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Anosov AdS representations are quasi-Fuchsian

Thierry Barbot�and Quentin Mérigot

Abstract. Let � be a cocompact lattice in SO.1; n/. A representation � W � ! SO.2; n/ is
called quasi-Fuchsian if it is faithful, discrete, and preserves an acausal subset in the bound-
ary of anti-de Sitter space. A special case are Fuchsian representations, i.e., compositions
of the inclusions � � SO.1; n/ and SO.1; n/ � SO.2; n/. We prove that quasi-Fuchsian
representations are precisely those representations which are Anosov in the sense of Labourie
(cf. [Lab06]). The study involves the geometry of locally anti-de Sitter spaces: quasi-Fuchsian
representations are holonomy representations of globally hyperbolic spacetimes diffeomorphic
to R � �nHn locally modeled on AdSnC1.
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1. Introduction

Let SO0.1; n/, SO0.2; n/ denote the identity components of respectively SO.1; n/,
SO.2; n/. Let � be a cocompact torsion free lattice in SO0.1; n/. For any Lie group
G let Rep.�;G/ denote the space of representations of � into G equipped with the
compact-open topology.
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In the caseG D SO0.1; nC1/we distinguish the Fuchsian representations: they
are the representations obtained by composition of an embedding � � SO0.1; n/

and any faithful representation of SO0.1; n/ into SO0.1; nC 1/. Their characteristic
property is to be faithful, discrete, and to preserve a totally geodesic copy of Hn into
HnC1. The boundary of the �0.�/-invariant totally geodesic hypersurface Hn �
HnC1 provides such a topological sphere.

We can relax this last condition by only requiring the existence of a �.�/-invariant
topological .n�1/-sphere in @HnC1, thus defining the notion of quasi-Fuchsian rep-
resentation. We denote by QF .�;SO0.1; nC1// the set of quasi-Fuchsian represen-
tations. It is well known that QF .�;SO0.1; nC 1// is a neighborhood of Fuchsian
representations in the space of representations of � into SO0.1; n C 1/, and this
assertion can be proven using the Anosov character of the geodesic flow ˆt of the
hyperbolic manifold N D �nT1Hn (for definitions, see § 5.1.1).

This kind of argument has been extended in a more general framework by
F. Labourie in [Lab06]. He defined, for any pair .G; Y /whereG is a Lie group acting
on a manifold Y , the notion of .G; Y /-Anosov representation (or simply Anosov rep-
resentation when there is no ambiguity about the pair .G; Y /). We denote this space
of representation by AnosY .�;G/ (see § 5.1.1). By structural stability, AnosY .�;G/

is an open domain; simple and general arguments ensure that Anosov representations
are faithful, with a discrete image formed by the loxodromic elements. As a matter of
fact, the sets of quasi-Fuchsian representations QF .�;SO0.1; n C 1// and Anosov
representations AnosY .�;SO0.1; nC1// coincide, where Y D @HnC1 �@HnC1 nD.
Observe however that the fact that quasi-Fuchsian representations are Anosov is not
already obvious – it can, in fact, be obtained by adapting the arguments given in the
present paper.

Anosov representations have been studied in different situations, mostly in the
case n D 2, i.e., the case where � is a surface group:

In [Lab06], F. Labourie considered the case whereG is the group SL.n;R/ and Y
the frame variety. He proved that one of the connected components of AnosY .�;G/,
the quasi-Fuchsian component, coincides with the Hitchin component of compo-
nent of Rep.�;G/. Moreover, he proved that these quasi-Fuchsian representations
are hyperconvex, i.e., that they preserve some curve in the projective space P .Rn/

with some very strong convexity properties. In [Gui08], O. Guichard then proved
that conversely hyperconvex representations are quasi-Fuchsian. Note however that
.G; Y /-Anosov representations are not necessarily quasi-Fuchsian; in other words,
AnosY .�;G/ is not connected. See [Bar10].

In [BLIW05], the authors also used the notion of Anosov representations for
the study of representations of surface groups into the symplectic group of a real
symplectic vector space with maximal Toledo invariant.

In the present paper we consider the case where � is a cocompact lattice of
SO0.1; n/ that we deform in G D SO0.2; n/. While in the case of quasi-Fuchsian
representations into SO0.1; n C 1/ presented above the geometry of the hyperbolic
space played an important role, the study of Rep.�;SO0.2; n// deeply involves the
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geometry of the Lorentzian analog of this space, i.e., the anti-de Sitter space AdSnC1.
In Lorentzian geometry appear some phenomena, latent in the Riemannian context,
related to the causality notions. While in the hyperbolic space a pair of points is
only distinguished by their mutual distance, in the anti-de Sitter space we have to
distinguish three types of pairs of points, according to the nature of the geodesic
joining the two points: this geodesic may be space-like, light-like or time-like – in
the last two cases the points are said causally related.

The anti-de Sitter space AdSnC1 admits a conformal boundary called the Einstein
universe and denoted by Einn, which plays a role similar to that of the conformal
boundary @HnC1 for the hyperbolic space. The Einstein universe is a conformal
Lorentzian spacetime and is also subject to a causality notion: in particular, a subset
ƒ of the Einstein space Einn is called acausal if the unique geodesic in AdSnC1

between any pair of distinct points in ƒ is space-like. Finally, a representation
� W � ! SO0.2; n/ is quasi-Fuchsian if it preserves an acausal topological .n � 1/-
sphere in Einn.

In the following theorem, Y denotes the subset of Einn � Einn made of non-
causally related pairs, i.e., pairs of points that can be joined by a space-like geodesic
in AdSnC1.

Theorem 1.1. A representation � W � ! SO0.2; n/ is quasi-Fuchsian if and only if
it is .SO0.2; n/;Y/-Anosov.

The geometric ingredient of this Theorem is the characterization of quasi-Fuchsian
representations as holonomy representations of Lorentzian manifolds locally mod-
elled on anti-de Sitter which are spatially compact globally hyperbolic (GHC).

Let us remind a few classical definitions in Lorentzian geometry. A tangent
vector v in a Lorentzian manifold .M; g/ is called time-like (resp. light-like, causal
and space-like) if g.v; v/ is negative (resp. null, non-positive and positive). A smooth
curve whose tangent vectors all have the same sign is called with the same name; it
is called inextendible if it is maximal for the inclusion over smooth curves with the
same type. By spacetime we mean here an oriented Lorentzian manifold with a time
orientation given by a smooth time-like vector field. This allows to define the notion
of future and past-directed causal curves.

A spacetime .M; g/ is globally hyperbolic (abbreviated to GH) if it admits a
Cauchy hypersurface, that is an achronal set S which intersects every inextendible
time-like curve at exactly one point. This set is then automatically a locally Lipschitz
hypersurface (see [O’N83], § 14, Lemma 29). A globally hyperbolic spacetime is
strongly causal in the sense that its topology admits a basis of causally convex neigh-
borhoods, i.e., neighborhoods U such that any causal curve with extremities in U is
contained in U . However, the converse implication is false in general. A globally
hyperbolic spacetime is called spatially compact if its Cauchy hypersurfaces are com-
pact. It is equivalent to require the existence of a proper time function, i.e., a proper
real-valued function that is strictly increasing along future-directed causal curves.
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It turns out that Theorem 1.1 is merely a particular case of the following theorem,
where � is not necessarily a lattice in SO0.1; n/. Here a representation � is called
strictly GHC-regular if �.�/ preserves an acausal topological .n � 1/-sphere ƒ in
the Einstein boundary Einn of the anti-de Sitter space AdSnC1.

Theorem 1.2. Let � be the fundamental group of a negatively curved closed Rieman-
nian manifold. Then, a representation � W � ! SO0.2; n/ is strictly GHC-regular if
and only if it is .SO0.2; n/;Y/-Anosov.

Overview of the paper. In § 2 we review some geometric properties of anti-de
Sitter and Einstein spaces. In § 3 we introduce the notion of regular AdS domains.
In § 4 we exhibit the link between AdS regular manifolds and globally hyperbolic
AdS manifolds. In § 5 we define the notion of Anosov representations. In this
section, and more precisely in § 5.3, we prove one half of Theorem 1.2, namely that
.SO0.2; n/;Y/-representations are strictly GHC-regular. The proof of the theorem
is completed in § 7.5, where we show the reverse implication (strictly GHC-regular
representations are .SO0.2; n/;Y/-Anosov). For that purpose we develop in § 6 a
theory of dynamics of sequences in SO0.2; n/, and in § 7 a detailed study of the
geometry of convex hulls of acausal topological spheres in Einn is carried out. It
includes a generalization of Dirichlet domains of discrete groups of isometry in the
AdS background.

In § 8 we conclude by addressing some questions in relation to what we expect to
be the classification of globally hyperbolic AdS manifolds. In particular, we expect
that the “negatively curved” hypothesis appearing in Theorem 1.2 can be removed,
and moreover, that strictly GHC-regular representations are presumably all quasi-
Fuchsian.

2. Preliminaries

We assume the reader acquainted to basic causality notions in Lorentzian manifolds
like causal or time-like curves, inextendible causal curves, time orientation, future
and past of subsets, time function, achronal subsets, etc. We refer to [BEE96] or
[O’N83], § 14, for further details.

2.1. Anti-de Sitter space. Let R2;n be the vector space of dimension n C 2, with
coordinates .u; v; x1; : : : ; xn/, and endowed with the quadratic form:

q2;n.u; v; x1; : : : ; xn/ ´ �u2 � v2 C x2
1 C � � � C x2

n:

We denote by hx jyi the associated scalar product. For any subset A of R2;n let A?
be the orthogonal of A, i.e., the set of elements y in R2;n such that hy jxi D 0 for
every x in A. The isotropic cone fw 2 R2;n j q2;n.w/ D 0g is denoted by Cn.
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Definition 2.1. The hypersurface fw 2 R2;n j q2;n.w/ D �1g endowed with the
Lorentzian metric obtained by restriction of the quadratic form q2;n is called anti-de
Sitter space AdSnC1.

Observe the analogy with the definition of the hyperbolic space Hn. Considering
the coordinates .r; �; x1; : : : ; xn/, where u D r cos.�/ and v D r sin.�/, it turns out
that for every real number �0 the subset

H�0
´ f.r; �; x1; : : : ; xn/ j � D �0g � R2;n

is a totally geodesic copy of the hyperbolic space embedded in AdSnC1. More
generally, the totally geodesic subspaces of dimension k in AdSnC1 are connected
components of the intersections of AdSnC1 with the linear subspaces of dimension
.k C 1/ in R2;n. As a particular case, the geodesics of AdSnC1 are obtained by
intersecting it with 2-planes.

Remark 2.2. We will often need an auxiliary Euclidean metric on R2;n. Let us fix
once for all the Euclidean norm k � k0 defined by

k.u; v; x1; : : : ; xn/k2
0 ´ u2 C v2 C x2

1 C � � � C x2
n:

2.2. Conformal model

Proposition 2.3. The anti-de Sitter space AdSnC1 is conformally equivalent to
.S1 � Dn;�d�2 C ds2/, where d�2 is the standard Riemannian metric on S1 D
R=2�Z and ds2 is the standard metric (of constant curvature C1) on the sphere Sn

and Dn is the open upper hemisphere of Sn.

Proof. In the .r; �; x1; : : : ; xn/-coordinates the AdS metric is

�r2d�2 C ds2
hyp;

where ds2
hyp denotes the hyperbolic metric, that is, the induced metric on H0 D

f.r; �; x1; : : : ; xn/ j � D 0g � Hn. More precisely, H0 is a sheet of the hyperboloid
f.r; x1; : : : ; xn/ 2 R1;n j �r2 C x2

1 C � � � C x2
n D �1g. The map .r; x1; : : : ; xn/ !

.1=r; x1=r; : : : ; xn=r/ sends this hyperboloid to Dn, and an easy computation shows
that the pull-back of the standard metric on the hemisphere by this map is r�2ds2

hyp.
The proposition follows.

Proposition 2.3 shows in particular that AdSnC1 contains many closed causal
curves. But the universal covering eAdSnC1, which is conformally equivalent to
.R � Dn;�d�2 Cds2/, contains no periodic causal curve. It turns out to be strongly
causal but not globally hyperbolic.
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2.3. Einstein universe. We define the Einstein universe EinnC1 as the product S1 �
Sn endowed with the metric �d�2 C ds2 where ds2 is, as above, the standard
spherical metric. The universal Einstein universe fEinnC1 is the cyclic covering R�Sn

equipped with the lifted metric which we still denote by �d�2Cds2, but where � now
takes value in the real line. According to this definition, the Einstein spaces EinnC1

and fEinnC1 are Lorentzian manifolds, but it is more adequate to consider them as
conformal Lorentzian manifolds. We fix a time orientation: the one for which the
coordinate � is a time function on fEinnC1.

In the sequel, we denote by p W fEinnC1 ! EinnC1 the cyclic covering map. Let
ı W fEinnC1 ! fEinnC1 be a generator of the Galois group of this cyclic covering such
that for any Qx in fEinnC1 the image ı. Qx/ is in the future of Qx.

Even if the Einstein universe is merely a conformal Lorentzian spacetime, the
notion of photon, i.e., (non-parameterized) light-like geodesics, is well defined. This
allows to associate to each point its lightcone C.x/, defined as the union of photons
containing x. If the point x is given by a pair .�; x/ in S1 � Sn, the lightcone C.x/ is
the set of pairs .� 0; y/ such that j� 0 � � j D d.x; y/ where d is distance function for
the spherical metric ds2.

There is only one point in Sn at distance � to x: the antipodal point �x. This
points admit a single lifting in EinnC1 that belongs to C.x/: we will also call it the
antipodal point, and denote it by �x D .� C �;�x/. Removing the point x and its
antipodal �x from the lightcone C.x/ separates it in two connected components: the
future cone CC.x/ and the past cone C�.x/. One has:

CC.x/ D f.� 0; y/ j � < � 0 < � C �; d.x; y/ D � 0 � �g;
C�.x/ D f.� 0; y/ j � � � < � 0 < �; d.x; y/ D � � � 0g:

Observe that the future cone of x is the past cone of �x, and that, conversely, the
past cone of x is the future cone of �x.

According to Proposition 2.3 the anti de Sitter space AdSnC1 (resp. eAdSnC1)
conformally embeds into the Einstein space EinnC1 (resp. fEinnC1). Hence the
time orientation on EinnC1 selected above induces a time orientation on AdSnC1 and
eAdSnC1. Since the boundary @Dn is an equatorial sphere, the boundary @eAdSnC1 is a
copy of the Einstein universe fEinn. In other words, one can attach a “Penrose bound-
ary” @eAdSnC1 to eAdSnC1 such that eAdSnC1 [ @eAdSnC1 is conformally equivalent
to .S1 � xDn;�d�2 C ds2/, where xDn is the closed upper hemisphere of Sn.

The restrictions of the covering map p and the generator ı to eAdSnC1 � fEinnC1

are respectively a covering map over AdSnC1 and a generator of the Galois group of
the covering; we will still denote them by p and ı.

2.4. Isometry groups. Every element of SO.2; n/ induces an isometry of AdSnC1,
and, for n � 2, every isometry of AdSnC1 comes from an element of SO.2; n/.
Similarly, conformal isometries of EinnC1 are projections of elements of SO.2; nC1/
acting on CnC1 (still for n � 2).



Anosov AdS representations are quasi-Fuchsian 447

In the sequel, we will only consider isometries preserving the orientation and the
time orientation, i.e., elements of the neutral component SO0.2; n/ (or SO0.2; nC1/).

2.5. Achronal subsets. Recall that a subset of a conformal Lorentzian manifold is
achronal (respectively acausal) if there is no time-like (respectively causal) curve
joining two distinct points of the subset. In Einn � .R � Sn�1;�d�2 C ds2/, every
achronal subset is precisely the graph of a 1-Lipschitz function f W ƒ0 ! R, where
ƒ0 is a subset of Sn�1 endowed with its canonical metricd . In particular, the achronal
closed topological hypersurfaces in @eAdSnC1 can be obtained as graphs of 1-Lipschitz
functions f W Sn�1 ! R. In particular, they are topological .n � 1/-spheres.

Similarly, achronal subsets of eAdSnC1 are graphs of 1-Lipschitz functions
f W ƒ0 ! R, where ƒ0 is a subset of Dn, and achronal topological hypersurfaces
are graphs of 1-Lipschitz maps f W Dn ! R.

Stricto sensu there is no achronal subset in EinnC1 since closed time-like curves
through a given point cover the entire EinnC1. Nevertheless, we can keep track of this
notion in EinnC1 by defining “achronal” subsets of EinnC1 as projections of genuine
achronal subsets of fEinnC1. This definition is justified by the following results:

Lemma 2.4. The restriction of p to any achronal subset of fEinnC1 is injective.

Proof. Since the diameter of Sn is � , the difference between the t -coordinates of
two elements of an achronal subset of fEinnC1 is at most � . The lemma follows
immediately.

Corollary 2.5. Let zƒ1, zƒ2 be two achronal subsets of fEinnC1 admitting the same
projection in EinnC1. Then there is an integer k such that

zƒ1 D ık zƒ2;

where ı is the generator of the Galois group introduced above.

2.6. The Klein model ADSnC1 of the anti-de Sitter space. We now consider the
quotient S.R2;n/ of R2;n n f0g by positive homotheties. In other words, S.R2;n/ is
the double covering of the projective space P .R2;n/. We denote by S the projection
function from R2;n nf0g to S.R2;n/. Note that its restriction to AdSnC1 is one-to-one.
We define the Klein model ADSnC1 of the anti-de Sitter space as the projection of
AdSnC1 in S.R2;n/, endowed with the induced Lorentzian metric.

ADSnC1 is also the projection of the open domain of R2;n defined by the inequal-
ity fq2;n < 0g. The topological boundary of ADSnC1 in S.R2;n/ is the projection
of the isotropic cone Cn; we will denote this boundary by @ADSnC1. By con-
struction, the projection S defines an isometry between AdSnC1 and ADSnC1. The
continuous extension of this isometry provides a canonical homeomorphism between
AdSnC1 [ @AdSnC1 and ADSnC1 [ @ADSnC1.
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For every linear subspace F of dimension k C 1 in R2;n, we denote by S.F / ´
S.F n f0g/ the corresponding projective subspace of dimension k in S.R2;n/. The
geodesics of ADSnC1 are the connected components of the intersections of ADSnC1

with the projective lines S.F / of S.R2;n/. More generally, the totally geodesic sub-
spaces of dimension k in ADSnC1 are the connected components of the intersections
of ADSnC1 with the projective subspaces S.F / of dimension k of S.R2;n/.

Definition 2.6. For every x in AdSnC1, the affine domain U.x/ of ADSnC1 is the
connected component of ADSnC1 n S.x?/ containing x. Let V.x/ be the connected
component of S.R2;n/nS.x?/ containingU.x/. The boundary @U.x/ � @ADSnC1

of U.x/ in V.x/ is called the affine boundary of U.x/.

Remark 2.7. Up to composition by an element of the isometry group SO0.2; n/ of
q2;n, we can assume that S.x?/ is the projection of the hyperplane fu D 0g in R2;n

and V.x/ is the projection of the region fu > 0g in R2;n. The map

.u; v; x1; x2; : : : ; xnC1/ 7! .t; Nx1; : : : ; Nxn/ ´
�v
u
;
x1

u
;
x2

u
; : : : ;

xn

u

�

induces a diffeomorphism between V.x/ and RnC1 mapping the affine domain
U.x/ to the region f.t; Nx1; : : : ; Nxn/ 2 RnC1j q1;n.t; Nx1; : : : ; Nxn/ < 1g, where q1;n

is the Minkowski norm. The affine boundary @U.x/ corresponds to the hyperboloid
f.t; Nx1; : : : ; Nxn j q1;n.t; Nx1; : : : ; Nxn/ D 1g. The intersections between U.x/ and the
totally geodesic subspaces of ADSnC1 correspond to the intersections of the region
f.t; Nx1; : : : ; Nxn/ 2 RnC1 j q1;n.t; Nx1; : : : ; Nxn/ < 1g with the affine subspaces of
RnC1.

Although the real number hx jyi is well defined only for x; y 2 R2;n, its sign is
well defined for x; y 2 S.R2;n/:

Lemma 2.8. Let U be an affine domain in ADSnC1 and @U � @ADSnC1 be its
affine boundary. Let x be a point in @U and let y be a point in U [ @U . There exists
a causal (resp. time-like) curve joining x to y in U [ @U if and only if hx jyi � 0

(resp. hx jyi > 0).

Proof. See e.g. [Bar08b], Proposition 5.10, or [BBZ07], Proposition 4.19.

2.7. The Klein model of the Einstein universe. The Einstein universe also has a
Klein model, obtained by projecting the isotropic cone Cn of R2;n to S.R2;n/. The
conformal Lorentzian structure can then be defined in terms of the quadratic form
q2;n. In particular, an immediate corollary of Lemma 2.8 is:

Corollary 2.9. For ƒ � Einn, the following assertions are equivalent.

(1) ƒ is achronal (respectively acausal);
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(2) when we view ƒ as a subset of S.Cn/ � Einn, the scalar product hx jyi is
non-positive (respectively negative) for every distinct x; y 2 ƒ.

In the sequel, we will frequently need to change from one model to the other. In
order to simplify things, we will often identify Einn with S.Cn/. More details about
the Einstein universe can be found in [Fra05], [BCDC08].

Remark 2.10. The affine boundary @U.x/ defined in Remark 2.7 as a domain of
Einn is conformally isometric to the de Sitter space. Hence we also call it de Sitter
domain.

2.8. Unit tangent bundle. Denote by E1AdSnC1 (resp. L1AdSnC1) the tangent
bundle consisting of unit space-like (resp. light-like) tangent vectors. For any space-
like or light-like tangent vector .x; v/ in AdSnC1, the geodesic issued from the point
x with speed v has a future and past limit in the Einstein universe. We denote by
`˙ W E1AdSnC1 [ L1AdSnC1 ! Einn the mapping which assigns such a vector to
its limit (`� for the past limit, `C for the future limit).

3. Regular AdS manifolds

3.1. AdS regular domains. Let zƒ be a closed achronal subset of @eAdSnC1, and ƒ
be the projection of zƒ in @AdSnC1. We denote by zE.zƒ/ the invisible domain of zƒ
in eAdSnC1 [ @eAdSnC1, that is,

zE.zƒ/ μ .eAdSnC1 [ @eAdSnC1/ n .J�.zƒ/ [ JC.zƒ//;
where J�.zƒ/ and JC.zƒ/ are the causal past and the causal future of zƒ in eAdSnC1 [
@eAdSnC1 D .R� xDn�1;�d�2 Cds2/. We denote by Cl. zE.zƒ// the closure of zE.zƒ/
in eAdSnC1 [ @eAdSnC1 and by E.ƒ/ the projection of zE.zƒ/ in AdSnC1 [ @AdSnC1

(according to Corollary 2.5, E.ƒ/ only depends on ƒ, not on zƒ).

Definition 3.1. A n-dimensional AdS regular domain is a domain of the form E.ƒ/

whereƒ is the projection in @AdSnC1 of an achronal subset zƒ � @eAdSnC1 containing
at least two points. If zƒ is a topological .n� 1/-sphere, then E.ƒ/ is said to be GH-
regular. This definition is motivated by Theorem 4.3 and Proposition 4.5.

Remark 3.2. For every closed achronal set zƒ in @eAdSnC1, the invisible domain
zE.zƒ/ is causally convex in eAdSnC1 [ @eAdSnC1: this is an immediate consequence

of the definitions. It follows that AdS regular domains are strongly causal.

Definition 3.3. Let zƒ be a closed achronal subset of @eAdSnC1. Recall from § 2.5 that
zƒ is the graph of a 1-Lipschitz function f W ƒ0 ! R, whereƒ0 is a closed subset of
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Sn�1. Define two functions f �; f C W xDn ! R as follows:

f �.x/ ´ sup
y2ƒ0

ff .y/ � d.x; y/g;

f C.x/ ´ inf
y2ƒ0

ff .y/C d.x; y/g;

where d is the distance induced by ds2 on xDn. It is easy to check that

zE.zƒ/ D f.�; x/ 2 R � xDn j f �.x/ < � < f C.x/g:
The following lemma is a refinement of Lemma 2.4:

Lemma 3.4. For every (non-empty) closed achronal set zƒ � @eAdSnC1, the projec-
tion of zE.zƒ/ on E.ƒ/ is one-to-one.

Proof. We use the notations introduced in the Definition 3.3. For every x 2 xDn,
there exists a point y in the sphere Sn�1 D @xDn such that d.x; y/ 	 �=2. Hence,
for every x 2 xDn, we have f C.x/ � f �.x/ 	 � . This means that zE.zƒ/ lies in
E D f.�; x/ 2 R � xDn j f �.x/ < � < f �.x/C �g: The restriction to this set E of
the projection function from eAdSnC1[@eAdSnC1 D R� xDn to AdSnC1[@AdSnC1 D
.R=2�Z/ � xDn�1 is obviously one-to-one.

Definition 3.5. An achronal subset zƒ of fEinnC1 is called purely light-like if the
associated subset ƒ0 of Sn contains two antipodal points x0 and �x0 such that, for
the corresponding 1-Lipschitz map f W ƒ0 ! R, the equality f .x0/ D f .�x0/C �

holds.

If zƒ is purely light-like, for every element x of xDn we have f �.x/ D f C.x/ D
f .�x0/Cd.�x0; x/ D f .x0/�d.x0; x/, implying that zE.zƒ/ is empty. Conversely,
we have:

Lemma 3.6. zE.zƒ/ is empty if and only if zƒ is purely light-like. More precisely, if
for some point x in Dn the equality f C.x/ D f �.x/ holds then zƒ is purely light-like.

Proof. Assume f C.x/ D f �.x/ for some x in Dn. By compactness ofƒ0, the upper
and lower bounds in the definitions of f ˙ are attained, i.e., there are y˙ in ƒ0 such
that

f �.x/ D f .y�/ � d.x; y�/; f C.x/ D f .yC/C d.x; yC/:
As a consequence,

d.y�; yC/ � f .y�/ � f .yC/ D d.y�; x/C d.x; yC/:

We are in the equality case of the triangular inequality. It follows that x belongs
to a minimizing geodesic in Sn joining y� to yC. This is possible only if the points
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yC, y� are antipodal to each other – if not, the minimizing geodesic joining would be
unique and contained in @Dn. Moreover, f .y�/ D f .yC/C� . The lemma follows.

Corollary 3.7. For every achronal topological .n � 1/-sphere zƒ � @eAdSnC1,

(1) zE.zƒ/ is disjoint from @eAdSnC1 (i.e., it is contained in eAdSnC1);
(2) Cl. zE.zƒ// \ @eAdSnC1 D zƒ, where Cl. zE.zƒ// denotes the closure of zE.zƒ/ infEinnC1.

Proof. We use the notations introduced in the Definition 3.3. Since zƒ is a topological
.n � 1/-sphere, the set ƒ0 is the whole sphere Sn�1. For every x 2 Sn�1 D ƒ0,
one has f �.x/ D f C.x/ D f .x/. Finally, recall that .�; x/ 2 zE.zƒ/ (resp. .�; x/ 2
Cl. zE.zƒ//) if and only if f �.x/ < � < f C.x/ (resp. f �.x/ 	 � 	 f C.x/). The
corollary follows.

Remark 3.8. It follows from item (2) of Corollary 3.7 that the GH-regular domain
E.ƒ/ characterizes ƒ, i.e., invisible domains of different achronal .n � 1/-spheres
are different. We call ƒ the limit set of E.ƒ/.

3.2. AdS regular domains as subsets of ADSnC1. The canonical homeomorphism
between AdSnC1 [@AdSnC1 and ADSnC1 [@ADSnC1 allows us to see AdS regular
domains as subsets of ADSnC1.

Lemma 3.9. Let ƒ � @AdSnC1 be the projection of a closed achronal subset of
@eAdSnC1 which is not purely light-like. We seeƒ andE.ƒ/ in ADSnC1[@ADSnC1.
Then ƒ and E.ƒ/ are contained in the union U [ @U of an affine domain and its
affine boundary.

Proof. See [Bar08b], Lemma 8.27.

Lemma 3.9 implies, in particular, that everyAdS regular domain is contained in an
affine domain of ADSnC1. This allows to visualize AdS regular domains as subsets
of RnC1 (see Remark 2.7).

Putting together the definition of the invisible domainE.ƒ/of a setƒ � @AdSnC1

and Lemma 2.8, one gets:

Proposition 3.10. Let ƒ � @AdSnC1 be the projection of a closed achronal subset
of @eAdSnC1 which is not purely light-like. If we see ƒ and E.ƒ/ in the Klein model
ADSnC1 [ @ADSnC1, then

E.ƒ/ D fy 2 ADSnC1 [ @ADSnC1 such that hy jxi < 0 for every x 2 ƒg/:
Remark 3.11. A nice (and important) corollary of this proposition is that the invisible
domain E.ƒ/ associated with a set ƒ is always geodesically convex: any geodesic
joining two points in E.ƒ/ is contained in E.ƒ/.
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3.3. Convex hull of AdS regular domains. According to Lemma 3.9 the limit set
ƒ and the regular domainE.ƒ/ are contained inU [@U whereU is an affine domain
of AdSnC1. In particular, it is contained in an affine chart V of S.R2;n/. We can
consider the convex hull Conv.ƒ/ ofƒ in this affine chart. This convex hull does not
depend on the choice of V . Moreover, since E.ƒ/ is convex, it contains Conv.ƒ/
(cf. Remark 3.11). For more details, see for example [Bar08b].

Alternatively, we also can define Conv.ƒ/ as the projection S.C / where C is
the set of barycentric combinations t1x1 C � � � C tkxk where ti are non-negative real
numbers such that t1 C � � � C tk D 1 and xi elements of Cn � R2;n the projections
S.xi / of which belong to ƒ.

Lemma 3.12. The convex hull Conv.ƒ/ is compact. Its intersection with @AdSnC1

isƒ, and the “finite part” Conv.ƒ/\AdSnC1 D Conv.ƒ/nƒ is contained inE.ƒ/.

Proof. The compactness of Conv.ƒ/ follows from the compactness of ƒ. Let x D
t1x1 C � � � C tkxk be an element of R2;n projecting in S.R2;n/ on an element of
Conv.ƒ/. For every y such that S.y/ belongs to ƒ, according to Corollary 2.9,

hx jyi D
kP

iD1

ti hxi jyi 	 0:

Moreover, if hx jyi vanishes, then every hy jxi i vanishes. But sinceƒ is acausal,
hy jxi i D 0 implies y D xi : according to Proposition 3.10 Conv.ƒ/nƒ is contained
in E.ƒ/. The lemma follows since E.ƒ/ is contained in AdSnC1.

Lemma 3.13. If Conv.ƒ/ \ AdSnC1 has empty interior, then it is contained in a
unique totally geodesic space-like hypersurface of AdSnC1.

Proof. If Conv.ƒ/ has empty interior, it is contained in a projective hyperplane
S.v?/. If q2;n.v/ is positive, then S.v?/\ AdSnC1 is an isometric, totally geodesic
embedding of AdSn which, in a well-chosen conformal chart AdSnC1 � S1 � Dn,
corresponds to fxn D 0g. The setƒ, which is a graph over@Dn, cannot be contained in
the closure of fxn D 0g, thus yielding a contradiction. Similarly, from the assumption
q2;n.v/ D 0 one would be able to deduce that ƒ is purely light-like.

Hence, up to renormalization, v lies in AdSnC1, and Conv.ƒ/ \ AdSnC1 is
contained in the totally geodesic hypersurface S.v?/ \ AdSnC1. This convex set
cannot be contained in a different totally geodesic hypersurface S..v0/?/\ AdSnC1

(v ¤ v0) because the dimension of the intersection of S..v0/?/ \ S..v0/?/ with the
Einstein space is n � 2 dimensional, thus forbidding the inclusion of a topological
.n � 1/-sphere ƒ.

For the remaining of this section we assume that Conv.ƒ/ has non-empty interior.
The limit set ƒ is the projection of an acausal closed subset zƒ in fEinn and E.ƒ/ is
the 1-1 projection of a domain zE.zƒ/ in eAdSnC1 � R�Dn. Recall that there are two
maps f �, f C such that zE.zƒ/ D f.�; x/ j f �.x/ < � < f C.x/g (cf. Definition 3.3).
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Proposition 3.14. The complement of ƒ in the boundary @Conv.ƒ/ has two con-
nected components. Both are closed edgeless achronal subsets of AdSnC1. More
precisely, in the conformal model their lifting in eAdSnC1 are graphs of 1-Lipschitz
maps FC, F � from Dn into R such that

f � < F � < FC < f C:

A similar study forn D 2 but without the assumption thatƒ is a topological sphere
is available in [Bar08b], § 8.10. Before proceeding to the proof of this proposition,
we will need to a few lemmas.

Lemma 3.15. Every time-like geodesic of AdSnC1 intersects Conv.ƒ/.

Proof. LetD be a time-like geodesic in AdSnC1. It is contained in a totally geodesic
embedding A of AdS2 in AdSnC1, and the intersection A \ Conv.ƒ/ contains the
convex hull in A of Cl.A/ \ ƒ. We are thus reduced to the (easy) case n D 2.
In that case, A n D has two connected components, and each of them contains a
connected component of @A. The boundary @A has two connected components l1,
l2, and each of these connected components is an inextendible time-like curve in
Ein1 � EinnC1, which therefore intersects ƒ at an unique point xi . Then, the
segment Œx1; x2� intersects D.

Lemma 3.16. Support hyperplanes in S.R2;n/ to Conv.ƒ/ at points in AdSnC1 are
space-like.

Proof. Let x be a point in AdSnC1 \ Conv.ƒ/, and let P be a support (projective)
hyperplane at x to Conv.ƒ/. This support hyperplane is a projection S.v?/ for some
v in R2;n. If q2;n.v/ > 0, then S.v?/ disconnects any affine domain, in particular,
the affine domain V containing E.ƒ/[ƒ. It follows easily, sinceƒ is a topological
sphere, that the affine hyperplane S.v?/ \ V disconnects ƒ. This is a contradiction
since this affine hyperplane is a support hyperplane in V and hence cannot disconnect
the convex hull.

If q2;n.v/ D 0, then the affine hyperplane V \S.v?/ is tangent to the hyperboloid
@U at S.v/ (up to a slight change of affine domain V , we can always assume that
S.v/ belongs to V ). If it disconnectsƒ, we obtain a contradiction as above. If not, it
means that S.v/ belongs toƒ. Write x as a sum t1x1 C � � � C tkxk where xi belongs
to ƒ: 0 D hv jxi D t1hv jx1i C � � � C tkhv jxki. Since every hv jxi i is a nonpositive
number, they all vanish, which implies that v D xi for every i . Hence x D v; this is
a contradiction since x is assumed in AdSnC1.

Proof of Proposition 3.14. Lift Conv.ƒ/ in eAdSnC1 � R � Dn as a subdomain
Conv.zƒ/ in zE.zƒ/ [ zƒ. For every x in Dn, the line R � fxg is a time-like geodesic.
According to Lemma 3.15 it intersects Conv.zƒ/. Moreover, since this intersection
is convex, it contains a geodesic segment ŒF �.x/; FC.x/� � fxg. If an element y in
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�F �.x/; FC.x/Œ�fxg lies on the boundary of Conv.zƒ/, then every support hyperplane
to the convex hull at the projection of this point must contain the projection of the
time-like segment ŒF �.x/; FC.x/�� fxg: it contradicts Lemma 3.16. Therefore, the
boundary of Conv.zƒ/ is the union of the graphs of F � and FC. It follows quite
easily that these graphs are closed, hence, FC and F � are continuous.

Consider the closed subset E ´ fx 2 Dn j F �.x/ D FC.x/g of Dn. For every
x in Dn, take a small chart in the Klein model around .FC.x/; x/ such that F � and
FC expresses locally as graphs of maps from an affine hyperplane into R. Since
Conv.ƒ/ is convex, FC is convex and F � is concave. It follows that the coincidence
locus E is also open. Since Dn is connected, if E were not empty we would arrive at
the equality F � D FC, which is impossible since the interior of E.ƒ/ is not empty.
Therefore, according to Lemma 3.12,

f � < F � < FC < f C:

Finally, for every x in Dn, let S.v?/ be a support hyperplane to Conv.ƒ/ at the
projection of .FC.x/; x/. According to Lemma 3.16, S.v?/ is a totally geodesic
embedding of Hn. In particular, it lifts as the graph of a 1-Lipschitz map 'C

v W Dn !
R. One of the region f.�; y/ j � > 'C

v .y/g, f.�; y/ j � < 'C
v .y/g is disjoint from

Conv.zƒ/, and since F �.x/ < FC.x/ D 'C
v .x/, it must be the former. Hence on

Dn we have FC 	 'C
p . But since convex domains are intersections of half-spaces

containing them, we obtain
FC D min

v
'C

v :

Since every 'C
v is 1-Lipschitz, the same is true for FC. Similarly for F �.

We denote the components of @Conv.ƒ/ by zSC, zS�.

Remark 3.17. It can be easily inferred from Lemma 3.16 that zS˙ is furthermore
acausal, i.e., that F˙ is contracting.

Remark 3.18. Let v be an element v such that q2;n.v/ > 0. We call AdS-wall
and denote by @H.v/ the intersection of AdSnC1 with the orthogonal v?. The half
AdS-spaces defined by v are the domains HC.v/ D fx 2 AdSnC1 j hv jxi � 0g and
H�.v/ D fx 2 AdSnC1 j hv jxi 	 0g D HC.�v/. According to Lemma 3.15, the
intersection between any AdS-wall @H.v/, and ƒ� is a topological .n � 2/-sphere.
Moreover, in a suitable conformal chart HC.v/ is the domain f.�; x1; : : : ; xn/ 2
S1 � Dn j xn > 0g. It follows that S.v/ D @H.v/ \ Conv.ƒ�/ is a topological
.n � 1/-dimensional disk. In particular S.v/ is a compact set and cuts Conv.ƒ�/

into two parts, H˙.v/ D H˙.v/ \ Conv.ƒ�/, which we call convex caps.
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4. Globally hyperbolic AdS spacetimes

4.1. Cosmological time functions. In any spacetime .M; g/, one can define the
cosmological time function as follows (see [AGH98]).

Definition 4.1. The cosmological time function of a spacetime .M; g/ is the function
� W M ! Œ0;C1� defined by

�.x/ ´ supfL.c/ j c 2 R�.x/g;
where R�.x/ is the set of past-oriented causal curves starting at x and L.c/ is the
Lorentzian length of the causal curve c.

This function behaves in general very badly. For example, in the case of Minkowski
space, the cosmological time function is everywhere infinite.

Definition 4.2. A spacetime .M; g/ is CT-regular with cosmological time function
� if

(1) M has finite existence time, that is, �.x/ < 1 for every x in M ,
(2) for every past-oriented inextendible causal curve c W Œ0;C1/ ! M we have

limt!1 �.c.t// D 0.

Theorem 4.3 ([AGH98]). CT-regular spacetimes are globally hyperbolic.

A very nice feature of CT-regularity is that it is preserved by isometries (and thus
by Galois automorphisms):

Proposition 4.4. Let . zM; Qg/ be a CT-regular spacetime. Let � be a torsion-free
discrete group of isometries of . zM; Qg/ preserving the time orientation. Then the
actionof � on . zM; Qg/ is properly discontinuous. Furthermore, the quotient spacetime
.M; g/ is CT-regular. More precisely, if p W zM ! M denote the quotient map, the
cosmological times Q� W zM ! Œ0;C1/ and � W M ! Œ0;C1/ satisfy

Q� D � B p:

Sketch of proof. � clearly preserves the cosmological time and its level sets. These
level sets are metric spaces on which � acts isometrically, and hence, properly dis-
continuously. It follows quite easily that� acts properly discontinuously on the entire
zM . Moreover, since � is discrete and torsion-free, its action on zM is free. Therefore,

the quotient space is a Lorentzian manifold M .
The proof of the identity Q� D � B p is straightforward: it follows from the �-

invariance of Q� and the fact that inextendible causal curves in M are precisely the
projections by p of inextendible causal curves in zM .
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4.2. GH-regularAdS spacetimes are CT-regular. Letƒ be a non-purely light-like
topological achronal .n � 1/-sphere in @AdSnC1.

Proposition 4.5. The GH-regular AdS domain E.ƒ/ is CT-regular.

Proof. Recall thatƒ is, by definition, the projection of an achronal topological sphere
zƒ � @eAdSnC1, and that E.ƒ/ is the projection of the invisible domain zE.zƒ/ of zƒ
in eAdSnC1 [ @eAdSnC1. We will prove that zE.zƒ/ has regular cosmological time.
Since the projection of zE.zƒ/ on E.ƒ/ is one-to-one (Lemma 3.4), this will imply
thatE.ƒ/ also has regular cosmological time. We denote by Q� the cosmological time
of zE.zƒ/.

Let x be a point in zE.zƒ/. On the one hand, according to Corollary 3.7, Cl. zE.zƒ//
is a compact subset of eAdSnC1[@eAdSnC1, and the intersection Cl. zE.zƒ//\@eAdSnC1

equals zƒ. On the other hand, since x is in the invisible domain of zƒ, the set J�.x/
is disjoint from zƒ. Therefore J�.x/ \ Cl. zE.zƒ// is a compact subset of eAdSnC1.
Therefore J�.x/\Cl. zE.zƒ// is conformally equivalent to a compact causally convex
domain in .R � Dn;�d�2 Cds2/, with a bounded conformal factor since everything
is compact. It follows that the length of the past-directed causal curves starting at
x contained in zE.zƒ/ is bounded (in other words, Q�.x/ is finite) and that, for every
past-oriented inextendible causal curve c W Œ0;C1/ ! zE.zƒ/with c.0/ D x, one has
Q�.c.t//! 0when t ! 1. This shows that zE.zƒ/ has regular cosmological time.

Hence, according to Theorem 4.3, GH-regular domains are globally hyperbolic.

4.3. GH-regular and quasi-Fuchsian representations. Let ƒ be a non-purely
light-like topological achronal .n� 1/-sphere in @AdSnC1, and � a torsion-free dis-
crete subgroup of SO0.2; n/ preservingƒ. According to Proposition 4.4, the quotient
space �nE.ƒ/ is globally hyperbolic.

Conversely, in his celebrated 1990 preprint [Mes07] (see also [ABBC07]),
G. Mess1 proved that any globally hyperbolic spatially compact AdS spacetime em-
beds isometrically in such a quotient space �nE.ƒ/.

Definition 4.6. Let � be a torsion-free discrete group. A representation � W � !
SO0.2; n/ is called GH-regular if it is faithful, discrete and preserves a GH-regular
domain E.ƒ/ in @AdSnC1. If moreover the .n � 1/-sphere ƒ is acausal, then the
representation is strictly GH-regular.

Definition 4.7. A (strictly) GH-regular representation � W � ! SO0.2; n/ is (strictly)
GHC-regular if the quotient space �.�/nE.ƒ/ is spatially compact.

Hence a reformulation of Mess result is:
1Mess only deals with the case where n D 2, but his arguments also apply in higher dimension. For a

detailed proof see [Bar08b], Corollary 11.2.



Anosov AdS representations are quasi-Fuchsian 457

Proposition 4.8. A representation � W � ! SO0.2; n/ is GHC-regular if and only if
it is the holonomy of a GHC AdS spacetime.

Let M D �.�/nE.ƒ/ be a GHC AdS spacetime. In § 3.3 we proved that E.ƒ/
contains a convex subdomain Conv.ƒ/nƒ, whose boundary is the union of two con-
nected components zS˙. Denote by SC, S� their projections in M D �.�/nE.ƒ/.
Lemma 4.9. S˙ are Cauchy hypersurfaces inM .

Proof. Since zS˙ is homeomorphic to Rn the quotient S˙ D zS˙ is aK.�; 1/ space.
But any Cauchy surface in M is also a K.�; 1/ space, and since M is GHC, these
Cauchy surfaces are compact. Consequently, every K.�; 1/ space is compact, and
the lemma follows.

As a corollary, the projection of Conv.ƒ/nƒ inM is the compact domain bounded
by the two disjoint Cauchy hypersurfaces S˙. We denote this set by C.M/ and call
it the convex core of M .

In this paper, we will focus on a special case of strictly GHC-regular representa-
tions: the case of quasi-Fuchsian representations.

Definition 4.10. A strictly GHC-regular representation � W � ! SO0.2; n/ is quasi-
Fuchsian if � is isomorphic to a uniform lattice in SO0.1; n/.

This terminology is motivated by the analogy with the hyperbolic case.
There is a particular case: the case whereƒ is a “round sphere” in @AdSnC1, i.e.,

the boundary of a totally geodesic space-like hypersurface S.v?/ \ AdSnC1:

Definition 4.11. A Fuchsian representation � W � ! SO0.2; n/ is the composition
of the natural inclusions � � SO0.1; n/ and SO0.1; n/ � SO0.2; n/, where in the
latter SO0.1; n/ is considered as the stabilizer in SO0.2; n/ of a point in AdSnC1.

In other words, a quasi-Fuchsian representation is Fuchsian if and only if it admits
a global fixed point in AdSnC1.

5. Anosov representations are strictly GHC-regular

5.1. Anosov representations

5.1.1. General definition. Let N be a manifold equipped with a non-singular flow
ˆt and an auxiliary Riemannian metric k � k.

Definition 5.1. A closed subset F � N isˆt -hyperbolic if it isˆt -invariant and the
tangent bundle of N admits a decomposition TN D �˚ Ess ˚ Euu over F such
that, for some positive constants a, b,
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� the line bundle � is tangent to the flow,
� for any vector v in Ess over a point p of N and for any positive t ,

kdpˆ
t .v/k 	 be�atkvk;

� for any vector v in Euu over a point p of N and for any negative t ,

kdpˆ
t .v/k 	 beatkvk:

If F is the entire manifold N , the flow ˆt is Anosov.

The typical example of an Anosov flow, and the only one that we will consider
here, is the geodesic flow on the unit tangent bundle to a negatively curved Riemannian
manifolds.

Let � be the fundamental group ofN . Let Y be a manifold, andG be a Lie group
acting smoothly on Y . Given any representation � W � ! G one can construct the
associated flat bundle E� overN as the quotient of the product QN � Y by the natural
action of � . The projection function from E� to N is denoted by ��. The bundle E�

inherits a flow ˆt
� from the lifting ẑ t of ˆt on zN .

Definition 5.2. A representation � W � ! G is .G; Y /-Anosov if the flat bundle
�� W E� ! N admits a continuous section s W N ! E� such that the image of s is an
invariant hyperbolic subset for ˆt

�.

A very nice feature of Anosov representations is the following proposition, which
is consequence of the stability property of closed hyperbolic set (see [Lab06], Propo-
sition 2.1 for a proof):

Theorem 5.3. Let N a compact manifold endowed with an Anosov flow ˆt . The
set of .G; Y /-Anosov representations from � D �1.N / to G is open in the space of
representations of � inG, usually denoted by Rep.�;G/ (endowed with the compact-
open topology).

5.1.2. AnosovAdS representations. Here we are concerned with the case .G; Y / D
.SO0.2; n/;Y/ where Y is the open subset of Einn � Einn made of the pairs of
points that can be joined by a space-like geodesic. Given a .SO0.2; n/;Y/-Anosov
representation, the section s W N ! E� defining the Anosov property lifts to a map
`� W zN ! Y which is �-equivariant, i.e., �g B `� D `� B g, and ˆt -invariant. This
mapping can be decomposed in `� D .`C

� ; `
�
� /where `C

� (resp. `�
� ) are two mappings

from zN to Einn.

Remark 5.4. An equivalent way to formulate the .G;Y/-Anosov property is to require
the existence of continuous maps `�̇ W zN ! Einn and of a family of Riemannian

metrics gp depending continuously on p 2 zN and defined in a neighborhood of
`�̇ .p/ in Einn such that
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(1) this family is �-equivariant, i.e., for every 	 in � ,

g�p.d�.	/w; d�.	/w/ D gp.w;w/;

where w belongs to T`˙.p/Einn and d�.	/ is the differential of �.	/ at `˙.p/;
(2) the family increases (resp. decreases) exponentially along positive (resp. neg-

ative) orbits of ẑ t , i.e., for some a; b > 0, if w is a vector tangent at `C
� .p/

(resp. `�
� .p/) to Einn, then

g
ẑ t .p/.w;w/ � b�1 exp.at/gp.w;w/;

g
ẑ t .p/.w;w/ 	 b exp.�at/gp.w;w/:

5.1.3. A criterion for a representation to beAnosov. A technical difficulty arising
when one wants to prove that a representation is Anosov is to ensure the exponential
decay. The following proposition shows that this property follows from the com-
pactness of the ambient manifold N of the Anosov flow and a weaker contraction
property somewhere along the orbit.

Proposition 5.5. Let � W � ! SO0.2; n/ be a representation, and assume the exis-
tence of continuous maps `�̇ W zN ! Einn and of a continuous and �-equivariant
family of Riemannian metrics gp defined in a neighborhood of `�̇ .p/ in Einn. Sup-
pose moreover that the following assumption is satisfied:

(20) For all points p in zN , there exists a time t > 0 such that

g
ẑ t .p/.w;w/ � 2gp.w;w/ for all w 2 T

`
C
� .p/

Einn;

g
ẑ t .p/.w;w/ 	 2gp.w;w/ for all w 2 T`�

� .p/Einn:

Then � is .SO0.2; n/;Y/-Anosov.

Proof. We simply prove that the hypotheses above imply the exponential decay and
exponential expansion expressed in Remark 5.4. Let �� W E� ! N be the flat Einn-
bundle associated to �, and let s˙ W N ! E� be the sections induced by `�̇ . Since
the family .gp/.p2 zN / is �-equivariant, it induces for every p inN a metric gp

˙ on the

fiber ��1.p/ near s�.p/ and sC.p/. Denote by V ˙.p/ the vertical tangent bundle
at s˙.p/. For every p in N and every t define

˛�.p; t/ D sup
w2V �.p/

gˆt .p/� .w;w/

gp�.w;w/
; ˛C.p; t/ D inf

w2V �.p/

g
ˆt .p/
C .w;w/

g
p
C.w;w/

:

Obviously, for s; t > 0,

˛�.p; t C s/ 	 ˛�.p; s/˛�.ˆs.p/; t/;

˛C.p; t C s/ � ˛C.p; s/˛C.ˆs.p/; t/:
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By hypothesis, and since N is compact, there is a finite covering .Ui /.1�i�k/ of N ,
and a sequence .Ti /.1�i�k/ such that for any i in f1; : : : ; kg and any p in Ui we have
˛�.p; Ti / 	 1=2. Put T D supfTi j 1 	 i 	 kg and a D supf˛�.p; t/ j t 2
Œ0; T �; p 2 N g. For any p in N there exist sequences .tj /.0�j �J / and .ij /.0�j �J /

such that t0 D 0, tJ �1 	 t 	 tJ , ˆtj .p/ lies in Uij and tj C1 D tj C Tij . Then

˛�.p; t/ 	 ˛�.p; Ti0/˛
�.ˆt1.p/; Ti1/ : : : ˛

�.ˆtJ �1.p/; t � tJ �1/

	 .1=2/J �1a

	 a.1=2/t=T �1

since t 	 JT . It follows that ˛�.p; t/ decreases exponentially with t . Similarly,
˛C.p; t/ increases exponentially with t . The proposition follows.

5.1.4. Basic properties of the geodesic flow. As we mentioned previously, we only
consider the case where the Anosov flow is the geodesic flow on the unit tangent
bundle N D T1† over a negatively curved Riemannian manifold †. Let z† denote
the universal covering of †, and let @z† be its boundary as a hyperbolic space.

The manifoldN is the quotient of the unit tangent bundle T1 z† by the fundamental
group � of† (except in the case n D 2, the discussion of which is left to the reader).
The geodesic flowˆt is the projection of the geodesic flow ẑ t of T1 z†n. Let us recall
a few well-known properties of geodesic flows on negatively curved manifolds and
fix some notation:

(1) The orbit of a tangent vector .x; v/ in T1 z† by ẑ t is the set of points .xt ; vt /,
where xt is the unit speed geodesic starting at x with speed v, and vt is the unit
tangent to this geodesic at xt ,

(2) We denote by `C.x; v/ the future extremity of the geodesic tangent to .x; v/ in
the boundary @z†, and by `�.x; v/ the past extremity of this geodesic. The fibers
of the maps `C (resp. `�) are called the stable leaves (resp. unstable leaves).

(3) If two unit vectors .x; v/ and .x0; v0/ belong to the same stable leaf, then there
exists a time delay T such that the distance between ẑ tCT .x; v/ and ẑ t .x0; v0/
tends to 0 exponentially fast when t ! C1.

(4) A (unit speed) geodesic in z† is characterized by its two distinct extremities.
Hence, the map .`C; `�/ W T1 z† ! @z† � @z† induces an identification between
the orbit space of ẑ and @z† � @z† n D where D is the diagonal.

(5) Every element 	 of � is loxodromic: it admits one attractive fixed point xC
�

in @z† and one repelling fixed point x�
� . The geodesic with extremities xC

�

and x�
� is then the unique geodesic of z† preserved by 	 . Moreover, there

exists a real number T > 0 such that for every vector .x; v/ tangent to the
	 -invariant geodesic, and such that `C.x; v/ D xC

� , `�.x; v/ D x�
� we have

ẑ T .x; v/ D 	.x; v/.
(6) The set of attractive fixed points of elements of � is dense in @z†.
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(7) Periodic geodesics are dense inN , i.e., pairs .xC
� ; x

�
� / are dense in @z†�@z†nD.

(8) � acting on @z† is a convergence group: from any sequence .	n/.n2N/ in � we
can extract a subsequence .	nk

/.k2N/ for which there are two points xC, x� in
@z† such that

� .	nk
/.k2N/ converges uniformly on compact subsets of @z† n fx�g to the

constant map taking the value xC;
� .	�1

nk
/.k2N/ converges uniformly on compact subsets of @z† n fxCg to the

constant map taking the value x�.

5.2. Fuchsian representations areAnosov. In this 
we prove that Fuchsian repre-
sentations, i.e., the representations that admit a fixed point in the anti-de Sitter space
(cf. Definition 4.11) are .SO0.2; n/;Y/-Anosov. It should be noted that this state-
ment is actually a special case of Proposition 3.1 in [Lab06], but the proof we give has
the advantage to introduce notations and arguments that will be useful later. In this
setting, z† denotes the hyperbolic space Hn, and the group � is a lattice in SO0.1; n/.

5.2.1. De Sitter domains in Einn. For any point x in the anti-de Sitter space
AdSnC1, the associated de Sitter domain @U.x/ (cf. Remark 2.10) is the open subset
of the Einstein space Einn containing the limits of space-like geodesics starting at x.
A unit space-like vector v tangent to x satisfies hx jvi D 0 and q2;n.v/ D 1. Hence,
the vector xC v belongs to the isotropic cone Cn, and moreover it corresponds to the
limit `C.x; v/ in the Einstein space (see § 2.8). Hence the de Sitter domain @U.x/ is
nothing but the projection on the sphere S.R2;n/ of the set

Ux ´ fx C v j v 2 fxg?; q2;n.v/ D 1g � C :

An inverse map for this projection can be constructed from the mapping sx W R2;nn
fxg? ! R2;n which maps a point y 2 R2;n n fxg? to the unique collinear point
sx.y/ in Hx D fz j hz jxi D �1g, i.e., sx.y/ D �y=hy jxi. This map induces a
diffeomorphism Qsx W @U.x/ � Einn ! Ux .

5.2.2. Construction of the metric. For every choice of a point V in AdSnC1 such
that hx jV i D 0, we can define a unit time-like vector field �x;V on Ux as follows.
For any � 2 Ux , we let v D � �x be the corresponding tangent vector in TxAdSnC1

and set

�
x;V
�

´ V � hV jviv
hV jvi2 C 1

:

We construct a metric Ngx;V
�

on T�Ux by reversing the sign of �x;V
�

in the metric
induced by q2;n: for every tangent vector w in T�Ux , we let

Ngx;V
�
.w;w/ ´ q2;n.w;w/C 2hw j�x;V

�
i2:
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Finally, let us denote by gx;V the Riemannian metric on @U.x/ obtained by pulling-
back Ngx;V by the section Qsx introduced earlier.

Remarks 5.6. (1) In the terminology of [BB09] the metric gx;V is the Wick rotation
performed on the de Sitter metric of @U.x/ along the gradient of the time function
� ! hV j�i.

(2) The previous construction is SO0.2; n/-equivariant in the sense that

	@U.x/ D @U.	.x// and g
�x;�V

�.�/
.d	.w/; d	.w// D g

x;V
�
.w;w/

for any isometry 	 of R2;n.

5.2.3. The inclusion isAnosov. The group�0.�/preserves an elementV of AdSnC1

and the stable space-like hypersurface S.V ?/ \ AdSnC1, which is isometric to the
hyperbolic space Hn. This gives a natural inclusion T1Hn � E1AdSnC1. We define
the maps `�̇0

from the unit tangent bundle T1Hn to Einn by restriction of `˙. These

maps are both ẑ t -invariant and �-equivariant. Since Hn � AdSnC1 is space-like,
`C

�0
.x; v/ and `�

�0
.x; v/ are joined by a space-like geodesic, implying that the map

`�0
´ .`�

�0
; `C

�0
/ takes its value in Y � Einn � Einn.

Thus, in order to prove that the representation �0 is Anosov, we only need to check
the hyperbolicity property, as formulated in Remark 5.4, for the family of metrics
g.x;v/ ´ gx;V . This is the goal of the following proposition. We only prove the
expanding property at `C

�0
.x; v/, the contracting property at `�

�0
.x; v/ being similar.

Proposition 5.7. Let v be a unit tangent vector to a point x in Hn, and let � be

tangent to Einn at `C
�0
.x; v/. Then g

ẑ t
�0

.x;v/
.�; �/ D exp.2t/g.x;v/.�; �/.

Proof. Let .x; v/ be an element of T1Hn, and xt be the base-point of ẑ t .x; v/, i.e.,
xt D .cosh t /x C .sinh t /v. While the limit vector � D `C

�0
. ẑ t .x; v// does not

change in the Einstein universe, its representative element in Uxt � Cn � R2;n

varies with t . The exponential expanding behavior comes from the changes in the
derivative of the maps sxt .

The representative element of � D `C
�0
.x; v/ in Ux is xCv. The tangent vector �

is the image under the derivative of sx of a vectorw tangent to Ux \Cn. In particular,
we have hw jxi D hw jvi D 0. Its representative element in Uxt is the image wt of
w by the derivative of sxt at x C v, i.e.,

wt D dxCvsxt .w/ D .x C v/hw jxt i � whx C v jxt i
hx C v jxt i2

D 0C we�t

e�2t
D etw:

Since hV jvi D 0, the vector �xt ;V
�

is simply V , and does not depend on the
time t . The proposition follows by plugging the above equation in the definition of
the metric.
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5.3. Anosov representations are strictly GHC-regular. We now proceed to the
proof that Anosov representations are strictly GHC-regular, i.e., the first inclusion in
Theorem 1.2. In the following, we assume that� W � ! SO0.2; n/ is a .SO0.2; n/;Y/-
Anosov representation.

Lemma 5.8. The mapping `C
� (resp. `�

� ) is constant along the leaves of the stable

(resp. unstable) foliation of zN .

Proof. Follows from 5.1.4 (3) and from the compactness of N D �nT1 z†.

Therefore, the maps `�̇ induce �-equivariant maps Ǹ
�̇ W @z† ! Einn.

Proposition 5.9. Let ˛ be the map from T1 z† to itself which sends the vector .x; v/
to .x;�v/. Then `C

� D `�
� B ˛.

In order to prove this proposition we need a few lemmas.

Lemma 5.10. Let 	 be an element of � . Then ǸC
� .x

C
� / (resp. Ǹ�

� .x
�
� /) is an attractive

(resp. repelling) fixed point of �.	/.

Proof. This is a general fact for Anosov representations. See for example [Lab06],
Proposition 3.2.

Lemma 5.11. For every 	 in � , the image �.	/ admits exactly two attractive fixed
points in Einn opposite to each other.

Proof. LetxC be an attractive fixed point of�.	/ in Einn : there exists a neighborhood
U of xC in Einn such that for all y 2 U , �.	/ny ! xC. The convex hull of U in
S.R2;n/ satisfies the same property, but it is also a neighborhood of xC in S.R2;n/.
This follows from the fact that in any affine chart of S.R2;n/ around x, the Einstein
space is a one-sheeted hyperboloid. Hence xC is also an attractive fixed point in
the projective space S.R2;n/. The lemma follows since attractive fixed points of
projective automorphisms of P .R2;n/ are unique.

Proof of Proposition 5.9. It follows from Lemmas 5.10, 5.11 that `C
� .x; v/ D ˙`�

� B
˛.x; v/ when the geodesic tangent to .x; v/ is preserved by a non-trivial element of
� . Since periodic orbits are dense (item (7) in § 5.1.4) this equality holds everywhere.
By continuity of `˙ we have either the equality `C

� .x; v/ D `�
� B˛.x; v/ everywhere,

or `C
� .x; v/ D �`�

� B ˛.x; v/ everywhere.

Assume that the latter case holds. Since T1 z† is simply connected, we can lift `�̇

to maps Q̀
�̇ W T1 z† ! fEinnC1 � R � Sn�1. We write `�̇ D .��̇ ; x�̇ /. Then the

equality `C
� .x; v/ D �`�

� B˛.x; v/means that we can select the liftings Q̀
�̇ so that for

every .x; v/ in T1 z† we have x�
� .x; v/ D �xC

� .x; v/ and ��
� .x; v/ D �C

� .x; v/ � � .
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Fix an element .x0; v0/ in T1 z†. Denote l�.x0; v0/ byp0. For everyp in @z†nfp0g
there is an element .x; v/ of T1 z† such that `�.x; v/ D p and `C.x; v/ D `C.x0; v0/.
Then, since `�.x; v/ D .`C

� .x; v/; `
�
� .x; v// takes value in Y, there is a space-

like geodesic in eAdSnC1 joining Q̀�
� .p/ D .��

� .x; v/; x
�
� .x; v// to Q̀C

� .x0; v0/ D
.�C

� .x0; v0/; xC
� .x0; v0// In other words, we must have d.x�

� .x; v/; x
C
� .x0; v0// >

j��
� .x; v/��C

� .x0; v0/j. Since we have x�
� .x0; v0/ D �xC

� .x0; v0/ and ��
� .x0; v0/ D

�C
� .x0; v0/ � � we get

d.x�
� .x; v/; x

�
� .x0; v0// D � � d.x�

� .x; v/; x
C
� .x0; v0//

< � � j��
� .x; v/ � �C

� .x0; v0/j
D � � j��

� .x; v/ � ��
� .x0; v0/ � �j

	 ��
� .x; v/ � ��

� .x0; v0/:

This means that Q̀�
� .x; v/ lies in the strict future of Q̀�

� .x0; v0/. Incorporating the case

.x; v/ D .x0; v0/ it follows that for every pair of points p, q in the image zƒ�
� of Q̀�

� ,
p lies in the causal future of q. By symmetry, we obtain reversely that q lies in the
future of p. It follows that p D q, i.e., that Q̀�

� takes only one value.

Similarly, one proves that Q̀C
� takes only one value. Hence, for every .x; v/ in

T1 z†, `�
� .x; v/ is the opposite �`C

� .x; v/ of `C
� .x; v/. This is impossible since there

is a space-like geodesic between `�
� .x; v/ and `C

� .x; v/. This contradictions shows
as required that `C

� .x; v/ D `�
� B ˛.x; v/.

Corollary 5.12. The mappings `�̇ have the same image. They are homeomorphisms

between @z† and a topological acausal .n � 1/-sphere ƒ�.

Proof. The equality of the images is an immediate consequence of Proposition 5.9.
We only have to show that the mapping `C

� (for example) is injective. Let .x; v/

and .y; w/ be two points of T1 z†, belonging to two different stable leaves. Hence,
there exists a point .z; �/ which is in .x; v/’s stable leaf and .y; w/’s unstable one.
We thus have .`C

� .x; v/; `
�
� .˛.y;w/// D .`C

� .z; �//; `
�
� .z; �// � Y. In particular,

`C
� .x; v/ and `�

� .˛.y;w// D `C
� .y; w/ are joined by a space-like geodesic and must

be different.

Proof of the first inclusion in Theorem 1.2. According to the last corollary, �.�/ pre-
serves an acausal .n � 1/-sphere. According to Lemma 5.11, � is faithful. The only
point left is to prove that �.�/ is a discrete subgroup of SO0.2; n/.

Assume this is not the case. Then there exist a sequence .	n/.n2N/ in � such that
.�.	n//.n2N/ converges non-trivially to the identity. This sequence .	n/.n2N/ has to
escape from any compact subset of � . Hence, by item (8) of § 5.1.4 one can assume,
taking a subsequence if necessary, that there are two points xC, x� in @z† such that
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.	n/.n2N/ converges uniformly on compact subsets of @z†n fx�g to the constant map
taking the value xC. This is in contradiction with the equivariance of the map `C

� and
the fact that the sequence .�.	n//.n2N/ converges to the identity element.

6. Dynamical properties

From now on we consider a strictly GHC-regular representation � W � ! SO0.2; n/

with acausal limit set ƒ�, where � is the fundamental group of a negatively curved
Riemannian manifold N . In particular, and this will be essential for the proof, the
group � is hyperbolic in the sense of Gromov.

Let .	n/.n2N/ be a sequence in � escaping to infinity. It will be convenient to
consider the image sequence .�.	n//.n2N/ as a sequence in SO0.2; nC1/ through the
inclusion SO0.2; n/ � SO0.2; nC 1/ so that our dynamical study applies to EinnC1

and hence to the �.�/-invariant conformal copy of AdSnC1 inside EinnC1.
In [Fra05] (see also [BCDC08, § 7]), C. Frances studied the dynamical behavior

in EinnC1 of such a sequence .�.	n//.n2N/. Taking subsequences if necessary, there
are two possible behaviours (The ingredients of the proof are recalled afterwards):

(1) Balanced distortion: There are two light-like geodesics �C, �� in EinnC1,
called attracting and repelling photons, and two continuous mappings �C W EinnC1 n
�� ! �C and �� W EinnC1 n�C ! �� such that

� the fibers of �C (respectively ��) are past lightcones C�.x/ of points in ��
(respectively of points in �C),

� for every compact subset K � EinnC1 n ��, the sequence �.	n/ uniformly
converges on K to �C,

� for every compact subset K � EinnC1 n �C, the sequence �.	�1
n / uniformly

converges on K to ��.

(2) Unbalanced distortion: There are two points xC, x� in EinnC1, called attract-
ing and repelling poles, such that

� hxC jx�i 	 0,
� for every compact subset K of EinnC1 contained in �.x�/ ´ fx 2 EinnC1 j

hx jx�i < 0g (resp. C.x�/ ´ fx 2 EinnC1 j hx jx�i > 0g) the sequence
�.	n/ uniformly converges on K to the constant map xC (resp. �xC),

� for every compact subsetK of EinnC1 contained in�.xC/ ´ fx 2 EinnC1 j
hx jxCi < 0g (resp. C.xC/ ´ fx 2 EinnC1 j hx jxCi > 0g) the sequence
�.	�1

n / uniformly converges on K to the constant map x� (resp. �x�).

Remark 6.1. Our presentation differs from Frances’ formulation. Indeed, in [Fra05]
he defines the Einstein space as the projection of CnC1 in the projective space
P .RnC3/, and not the projection in the sphere of rays S.RnC3/. In other words,
EinnC1 is the double covering of the space he considers. Consequently, C. Frances
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had no need to distinguish future cones from past cones since they have the same
projection in P .RnC3/.

A nuisance of the option to consider the double covering is the non-uniqueness
of pairs of attracting/repelling poles. Indeed, the opposite pair .�xC;�x�/ is also
convenient. Moreover, if hx� jxCi D 0, we have four choices .˙xC;˙x�/ of pairs
of attracting/repelling poles.

Remark 6.2. Every element �.	n/ lies in the subgroup SO0.2; n/ of SO0.2; nC 1/,
i.e., it preserves the conformal embedding AdSnC1 � EinnC1 and its boundary
@AdSnC1 � Einn. In that situation, all the limit objects �˙, x˙ involved in the
various cases in the description of the asymptotic behavior of .�.	nk

//.k2N/ are
contained in this boundary. In particular, they avoid AdSnC1.

The dichotomy balanced/unbalanced is based on the Cartan decomposition of
SO0.2; nC 1/. More precisely, consider the following quadratic form on RnC3:

q2;nC1 ´ �4a1b1 � 4a2b2 C x2
1 C � � � C x2

n�1:

Observe that the spaces .RnC3;q2;nC1/ and .R2;nC1; q2;nC1/ are isometric, the isom-
etry being given by the map

.a1; b1;a2; b2; x1; : : : ; xn�1/

! ..a1 C b1/=2; .a2 C b2/=2; x1; : : : ; xn�1; .a1 � b1/=2; .a2 � b2/=2/:

Let A be the free abelian subgroup of rank 2 of SO0.2; n C 1/ made of elements
a.�; �/ whose matrix in the coordinates .a1; a2; b1; b2; x1; : : : ; xn�1/ is diagonal
with components exp.�/, exp.�/, exp.��/, exp.��/, 1; : : : ; 1. This defines a real
split Cartan subgroup of SO0.2; nC 1/, and we consider the Weyl chamber AC � A
containing the elements a.�; �/ such that 0 	 � 	 �. The Cartan decomposition
theorem ensures that every �.	n/ can be written in the form �.	n/ D knanln such that
an D a.�n; �n/ belongs to AC and kn, ln belong to the stabilizer K of the negative
definite 2-plane

fa1 D b1; a2 D b2; x1 D � � � D xn�1 D 0g:

Note that this stabilizer is a maximal compact subgroup. Observe that elements of K
are isometries of the Euclidean norm k.u; v; x1; : : : ; xn/k2

0 ´ u2Cv2Cx2
1 C� � �Cx2

n.
Since .�.	n//.n2N/ escapes from any compact set, the sequence .�n/n2N/ is not
bounded from above. By compactness of K there is a converging subsequence, i.e., a
subsequence .	nk

/.k2N/ such that knk
, lnk

converge to some elements k1, l1 of K,
and such that �nk

converges to C1, while the difference exp.�nk
��nk

/ converges
to a number � 2 Œ0; 1�.
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6.1. Balanced distortion. Balanced distortion occurs when � > 0. Denote by P�,
PC the codimension two subspaces fa1 D a2 D 0g and fb1 D b2 D 0g respectively.
Consider the following linear endomorphisms of RnC3:

…C
0 .a1; b1; a2; b2; x1; : : : ; xn�1/ D .a1; 0; �a2; 0; : : : ; 0/;

…�
0 .a1; b1; a2; b2; x1; : : : ; xn�1/ D .0; b1; 0; �b2; 0; : : : ; 0/:

They induce two maps �C
0 W S.RnC3/n S.P�/ and ��

0 W S.RnC3/n S.PC/. Clearly,
as a sequence of transformations of S.RnC3/, .ank

/.k2N/ converges uniformly on
compact subsets of S.RnC3/ n S.P�/ to the map induced by �C

0 , and a similar
remark applies to the inverse sequence .a�1

nk
/.k2N/. It follows that the sequence

.�.	nk
//.nk2N/ converges uniformly on compact subsets of S.RnC3/ n S.l�11 P�/ to

k1 B �C
0 B l1 and that .�.	�1

nk
//.nk2N/ converges uniformly on compact subsets of

S.RnC3/ n S.k1PC/ to l�11 B ��
0 B k�11 . The description of the dynamic in EinnC1

given above follows by observing that the intersections P˙ \ CnC1 are isotropic
2-planes.

6.2. Unbalanced distortion. This corresponds to the case � D 0. Identify the
sphere S.RnC3/ of rays with the k � k0-unit sphere. The attracting fixed points of the
action of an in S.RnC3/ are ˙xC

0 where xC
0 D .1; 0; : : : ; 0/, and the repelling fixed

points are ˙x�
0 where x�

0 D .0; 0; 1; 0; : : : ; 0/. Observe that the q2;nC1-orthogonal
of the vector xC

0 is the hyperplane fb1 D 0g. This hyperplane is also the orthogonal of
x�

0 for the Euclidean norm k�k0. Similarly, .x�
0 /

? D fb2 D 0g is the k�k0-orthogonal
of xC

0 .
For every " > 0 let C�

0 ."/ be the spherical ball in S.RnC3/ of radius �=2 � "

centered at xC
0 . It can also be defined as the connected component containing xC

0 of
the complement in S.RnC3/ of the "-neighborhood of .x�

0 /
?.

Every vector in RnC3 splits as a sum rxC
0 Cy with y in .x�

0 /
?. Under the action

of a.�n; �n/ the component rxC
0 is multiplied by exp.�n/ whereas the norm of the

component y is multiplied by at most exp.�n/. One easily obtains:

Lemma 6.3. Let a.�n; �n/ be a sequence in AC with no balanced distortion. For
any " > 0 and any � > 0 there is N > 0 such that, for every n > N , the restriction
of a.�n; �n/ to C�

0 ."/ is �-Lipschitz, with image contained in CC
0 .� � �/.

The description of the dynamic of unbalanced converging subsequences on EinnC1

given above follows easily. The attracting pole xC is simply the image of xC
0 by k1,

and the repelling pole is x� D l�11 x�
0 . We entered in such detail that the next lemma

is now obvious. Consider the hemisphere D� D fx 2 S.RnC3/ j hx jx�i < 0g.
For every " > 0 let C�."/ be the set of points in D� at distance at least " from
.x�/? \ S.RnC3/. Since kn, ln are isometries for k � k0, we have:
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Lemma 6.4. For any " > 0 and any � > 0 there is N > 0 such that, for every
k > N , the restriction of �.	nk

/ to C�."/ is �-Lipschitz, with image contained in the
ball centered at xC and of radius �.

The statement we actually need is:

Corollary 6.5. Assume that xC belongs to �.	nk
/D� for k sufficiently large. Then

the differential at xC of the inverse of �.	nk
/, as a transformation of the unit sphere

S.R2;nC1/, expands all the vectors tangent to the sphere at xC by at least a factor
�k such that �k ! C1 when k ! C1.

Balanced distortion is the typical behavior of converging subsequences
.�.	nk

//.k2N/ when �.�/ acts properly discontinuously on AdSnC1. But our sit-
uation here is different: by hypothesis, the group �.�/ preserves an acausal limit set
ƒ� which is not purely light-like since E.ƒ�/ ¤ ; (Lemma 3.6).

Proposition 6.6. No sequence in �.�/ has balanced distortion.

Proof. Assume, on the contrary, that some sequence .�.	n//.n2N/ has balanced dis-
tortion. Denote by �˙ the repelling and attracting photons. Since ƒ� is an acausal
topological sphere, it intersects�C at an unique point xC Sinceƒ� is �.�/-invariant,
the image by �C of ƒ� n �� is xC. The fibers of �C are past cones of elements
of ��. Hence, ƒ� n �� is contained in the past cone C�.xC/ Since �� \ ƒ� is
a compact embedded segment, ƒ� n �� is dense in ƒ� (this argument is correct
when the dimension of ƒ� is � 2. For the case where ƒ� is a topological circle, see
[Mes07], [ABBC07], or [BBZ07], § 6.2). Hence ƒ� is contained in C�.xC/. It is
impossible since ƒ� is not purely light-like.

Remark 6.7. The ambiguity in the definition of pairs of attracting/repelling poles,
mentioned in Remark 6.1, can be removed for GHC-regular representations by selec-
tion the poles that belong to ƒ�. Indeed:

ƒ� contains an attracting pole. Since it is not contained in a cone C.˙x�/, ƒ�

intersects C.x�/ or �.x�/, and the �.	n/-orbit of a point in this intersection ac-
cumulates in ˙xC, which therefore belongs toƒ�. Similarly,ƒ� contains a repelling
pole.

ƒ� contains one and only one attracting pole. For xC and �xC cannot both
belong to ƒ� since ƒ� is not purely light-like. Similarly, ƒ� contains one and only
one repelling pole.

Observe that the condition hx� jxCi 	 0 is fulfilled since ƒ� is achronal.

7. Convex hull of GHC-representations

7.1. Metric on the convex hull. In the sequel we need to define a �.�/-metric on
Conv.ƒ�/. Since the action is cocompact, all these metrics are quasi-isometric to
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each other (see § 7.3) and the choice is not important. However, in order to sustain
our argumentation, we choose a specific metric.

Let be a bounded open domain in P .Rn/, i.e., an open domain contained in an
affine chart and such that the closure x in this affine chart is compact. The Hilbert
distance between two points x, y in  is

dH .x; y/ ´ log.a; b; x; y/;

where a, b are the two intersections between @ and the projective line containing
x and y, and where .a; b; x; y/ is the cross-ratio. This is a distance function, and the
associated metric is proper, geodesic, and every projective transformation preserving
 preserves the Hilbert distance of points. Moreover, the geodesics for this metrics
are intersections between projective lines and  (see [BK53]).

The interior of the convex hull Conv.ƒ�/ is a bounded open domain, hence admits
a well-defined �.�/-invariant Hilbert metric. However, in the sequel we will need
metrics defined on Conv.ƒ�/ n ƒ� and not only on its interior. Hence we have to
enlarge Conv.ƒ�/ to another convex domain, still bounded and �.�/-invariant, but
containing the boundaries zS�̇ .

A suitable solution is to consider, for " > 0 small enough, the domain Conv.ƒ�/"
in AdSnC1 made of points x such that every causal curve in AdSnC1 joining x to
an element of Conv.ƒ�/ is of Lorentzian length 	 ". It follows quite easily from
the compactness of �.�/n Conv.ƒ�/ that for " small enough Conv.ƒ�/" is contained
in E.ƒ�/. The proof that Conv.ƒ�/" is still convex is straightforward, we refer to
[BBZ07], Proposition 6.31, for a proof formulated in dimension 2C 1, but valid in
any dimension. Observe also that Conv.ƒ�/" is still bounded, and that its interior
contains Conv.ƒ�/ nƒ�.

In the sequel, we fix, once for all, " and denote by dH the restriction to Conv.ƒ�/

of the Hilbert metric of Conv.ƒ�/".

Remark 7.1. If �a; bŒ is a space-like geodesic joining two points in Einn, then for any
x,y in �a; bŒ theAdS-length of the piece of geodesic betweenx andy is log.a; b; x; y/.
This is a generalization of the well-known fact that the Hilbert metric on the Klein
model of the hyperbolic space is isometric to the hyperbolic metric, see e.g. [Sal99],
Theorem 2.2.1.11. It follows that in the case where a, b lies on ƒ� this length is the
Hilbert distance dH .x; y/.

7.2. Dirichlet domains. If � acts freely and properly discontinuously on a proper
complete metric space X , there is a well-known way to construct a fundamental
domain of its action: the Dirichlet domain (see [Rat06], pp. 243–245). Here the
action we consider does not preserve a Riemannian metric, but the construction of
Dirichlet domain extends easily to our situation:

Definition 7.2. Fix an element x0 of Conv.ƒ�/. For every 	 in � , let D.	/ be the
domain fx 2 E.ƒ�/ j hx jx0i > hx j�.	/x0ig, considering E.ƒ�/ as a subset of
AdSnC1 � R2;n). The Dirichlet domain D.�/ is the intersection

T
�2� D.	/.
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Remark 7.3. Since the quotientM is globally hyperbolic, it admits no closed causal
curve. Thus x0 and �.	/x0 are not causally related: the q2;n-norm of .�.	/x0 � x0/

is positive. The domain D.	/ is the interior of the intersection between E.ƒ�/ and
the half AdS-space H�.�.	/x0 � x0/.

Lemma 7.4. The complements H.	/ D E.ƒ�/ nD.	/ form a locally finite family
of subsets of E.ƒ�/.

Proof. Assume by contradiction that a compact set K of E.ƒ�/ intersects infinitely
many such sets .H.	n//n�0. According to Proposition 6.6 and Remark 6.7 we can
assume, taking a subsequence if necessary, that the map induced in the Klein model
by �.	�1

n / converges uniformly on K to a point x� in ƒ�.
On the other hand, there is a sequence of points .xn/.n2N/ in K, converging to a

point x, and such that

hxn jx0i 	 hxn j�.	n/x0i D h�.	�1
n /xn jx0i

for everyn. Since the�.	�1
n /xn has q2;n-norm �1, the convergence in the Klein model

towards x� means that for some sequence �n ! 0 the �n�.	
�1
n /.xn/ converges to a

representant Ox� in Cn of x�. Hence

hxn jx0i 	 1
�n

hx0 j�n�.	
�1
n /xni:

The left term converges to hx jx0i, and since 1
�n

converges to C1 and
hx0 j�n�.	

�1
n /x0i converges to the negative number hx0 j Ox�i, the right term con-

verges to �1. This is a contradiction.

A first corollary of this lemma is that D.�/ is open, and its closure Cl.D.�// is
the intersection of the closures of the D.	/.

Lemma 7.5. The �-iterates of Cl.D.�// cover E.ƒ�/, i.e.,

E.ƒ�/ D; S
�2�

�.	/Cl.D.�//:

Proof. Let x 2 E.ƒ�/; consider the map � W � ! R defined by �.	/ D hx j�.	/x0i.
If there is a sequence 	n such that �.	n/ increases, the argument used in the proof
above with the constant sequence xn D x leads to a contradiction. Hence � attains
its maximum at some 	0, i.e., h�.	0/x0 jxi � h�.	/x0 jxi for every 	 in � . It follows
that �.	0/

�1x belongs to Cl.D.�//.

Lemma 7.6. The iterates �.	/D.�/ are disjoint from each other.

Proof. If x lies in �.	/D.�/, then for every h in �.�/ n �.	/ we have

hx j�.	/x0i > hx jhx0i:
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If moreover x lies in �.	 0/D.�/ with �.	 0/ ¤ �.	/ we have

hx j�.	 0/x0i > hx j�.	/x0i:
We obtain a contradiction to the above in the case h D �.	 0/.

The two lemmas above show that Cl.D.�// is a fundamental domain for the action
of �.�/ onE.ƒ�/. From now on we restrict to the intersection Cl.D.�//\Conv.ƒ�/

and denote it by NDconv.�/. Since the quotientC.M/ D �.�/n Conv.ƒ�/ is compact,
we have:

Proposition 7.7. NDconv.�/ is a compact fundamental domain for the action of �.�/
on Conv.ƒ�/.

This compactness property implies that NDconv.�/ is the intersection between the
convex hull and a finite-sided convex polyhedron. Hence NDconv.�/ itself is also
convex.

7.3. Quasi-isometry between the group and the convex hull. A map f W X ! X 0
between two metric spaces .X; d/, .X 0; d 0/ is a quasi-isometry if there exist a > 0,
b > 0 such that

.1=a/d.x; y/ � b < d 0.f .x/; f .y// < ad.x; y/C b;

and such that any point in X 0 is at distance at most b from the image of f .
Now consider the set S of elements 	 of � such that the intersection between

�.	/ NDconv.�/ and NDconv.�/ is non-empty. According to Lemma 7.4, this set is finite,
and according to Lemmas 7.5, 7.6 it is a generating set of � . We consider the Cayley
graph .�S ; dS /, i.e., the simplicial metric space having for vertices the elements of
� , and where two vertices 	 , 	 0 are connected by an edge of length 1 if and only if
	 0	�1 lies in S .

Since � acts cocompactly on Conv.ƒ�/, the map

O| W .�S ; dS / ! .Conv.ƒ�/; d
H /

that associates to any vertex	 the element�.	/x0 of�.	/ NDconv.�/ is a quasi-isometry.
Recall that the group � we consider is Gromov-hyperbolic. For the notions

and properties of hyperbolic spaces or groups, we refer to [Gro], [GdLHC90]. By
definition, the Gromov boundary of a hyperbolic geodesic space .X; d/ is the space of
complete geodesic rays modulo the equivalence relation identifying two rays staying
at bounded distance one from the other. Any quasi-isometry between hyperbolic
spaces extends as a homeomorphism between their Gromov boundary: the image by
a quasi-isometry of a geodesic ray is quasi-geodesic, i.e., a map c W Œ0;C1Œ! X

such that
1=ajt � sj � b 	 d.c.t/; c.s// 	 ajs � t j C b
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for some a; b > 0. Moreover, for every a; b > 0, there is a constant D such
that for every .a; b/-quasi-geodesic ray c W Œ0;C1Œ! X there is a geodesic ray
c0 W Œ0;C1Œ! X such that, for every t , the distance c.t/ to the image of c0 is less
thanD, and the distance of c0.t/ to the image of c is less thanD. We say that c is at
bounded distance 	 D from c0.

It follows that the quasi-isometry between�S and z† extends to a homeomorphism
between @� and the conformal sphere @z†.

Proposition 7.8. The map O| extends as a homeomorphism | between the Gromov
boundary @� � @z† and the limit set ƒ�.

Proof. Let .	n/.n2N/ be the sequence of vertices of�S visited by a complete geodesic
ray r0 in .�S ; dS /. According to the above discussion, there exists a constantD � 0

such that the image O|.r0/ is at bounded dH -distance D from a geodesic ray in
.Conv.ƒ�/; d

H /, i.e., a projective segment Œx; yCŒ where x lies in Conv.ƒ�/ and
yC an element in @Conv.ƒ�/". Since this geodesic ray, of infinite dH -length, is
contained in Conv.ƒ�/ the limit point yC has to lie in ƒ�.

On the other hand, according to Proposition 6.6 every subsequence of .	n/.n2N/

admits a subsequence .	nk
/.k2N/ with mixed or bounded distortion: there is an

attracting pole xC in ƒ� such that .�.	nk
//.k2N/ converges uniformly on compact

subsets of E.ƒ�/ to the constant map xC. In particular, xk D O|.	nk
/ D �.	nk

/.x0/

converges to xC.
If xC ¤ yC then �xC; yCŒ is a complete geodesic in .Conv.ƒ�/; d

H / of infinite
length. Hence there is a complete geodesic c in �S such that O|.c/ is a quasi-geodesic
at bounded distance from �xC; yCŒ. Therefore the geodesic ray r0 alternatively ap-
proximates both ends of c. This is not possible, since these ends are distinct and a
geodesic ray admits only one accumulation point in @� .

Therefore xC D yC. It follows that xC does not depend on the subsequence,
and that yC is the extremity of any dH -geodesic ray at bounded distance from O|.r0/.
Hence the map | W Œr0� 2 @� ! xC 2 ƒ� is well defined.

We now prove the continuity of | . Let V be a neighborhood of xC in ƒ�. Let
U be a neighborhood of xC in EinnC1 disjoint from x0, such that U \ƒ� � V and
that U \ AdSnC1 is convex. Finally, let HC.v/ be a convex cap contained in U such
that xC is in the interior of the topological disk HC.v/\ @Conv.ƒ�/. The geodesic
segment Œx0; x

CŒ crosses S.v/ at some point x1. Let x2 be another point of that
segment sufficiently close to xC so that the Hilbert distance between x2 and H�.v/ is
bigger that 2D, where D is the constant such that for every geodesic ray in �S there
is a dH -geodesic in Conv.ƒ�/ at uniform distance D from O|.r/.

The point x2 is at distance D from an element �.	k/x0 of O|.r0/. Let W be the
neighborhood of Œr0�made of equivalence classes Œr� of geodesic rays r starting from
the identity and containing 	k . Then, O|.r/ is at bounded distanceD from the geodesic
segment Œx0; |.Œr�/Œ. Hence Œx0; |.Œr�/Œ contains a point y2 at distance 	 D from
�.	k/x0, hence at distance 	 2D from x2. According to our choice of x2, this point
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y2 lies on the same side of the wall S.v/ as x2, i.e., in HC.v/. Hence Œx0; |.Œr�/Œ

crosses S.v/ before reaching |.Œr�/. Since U is convex, it follows that |.Œr�/ lies in
U , hence, in V . The continuity of O| is proved.

If Œr� and Œr 0� are two distinct elements in @� , there exists a complete geodesic
c W R ! � asymptotic to r near �1 and to r 0 near C1. The quasi-geodesic O|.c/
is at bounded distance from a geodesic �|.Œr�/; |.Œr 0�/Œ in Conv.ƒ�/. It follows that
|.Œr�/ ¤ |.Œr 0�/, and the map is injective.

Finally, for any x in ƒ�, the dH -geodesic ray Œx0; xŒ is at bounded distance
from the image by O| of a quasi-geodesic ray in �S , hence from the image by O| of a
geodesic ray. It follows that | is onto. Since @� is compact, the bijective map | is
an homeomorphism. The proposition is proved.

Remark 7.9. It was convenient for the proof above to consider .�S ; dS /. But this
metric space is quasi-isometric in a �-equivariant way to z† and also T1 z†. Hence, a
corollary of Proposition 7.8 is that any quasi-isometry O|c W T1 z† ! Conv.ƒ�/ extends
as a homeomorphism |c between the Gromov boundary @T1 z† and ƒ�.

7.4. The geodesic flow of the GHC-regular spacetime

Definition 7.10. The non-wandering subset, denoted by N .ƒ�/, is the subset of
E1AdSnC1 made of vectors .x; v/ such that `˙.x; v/ lie in ƒ�. The geodesic flow
on N .ƒ�/ is the flow ẑ t

N
defined by ẑ t

N
.x; v/ D .xt ; vt /, where xt is the point on

the geodesic tangent to .x; v/ at distance t (along the geodesic) from x, and vt the
vector tangent at xt to this geodesic.

This definition is �.�/-equivariant, and we denote by N .�/ the quotient of N .ƒ�/

by �.�/ and ˆt
N

the flow on N .�/ induce by ẑ t
N

.

The projection of N .ƒ�/ in AdSnC1 is obviously contained in the convex hull
Conv.ƒ�/. Since `˙ is continuous, and since ƒ� and C.M/ are compact sets, the
quotient N .�/ is also compact.

Proposition 7.11. There is a �-equivariant homeomorphism f W T1 z† ! N .ƒ�/

mapping orbits of the geodesic flow ẑ t to orbits of ẑ t
N

.

Proof. The orbit space of ẑ t is @z† � @z† n D , whereas the orbit space of ẑ t
N

is
ƒ� �ƒ� n D (where D denotes the diagonal in both cases). Moreover, the quotient
maps pˆ W T1 z† ! @z† � @z† n D and pN W N .ƒ�/ ! ƒ� � ƒ� n D are locally
trivial R-fibrations. By Proposition 7.8, there is an equivariant homeomorphism |�|
between the orbit spaces; the question is to lift this homeomorphism in a�-equivariant
way to a map f so that

pN B f D .| � |/ B pˆ:

The way to perform such a lift is quite well known. Take a finite collection
.Ti /1�i�l of small transversals to ẑ t in T1 z† so that for any p in T1 z† there is a
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positive real number t in � � 1;C1Œ such that ˆt .p/ lies on 	Ti for some 	 in � .
Observe that such a family is locally finite: given x, there are only finitely many
	 fulfilling this condition. Now, since pN is a fibration, and if the Ti are chosen
sufficiently small, for every i , the restriction of .| � |/ B pˆ to Ti lifts to a map
fi W Ti ! N .ƒ�/ such that on Ti we have

pN B fi D .| � |/ B pˆ:

For every p in T1 z†, for every triple ˛ D .i; 	; ti / with �1 	 ti 	 1 such that
ẑ t

i .p/ lies in 	Ti define x˛.p/ D �.	/fi . ẑ ti .p//. All these points lie on the same
ẑ

N -orbit. Now select a partition of unity .fi /1�i�l/ on N D �nT1 z† subordinate
to the covering .Ui /1�i�l/ where Ui D fˆt .p/ j �1 < t < 1; p 2 Tig. It associates
to every x˛ a weight, namely the value of fi at the projection in N of p. Define
f.p/ as the barycenter of x˛ with respect to these weights. It defines a continuous
�-equivariant map f mapping orbits of ẑ t into orbits of ẑ t

N
. Now it follows from

the hyperbolicity of z† that a diffusion process along the orbits transform this map to
another map, that we still denote f , which is injective along the orbits (see [Ghy84],
[Gro00]). This map obviously satisfies the condition pN B f D .| � |/ B pˆ and is
�-equivariant. It follows that it is injective. An homological argument ensures that
it is a homeomorphism.

We can now improve the content of Proposition 7.8.

Proposition 7.12. For any complete geodesic ray Œx0; x
CŒ in Conv.ƒ�/ there is a

sequence .	n/.n�1/ in � and a convex cap HC such that

(1) the convex caps HC
n ´ �.	n/H

C shrink uniformly to xC,

(2) the repelling pole x� belongs to d� ´ @Conv.ƒ�/ \ H�,

(3) the attracting pole xC belongs to every dC
n ´ �.	n/d

C. Here by dC we mean
@Conv.ƒ�/ \ HC.

Proof. For every x in Œx0; x
CŒ, let v.x/ be the velocity, i.e., the unit vector tangent to

Œx0; x
CŒ and oriented towards xC. Since N .�/ is compact, the ˆt

N
-orbit of the pro-

jection of .x0; v0/ (where v0 D v.x0/) admits an accumulation point. Let .x1; v1/
be a lifting in N .ƒ�/ of this accumulation point, and let HC be a convex cap such that
the wall S intersects Œx0; xCŒ and such that the final extremity `C.x1; v1/ lies in the
interior of dC. Fix also a positive real number ", and letW be a small neighborhood
of .x1; v1/ in N .ƒ�/ made of points of the form ẑ t

N
.y; w/ where �" < t < ",

y lies in S, and the tangent vector w points to the direction of HC, i.e., the final
extremity of the ẑ t

N
-orbit of .y; w/ lies in the interior of dC.

By construction, there is a sequence .	n/.n2N/ and a sequence of points xn in
Œx0; x

CŒ converging to the final extremity xC such that .xn; vn/ (where vn ´ v.xn/)
intersects �.	n/W . By replacing 	n by 	n	

�1
1 and .x1; v1/, HC and W by their

images by �.	1/ we can assume that 	1 is trivial and that x1 belongs to W . Hence
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xC D `C.x1; v1/ lies in the interior of dC. Moreover, �.	n/
�1vn points to the

direction of HC: it follows that xC belongs to every HC
n , and that x0 belongs to H�

n .
Up to a subsequence, we can assume that .�.	n//.n2N/ is a converging subse-

quence with unbalanced distortion. The �.	n/x1 stay at uniformly bounded dis-
tance form xn; it follows that they converge to xC and that xC is the attracting pole
of .�.	n//.n2N/. On the other hand, every H�

n contains x0: therefore, these convex
caps do not shrink to a point. The repelling pole x� lies in d�. Hence the positive
convex caps HC

n shrink to the attracting pole xC. The proposition is proved.

7.5. End of the proof of Theorem 1.2. Let `�̇ W T1 z† ! ƒ� be the composition of

| W @� ! ƒ� with `˙ W T1 z† ! @�: they together define a map .`C
� ; `

�
� / W T1 z† ! Y.

In order to achieve the proof of the main theorem we just have to construct the metrics
gp satisfying the hypothesis of Proposition 5.5.

Fix a �.�/-invariant future oriented time-like vector field V onE.ƒ�/. For every
x in Conv.ƒ�/ we simplify the notations by denoting simply hx the metric gx;V.x/

on @U.x/ � Einn introduced in § 5.2.2. We define gx as the metric h�.�/x0 where 	
is an element of � such that �.	/ NDconv.�/ contains x. This family of metrics has a
drawback: it is not continuous.

A way to construct a continuous family of metrics is the following. Let & W T1 z† !
zSC

� be the composition of the homeomorphism f of Proposition 7.11 with the pro-
jection � W N .ƒ�/ ! Conv.ƒ�/. This defines a �-invariant homeomorphism. For
p D .x; v/ in T1 z†, define a metric on the open neighborhood @U.&.p// of `C

� .p/

and `�
� .p/ by gp

0 ´ h&.p/. These metrics vary continuously with p.
Now the key observation is that checking the expanding property for gp

0 is the
same as checking this property for gp . Indeed:

Lemma 7.13. For every ı > 0, there is a constant Cı > 1 such that for every x and
y in Conv.ƒ�/ such that dH .x; y/ < ı, and for every vector w tangent to Einn at a
point of ƒ� the following inequalities hold:

C�1
ı hy.w;w/ 	 hx.w;w/ 	 Cıh

y.w;w/:

Sketch of proof. When y is fixed, for example, y D x0, the lemma follows from
the compactness of the dH -ball centered at x0 and the continuity of x ! hx . The
general case follows by �.�/-equivariance.

Hence, gp
0 and gp only differ by a factor Cı where ı is the diameter of NDconv.�/.

Therefore, the last step in the proof of Theorem 1.2 is:

Proposition 7.14. Let p D .x; v/ be an element of T1 z†. Then for every C > 0,
there is a time t > 0 such that for every tangent vector w to Einn at `C

� .p/ the

inequality g ẑ t .p/.w;w/ � Cg Qp.w;w/ holds.
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Proof. Let r0 D Œx0; x
CŒ be the �-projection of the image by f of the positive ẑ t -

orbit of p. Observe that xC D `C
� .p/. Let HC be the convex cap and .	n/.n�1/ be

the sequence obeying the conclusion of Proposition 7.12.
According to Lemma 7.13, it is enough to prove that for every C > 0 there is a

positive integer n such that the h�nx0-norm of any w in TxC
Einn is bounded from

below by its hx0-norm multiplied by C . Since the metrics are �.�/-equivariant, we
have to prove that

hx0.dxC�.	n/
�1w; dxC�.	n/

�1w/ � Chx0.w;w/:

This inequality only involves the metric hx0 . But since ƒ� is a compact subset
of @U.x0/, the hx0-norm of vectors tangent to points in ƒ� is equivalent to their
k � k0-norm; here by k � k0 we mean the restriction to Einn of the spherical metric on
S.R2;n/ induced by the Euclidean norm. Hence, to this end, we just have to check
that Corollary 6.5 applies, i.e., that the attracting pole xC belongs to �.	n/D

� (using
the notations introduced in § 7.4).

By item (2) of Proposition 7.12, the repelling pole x� belongs to d�. Hence, the
positive convex cap HC is at positive distance from .x�/? in the unit sphere S.R2;n/,
i.e., is contained inD" for " sufficiently small. Hence �.	n/D

� contains dC
n . By item

(3) of Proposition 7.12, xC lies in dC
n . Thus we obtain that xC belongs to �.	n/D

�,
as required.

8. Conclusion

8.1. Closure of the set of quasi-Fuchsian representations. In the Riemannian
context, the set of quasi-Fuchsian representations is not closed. But the situation
for quasi-Fuchsian representations in SO0.2; n/ of lattices in SO0.1; n/ is differ-
ent. While quasi-spheres in @HnC1 may degenerate, the limit sets of a sequence of
quasi-Fuchsian representations .�k/.k2N/ in SO0.2; n/ always converge, up to a sub-
sequence, to a closed achronal topological sphere ƒ in Einn. This follows from the
compactness of the set of 1-Lipschitz maps f W Sn ! S1. It is also easy to see that
if the representations �k converge to a representation �, the setƒ has to be preserved
by �.�/.

Question 8.1. Is ƒ acausal?

If this question has a positive answer, the limit representation � is quasi-Fuchsian –
faithfulness and discreteness follow from classical arguments. In other words, quasi-
Fuchsian representations would form an entire component of Rep.�;SO0.2; n//.

8.2. Convex cocompact lattices. Theorem 1.1 extends, mutatis mutandis, to the
case where � is a non-elementary convex cocompact subgroup of SO0.1; n/, i.e., a
discrete subgroup acting cocompactly on the convex hull in Hn of its limit set in
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@Hn (the non-elementary hypothesis meaning that we require that the cardinal of
this limit set is infinite). The definition of Anosov representations can be extended
in this context by considering as dynamical system .N;ˆt / not the entire quotient
�nT1Hn but the non-wandering subset of the geodesic flow in this quotient. This is
not anymore a manifold, but a compact lamination with a flow, namely the restriction
of the geodesic flow. The set of .SO0.2; n/;Y/-Anosov representations is open, and
it is still true that they correspond to faithful, discrete representations admitting as
limit set a closed acausal subset in Einn, but which now is not a topological sphere.

The main difference is that the associated domains E.ƒ�/ in AdSnC1 are not
globally hyperbolic. However, the action of �.�/ onE.ƒ�/ is still free, properly dis-
continuous and strongly causal, i.e., the quotient spacetime �.�/nE.ƒ�/ is strongly
causal. In dimension 2 C 1 (when n D 2) these spacetimes are the so-called BTZ
multi-black holes (see [BTZ92, Bar08a]).

8.3. Topology of Cauchy hypersurfaces of AdS manifolds

8.3.1. Existence of negatively curved Cauchy hypersurfaces. In Theorem 1.2, the
group � is assumed to be the fundamental group of negatively curved Riemannian
manifold. Actually, it is very likely that this hypothesis can be removed, i.e., that it is
automatically satisfied by GHC-regular representations. More precisely, the answer
to the following question is probably positive:

Question 8.2. Let � be a torsion-free group, and � W � ! SO0.2; n/ be a strictly
GHC-regular representation. Is there a �.�/-invariant smooth (i.e., C r with r � 2)
convex Cauchy hypersurface?

Here convexity means that the second fundamental form of the hypersurface is
positive or negative definite, the sign depending on the orientation conventions. By
the Gauss–Codazzi equations, since the ambient anti-de Sitter space has constant
sectional curvature �1, it follows that the induced metric on the hypersurface has
negative curvature (more precisely, they have curvature 	 1), and thus, � is the
fundamental group of a negatively curved Riemannian manifold.

Observe that we already have in hand two convex Cauchy hypersurfaces: the
boundary components S˙ of the convex core in the associated GHC spacetime.
Unfortunately these two hypersurfaces are not smooth: a possible way to give a
positive answer to the question above would be to approximate S˙ by smooth convex
hypersurfaces.

The question is more subtle that it could appear at first glance. The main task in
[BBZ07] was to give a positive answer to this question in dimension 2C 1.

8.3.2. Strictly GHC-representations are weakly Anosov. Even if we still do not
know the answer to Question 8.2, we can observe that � is indeed negatively curved,
but in a weak sense. Let � W � ! SO0.2; n/ be strictly GHC representation. Define
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the length of Lipschitz curves c W I ! zS˙ as the integral over I of the Lorentz-
ian norm of the tangent vector (defined almost everywhere), and then the distance
Qd˙.x; y/ between two points x, y in zS˙ as the infimum of the length of Lipschitz

curves joining x to y. It is not hard to see that Qd˙ is indeed a distance, endowing zS˙
with a length space structure.

Observe that . zS˙; Qd˙/ is not in general a Riemannian space, neither Finslerian.
However, this metric structure induces the manifold topology on zS˙, which admits a
compact quotient: it is therefore a complete, proper metric space. By the generalized
Hopf–Rinow Theorem ([BH99], Proposition I.3.7), . zS˙; Qd˙/ is geodesic: for any
two points x, y in zS˙, there always exists a curve realizing their distance.

Proposition 8.3. . zS˙; Qd˙/ is a complete CAT.�1/ space.

For definition of CAT.�1/ spaces, we refer to [BH99], §2.1, or [Bal95].

Proof. We only consider the upper convex boundary zS�, the case of zSC is similar
(or obtained by reversing the time orientation). According to the Cartan–Hadamard
Theorem (see e.g. [BH99], Theorem 4.1) being a CAT.�1/ space is a local property.
Since zS� is simply connected, we just have to prove that every point x admits a
neighborhood where the metric Qd� is of curvature 	 �1 (in the sense of [BH99],
Definition II.1.2).

In the Klein model zS� is locally the graph of a convex function from an open
domain of Rn into R. More precisely, there is a coordinate system .t; Nx1; : : : ; Nxn/,
�" < xi < ", �� < t < �, on a neighborhood U of x such that

� x has coordinates .0; : : : ; 0/,
� U \ zS� is the graph of a convex map  W � � "; "Œn!� � �; �Œ,
� ft D 0g is a support hyperplane for  ,
� every tangent vector with negative norm for �d�2Cdx2

1 C� � �Cdx2
n has negative

norm for the AdS metric.

Shrinking " if necessary, we moreover can assume that the gradient of has almost
everywhere dx2

1 C � � � C dx2
n-norm less than 1. By convolution, we obtain smooth

convex maps � which uniformly converge to when the parameter � > 0 converges
to 0. Moreover, the norm of their gradient is bounded from above by 1, it follows
that the graphs S� of  � are space-like. Finally, this uniform convergence implies
that for any Lipschitz curve c W I !�� "; "Œn, the AdS length of s ! .c.s/;  �.c.s//

uniformly converges to the AdS-length of s ! .c.s/;  .c.s//. Hence the graphs S� ,
equipped with their induced (Riemannian) length metric, converge in the Gromov–
Hausdorff topology to the restriction of Qd� toU \ zS� (cf. [BH99, Definition I.5.33]).

Since each S� is smooth and convex, as we already noticed, it has curvature 	 �1,
and is thus CAT.�1/. The proposition follows since Gromov–Hausdorff limits of
CAT.�1/ length spaces are CAT.�1/ spaces ([BH99], Theorem II.3.9).
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CAT.�1/ spaces enjoy many nice properties. For example, they are hyperbolic
in the sense of Gromov; hence the group � is Gromov hyperbolic. Furthermore:

Corollary 8.4 (Proposition II.2.2 in [BH99]). . zS˙; Qd˙/ is uniquely geodesic: given
two points x, y there is an unique geodesic joining them.

We therefore can define the geodesic flow of S˙, even if S˙ has no unit tangent
bundle.

Definition 8.5. Let zG˙ denote the space of complete unit speed geodesics of zS˙,
i.e., isometries c W R ! zS˙, endowed with the topology of uniform convergence on
compact subsets. The geodesic flow ẑ t˙ is the flow defined by

ẑ t˙.c/.s/ D c.s C t /:

The group �.�/ acts naturally, freely and properly discontinuously on zG˙. We denote
by G�̇ the quotient space, and by ˆt˙ the flow on G�̇ induced by ẑ t˙.

This flow is not differentiable but weakly (or topologically) Anosov: there are

two continuous �-invariant foliations zF s˙, zF u˙ on zG˙, invariant by the geodesic flow
such that for every pair p, q of points in the same leaf of zF s (respectively zF u) there
is a real number t0 such that the distance between ẑ tCt0˙ .p/ and ẑ t˙.q/ decreases
(respectively increases) exponentially with t . This claim follows quite easily from
the CAT.�1/ property; it is actually a general property of Gromov hyperbolic spaces
admitting compact quotients: see [Gro], § 8.3, and for more details, [Cha94], [Mat].
The fact that the spaces we consider are CAT.�1/ greatly simplifies the definition of
the geodesic flow.

It should be clear to the reader that the methods used in the present paper prove that
the strictly GHC-regular representation � satisfies the .SO0.2; n/;Y/-Anosov prop-
erty as defined in Remark 5.4 or appearing as hypothesis in Proposition 5.5; observe
that in these formulations the differential of the flow is not involved. The arguments
in § 5.3 still apply for this non-differentiable version of .SO0.2; n/;Y/-Anosov prop-
erty. In other words, we can state, with no more a priori restriction on the group
� , that GHC-regular representations with acausal limit sets are precisely weakly
.SO0.2; n/;Y/-Anosov representations. Moreover, we guess that weakly Anosov
representations form an open subset of Rep.�;G/: the differentiable setting could
probably be avoided through arguments in [Sul85]. For the pair .SO0.2; n/;Y/, it
follows from the discussion above and from the fact that GHC-regular representa-
tions form an open domain. This latter fact follows from arguments given in [Mes07],
which show that small deformations of holonomy representations of MGHC AdS-
spacetimes are still holonomy representations of MGHC spacetimes. The introduc-
tion of [Bon05] gives more details on this question.

Finally, as before, we can ask the question:
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Question 8.6. Is the space of (weakly) .SO0.2; n/;Y/-Anosov representations
closed?

As in the case where � is a lattice of SO0.1; n/, this essentially reduces to the
proof that the limit set of a sequence of .SO0.2; n/;Y/-Anosov representations is
acausal.

8.3.3. Classification of MGHC spacetimes of constant curvature �1. Actually,
we can even wonder if the following strong version of Question 8.2 is true:

Question 8.7. Let � W � ! SO0.2; n/ be a strictly GHC-representation. Is it a
quasi-Fuchsian representation, i.e., is � isomorphic to a lattice of SO0.1; n/?

If the answer to this question were positive, Theorem 1.1 would not merely be a
particular case of Theorem 1.2 but would correspond to the general case.

A natural way to find a positive answer to this question is to exhibit in the associated
MGHC spacetime a Cauchy hypersurface with constant Gauss curvature �1: one of
the main results of [BBZ] is precisely that such a Cauchy hypersurface exists in the
.2 C 1/-dimensional case. Of course, in this dimension it is only a matter to prove
that the genus of the Cauchy surfaces is � 2, which can be obtained with more
elementary arguments. However, this approach does not extends in higher dimension
(unlike most part of the content of [BBZ]).

Another way to give a positive answer would be to study the functional on
AnosY.�;SO0.2; n// associating to a representation the volume of the convex core in
the associated spacetime. Indeed, according to Lemma 3.13, this functional vanishes
only on Fuchsian representations.

Finally, it is easy to produce GHC-regular representations with non-acausal limit
set: let .p; q/ be a pair of positive integers such that p C q D n, and let �
be a cocompact lattice of SO0.1; p/ � SO0.1; q/. There is a natural inclusion of
SO0.1; p/ � SO0.1; q/ into SO0.2; n/ arising from the orthogonal splitting R2;n D
R1;p ˚ R1;p . The isotropic cone of R1;p (respectively R1;q) is contained in Cn and
its projection in Einn is the union of two space-like spheres ƒṗ � Sp�1 (respec-
tivelyƒq̇ � Sq�1). Every point inƒṗ is joined to every point inƒq̇ by a light-like
geodesic segment in Einn. Letƒ be the union of light-like geodesic segments joining
a point of ƒC

p to a point in ƒC
q and avoiding ƒ�

p [ƒ�
q . The proofs of the following

facts are left to the reader:

ƒ is a non-purely light-like achronal topological sphere.
The convex hull Conv.ƒ/ ofƒ in AdSnC1 coincide with the regular domainE.ƒ/.

The group � � SO0.1; p/ � SO0.1; q/ � SO0.2; n/ preserves the convex hull
Conv.ƒ/ D E.ƒ/, and the quotient spacetimeM.�/ D �nE.ƒ/ is MGH. Moreover,
it is spatially compact: indeed, the set of orthogonal sums uCv where u (respectively
v) is an element of R1;p such that q1;p.u/ D �1=2 (respectively an element of R1;q
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of q1;q-norm �1=2) admits two components in AdSnC1, one of which lies in E.ƒ/.
This component is a space-like hypersurface isometric to Hp �Hq and is�-invariant.
Its projection in the quotient M.ƒ/ is a compact space-like hypersurface, hence a
Cauchy hypersurface.

Remark 8.8. By the Margulis Superrigidity Theorem ([Mar91]), if p; q � 2, then
every � into SO0.2; n/ either has finite image, or is conjugate in SO0.2; n/ to the
inclusion � � SO0.1; p/ � SO0.1; q/ � SO0.2; n/. It follows that every MGHC
spacetime of constant curvature �1 with fundamental group isomorphic to a lattice
� in SO0.1; p/ � SO0.1; q/ is isometric to a spacetime M.�/ described above.

Remark 8.9. When n D 2, the only possibility is p D q D 1. This is the case of
torus universe (see [BBZ07], § 7, and [Car03], § 3.3).

Question 8.10. Let � W � ! SO0.2; n/ be a GHC-regular representation with non-
acausal limit set. Is� isomorphic to a lattice of some product SO0.1; p/�SO0.1; q/?

Our personal guess is that all the questions listed above admit a positive answer.

Conjecture 8.11. Every GHC-regular representation into SO0.2; n/ is either a quasi-
Fuchsian representation of a lattice in SO0.1; n/, or a representation of a lattice in
SO0.1; p/ � SO0.1; q/ with p C q D n, p � 1, q � 1.
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