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Universal Borel actions of countable groups

Simon Thomas*

Abstract. If the countable group G has a nonabelian free subgroup, then there exists a standard
Borel G-space such that the corresponding orbit equivalence relation is countable universal.
In this paper, we will consider the question of whether the converse also holds.
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1. Introduction

A Borel equivalence relation E on a standard Borel space X is said to be countable
if every E-class is countable. For example, if G is a countable group and X is a
standard Borel G-space, then the corresponding G-orbit equivalence relation Eg
is a countable Borel equivalence relation. Conversely, by a remarkable result of
Feldman—Moore [6], if E is an arbitrary countable Borel equivalence relation on the
standard Borel space X, then there exists a countable group G and a Borel action of
G on X such that £ = Eg

Definition 1.1. A countable group G is said to be action universal if there exists a
standard Borel G-space X such that £ g is universal.

Recall that a countable Borel equivalence relation E is said to be universal if
F <p E for every countable Borel equivalence relation F'. (In this case, we will
often say that E is countable universal.) For example, by Dougherty—Jackson—
Kechris [4], if the countable group G has a nonabelian free subgroup, then G is
action universal. More precisely, for each countable group G and standard Borel
space X, let E(G, X) be the orbit equivalence relation arising from the shift action of
G on the standard Borel space X ¢. Note that this notation includes the cases when
X is a finite or a countably infinite standard Borel space. For example, E(G, 2) is
the orbit equivalence relation arising from the shift action of G on 26.
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Theorem 1.2 (Dougherty—Jackson—Kechris [4]). If the countable group G has a
nonabelian free subgroup, then E (G, 2) is universal and hence G is action universal.

No other examples of action universal groups are currently known. On the other
hand, the following result is an immediate consequence of the results in Jackson—
Kechris—Louveau [10, Section 2].

Theorem 1.3 (Jackson—Kechris—Louveau [10]). If G is a countable amenable group,
then G is not action universal.

This raises the possibility of yet another “dynamic” version of the so-called von
Neumann Conjecture that a countable group G is non-amenable if and only if G
contains a copy of the free group [, on two generators. (The original von Neumann
conjecture, which is actually due to Day, was disproved by Ol’shanskii [16] in 1980.
For other possible “dynamic” versions, see Jackson—Kechris—Louveau [10, 6.1(D)]
and Kechris—Miller [12, Problem 28.14]. We should also mention the remarkable
recent result of Gaboriau—Lyons [7] which states thatif G is a countable non-amenable
group, then there is a free standard Borel G-space X with a G-invariant ergodic
probability measure p such that there exists a free ergodic Borel action of F, on
(X, p) with Eg. € E§.)

Question 1.4. Is it true that if G is a countable group, then the following statements
are equivalent:

(i) G is action universal.
(i) G contains a nonabelian free subgroup.

A positive answer to Question 1.4 seems extremely unlikely; and in Section 5, we
will present some evidence which suggests that free Burnside groups of sufficiently
large odd exponent are counterexamples.

Conjecture 1.5. If n is a sufficiently large odd integer, then the free 2-generator
Burnside group B(2,n) of exponent n is action universal.

Of course, it is also natural to ask whether every countable non-amenable group
is action universal. However, in Section 4, we will prove that this is not true. (As we
will explain in Section 4, Theorem 1.6 is a consequence of Theorem 4.7.)

Theorem 1.6. There exists a countable non-amenable group which is not action
universal.

In the final section of this paper, we will switch our attention from universal actions
to G-universal actions. Here if G is a countable group and X is a standard Borel
G-space, then E g is said to be G -universal if E g <g E g for every standard Borel
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G-space Z. In [4], Dougherty—Jackson—Kechris proved that if G is any countable
group, then E(G, 2N) is G-universal; and in [10], Jackson—Kechris—Louveau proved
that if G is any countable group, then E(G, N) is G-universal. However, there are
currently no countable groups G for which itis known that £ (G, 2) is not G -universal.

By Theorem 1.2, if G has a nonabelian free subgroup, then E(G, 2) is universal
and hence E(G,?2) is G-universal. On the other hand, suppose that G is amenable
and that X is a standard Borel G-space. By Connes—Feldman—Weiss [3], if u is any
Borel probability measure on X, then there exists a G-invariant Borel subset X¢o € X
with £ (Xo) = 1 such that the restriction E(’;{ P Xo = Eg N ( Xo x Xp ) is hyperfinite
and it follows that £ é( M Xo <p E(G,2). While these considerations do not rule
out the existence of an amenable group G such that E£(G, 2) is not G-universal, they
suggest that it would be more effective to focus our attention on non-amenable groups
with no nonabelian free subgroups. In Section 6, we will prove the following result.

Theorem 1.7. If G is a simple quasi-finite sofic Kazhdan group, then
E(G,Z) <B E(G, 3) <B *'*<B E(G,n) <B ‘' <B E(G, N).

It is currently not known whether there are any groups satisfying the hypotheses
of Theorem 1.7. However, if every hyperbolic group is residually finite, then such
groups exist. (For more on the question of the residual finiteness of hyperbolic groups,
see Kapovich—-Wise [11].)

This paper is organized as follows. In Section 2, we will recall some basic notions
from the theory of countable Borel equivalence relations; and we will state an easily
applicable consequence of Popa’s Cocycle Superrigidity Theorem which does not
explicitly mention Borel cocycles. In Section 3, we will introduce the notion of a
weakly action universal group; and we will prove that if G is weakly action universal,
then the conjugacy relation ~g of G on the space of its subgroups is not essentially
free. In Section 4, we will consider the question of which countable Borel equivalence
relations can be realized up to Borel bireducibility as ~¢ for some countable group
G and we will prove that there exists an uncountable family { G, | @ < 2%0 } of
groups such that the conjugacy relations ~ g, are pairwise incomparable with respect
to Borel reducibility. In Section 5, we will prove that if n is a sufficiently large odd
integer and G = B(2, n) is the free 2-generator Burnside group of exponent n, then
E(G,?2) is not essentially free. Finally, in Section 6, we will switch our attention
from universal actions to G-universal actions; and we will use the remarkable recent
work of Bowen [2] on the ergodic theory of sofic groups to prove Theorem 1.7.

2. Preliminaries

In this section, we will recall some basic notions from the theory of countable Borel
equivalence relations; and we will state an easily applicable consequence of Popa’s
Cocycle Superrigidity Theorem which does not explicitly mention Borel cocycles.
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2.1. Countable Borel equivalence relations. A detailed development of the general
theory of countable Borel equivalence relations can be found in Jackson—Kechris—
Louveau [10]. Here we will only remind the reader of a few basic notions.

Suppose that E, F are countable Borel equivalence relations on the standard Borel
spaces X, Y respectively. ThenaBorelmap¢: X — Y issaid tobe a homomorphism
from E to F ifforall x, y € X,

xEy = ¢(x)F o(y).

If ¢ satisfies the stronger property that for all x, y € X,

xXEy < o) Fo(y),

then ¢ is said to be a Borel reduction and we write E <p F. If both E <p F and
F <p E, then we write E ~p F and say that E, F are Borel bireducible. We write
E <p Fifboth E <p F and E #£p F. Finally, if there exists a countable-to-
one Borel homomorphism ¢: X — Y from E to F, then we say that E is weakly
Borel reducible to F and write E <y F. In this case, ¢ is said to be a weak Borel
reduction from E to F. As expected, a countable Borel equivalence relation E
is weakly universal if F <g E for every countable Borel equivalence relation F.
(It is currently not known whether there exists a weakly universal countable Borel
equivalence relation which is not universal. For a discussion of this interesting open
problem, see Thomas [29].)

Suppose that G is a countable group and that X is a standard Borel G-space; i.e.
that there exists a Borel action (g, x) — g -x of G on X. Then G is said to act freely
on Xifg-x #xforalll # g € G and x € X. In this case, we say that X is a
free standard Borel G-space. If E is a countable Borel equivalence on the standard
Borel space X, then E is said to be free if there exists a countable group G with a free
Borel action on X such that E g = E. The countable Borel equivalence relation E
is said to be essentially free if there exists a free countable Borel equivalence relation
F suchthat £ ~p F.

2.2. Popa Superrigidity. The proofs of most of the results in this paper make essen-
tial use of Popa’s Cocycle Superrigidity Theorem [24]. In this subsection, in order
to make the paper intelligible to readers who are unfamiliar with the notions and
techniques of superrigidity theory, we will state an easily applicable consequence of
Popa’s Theorem which does not explicitly mention Borel cocycles. First we need to
give two preliminary definitions.

Definition 2.1. Suppose that E, F are countable Borel equivalence relations on the
standard Borel spaces X, Y and that p is a Borel probability measure on X. Then the
Borel homomorphism ¢: X — Y from E to F is said to be w-trivial if there exists
a Borel subset Z C X with u(Z) = 1 such that ¢ maps Z into a single F-class.
Otherwise, ¢ is said to be u-nontrivial.
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Definition 2.2. If G, H are groups, then the group homomorphism 7: G — H is a
virtual embedding if the kernel ker 7 is finite.

Throughout this paper, u,, will denote the usual product probability measure on
m©. The following result is an easy consequence of Popa’s Cocycle Superrigidity
Theorem [24]. (For example, see Thomas [28, Section 5].) Here we will only mention
that the hypothesis that Z is a free standard Borel H -space is necessary in order to
be able to define a cocycle to which Popa’s Theorem can be applied.

Theorem 2.3. Let I" be a countably infinite Kazhdan group and let G be a countable
group such that I' < G. Suppose that H is any countable group and that Z is a free
standard Borel H-space. If ¢: m® — Z is a jim-nontrivial Borel homomorphism
from E(G,m) to E%, then there exists

(1) avirtual embedding w: G — H,
(i1) a G-invariant Borel subset Y C m© with um(Y) =1, and
(iii) a Borel map b: mS — H

such that the “adjusted homomorphism” ¢’ (y) = b(y)@(y) satisfies
¢'(g-y)=m(g) ¢

forallg e Gandy €Y.

3. Weakly action universal groups

In this section, we will introduce the notion of a weakly action universal group; and
we will prove that if G is weakly action universal, then the conjugacy relation of G on
the space of its subgroups is necessarily complicated. (As we will see, the appropriate
level of generality for our study turns out to be the class of weakly action universal
groups rather than the more obvious class of action universal groups.) Recall that
a countable Borel equivalence relation E is weakly universal if for every countable
Borel equivalence relation F, there exists a weak Borel reduction (i.e. a countable-
to-one Borel homomorphism) from F to E.

Definition 3.1. A countable group G is said to be weakly action universal if there
exists a standard Borel G-space X such that £ g is weakly universal.

The following basic result will play a key role in the remainder of this paper. (It
should be pointed out that Theorem 3.2 is an easy consequence of Popa’s Cocycle
Superrigidity Theorem [24].)

Theorem 3.2 (Thomas [28]). Suppose that G is a countable group and that X is a
standard Borel G-space. If E é{ is weakly universal, then E g is not essentially free.
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Thus if £ (};( is weakly universal, then there necessarily exist many x € X such
that the point stabilizer Gy, = {g € G | g - x = x} is nontrivial. Furthermore,
recall thatif g - x = y, then Gy, = g G, g~1. This suggests that we should study the
complexity of the conjugacy relation of G on the space of its subgroups.

Definition 3.3. If G is a countable group, then Sg(G) denotes the standard Borel
space of the subgroups of G and ~¢ denotes the conjugacy relation on Sg(G),
which is defined by

K~r~gl < (3geG)L=gKg "

If Martin’s Conjecture on Turing degree invariant Borel maps is true, then we
have the following characterization of the class of weakly action universal groups.
However, it should be pointed out that Martin’s Conjecture has been an open problem
for over 30 years.

Theorem 3.4. Assuming Martin’s Conjecture, if G is a countable group, then the
following are equivalent:

(1) G is weakly action universal.
(i) =@ is weakly universal.

Before we can state Martin’s Conjecture, we must first recall some basic notions
from recursion theory. We will follow the usual convention of identifying the powerset
£ (N) of the natural numbers with the Cantor space 2N, by identifying each subset
A € P (N) with its characteristic function y4 € 2N. If A, B € 2N, then B is Turing
reducible to A, written B <t A, if there exists an oracle Turing machine which
computes yp when its oracle tape contains y4. Here an oracle Turing machine is a
Turing machine with a second “read only” tape, called the oracle tape, upon which
we can write the characteristic function of any set A € 2N, which is called the oracle.
(For more details, see Rogers [25].) The Turing equivalence relation =7 on 2N s
defined by

A=71B < A<y Band B <p A.

Finally for each A € 2N, the corresponding cone is € = {B € 2N | 4 <7 B}.
(When studying the Turing equivalence relation, the set of cones plays an analogous
role to that played by the full-measure subsets in ergodic theory.)

By Martin’s Conjecture, we mean the following special case of a more general
conjecture (also known as the 5th Victoria Delfino Problem) which was formulated
by Martin in Kechris—Moschovakis [13].

Martin’s Conjecture. If ¢: 2N — 2N is a Borel homomorphism from =1 to =,
then exactly one of the following conditions holds:

(a) There exists a cone € C 2N such that ¢ maps € into a single = r-class.
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(b) There exists a cone € C 2N such that x <7 @(x) forall x € €.

Proof of Theorem 3.4. 1Tt is clear that (ii) implies (i). Conversely, suppose that X is
a standard Borel G-space such that £ é( is weakly universal and suppose that ~¢ is
not weakly universal. Consider the Borel map ¢ : X — Sg(G) defined by

p(x) =Gx ={geG|g-x=x}.

Then ¢ is a Borel homomorphism from E g to~g. Lety: 2N — X be a weak Borel
reduction from =7 to E g and let & = @ o . Assuming Martin’s Conjecture, by
Thomas [29, Theorem 1.4], since € is a Borel homomorphism from = 7 to &~ and
A is not weakly universal, there exists a cone € C 2N such that § maps € into a
single ~g-class. (Here it should be emphasized that the currently known “proof” of
Thomas [29, Theorem 1.4], makes essential use of Martin’s Conjecture.) Hence, after
slightly adjusting v if necessary, we can suppose that there exists a fixed subgroup
K < G such that Gy 4y = K forall A € €. For later use, note that =7 | € is
weakly universal. (For example, see Thomas [29, Observation 2.3].)

Let Xo ={xe X |Gy =K}. Ifx,y € Xpand x Eé( ¥, then there exists an
element g € G such that g - x = y. Since

gkg™' =¢Gg7' =G, =K,

it follows that ¢ € Ng(K). Furthermore, if g’ € Ng(K) also satisfies g’-x = y, then
g'K = gK. Thus E g M Xo can be realized as the orbit equivalence relation of the
corresponding free Borel action of A = Ng(K)/K on Xy. Applying Theorem 3.2,
it follows that E g P Xo is not weakly universal. But this is a contradiction, since
=r| €<} Eé P Xo and =7 | € is weakly universal. O

Unfortunately, as we mentioned earlier, it is currently not known whether Martin’s
Conjecture is true. In the remainder of this section, we will prove the following weak
version of Theorem 3.4.

Theorem 3.5. If ~¢ is essentially free, then G is not weakly action universal.
Question 3.6. Does the converse of Theorem 3.5 hold?

The proof of Theorem 3.5 makes use of Popa Superrigidity, together with the
following result.

Theorem 3.7 (Andretta—Camerlo—Hjorth [1]). If the countable group G has a free
nonabelian subgroup, then ~g is countable universal.

Proof of Theorem 3.5. Suppose that G is a weakly action universal group such that
~¢ 1is essentially free. Then there exists a countable group H and a free standard
Borel H-space Z such that ~g ~p Eg Let ¢: Sg(G) — Z be a Borel reduction
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from ~g to E 5 For later use, let L be a finitely generated group with no nontrivial
finite normal subgroups such that L does not embed into H. (To see that such a
group L exists, recall that there exist uncountably many finitely generated groups up
to isomorphism and that H has only countably many finitely generated subgroups.
Hence there exists a finitely generated group Lo which does not embed into H and
we can let L be the free product Z * L.) Let I' = SL3(Z) x L and note that I" also
has no nontrivial finite normal subgroups.

Next let X be a standard Borel G-space such that E é( is weakly universal and let
¥ : 2I' - X be a weak Borel reduction from E(T',2) to Eé( Leto: X — Sg(G)
be the Borel homomorphism defined by o(x) = G, and let : 2 — Z be the
Borel homomorphism from E(T,2) to E g defined by 6 = ¢ o 0 o . Applying
Theorem 2.3, since " does not embed into H, there exists a Borel subset Y C 2T
with u(Y) = 1 such that € maps Y into a single £ g—class; and this implies that
o oY maps Y into a single conjugacy class of subgroups of G. Hence, after slightly
adjusting v if necessary, we can suppose that there exists a fixed subgroup K < G
such that Gy ,) = K forall y € Y. Let Xo = {x € X | Gx = K}. Then
Eg I Xo can be realized as the orbit equivalence relation of the corresponding
free Borel action of the quotient group A = Ng(K)/K. Clearly the weak Borel
reduction ¥ | Y from E(I,2) | Y to Eg M Xo can be extended to a p,-nontrivial
Borel homomorphism from E(T,2) to Eé( I Xo. Hence, by Theorem 2.3, there
exists an embedding 7: I' — A. In particular, since SL3(Z) < T, it follows that
A = Ng(K)/K has a nonabelian free subgroup; and this implies that G also has a
nonabelian free subgroup. Applying Theorem 3.7, it follows that ~¢ is countable
universal and hence ~ ¢ is not essentially free, which is a contradiction. g

4. The conjugacy relation on the space of subgroups

In this section, we will consider the question of which countable Borel equivalence
relations can be realized up to Borel bireducibility as ~¢ for some countable group
G. As we mentioned earlier, Andretta-Camerlo-Hjorth [1] have shown that if G has
a free nonabelian subgroup, then ~¢g is countable universal. On the other hand,
by Jackson—Kechris—Louveau [10, Proposition 2.13], if G is amenable, then ~¢ is
Fréchet amenable. (For the definition of Fréchet amenability, see Jackson—Kechris—
Louveau [10, Section 2.4]. It is currently not known whether every Fréchet amenable
countable Borel equivalence relation is hyperfinite.) The main result of this section
provides many examples of groups G such that ~¢ is neither Fréchet amenable nor
countable universal. However, we should point out that the following fundamental
question remains open.

Question 4.1. Suppose that E is any countable Borel equivalence relation. Does
there necessarily exist a countable group G such that ~g ~p E?
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We will begin with some basic observations concerning the relative complexity
of the conjugacy relations ~ ¢, ~ g for various pairs G, H of groups.

Lemma 4.2. If G, H are countable groups and there exists a surjective homomor-
phism: G — H, then ~g <p ~g.

Proof. Letg: Sg(H) — Sg(G) be the map defined by ¢(K) = w~!(K). Then ¢ is
a Borel reduction from ~ g to ~¢. ]

Next recall that a subgroup H of a group G is said to be malnormal if whenever
g€G~H,thengHg 'NH = 1.

Lemma 4.3. If H is a malnormal subgroup of G, then ~g <p xg.

Proof. The inclusion map Sg(H) < Sg(G) is a Borel reduction from g to ~g.
O

Question 4.4. Do there exist countable groups H < G such that ~g £p ~g?

Remark 4.5. By Theorem 3.7, if H < G is such a pair, then G has no nonabelian
free subgroups.

Finally if H, C are any groups, then C wr H denotes the (restricted) wreath
product of H and C, which is defined as follows. For each function f: H — C,
the support o (f) is defined to be

o(f) ={xeH]| f(x)# 1}
and the corresponding base group is defined to be
B={f:H— C|o(f)isfinite },
equipped with pointwise multiplication; i.e., if f, g € B, then
(fe)(x) = f(x)g(x)
for all x € H. There is a natural action of H on B defined by
(@ f)x) = fla™'x)

forall f € Banda, x € H; and C wr H is the corresponding semidirect product
B x H. Foreach x € H, let

Cx={feB| f(y)=1forallx # y e H}.

Then B = P,y Cx;andaCxa™ = Cyx foralla, x € H.



398 S. Thomas

Lemma 4.6. If H, C are countable groups and G = C wr H is the corresponding
(restricted) wreath product, then E(H,2) <p ~g.

Proof. Let B = @@,y Cx be the base group of G = C wr H; and for each subset
A € H, let K4 be the subgroup of B defined by K4 = @, 4 Ca. Suppose that
g = hb € G is any element, where h € H and b € B. Since K4 < B, we have that

gKag™' = hbK4b™'h™! = hKyh™' = Kpy.
It follows that the map A — K4 is a Borel reduction from E(H, 2) to ~¢. O

The remainder of this section will be devoted to the proof of the following result.

Theorem 4.7. There exists an uncountable family { Gy | a < 280} of countable
groups such that for all @ < B < 2%0,

(1) =g, is essentially free;
(i) ~g, is not Fréchet amenable; and
(i) ~g, and ~¢, are incomparable with respect to Borel reducibility.

Remark 4.8. Note thateach G, satisfies the requirements of Theorem 1.6. To see this,
first notice that since ~¢,, is not Fréchet amenable, it follows that G is not amenable.
(Here we are applying Jackson—Kechris—Louveau [10, Proposition 2.13].) Secondly,
by Theorem 3.5, since ~¢,, is essentially free, it follows that G, is not weakly action
universal.

Each G, will have the form C, wr Iy, where C; is the cyclic group of order 2
and I’y is a suitably chosen simple quasi-finite group. Here an infinite group I is
said to be guasi-finite if every proper subgroup of I' is finite. It is easily shown that
every abelian quasi-finite group is isomorphic to a quasi-cyclic group Cpoo for some
prime p. (See Ol’shanskii [17, Theorem 7.5].) However, it was a long outstanding
problem whether there existed a nonabelian quasi-finite group. This problem was
finally solved by Ol’shanskii in his celebrated papers [14], [15]. A clear account of
this work can be found in OI’shanskii [17]. The following result will play an essential
role in the proofs of both Theorem 4.7 and Theorem 1.7.

Proposition 4.9 (Thomas [28]). Suppose that T is a simple quasi-finite group and
that X is a standard Borel '-space. If Z = {x € X | 'y = 1} is the free part of the
action, then Er)‘( ~B El}f MZ.

The following result is implicitly contained in Ol’shanskii [19]. (For more details,
see Ozawa [21].)

Theorem 4.10 (Ol’shanskii [19]). If H is a noncyclic torsion-free hyperbolic group,
then H has a family {Ty = H/Ny | @ < 280} of uncountably many pairwise
nonisomorphic simple quasi-finite quotient groups.
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Remark 4.11. Suppose that H is a noncyclic torsion-free hyperbolic Kazhdan group.
(For example, we can let H be a co-compact lattice in Sp(n, 1) for some n > 2. See
de la Harpe—Valette [9].) Then each ', = H/N,, is also a Kazhdan group and hence
is non-amenable. Applying Proposition 4.9 and Theorem 3.2, it follows that I, is not
weakly action universal. Thus each I, also satisfies the requirements of Theorem 1.6.
Of course, since I'y, is quasi-finite, it follows that Sg(I'y) is countable and hence ~r,
is smooth.

Proof of Theorem 4.7. Let H be a noncyclic torsion-free hyperbolic Kazhdan group
and let {T'y = H/N, | o < 2%} be a family of uncountably many pairwise
nonisomorphic simple quasi-finite quotient groups. For each @ < 280 let G, =
C, wr Ty, where C, is the cyclic group of order 2.

To see that each ~¢, is not Fréchet amenable, first notice that each I'y is an
infinite Kazhdan group and thus is non-amenable. Hence, by Jackson—Kechris—
Louveau [10, Proposition 2.14], E(Ty, 2) is not Fréchet amenable. By Lemma 4.6,
E(T'y,2) <p=g, and this implies that ~¢, is not Fréchet amenable.

Next we will show that each ~¢,, is essentially free. Fix some a < 2%0. In order
to simplify notation, let G = G4 and I' = I'y. Let 7: G — I be the canonical
surjective homomorphism. Then Sg(G) = X UY U Z, where

* X={H<G|n[H]=T}
e Y ={H < G | n[H] is a nontrivial finite subgroup of I'}; and
*» Z={H <G |n[H]=1}
We will successively analyze the Borel complexity of ~¢ restricted to each of the

above Borel subsets of Sg(G). From now on, let B = @ . Cx be the base group
of G =CowrI',sothat G = B xT.

Claim 4.12. ~¢ | X is smooth.

Proof of Claim 4.12. Suppose that H € X and let g = yb € G be any element,
where y € T" and b € B. Since n[H] = T, there exists an element ¢ € B such that
h = yc € H. It follows that

g(HNB)g '=y(HNB)y '=h(HNB)L'=HnNB.

Thus H N B < G. Also notice that since H/H N B = T, it follows that H is finitely
generated over H N B. Hence there exist only countably many H’ € X such that
H' N B = H N B. It follows that if = is the equivalence relation defined on X by

H=H < HNB=HNB,

then = is a smooth countable Borel equivalence relation. Since ~g | X C =, it
follows that ~g | X is also smooth. (For example, see Thomas [30, Lemma 2.1].)
O
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Claim 4.13. ~¢ | Y is smooth.

Proof of Claim 4.13. Let ¥ be a set of representatives of the countably many con-
jugacy classes of nontrivial finite subgroups of I'; and for each F € ¥, let

Yr={H Y |n[H] = F}.

Then clearly ~g ' Y is Borel bireducible with ~g | |_|rc4 Yr. Hence it is enough
to prove that each ~¢ | Y is smooth. Fix some F' € ¥ and suppose that H € YF.
Since H/H N B =~ F is finite, it follows that there exist only countably many
H’ € Yr such that H' N B = H N B. Hence if ~ is the equivalence relation on Y g
defined by

H~H < (3yeNr(F)) y(HNB)y ' =H' NB,

then ~ is a countable Borel equivalence relation. Since I is a simple quasi-finite
group, it follows that Ny (F) is a finite subgroup of I" and hence ~ is smooth. Thus
it is enough to show that ~g |} Y C ~. To see this, let H, H' € Y and suppose
that gHg™! = H'. Let g = yb, where y € I" and b € B. Then clearly y € Np(F)
and since

H'NB=g(HNB)g ' =y(HNBy

it follows that H ~ H'. O

Using Claim 4.12 and Claim 4.13, it follows that ~¢ is Borel bireducible with
~¢ | Z and thus it only remains to analyze the Borel complexity of ~¢ | Z. Suppose
that H € Z. Let g = yb € G be any element, where y € I" and b € B. Since
H < B, it follows that gHg™! = yHy~!. Thus ~g | Z is the orbit equivalence
relation induced by the conjugacy action of the simple quasi-finite I'; and applying
Proposition 4.9, it follows that &~ | Z is essentially free. This completes the proof
that ~¢, is essentially free.

Finally we will prove that if @ # B, then ~¢, and ~¢, are incomparable with
respect to Borel reducibility. Suppose that ~g, <p ~G,. By Lemma 4.6, we have
that £(I'y,2) <p =g, and hence E(I'y,2) <p ~Gg. Furthermore, combining
Proposition 4.9 with the argument in the previous paragraph, it follows that there
exists a free standard Borel I'g-space Z’ such that E IZ/; ~B ~Gy. Letg: 2l . 77

be a Borel reduction from E(I'y,2) to EIZ,; Applying Theorem 2.3, there exists
an embedding 0: I'y — I'g; and since I'g is quasi-finite, it follows that 6 is an

isomorphism, which is a contradiction. This completes the proof of Theorem 4.7.
O

5. Free Burnside groups

In this section, we will present some evidence which supports the conjecture that
free Burnside groups of sufficiently large odd exponent are action universal. The
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following result implies that this conjecture is equivalent to the statement that if n
is a sufficiently large odd integer, then there exists an action universal group H of
exponent 7.

Proposition 5.1. Let n be a sufficiently large odd integer and let 2 < m < w. If
G = B(m,n) is the free m-generator Burnside group of exponent n and H is any
countable group of exponent n, then:

(i) ~ <B ~¢g,and
(ii) if X is any standard Borel space, then E(H, X) <p E(G, X).

Proof. If K = B(w,n) is the free Burnside group of exponent # on countably many
generators, then there exists a surjective homomorphism ¢: K — H. Hence, by
Lemma4.2, itfollows that &g <p =~ k. By Ol’shanskii—Sapir [20, Lemma4.11] and
Sonkin [26, Section 4], there exists a malnormal subgroup L of G such that L =~ K;
and hence, applying Lemma 4.3, it follows that ~x <p ~g. Thus ~y <p ~g.
Similarly, applying Dougherty—Jackson—Kechris [4, Section 1], it follows that if X
is any standard Borel space, then E(H, X) <g E(G, X). O

Most of this section will be devoted to the proof of the following result.

Theorem 5.2. Let n be a sufficiently large odd integer and let 2 < m < w. If
G = B(m,n) is the free m-generator Burnside group of exponent n, then E(G,2) is
not essentially free.

Before beginning the proof of Theorem 5.2, we first derive the following easy
consequence.

Corollary 5.3. Suppose that n is a sufficiently large odd composite integer and that
2 <m < w. If G = B(m,n) is the free m-generator Burnside group of exponent n,
then =g is not essentially free.

Proof. By Proposition 5.1, it is enough to prove that if # is a sufficiently large odd
composite number and G = B(3, n) is the free 3-generator Burnside group of expo-
nent n, then /¢ is not essentially free. Let p be a prime factor of n, chosen so that
no = n/ pisstill sufficiently large. Let W = C,wrB(2,ng). Then W is a 3-generator
group of exponent # and hence there exists a surjective homomorphism G — W. It
follows that ~ <p &~¢. Also, by Lemma 4.6, we have that E(B(2,n¢),2) < ~w.
Hence Theorem 5.2 implies that &g is not essentially free. O

Of course, Corollary 5.3 should also be true if # is a sufficiently large prime. The
following result will be used in the proof of Theorem 5.2.

Theorem 5.4 (Ol’shanskii [18]). If H is a noncyclic torsion-free hyperbolic group,
then there exists a natural number ng such that the group H/H" is infinite for every
oddn > ng.
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We will also make use of the following result of Ol’shanskii [17, Theorem 28.7].
(The groups given by Theorem 4.10 have infinite exponent and hence cannot be used
in the proof of Theorem 5.2.)

Theorem 5.5 (Ol’shanskii [17]). For every sufficiently large odd integer n, there
exists a family {Gy | a < 280} of pairwise nonisomorphic infinite simple groups
such that for each o < 280,

(a) Gy is a group of exponent n; and
(b) every nontrivial proper subgroup of G, is cyclic of order dividing n.

Remark 5.6. While Ol’'shanskii does not state explicitly that each G, is simple, this
follows easily from the fact that the centralizer of each nontrivial element of G4 is
cyclic. (See Ol'shanskii [17, Theorem 26.5].) For suppose that N is a nontrivial
proper normal subgroup of G,. Then N is clearly finite; and by considering the
action of G, on N via conjugation, it follows that N must be contained in the center
of G, which is a contradiction.

Proof of Theorem 5.2. Let H be anoncyclic torsion-free hyperbolic Kazhdan group.
By Theorem 5.4, we can suppose that the group K = H/H" is infinite. Thus K is an
infinite Kazhdan group of exponent 7. Let {G¢ | @ < 250} be the family of pairwise
nonisomorphic simple groups of exponent n given by Theorem 5.5. Of course, it is
clear that each G is a 2-generator group.

Let K be a d-generator group. By Ol’shanskii [17, Theorem 39.1], B(2,n)
contains a subgroup which is isomorphic to the free Burnside group B(d + 2,n)
on d + 2 generators. Hence, by Dougherty—Jackson—Kechris [4, Proposition 1.5],
we have that E(B(d + 2,n),2) <p E(B(2,n),2) and so it is enough to show that
E(B(d +2,n),2)is notessentially free. To see this, first notice that for eacha < 2%0,
the group Ly = K X Gg is a homomorphic image of B(d + 2,n); and hence, by
[4, Proposition 1.4], we have that E(Ly,2) <p E(B(d +2,n),2). Now suppose that
E(B(d +2,n),2) ~p E f , where A is a countable group and X is a free standard
Borel A-space. Then for each o < 280 there exists a Borel reduction Do : 2Le 5 x
from E(Ly,2) to E X and hence, by Theorem 2.3, there exists a virtual embedding
7wy Ly = A. Since G is an infinite simple group and ker 7 is finite, it follows that
7 | Ggis an embedding. Since A has only countably many 2-generator subgroups,
it follows that there exist o # B such that 74[G4] = mg[Gg], which contradicts the
fact that G4 and Gg are nonisomorphic. O

6. G -universal actions

In this final section, we will switch our attention from universal actions to G -universal
actions. Recall that Jackson—Kechris—Louveau [10, Theorem 5.4], have shown that if
G is any countable group, then E(G, N) is G-universal. On the other hand, there are
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currently no countable groups G for which it is known that £(G, 2) is not G -universal.
We will initially focus on the free parts of the various shift actions.

Definition 6.1. For each countable group G and standard Borel space X, the free
part of X is

(X)9={peX®|g-p#ploralll #geG}

and F(G,X) = E(G,X) | (X)Y is the corresponding orbit equivalence relation.

By Jackson—Kechris—Louveau [10, Section 5.1], if G is any countable group and
Z is a free standard Borel G-space, then E g <p F(G,N). On the other hand, by
Jackson—Kechris—Louveau [10, Theorem 3.17], letting [, denote the free group on
two generators, we have that F(IF,,2) ~p F(IF2,N). The following is the main
result of this section.

Theorem 6.2. If G is an co-hopfian sofic Kazhdan group with no nontrivial finite
normal subgroups, then

F(G,2) <g F(G,3) <p --- <g F(G,n) <p --- <g F(G,N).

Here a group G is said to be co-hopfian if every embedding 7: G — G is an
automorphism. A clear account of the basic theory of sofic groups can be found in
Pestov [24]. It is an important open problem whether every group is sofic. For our
purposes, it is enough to mention the following points:

* Every residually finite group is sofic; and, in particular, it follows that finitely
generated linear groups are sofic. The results of Ol’shanskii [19] imply that if
every hyperbolic group is residually finite, then there exist groups satisfying the
hypotheses of Theorem 1.7.

e Itis currently not known whether there exists an infinite finitely generated simple
sofic group.!

Corollary 6.3. If G = SL3(Z), then
F(G,2) < F(G,3) <p---<p F(G,n) <p --- <g F(G,N).

Proof of Corollary 6.3. 1t is well known that SL3(Z) is a Kazhdan group with no
nontrivial finite normal subgroups; and by the preceding remarks, SL3(Z) is sofic.
Finally, by Steinberg [27, Theorem 6], SL3(Z) is also co-hopfian. O

Next we note that Theorem 1.7 is an easy consequence of Theorem 6.2.

Tt has recently been proved that such groups do indeed exist. See Elek—-Monod [5] or Grigorchuk—
Medynets [8].



404 S. Thomas

Proof of Theorem 1.7. If G is a simple quasi-finite sofic Kazhdan group, then G
clearly satisfies the hypotheses of Theorem 6.2; and by Proposition 4.9, we have that
E(G,X) ~p F(G, X) for every standard Borel space X. O

The following notion will play a key role in the proof of Theorem 6.2.

Definition 6.4. Let G be a countable group and let Z be a standard Borel G-space.
If I is a countable set, then an [ -generator is a partition Z = | |;.; A; into Borel
subsets such that {g - A; | i € I, g € G} separates points. (Equivalently, the family
of sets {g- A; | i € I, g € G} generates the g-algebra of Borel subsets of Z.)

Example 6.5. Consider the shift action of the countable group G on the standard
Borel space Z = (m)G; and for each i € m, let

Bi={xem’|x(1)=i}.
Then 8 = (By, B1, ..., Bjy—1) is an m-generator.

Recall that if G is a countable group and m > 2, then u,, denotes the usual
product probability measure on m©. It is easily checked that i, ((m)%) = 1.

Lemma 6.6. If G is a co-hopfian Kazhdan group with no nontrivial finite normal
subgroups and F(G,m) <p F(G,n), then there exists a G-invariant Borel subset
Z € (m)C with wm(Z) = 1 such that Z admits an n-generator.

Proof. Supposethatg: (m)¢ — ()% isaBorel reduction from F(G,m) to F(G, n).
Clearly ¢ can be extended to a p,,-nontrivial Borel homomorphism from E (G, m)
to F(G,n). Hence, by Theorem 2.3, after slightly adjusting ¢ if necessary, we can
suppose that there exists a G-invariant Borel subset Z € (m)€ with j,,(Z) = 1 and
an embedding 7 : G — G such that

p(g-z) =n(g) ¢(2)

forall g € G and z € Z. Since G is co-hopfian, it follows that 7 is an automorphism
of G. Let B = (By, Bi, ..., B,_1) be the n-generator of (1) given by Example 6.5;
and foreach 0 < i <n—1,let A; = ¢ '(B;) N Z. Then we claim that « =
(Ao, A1, ..., An—1) is an n-generator of Z. To see this, suppose that y, z € Z are
distinct points. Clearly if y, z lie in different G-orbits, then ¢(y) # ¢(z). Otherwise,
there exists 1 # g € G suchthatz = g-y and so ¢(z) = 7 (g) - ¢(¥) # ¢(y). Thus
©(y) # @(z) and hence there exists 0 < i < n — | and an element g € G such that
p(y)eg-Biando(z) ¢ g-B;. Leth =n"1(g). Theny € h-A; andz ¢ h - A;.
Thus {h-A; |0 <i <n—1,h € G} separates points. O

Consequently, in order to prove Theorem 6.2, it is enough to rule out the existence
of n-generators for full-measure subsets of (m)€ forn < m.
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Definition 6.7. Suppose that Z is a standard Borel space with Borel probability
measure ¢ and 7 is a countable set. If Z = | |,.; A; is a partition into Borel subsets,
then the entropy of « = (A; | i € I) is defined to be

H(a) = =)~ pu(A4;)log(in(Ai)).

iel
Remark 6.8. If A4; is a null set, then we define u(A4;) log(u(A4;)) = 0.

Example 6.9. Suppose that Z = (m)% and that 8 = (By, By, ..., Bmu_1) is the
m-generator given in Example 6.5. Then

1 1 1 1
H(B) = —(— log (—) +---+ —log (—)) = log(m).
m m m m
The following result is well known. (For example, see Petersen [23, Section 5.1].)

Lemma 6.10. Suppose that Z is a standard Borel space with Borel probability mea-
sure . If « = (Ao, A1, ..., An—1) is any partition of Z into Borel subsets, then
H(x) < log(n).

Finally we will make use of the following result, which is implicitly contained in
Bowen [2]. Since Bowen does not state this result explicitly, we will briefly explain
how to deduce Theorem 6.11 from the results in [2].

Theorem 6.11 (Bowen [2]). Let 2 < m € N. Suppose that G is a countable sofic
group and that Z < (m)© is a G-invariant Borel subset with p,(Z) = 1. If I is

a countable set and o = (A; | i € I) is a finite entropy I-generator of Z, then
H(x) > log(m).

Sketch Proof. Let G be a countable sofic group and let X be a sofic approximation of
G. Suppose that Z is a standard Borel G-space with G -invariant probability measure
. Then for each finite entropy generator « = (A4; | i € I), Bowen defines a
corresponding invariant #(2,«) € R U { —oco} with the property that if 8 is any
other finite entropy generator, then 2(X, 8) = h(Z,a). (For the fact that (X, )
does not depend on the choice of o, see Bowen [2, Theorem 2.1].) Furthermore, by
Bowen [2, Proposition 5.3], we have that 2(X, o) < H(«). (Toseethis,letf = { X }
be the trivial partition in the statement of Proposition 5.3.)

Now consider the special case when Z C (m)© is a G-invariant Borel subset with
Um(Z) = land e = (A; | i € I) is a finite entropy [ -generator of Z. Then, by
Bowen [2, Theorem 8.1], we have that #(X, «) = log(m) and so H(«) > log(m).
(The actual statement of Theorem 8.1 refers to (m S, w,y, ), but of course null sets can
safely be ignored in this setting.) O
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Proof of Theorem 6.2. 1If the result fails, then there exist integers 2 < n < m such
that F(G,m) <p F(G,n). Hence, by Lemma 6.6, there exists a G-invariant
Borel subset Z C (m)® with it,,(Z) = 1 such that Z admits an n-generator
o = (Ag, A1, ..., Ap—1). Applying Lemma 6.10 and Theorem 6.11, we have that

log(m) < H(a) < log(n),

which is a contradiction. O
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