I /; see again Figure 1). If this is the case,
then ˛ cannot be a breakpoint for y, z and more importantly for g. Recall that, by
Definition 2.4, a function z is in PL0S;G.J / if Fix.z/ does not contain any point of S ,
except for the endpoints of J .
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Proposition 4.20. Let y; z 2 PL0S;G.J / and q be a fixed element inG. Suppose that
Fix.y/ D Fix.z/. We can decide whether or not there is a map g 2 PLS;G.J / with
initial slope g0.�C/ D q such that y is conjugate to z through g. If g exists it is
unique. Moreover, there is an algorithm for constructing this conjugator.

Proof. This proof will be essentially the same as the previous stair algorithm with a
few more remarks. We assume therefore that such a conjugator exists and construct
it. Let Fix.y/ D Fix.z/ D f� D ˛0 < ˛1 < � � � < ˛s < ˛sC1 D �g. We restrict
our attention to PLS;G.Œ˛i ; ˛iC1�/ (as defined in Remark 2.1), for each i D 0; : : : ; s.
If y and z are conjugate on Œ˛i ; ˛iC1�, then we can speak of linearity boxes: let
�i ´ Œ˛i ; �i � � Œ˛i ; �i � be the initial linearity box and �i ´ Œıi ; ˛iC1� � Œıi ; ˛iC1�
the final one for PLS;G.Œ˛i ; ˛iC1�/. Now what is left to do is to repeat the procedure
of the stair algorithm for elements in PL<S;G.U / for some interval U . We construct
a conjugator g on Œ˛0; ˛1� by means of the stair algorithm. We observe that ˛1 is
not a breakpoint, hence g0.˛C

1 / D g0.˛�
1 /. Thus we are given an initial slope for g

in Œ˛1; ˛2�, then we can repeat the same procedure and repeat the stair algorithm on
Œ˛1; ˛2�. We keep repeating the same procedure until we reach ˛sC1 D �. Then we
check whether the g we have found conjugates y to z. Finally, we observe that in
each square Œ˛i ; ˛iC1� � Œ˛i ; ˛iC1� the determined function is unique, since we can
apply Lemma 4.7 to it.

An immediate consequence of the previous result is the following lemma.

Lemma 4.21. Suppose z 2 PL0S;G.J / and g 2 PLS;G.J / are such that g0.�C/ D 1

and .g�1zg/.t/ D z.t/ for all t 2 J . Then g.t/ D t for all t 2 J .

Remark 4.22. It is possible to run a backwards version of the stair algorithm also
for PL0S;G.J /. Moreover, in this case it also possible to run a midpoint version of it:
if we are given a point � in the interior of J fixed by y and z and q 2 G , then, by
running the stair algorithm at the left and at the right of � we determine whether or
not there is a conjugator g such that g0.�/ D q.

Notation 4.23. We recall that, given y 2 PLS;G.J /, we denote the centralizer of y
in PLS;G.J / by

CPLS;G.J /.y/ D fg 2 PLS;G.J / j yg D yg:
From Lemma 4.21 and Remark 4.22 we have:

Corollary 4.24. Let y; z 2 PL0S;G.J / such that Fix.y/ D Fix.z/ and let

CPLS;G.J /.y; z/ D fg 2 PLS;G.J / j yg D zg
be the set of all conjugators. For any 
 2 Fix.y/ define the map

'y;z;� W CPLS;G.J /.y; z/ ! RC; g 7! g0.
/;
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where if 
 is an endpoint of J we take only a one-sided derivative. Then

(i) 'y;z;� is an injective map.

(i) If 'y;z;� admits a section, i.e., if there is a partially defined map RC !
CPLS;G.J /.y; z/, � ! g�, with 'y;z;� .g�/ D �, then g� is unique and can
be constructed.

Proposition 4.25. Let y; z 2 PL0S;G.J / such that Fix.y/ D Fix.z/ and let � be in
the interior of J such that y.�/ ¤ �. Define

 y;z;� W CPLS;G.J /.y; z/ ! J; g 7! g.�/:

Suppose yn.�/ ����!
n!1 
 . Then:

(i) There is a map 	� W J ! RC such that the diagram commutes:

J

��

��
CPLS;G.J /.y; z/

 y;z;�

����������������
'y;z;� �� RC

commutes.

(ii)  y;z;� is injective.

(iii) If  y;z;� admits a section, that is, if there is a partially defined map J !
CPLS;G.I /.y; z/, � ! g�, with  y;z;�.g�/ D �, then g� is unique and can be
constructed.

Proof. Let Fix.y/ D Fix.z/ D f� D �0 < �1 < � � � < �k < �kC1 D �g and
suppose �i < � < �iC1 for some i . We define the partial map 	� W J ! RC by

	�.�/ D
´

limn!1 yn.�/��
zn.�/�� if � 2 Œ�i ; �iC1�;

1 otherwise:

Since Fix.y/ D Fix.z/, zn.�/ ����!
n!1 
 and 
 is fixed by g. Thus if � D g.�/, then

yn.�/ D g.zn.�// ����!
n!1 
 . With this definition, the proof follows closely that of

Lemma 4.7 (ii), Proposition 4.14 and by applying Corollary 4.24 and Remark 4.22.

Geometrically this says that if y 2 PL0S;G , then the graphs of the centralizers of
y inside PL0S;G intersect only at the fixed points of y (see Figure 5), which justifies
the terminology “almost one-bump” functions.
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y

g1

g2

0 1

Figure 5. Two centralizers g1; g2 of a function y 2 PL0
S;G.J /.

5. Centralizers in subgroups of PLC.I/

In this section we use the stair algorithm to derive several results about centralizers
of elements in PLC.J / and PLS;G.J /. Although most of these results are already
known, our approach is new. The main result of Section 5.1 was first obtained by Brin
and Squier [5]. We will provide a new proof, which generalizes to the case PLS;G.J /.
The tools of Section 5.1 and the results and proofs in the remaining sections are new
and constructive (except for the results on the special case of Thompson’s group F ),
giving a procedure to solve the simultaneous conjugacy problem. We start by giving
an easy application of the stair algorithm before getting into the conjugacy problem.

5.1. Centralizers of elements in PL0
C.I/ and PL0

S;G
.I/. The stair algorithm

from Section 4 does not tell us anything about the image of the homomorphism
'z W CPLC.J /.z/ ! RC. In this section we will show that if z is in PL<C.J /, then the
image of 'z is a discrete subgroup of RC, thus the centralizer of z is an infinite cyclic
group. Let Az D 'z.CPLC.J /.z// � RC be the set of all possible initial slopes of
centralizers. The set Az is infinite since hzi � CPLC.J /.z/. Using the injectivity of
'z , we can define  z to be the inverse of the function 'z on Az ,

 z W Az ! CPLC.J /.z/; ˛ 7! g˛;

which is clearly a group isomorphism. In the previous section an algorithm is provided
to determine whether c 2 R is an element in Az and the piecewise linear function
 z.c/, which sends an initial slope ˛ to its associated conjugating function g˛ , is
constructed if it is defined.

The main result of this section is the following.

Theorem 5.1. Let J � Œ0; 1� be a closed interval and let id ¤ z 2 PL<C.J /. Then
CPLC.J /.z/ is isomorphic to Z. Moreover, there is an algorithm that constructs a
generator w of this group and w is a root of z.
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We remark that Theorem 5.1 had originally been proved by Brin and Squier
(Theorem 5.5 in [5]). The connection between our proof and the one of Brin and
Squier was described in a paper by the second author [13]. We also observe thatAltinel
and Muranov gave another proof of this result using different methods (Lemma 4.2
in [1]). The tools that we will use in our version of the proof that we are about to
give are relevant for Lemma 5.4, which is central in our construction of candidate
conjugators.

Proof of Theorem 5.1. By the discussion above we have that the group

Az D fg0.�C/ j g 2 CPLC.J /.z/g
is isomorphic to CPLC.J /.z/. We start by assuming that z 2 PL<C.J / and we want to
prove that Az is discrete, since any discrete subgroup of RC is isomorphic to Z. The
argument below not only proves that Az is discrete but also provides an algorithm to
find a generator of this group.

The proof relies on the following key lemmas.

Lemma 5.2. Let r be a positive integer such that zr.ˇ/ < ˛, where Œ�; ˛�2 and
Œˇ; ��2 are initial and final linearity boxes for the element z. Either zr is not linear
on the interval Œˇ; z�r.˛/� or z2r is not linear on the interval Œˇ; z�2r.˛/�.

Proof. Assume that both zr and z2r are linear on these intervals and denote their
slopes by s1 and s2, respectively. Using the linearity boxes for z it can be seen that
zr is linear on Œ�; ˛� with slope ar , where a D z0.�C/, and zr is linear on Œz�r.ˇ/; ��
with slope br , where b D z0.��/. Since z2r D zr B zr we get that z2r is linear on
Œˇ; z�r.˛/� with slope ars1 and is also linear on Œz�r.ˇ/; z�2r.˛/� with slope brs1.
Thus we have

ars1 D s2 D brs1:

However, this is a contradiction because a < 1 < b and s1 6D 0.

Lemma 5.3. Let s be a positive integer such that zs.ˇ/ < ˛ and zs is not linear on
the interval Œˇ; z�s.˛/�. Then there exists " > 0 such that there are only finitely many
g 2 CPLC.J /.z/ with 1 � g0.�C/ � 1 � " and 1 � g0.��/ � 1C ", and they can be
constructed.

Proof. Since zs is not linear on Œˇ; z�s.˛/�, there exists " > 0 such that zs has
breakpoints on I" D Œ.ˇ C "�/=.1C "/; z�s."�C .1 � "/˛/�. Let f�1 < � � � < �kg
be the breakpoints of zs in this interval.

For any g 2 CPLC.J /.z/ with 1 � g0.�C/ � 1 � " and 1 � g0.��/ � 1C " the
linearity boxes give us that g is linear on Œ�; ˛� and Œ.ˇC"�/=.1C"/; ��, and if " > 0
is chosen small enough, the sets I" and g�1.I"/ are not disjoint. By construction, the
breakpoints of g B zs on I" are f�1 < � � � < �kg and the breakpoints of zs B g on
g�1.I"/ are fg�1.�1/ < � � � < g�1.�k/g. However for all but finitely many choices
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for g0.��/ the sets f�1 < � � � < �kg and fg�1.�1/ < � � � < g�1.�k/g are disjoint.
Therefore g B zs ¤ zs B g, which contradicts the assumption that g 2 CPLC.J /.z/.
Let V � Œ1�"; 1� be the finite set of admissible final slopes g0.��/ found before. We
run the backwards stair algorithm on each slope in V and determine which element
centralizes z.

Lemmas 5.2 and 5.3 immediately give that Az is discrete, which completes the
proof of the first part of Theorem 5.1. To construct a generator v for CPLC.J /.z/,
we observe that vk D z for some integer k, hence v is a root of z and so v0.��/ 2
Œz0.��/; 1�. Let V � Œ1�"; 1� be the set of admissible final slopes for g 2 CPLC.J /.z/

given by Lemma 5.3. We run the backwards stair algorithm on the finite set

.Œz0.��/; 1 � "� [ V / \ f m
p
z0.��/gm2Z

of admissible final slopes and pick the centralizing element w with initial slope
closest to 1. By injectivity of the map 'z in Lemma 4.6, the map w is a generator for
CPLC.J /.z/.

We finish with a generalization of Lemma 5.3: The following result is central
in solving the simultaneous conjugacy problem in PLC.I / (together with the stair
algorithm (Corollary 4.12) and Lemma 4.2). It provides an algorithm for restricting
the initial slopes of the conjugators. Not only this allows us to effectively solve the
conjugacy problem in PLC.I / but also to extend this solution to the groups PLS;G.J /,
provided that the additive group S satisfies some mild computational requirements.

Lemma 5.4. Let J D Œ�; �� be a closed interval with endpoints in S and let c > 1.
Then the set

N D fg j g 2 CPLC.J /.y; z/; g
0.�/ 2 Œc�1; c�; g0.�/ 2 Œc�1; c�g

is finite and can be constructed.

Proof. Let ˛0 D �C c�1.˛ � �/ and ˇ0 D � � c�1.� � ˇ/. Using Lemma 4.2 we
can see that g 2 N is linear on the intervals Œ�; ˛0� and Œˇ0; ��. By Lemma 5.2 there
exists a sufficiently large integer s such that z�s.˛0/ � ˇ0 and zs is not linear on
the interval Œˇ0; z�s.˛0/�. Let �i denote the set of breakpoints of zs in this interval.
The function gzs has �i as breakpoints since g is linear in the first linearity box.
If g is a conjugator we have gzs D ysg, therefore the �i are breakpoints of ysg,
which means that g.�i / are breakpoints of ys . This condition leaves finitely many
possibilities for the final slope of g, which shows that the set fg0.�/ j g 2 N g is finite.
For each of the slopes in fg0.�/ j g 2 N g we can construct a candidate conjugator
and test it.

Theorem 5.5. LetJ � Œ0; 1� be a closed interval with endpoints inS and let id ¤ z 2
PL0S;G.J /. Then CPLS;G.J /.z/ is isomorphic to Z. Moreover, there is an algorithm
that constructs a generator w of this group and w is a root of z.
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Proof. Let @Fix.z/ D f� < � < � � � < �g and consider the injective homomorphism
� defined by sending each element of CPLS;G.J /.z/ to its restriction in the interval
Œ�; ��. By construction, the image of � is contained in CPLC.J /.z/ Š Z D hwi,
hence CPLS;G.J /.z/ is also infinite cyclic and contains z. By Lemma 5.3 there are
only finitely many admissible initial slopes to be tested, so to find a generator we
follow the same procedure as in the proof of Theorem 5.1.

5.2. Centralizers of elements in PLC.J / and PLS;G .I/. The results about cen-
tralizers of elements in PL0C.J / and PL0S;G.I / can be extended to arbitrary elements
by observing that any centralizer of y need to fix all points in @S Fix.y/.

Theorem 5.6. Let J D Œ�; �� � Œ0; 1� be a closed interval and z 2 PLC.J /. Then:

(i) CPLC.I /.z/ is isomorphic to a direct product of copies of Z and PLC.Ji / for
some suitable intervals Ji � I .

(ii) For every positive integer n we can decide whether or not n
p
z exists. The map

z has only a finite number of roots and every root is constructible, i.e., there is
an algorithm to compute it.

Proof. (i) Consider the conjugacy problem with y D z and let

@Fix.z/ D f� D ˛0 < ˛1 < � � � < ˛s < ˛sC1 D �g:
Any centralizer g of zmust fix the set @Fix.z/ and thus each of the ˛i ’s. Therefore we
compute the centralizer of the restrictions zi of z in each of the subgroups PLC.Ji /,
where Ji D Œ˛i ; ˛iC1� and so we can assume that zi 2 PL<C.Ji / or zi 2 PL<C.Ji /
or zi D id. If zi D id, then it is immediate that CPLC.Ji /.zi / D PLC.Ji /. Suppose
z ¤ id on Œ0; 1�, then, by Theorem 5.1, we have CPLC.Ji /.zi / Š Z.

(ii) Again we suppose that @Fix.z/ D f0 D ˛0 < ˛1 < � � � < ˛r < ˛sC1 D 1g
and we restrict to an interval Œ˛i ; ˛iC1�. Let m D z0.0C/. We want to determine
whether or not there is an element g 2 PLC.Œ˛i ; ˛iC1�/ such that g�1zg D z and
g0.0C/ D n

p
m. Suppose that there is such ag, theng�nzgn D z and .gn/0.0C/ D m.

By injectivity of the map'z;z;˛i
(Corollary 4.24), we have thatgn D z. Conversely, if

we have h such that hn D z, then h0.0C/ D n
p
m. But h�1zh D h�1hnh D hn D z.

Thus an element h is a n-th root of z if and only if it is the solution the “differential
type” equation with a given initial condition´

h�1zh D z;

h0.0C/ D n
p
m:

So we can decide, by solving the equivalent conjugacy problem with a given
initial slope, whether or not there is a n-th root. Moreover, if the n-th root of g
exists, it is computable by Proposition 4.20 and unique by Corollary 4.24. Moreover,
only finitely many roots are possible: the sequence n

p
z0.�C/ converges to 1, but
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Lemma 5.3 implies that only finitely many elements of this sequence can be candidate
slopes for a root.

Proposition 5.7. Let x 2 PLC.J / and ˛ be a point in J . If g 2 CPLC.I /.x/ and
g.˛/ D ˛, then the functions

g<;˛ D
´
t if t � ˛;

g.t/ if t � ˛;
g>;˛ D

´
g.t/ if t � ˛;

t if t � ˛;

are also in the centralizerCPLC.J /.x/ and g is equal to the product of g<;˛ and g>;˛ .

Proof. If x.˛/ D ˛, this follows from Theorem 5.6. Assume now that x.˛/ ¤ ˛

and let Œc; d � be the largest interval containing ˛ on which x is a one-bump function.
Since g centralizes x, the points c and d are fixed by both x and g and, in particular,
the proposition follows for the maps g<;c and g>;c . The conclusion will then follow
if we can prove that g<;˛ D g<;c and g>;˛ D g>;c . The restriction gjŒc;d� centralizes
xjŒc;d� and so, by Theorem 5.1, we have gjŒc;d� D . m

p
x/k for suitable integersm; k.

Since x.˛/ ¤ ˛, it follows that k D 0 and gjŒc;d� D id. It is now straightforward to
verify that g<;˛ D g<;c and g>;˛ D g>;c .

We will see that solving the simultaneous conjugacy problem is equivalent to
detect whether or not a given candidate function lies in the intersection of finitely
many centralizers. The next results shows that the intersection of centralizers has a
structure similar to a single centralizer, which allows us to modify the solution of the
conjugacy problem in PLC.J / and PLS;G.J /, and to verify that it is possible to find
a conjugator in the intersection of several centralizers.

Proposition 5.8. Let x1; : : : ; xk 2 PLC.J / and define C ´ CPLC.J /.x1/ \ � � � \
CPLC.J /.xk/. If the interval J is divided by the points in the union @Fix.x1/[ � � � [
@Fix.xk/ into intervals Ji , then

C D CJ1
� CJ2

� � �CJr
;

where CJi
´ ff 2 C j f .t/ D t for all t 62 Jig D C \ PLC.Ji /. Moreover, each

CJi
is isomorphic to either Z or PLC.Ji /, or is the trivial group.

Proof. The set @Fix.xi / is fixed by all elements in CPLC.J /.xi /. Therefore all ele-
ments in C fix the endpoints of the intervals Ji , since, for ˛ 2 S

@Fix.xi / and any
g 2 C , the function g<;˛ and g>;˛ are in C by Proposition 5.7. Any element z 2 C
can be written as the product z1 : : : zr , where zi 2 PLC.J / is trivial outside of Ji
and zi jJi

2 CPLC.Ji /.xnjJi
/ for all n D 1; : : : ; r . Hence zi 2 CJi

.

Corollary 5.9. The intersection of any number k � 2 centralizers of elements
x1; : : : ; xk in PLC.J / is equal to the intersection of centralizers of two elements
w1; w2 2 PLC.J / which are not necessarily part of the initial set fx1; : : : ; xkg.
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Proof. Let C D CPLC.I /.x1/ \ � � � \ CPLC.I /.xk/ be the intersection of k � 2

centralizers of elements of PLC.J /. By the previous proposition we have I D
J1 [ � � � [ Jr and C D CJ1

� � �CJr
. We want to define w1; w2 2 PLC.I / such that

C D CPLC.I /.w1/\CPLC.I /.w2/. We define them on each interval Ji ´ Œ˛i ; ˛iC1�,
depending onCJi

. Case 1: IfCJi
D id, then we definew1,w2 to be any two elements

in PL<C.Ji / so that one is not a power of the other. Case 2: If CJi
Š hxi for some

id ¤ x 2 PLC.Ji /, then we define w1 D w2 D x. Case 3: If CJi
D PLC.Ji /, then

we define w1 D w2 D id.

Using Theorem 5.5 one can easily generalize the results in the previous section
to the groups PLS;G.J /.

Theorem 5.10. Let J D Œ�; �� � Œ0; 1� be a closed interval with endpoints in S and
z 2 PLS;G.J /. Then:

(i) CPLS;G.I /.z/ is isomorphic to a direct product of copies of the group Z’s and
PLS;G.Ji /’s for some suitable intervals Ji � I .

(ii) For every positive integer n we can decide whether or not n
p
z exists. The map

z has only a finite number of roots and every root is constructible, i.e., there is
an algorithm to compute it.

Proof. (i) We consider the conjugacy problem with y D z and let

@S Fix.z/ D f� D ˛0 < ˛1 < � � � < ˛s < ˛sC1 D �g:
Any centralizer g of z must fix @S Fix.z/ pointwise. We thus compute the centralizer
of the restrictions zi of z in each of the groups PLS;G.Ji /, where Ji D Œ˛i ; ˛iC1�,
and assume that zi 2 PL0S;G.Ji / or z D id. The rest of the proof follows as in
Theorem 5.6 (i) by means of Theorem 5.5.

(ii) This is a consequence of Theorem 5.6 (ii).

Knowing the structure of a centralizer in PLS;G.I / allows us to extend the results
about intersections of centralizers.

Proposition 5.11. Let J D Œ�; �� � Œ0; 1� be a closed interval with endpoints in
S , let z1; : : : ; zk 2 PLS;G.J / and define the subgroup C ´ CPLS;G.I /.z1/ \ � � � \
CPLS;G.I /.zk/. If the interval J is divided by the points in the union @S Fix.z1/ [
� � � [ @S Fix.zk/ into intervals Ji , then

C D CJ1
� CJ2

� � �CJr
;

where CJi
´ ff 2 C j f .t/ D t for all t 62 Jig D C \ PLS;G.Ji /. Moreover, each

CJi
is isomorphic to either Z or PLS;G.Ji /, or to the trivial group.

Corollary 5.12. The intersection of any number k � 2 of centralizers of elements
x1; : : : ; xk in PLS;G.J / is equal to the intersection of centralizers of two elements
w1; w2 2 PLS;G.J / which are not necessarily part of the initial set fx1; : : : ; xkg.
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Question 5.13. Corollary 5.12 shows that any intersection of k � 2 centralizers of el-
ements x1; : : : ; xk in PLS;G.J / can be expressed as the intersectionCPLS;G.J /.w1/\
CPLS;G.J /.w2/ for two suitable elements w1; w2 2 PLS;G.J /. Is it possible to con-
struct the two elements w1, w2 inside the subgroup hx1; : : : ; xki?

The groups PLS;G.Ji / may not be isomorphic to each other (see Remark 9.5).
However, in the special case of S D ZŒ1

2
� it is true that PLS;G.Ji / Š F for all

i (see Remark 2.2). This simplifies the statement of Theorem 5.10 in the case of
Thompson’s group F . Also the proof can be simplified because one can use the
discreteness of the groupG instead of Lemmas 5.2 and 5.3, and Theorem 5.5. As we
have already mentioned, this result is well known and was first proved by Guba and
Sapir [10] using different techniques.

Theorem 5.14. Let z 2 F Š PL2.I /. Then:

(i) Its centralizer is CF .z/ Š Fm � Zn for some positive integers m, n such that
0 � m � nC 1 (see Figure 6).

(ii) If z ¤ id, the function z has only a finite number of roots and every root is
constructible, i.e., there is an algorithm to compute it.

F-part

Z-part

Z-part

10

Figure 6. The structure of centralizers in F .

6. Moving fixed points

In this section we describe step 1 of the outline in Section 2.2. If two maps y, z
are conjugate via g, then g.Fix.y// D Fix.z/. Thus, moving fixed points is an
intermediate step towards the conjugacy problem. We begin our proofs for the easier
case of PLC.J / and then move on to study the case of the groups PLS;G.J /.
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6.1. Moving fixed points in PLC.J /. This case is the easiest one – essentially, in
the case of PLC.J /, the only necessary thing to check is whether Fix.y/ and Fix.z/
have the same number and “type” of components and whether they have the “same
order”6. We state without proof the following results.

Theorem 6.1. Let y1 < y2 < � � � < yn and z1 < z2 < � � � < zn be points in the
interval J . Then there exists a g 2 PLC.J / such that g.yi / D zi for all i D 1; : : : ; n.

Theorem6.2. Lety; z 2 PLC.J /. There is an algorithmwhich constructs an element
g 2 PLC.J / such that g.Fix.y// D Fix.g�1yg/ D Fix.z/, or shows that such an
element does not exist.

6.2. Moving fixed points in PLS;G .J /. The main difference between the groups
PLS;G.J / and PLC.J / is that (in general) PLS;G.J / does not act transitively on the
interior points in the interval J . Our first step it to describe the orbits. Let us define
an equivalence relation 	S;G;J in J . If x; y 2 J we say that x 	 y if and only if
there exists g 2 PLS;G.J / such that g.x/ D y. Unless otherwise stated, we always
assume that the endpoints of J are in S .

Definition 6.3. Let �S;G denote the submodule of the ZŒG�-module S generated by
.g � 1/ for g 2 G. We denote by S;G W S ! S=�S;G the natural quotient map.
Unless otherwise stated, we will drop the subscript and write � and  instead of �S;G
and S;G .

We remark that the natural map  is a homomorphism. The next theorem plays
central role in understanding the orbits of points in J under the action of PLS;G.J /
by detecting when two points of S are in the same PLS;G-orbit.

Theorem 6.4. Let J be an interval with endpoints in S and let x; y 2 S \ J . Then
x 	 y if and only if x � y 2 �.

The proof follows from the next two results.

Lemma 6.5. Let J � Œ0; 1� be a closed interval with at least one of the endpoints �
in S and let g 2 PLS;G.J /. Then .g.t// D .t/ for every t 2 J \ S .

Proof. We may assume that � is a left endpoint and we apply induction on the number
of breakpoints preceding t . In case the endpoint in S is the right one, we apply
induction on the breakpoints following t . Let f�1; : : : ; �rg be the set of all breakpoints
of g in the interval Œ�; t/. Then g.t/ D cr.t � �r/C g.�r/ for some suitable ci 2 G.

6This is exactly the invariant†2 defined by Brin and Squier in [5].
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By induction hypothesis, the number of breakpoints preceding �r is r � 1, and so we
have .g.�r// D .�r/. Now observe that

.g.t// D .cr.t � �r/C g.�r//

D .cr � 1/.t � �r/C .1/.t � �r/C .g.�r//

D .t � �r/C .�r/ D .t/:

Proposition 6.6. Let J � Œ0; 1� be a closed interval with both endpoints in S and let
u; v 2 J \ S . Then .u/ D .v/ if and only if there is a map g 2 PLS;G.J / such
that g.u/ D v.

Proof. Sufficiency od the condition follows from Lemma 6.5. Now suppose that
J D Œ�; �� and let L D � � �. We recenter the axis at .�; �/, so that interval J is now
Œ0; L�. For ˛ 2 G, ˇ 2 J \ S such that ˛ˇ < L � ˇ define (see Figure 7)

g˛;ˇ .t/ ´

8̂<
:̂
˛t if t 2 Œ0; ˇ�;
t � .1 � ˛/ˇ if t 2 Œˇ; L � ˛ˇ�;
1
˛
.t � L/C L if t 2 ŒL � ˛ˇ;L�:

_

_

L

L

L � ˇ

˛ˇ

0 ˇ L � ˛ˇ

˛

1

1
˛

g.˛;ˇ/

Figure 7. The basic function to get transitivity.

Using the maps g.˛;ˇ/ or g�1
.˛;ˇ/

we can send any number ˇ � t � L � ˛ˇ to
t � .1 � ˛/ˇ and any number ˛ˇ � t � L � ˇ to t C .1 � ˛/ˇ.

Since .u/ D .v/, we have v � u 2 � and so

v � u D .1 � ˛1/ˇ1 C � � � C .1 � ˛k/ˇk
for some ˛i 2 G, ˇi 2 J \ S . Adding extra terms if necessary we can assume that

uC .1 � ˛1/ˇ1 C � � � C .1 � ˛i /ˇi 2 J
for any 1 � i � k. Since S is a dense subgroup of R, we can, for each ˇi , find
numbers ˇi;j 2 J \ S small enough such that
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� L � ˇi;j > ˛iˇi;j so that the map g.˛i ;˙ˇi;j / can be defined, and
� ˇi D P

j ˇi;j .

Finally we can see that the composition of the maps g˙1
.˛i ;ˇi;j /

sends u to v, which
finishes the proof.

Corollary 6.7. Any linear piece of the graph of an element g 2 PLS;G.J / has an
equation of the form x ! ax C b where a 2 G and b 2 �.

Corollary 6.8. Let J1 and J2 be two intervals containing x; y, then x 	S;G;J1
y if

and only if x 	S;G;J2
y.

Theorem 6.9. Let J be a closed interval with endpoints in S and suppose we have
u1; v1; : : : ; uk; vk 2 J \ S such that u1 < � � � < uk , v1 < � � � < vk and ui 	 vi for
all i D 1; : : : ; k. Then there exists a map g 2 PLS;G.J / such that g.ui / D vi for all
i D 1; : : : ; k.

Proof. The proof is by induction. The base case k D 1 is just the definition of
the equivalence relation 	. Let k > 1. By the induction assumption, there exists
Og 2 PLS;G.J / such that Og.ui / D vi for i D 1; : : : ; k � 1. Using that 	S;G;J is an
equivalence relation we obtain that Og.uk/ 	S;G;J uk 	S;G;J vk . Let J 0 denote the
interval Œvk�1; �� which contains the points Og.uk/ and vk . By Corollary 6.8 we have
Og.uk/ 	S;G;J 0 vk , therefore there exists Ng 2 PLS;G.J 0/ such that Ng. Og.uk// D vk ,
thus the element g D Ng B Og sends ui to vi for all i .

Lemma 6.10. Suppose that I1; : : : ; Ik is a family of disjoint closed intervals Ii D
Œai ; bi �, with bi < aiC1 for all i D 1; : : : ; k and ai ; bi 2 S . Let J1; : : : ; Jk � Œ0; 1�,
with Ji D Œci ; di �, be another family of intervals with the same property such that
ai 	 ci and bi 	 di . Suppose that gi W Ii ! Ji is a piecewise-linear function with a
finite number of breakpoints, occurring at S and such that all slopes are in G. Then
there exists an element Qg 2 PLS;G.I / such that QgjIi

D gi .

Proof. By Theorem 6.9 there exists an h 2 PLS;G.J / with h.ai / D ci and h.bi / D
di . Define

Qg.t/ ´
´
h.t/ if t 62 I1 [ � � � [ Ik;
gi .t/ if t 2 Ii :

By construction, it is clear that Qg 2 PLS;G.J / and QgjIi
D gi .

Corollary 6.11. Any part of the graph of x ! ax C b, where a 2 G and b 2 �,
inside the open square J � J can be extended to a graph of an element in PLS;G .

Any isolated fixed point˛ of an elementg 2 PLS;G.J / is of the form˛ D s=.t�1/
for some s 2 S and t 2 G n f1g. Let QS denote the set of all points of the form
s=.t � 1/. The next step is to understand when two points in QS are in one and the
same orbit under PLS;G.J /.



The simultaneous conjugacy problem in groups of PL-functions 305

Theorem 6.12. Let J D Œ�; �� be a closed interval with endpoints in S and let
˛; ˇ 2 J \QS . The points ˛ and ˇ are equivalent under 	S;G;J if and only if we
can find s; s0 2 S and t 2 G such that ˛ D s=.t � 1/, ˇ D s0=.t � 1/ and

sG D s0G .mod .t � 1/�/;
where .t � 1/� denotes the image of the submodule � under the multiplication by
t � 1 2 ZŒG�.

Proof. Suppose that there is a map g 2 PLS;G.J / with g.˛/ D ˇ and let g.x/ D
cx C d in a small neighborhood J˛ of ˛. We can choose representatives s 2 S and
t 2 G such that ˛ D s=.t � 1/ and then, since g 2 PLS;G.J /, we use Lemma 6.5 to
get

.x/ D .g.x// D .c � 1/.x/C .x/C .x/;

for all x 2 J˛ \ S , and therefore .d/ D 0, which implies d 2 �. The equality
g.˛/ D ˇ implies that ˇ D s0=.t � 1/, where s0 D cs C d.t � 1/, and so sG D s0G
.mod .t � 1/�/.

Conversely, suppose that we can write ˛ D s=.t � 1/, ˇ D s0=.t � 1/ for some
s; s0 2 S and t 2 G such that sG D s0G .mod .t � 1/�/. The second condition
implies that there exist c1; c2 2 G, d2 2 � such that

c1s D c2s
0 C .t � 1/d2:

Thus, if we set c D c2=c1 and d D d2=c1, we get ˛ D cˇ C d . Let f .t/ D ct C d

be a line through the point .˛; ˇ/ and let Œ�; ı� � J be a small interval such that
�; ı 2 S . Since .d/ D 0, we have .f .�// D .�/ and .f .ı// D .ı/, and
so by Lemma 6.10 there is a map g 2 PLS;G.J / with gjŒ�;ı� D f . By construction
g.˛/ D ˇ, as required.

Using the previous two results one can easily generalize Theorem 6.2 to the groups
PLS;G.J /. Of course this is only possible if the group S and the group G satisfy
some mild computational requirements, which are described in Section 3.

Corollary 6.13. Assume that S and G satisfy the computational requirements from
Section 3. Then for any ˛; ˇ 2 QS \ J there is an algorithm which constructs a
g 2 PLS;G.J / such that g.˛/ D ˇ, or shows that such an element does not exist.

We state the same result for a finite number of points. Its proof uses Lemma 6.10
on a number of disjoint intervals, one around each point.

Corollary 6.14. Assume that S and G satisfy the computational requirements from
Section 3. Let � < ˛1 < � � � < ˛r < � and � < ˇ1 < � � � < ˇr < � be two partitions
of J with elements of the set QS . Then there is an algorithm which constructs
g 2 PLS;G.J / with g.˛i / D ˇi , or shows that such an element does not exist.
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Theorem 6.15. Assume that S and G satisfy the computational requirements from
Section 3. Then given any y; z 2 PLS;G.I /, there is an algorithm which constructs
g 2 PLS;G.I / such that g.Fix.y// D Fix.g�1yg/ D Fix.z/, or shows that such
element does not exist.

Proof. First we check if #@Fix.y/ D #@Fix.z/. Then we use the previous corollary
to find a g 2 PL2.I / with g.@Fix.y// D @Fix.z/ if it exists. To finish we check
whether Fix.g�1yg/ contains the same intervals as Fix.z/.

6.3. The case of Thompson’s group. Here are the analogues of previous results in
the case of Thompson’s groups F .7

Lemma 6.16. If 0 D x0 < x1 < x2 < � � � < xn D 1 and 0 D y0 < y1 < y2 <

� � � < yn D 1 are two partitions of Œ0; 1� consisting of dyadic rational numbers, then
we can construct a map g 2 PL2.I / such that g.xi / D yi .

An easy well-known consequence is the following extension lemma.

Lemma 6.17. Suppose that I1; : : : ; Ik � Œ0; 1� is a family of disjoint closed intervals
Ii D Œai ; bi �, with bi < aiC1 for all i D 1; : : : ; k and ai ; bi 2 ZŒ1

2
�. LetJ1; : : : ; Jk �

Œ0; 1�, with Ji D Œci ; di �, be another family of intervals with the same property.
Suppose that gi W Ii ! Ji is a piecewise-linear function with a finite number of
breakpoints, occurring at dyadic rational points, and such that all slopes are integral
powers of 2. Then there exists a map Qg 2 PL2.I / such that QgjIi

D gi .

Proposition 6.18. Let ˛ D 2tm
n

and ˇ D 2kp
q

be rational numbers in Q \ .0; 1/,
where t; k 2 Z, m, n, p, q odd integers such that .m; n/ D .p; q/ D 1. Then there
is a map g 2 PL2.I / such that g.˛/ D ˇ if and only if n D q and

p 
 2Rm .mod n/ (6.1)

for some R 2 Z. Equivalently, there exist integers t 0, k0 such that 2t
0
˛ � 2k

0
ˇ is an

integer. Moreover, there is an algorithm which constructs such element g if the above
condition is satisfied.

Example 6.19. Let ˛ D 1
17

, ˇ D 13
17

and � D 3
17

. It is easy to see that we can find a
map g 2 PL2.I / with g.˛/ D ˇ, but there is no h 2 PL2.I / with h.˛/ D � .

We now state the analogue of Theorem 6.15 noticing that for Thompson’s group
the requirements Section 3 are satisfied.

Theorem 6.20. Given y; z 2 PL2.I /, there is an algorithm which constructs g 2
PL2.I / such that g.Fix.y// D Fix.g�1yg/ D Fix.z/, or shows that such an element
does not exist.

7The first two results are well known; see [6].
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7. The conjugacy problem and the power conjugacy problem
in PLC.J / and PLS;G .J /

The results of Section 6, together with the assumption that S , G satisfy the compu-
tational requirements of Section 3, allow us to reduce the problem to the case where
@S Fix.y/ D @S Fix.z/.

7.1. Characterizing conjugacy in PLC.J /. To study conjugacy between two el-
ements y and z we can assume that @Fix.y/ D @Fix.z/ D f˛1; : : : ; ˛ng, and we
look for conjugators in PLC.Œ˛i ; ˛iC1�/ of the restrictions of y and z to Œ˛i ; ˛iC1�.
We reduce the study of the conjugacy problem to smaller intervals. If y D z D id
on the interval Œ˛i ; ˛iC1� there is nothing to prove, otherwise y and z are one-bump
functions. Given two elements f; g 2 PLC.J / we say that they are y-equivalent if
f D yng for some integer n.

Lemma 7.1. If g is a conjugator for y and z, then any y-equivalent map yng is a
conjugator as well.

Proof. We observe that

.yng/�1y.yng/ D g�1yg D z:

Lemma 7.2. If y; z 2 PL<C.J / are conjugate, there exists a y-equivalent conjugator
g 2 PLC.J / such that y.�/ < g.�/ < � for any fixed � in the interior of J .

Proof. Let h 2 PLC.J / be a conjugator for y and z. Since y 2 PL<C.J /, there
exists an integer n such that ynh.�/ < y.�/ � yn�1h.�/. By applying y�1 to the
inequality ynh.�/ < y.�/ we obtain

ynh.�/ < y.�/ � yn�1h.�/ < �:

We define g D yn�1h, and we are done by Lemma 7.1.

Proposition 7.3. Todetectwhether or not two elementsy; z 2 PLC.J / are conjugate,
only finitely many functions need to be tested as possible candidate conjugators and
they can be constructed. Moreover, we can enumerate all possible conjugators.

Proof. By the discussion at the beginning of this section, we can assume that y; z 2
PL<C.J /. Let � 2 J be a fixed interior point of J contained in the initial linearity
box. For any conjugator of y and z, Lemma 7.2 implies that there is a y-equivalent
conjugator g 2 PLC.J / such that y.�/ < g.�/ < �. Now, since the map 	� defined
in Lemma 4.7 is increasing, it is immediate to see from its definition that

y0.�C/ D 	�.y.�// � g0.�C/ D 	�.g.�// � 1 D 	�.�/ � y0.�C/�1:
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Choosing another interior point � in the final linearity box, we can use the analogous
version of 	� at the final slope to obtain y0.�C/�1 � g0.�C/ � y0.�C/. Hence, the
set of all conjugators g such that y.�/ < g.�/ < � is contained in the set

N ´ ˚
h j h 2 CPLC.J /.y; z/; h

0.�/ 2 Œy0.�C/; y0.�C/�1�;
h0.�/ 2 Œy0.�C/�1; y0.�C/�

�
;

which by Lemma 5.4 is finite and can be constructed. If the set N is non-empty
then, by the uniqueness of conjugators with a given initial slope (Lemma 4.7) and by
Lemma 7.2, the set of all conjugators for y and z is given by fyrg j g 2 N; r 2 Zg.

7.2. Conjugacy problem in PLS;G .J /. We can now solve the conjugacy problem
for elements in PL0S;G.J /. We recall that PL0S;G.J / � PLS;G.J / is the set of
functions f 2 PLS;G.J / such that the set Fix.f / does not contain elements of S
other than the endpoints of J .

Lemma 7.4. For any y; z 2 PL0S;G.J / such that y ¤ z and Fix.y/ D Fix.z/, we
can decide whether there is (or not) a map g 2 PLS;G.J / with yg D z. Moreover,
we can construct and enumerate all possible conjugators.

Proof. In order to be conjugate, we must havey0.�C/ D z0.�C/ andy0.��/ D z0.��/.
Up to taking inverses of y and z, we can assume that y0.�C/ D z0.�C/ < 1. Let ˛ be
the first interior fixed point of y. Since we are looking for conjugators fixing Fix.y/
pointwise, we can restrict ourselves to find a conjugator for y and z in PLS;G.Œ�; ˛�/.
Since y; z 2 PL<S;G.Œ�; ˛�/, by Proposition 7.3 there are only finitely many candidate
conjugators. We test them, and if any of them is a conjugator in PLC.Œ�; ˛�/, we
extend it to J through the stair algorithm and test it on J . By the straightforward
analogues for PL0S;G.J / of Lemma 7.2 and Proposition 7.3, we can enumerate all
possible conjugators.

Theorem 7.5. The group PLS;G.J / has solvable conjugacy problem. Moreover, we
can construct and enumerate all possible conjugators.

Proof. We use Theorem 6.15 and suppose that @S Fix.y/ D @S Fix.z/ D f� D ˛0 <

˛1 < � � � < ˛r < ˛rC1 D �g. Now we restrict ourselves to an interval Œ˛i ; ˛iC1�
and consider y; z 2 PL0S;G.Œ˛i ; ˛iC1�/. If Fix.y/ contains a subinterval of Œ˛i ; ˛iC1�,
then we must have y D z D id on the whole interval Œ˛i ; ˛iC1� and so any function
g 2 PLS;G.Œ˛i ; ˛iC1�/ will be a conjugator. Otherwise, Fix.y/ does not contain any
subinterval of Œ˛i ; ˛iC1� and so we can apply the Lemma 7.4. If we find a solution in
each such interval, then the conjugacy problem is solvable. Otherwise, it is not.

Remark 7.6. For the case of Thompson’s group PL2.I / there is no need to use
Lemma 5.4, because all possible initial slopes of g must be powers of 2. Hence, there
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are only finitely many conjugators with initial slope in Œy0.0/; y0.0/�1�. We test all
candidate conjugators with initial slope in Œy0.0/; y0.0/�1� to conclude the procedure.

The argument given to solve the conjugacy problem in PLS;G.J / also works, in
much the same way, to solve the power conjugacy problem. We say that a group
G has solvable power conjugacy problem if there is an algorithm such that, given
any two elements y; z 2 G, we can determine whether there is, or not, an element
g 2 G and two non-zero integers m, n such that g�1ymg D zn, that is, there are
some powers of y and z that are conjugate.

Theorem 7.7. The group PLS;G.J / has solvable power conjugacy problem.

Proof. Again, we can use Theorem 6.15, the identity @S Fix.y/ D @S Fix.z/, and
restrict ourselves to a smaller interval J D Œ�; �� with endpoints in S and such that
y; z 2 PL0S;G.J /. If g 2 PLS;G.J / and m, n exist, then the initial slopes of ym and
zn must coincide. A simple argument on the exponent of these slopes implies that
this can happen if and only if ym and zn are both powers of a common minimal power
.y˛/0.�/ D .zˇ /0.�/. Hence the problem can be reduced to finding whether there is
a map g 2 PLS;G.J / and an integer k such that g�1yk˛g D zkˇ . By Lemma 4.13
(that can be naturally generalized to PL0S;G.J /; see Remark 4.17), we have that this

is equivalent to finding a map g 2 PLS;G.J / such that g�1y˛g D zˇ . Hence solving
the power conjugacy problem is equivalent to solving the conjugacy problem for y˛

and zˇ .

8. The k-simultaneous conjugacy problem

We will make a sequence of reductions to solve the simultaneous conjugacy problem
in PLC.J / and PLS;G.J /. LetM denote the group PLC.J / or PLS;G.J /, which will
allow us to treat both cases together. These reductions closely follow the solution of
the ordinary conjugacy problem. First we notice that since we know how to solve the
ordinary conjugacy problem, solving the .k C 1/-simultaneous conjugacy problem
is equivalent to finding a positive answer to the following problem:

Problem8.1. Is there an algorithm such that given .x1; : : : ; xk; y/ and .x1; : : : ; xk; z/
it can decide whether there is a function g 2 CM .x1/ \ � � � \ CM .xk/ such that
g�1yg D z?

Since we understand the structure of the intersection of centralizers, we are going
to work on solving this last question. Our strategy now is to reduce the problem to
the ordinary conjugacy problem and to isolate a very special case that must be dealt
with.

As in the case of the ordinary conjugacy problem, the first step is to determine
whether the set of fixed points can be made the same.
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Lemma 8.2. Let x1; : : : ; xk; y; z 2 M . We can determine whether there is, or not,
an element g 2 C D CM .x1/ \ � � � \ CM .xk/ such that g.Fix.y// D Fix.z/.

Proof. The proof is essentially the same as that of Corollary 6.14 for each of the
intervals between two fixed points of y and z that are in S . The only new tool
required is Lemma 4.19 for the intervals where C is isomorphic to Z. We omit the
details of this proof.

Lemma 8.3. Let x1; : : : ; xk; y; z 2 M . The subgroup C 0 of elements g in CM .x1/\
� � � \ CM .xk/ such that g.Fix.y// D Fix.y/ splits as a product

C 0 D C 0
J1

� C 0
J2

� � �C 0
Jk

for some disjoint intervals Ji with
S
Ji D J , where C 0

Ji
´ ff 2 C 0 j f .t/ D

t for all t 62 Jig D C 0 \ PLC.Ji /. Moreover, each C 0
Ji

is isomorphic to either Z or
PLC.Ji / \M , or is the trivial group.

Proof. Similar to the proof of Proposition 5.11.

Using the two results we reduce the simultaneous conjugacy problem to the case
when Fix.y/ D Fix.g/. Again we can further reduce to the case when both y and
z are in PL0S;G.J /, but we are restricted to use only conjugating elements from the
subgroup C 0. By Lemma 8.3 the group C 0 splits as a product of several subgroups
C 0
Ji

, which lead to several cases:
Case 1. The number of intervals Ji is more than 1: There is an interior point � in

J which is fixed by all elements in C 0 (since
S
.@Ji / 6� @J ). By Lemma 4.7 (which

can be naturally adapted to PLS;G.J /; see Remark 4.17) there is at most one element
in CPLS;G.J /.y; z/ which fixes �, and we only need to verify if this element is inside
C 0.

Case 2. The number of intervals Ji is exactly 1: This case breaks further into
three subcases depending on the subgroup C 0.

Case 2a. The group C 0 is trivial: The elements y and z are conjugate by an
element in C 0 if and only if they are the same.

Case 2b. The group C 0 is isomorphic to PLS;G.J /: If C 0 is the whole group, we
can simply apply the algorithm which gives the solution of the ordinary conjugacy
problem.

Case 2c. The group C 0 is isomorphic to Z: We want to see if we can solve the
ordinary conjugacy problem when we have a restriction on the possible conjugators.
Let x denotes the generator of C 0, thus we want to check if there exists integer k
such that x�kyxk D z. By assumption both y and z are in PL0S;G.J /, solving the
ordinary conjugacy problem we find that the set CPLS;G.J /.y; z/ is either empty or is
equal to

f Oyig j i 2 Zg;
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where Oy is the generator of CPLS;G.J /.y/ and g is some element which conjugates y
to z. Thus we need to find integer solutions (or show that they do not exist) of the
equation

xk D Oyig: (8.1)

This equation can be solved using the following lemma (the proof is in Section 8.1):

Lemma 8.4. For any x; Oy; g 2 PLS;G.J / there is an algorithm which finds all
solutions of equation (8.1).

Thus in all cases we can check if there exists a conjugating element in the subgroup
C 0, which finishes the solution of the simultaneous conjugacy problem.

The previous argument proves the following theorem:

Theorem 8.5. The k-simultaneous conjugacy problem is solvable for the group
PLS;G.J /. Moreover, we can construct and enumerate all possible conjugators.

8.1. Proof of Lemma 8.4. We start by proving the lemma for the case of PL2.J /.
We will then explain what is required to generalize the proof to the case of PLS;G.J /.8

We observe that both x and Oy are in PL02.J /, therefore their initial slopes are not equal
to 1. Comparing the slopes at � and taking logarithms we obtain

k log2 x
0.�C/ D log2 g

0.�C/C i log2 Oy0.�C/: (8.2)

This equation does not have any solution unless log2 g
0.�/ is divisible by the greatest

common divisor of log2 x
0.�C/ and log2 Oy0.�C/. If this is the case, an elementary

number theory argument tells us that all solutions are of the form

k D p1j C q1 and i D p2j C q2

for some integers p1, p2, q1 and q2, which reduces equation (8.1) to

Nxj D Nyj Ng; (8.3)

where Nx and Ny are powers of x and Oy, respectively, and Ng0.�C/ D 1.
If Fix. Nx/ 6D Fix. Ny/ we can use Lemma 4.19 to solve equation (8.3). We can also

compare the derivatives at all fixed points and this will give us a unique solution (or
there does not exist a solution at all) for j unless

Nx0.�/ D Ny0.�/ and Ng0.�/

hold for any � 2 Fix. Nx/. Equation (8.3) can be written as

Ng D Nxj Ny�j : (8.4)

8The generalization to PLS;G.J / is explained in the last paragraph of the current section.
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If Nx D Ny, then equation (8.4) has solutions if and only if Ng D id, and in this case any
integer j is a solution. Thus the only non-trivial case when Nx ¤ Ny.

Without loss of generality we may assume that Nx; Ny 2 PL<C.Œ�1; �2�/ for some
consecutive �1 and �2 in @Fix. Nx/ D @Fix. Ny/. Let p denote the function Nx Ny�1 and
let � be the closest breakpoint of p to �1, i.e., p.t/ D t for all �1 � t � � and
p.�C "/ 6D �C " if " > 0 is sufficiently small. For any j > 0 we can write

Ng D Nxj Ny�j D pp Ny�1

: : : p Ny�j C1

: (8.5)

It is clear that the first breakpoint for p Nyr
, for any integer r , is given by Ny�r.�/. Since

Ny 2 PL<C.Œ�1; �2�/, formula (8.5) gives that the first breakpoint of Ng is at Nyj�1.�/.
There can be at most one positive j such that the number Nyj�1.�/ coincides with the
actual first breakpoint of Ng. Therefore, we can convince ourselves whether equation
(8.3) has solutions for positive j . If j is negative we can similarly write

Ng�1 D Ny�j Nxj D Np Np Nx�1

: : : Np Nxj C1

; (8.6)

where Np ´ p�1. Since Nx 2 PL<C.Œ�1; �2�/, formula (8.6) gives that the first
breakpoint of Ng�1 is at Nx�j�1.�/. Therefore, we can check whether equation (8.3)
has solutions for negative j .

This completes the proof of Lemma 8.4 for PL2.J /. To generalize this proof to
the groups PLS;G.J /, we observe that all of the previous proof has been carried out
in PLC.J /, save for the first step, that is, taking logarithms to get an argument to pass
from equation (8.1) to equation (8.3). To do this step in PLS;G.J /, we appeal to the
last of the requirements in Section 3.

9. Interesting examples

Now that we have developed the general theory, we are going to see a few interest-
ing examples where the simultaneous conjugacy problem is solvable. We will not
dwell too much on the details here, sketching only why it is possible to verify the
requirements.

Example 9.1. S D Q and G D Q��0 D Q \ .0;1/.
There are many structures that can be used to represent the rational numbers,

which comes with algorithms for performing the arithmetic operations that give us the
oracles in the first group. The oracles in the second group are very easy to implement
since Q is a field and the quotients S=� D f0g and S=.t � 1/� D f0g consist of just
one element. The last oracle which is needed for solving the simultaneous conjugacy
problem is slightly more complicated – we need to factor a, b, c as product of prime
numbers and then reduce the problem to solving several congruences in integers.

Example 9.2. S finite real algebraic extension over Q and G D S� ´ S \ .0;1/.
This is the same as the previous example, we only need to “implement” the field S .
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Example 9.3. S D Z
�
1
n1
; : : : ; 1

nk

�
and G D hn1; : : : ; nki for n1; : : : ; nk 2 Z.

As in Example 9.1 there are many data structures to represent S and G, which
provide the oracles in the first group. For the oracles in the second group one observes
that S=� Š Z=dZ, where d ´ GCD.n1�1; : : : ; nk �1/. This reduces an effective
solution of the membership problem in � to expressing a given element in dZ as a
sum of multiples of ni � 1, which can be done using the Euclidian algorithm. As in
the previous example, the implementation of the last oracle relies on the factorization
of integers as a product of primes. For k D 1, we recall that the groups PLS;G.I /
are known as generalized Thompson groups.

Example 9.4. S D Z
�
1
n1
; : : : ; 1

nk
; : : :

�
with G D hfnigi2Ni, where fnigi2N � Z.

This example can be reduced to the previous one. If we are given a finite set E
of elements in PLS;G.I /, we can consider the set fn˛i1

i1
; : : : ; n

˛iv

iv
g of all slopes of

elements of E. Then E � PLS 0;G0.I /, where S 0 ´ Z
�
1
ni1

; : : : ; 1
niv

�
and G0 ´

hni1 ; : : : ; niv i. By Corollary 4.18, we know that if there is a conjugator, it must be in
PLS 0;G0.I /.

Remark 9.5. In general, given two intervals J1, J2 with endpoints in S , it is not clear
whether or not the groups PLS;G.J1/ and PLS;G.J2/ are isomorphic. Proposition 6.6
tells us that two elements in S are in the same PLS;G-orbit if their image under the
map  is the same. For example in the cases S D R, G D RC, S D Q, G D Q�,
and S D Z

�
1
2

�
, G D h2i, it is not difficult to see that every two points in S have

the same image under  (the case of F is treated in Lemma 6.16) and that any two
groups PLS;G.J1/ and PLS;G.J2/ are thus isomorphic, for any two intervals J1, J2
with endpoints in S . In fact, if there is a PLS;G-map ' W J1 ! J2, then conjugation
by ' yields an isomorphism between PLS;G.J1/ and PLS;G.J2/.

On the other hand, if we consider generalized Thompson groups (see Example 9.3)
and use the map  , it is straightforward to show that the number of orbits of elements
is finite, but more than one, for certain choices of n1; : : : ; nk (see Example 9.3 for a
proof of this). Hence there are only finitely many inequivalent types of intervalsJ with
endpoints in S . This implies that there can be at most only finitely many isomorphism
classes for the groups PLS;G.J /, for S D Z

�
1
n1
; : : : ; 1

nk

�
and G D hn1; : : : ; nki for

n1; : : : ; nk 2 Z. We note that the generalized Thompson groups which are most often
studied are those with GCD.n1 � 1; : : : ; nk � 1/ D 1, which implies that S=� is
trivial. In general, it seems likely that if two elements ˛; ˇ 2 S have different images
under  , then the groups PLS;G.Œ0; ˛�/ and PLS;G.Œ0; ˇ�/ are not isomorphic, but
this is not easy to prove it.
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