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On the asymptotics of visible elements and homogeneous
equations in surface groups
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Abstract. Let F be a group whose abelianization is Zk , k � 2. An element of F is called
visible if its image in the abelianization is visible, that is, the greatest common divisor of its
coordinates is 1.

In this paper we compute three types of densities, annular, even and odd spherical, of
visible elements in surface groups. We then use our results to show that the probability of a
homogeneous equation in a surface group to have solutions is neither 0 nor 1, as the lengths of
the right- and left-hand side of the equation go to infinity.
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1. Introduction

Let F be a group whose abelianization is Zk , with k � 2. An element of F is
called visible with respect to a basis of Zk if its image in the abelianization is visible,
that is, the greatest common divisor of its coordinates is 1. Being visible is, in
fact, independent of the basis of Zk (see Definition 2.3), and we therefore omit the
references to the basis henceforth.

Let † be a compact connected orientable surface of genus r , r � 2. If † has
no boundary, then a presentation for the fundamental group of †, which we call
the surface group of genus r , is ha1; b1; : : : ; ar ; br j Œa1; b1� : : : Œar ; br �i. If † has
boundary, then the fundamental group of † is simply a free group of finite rank. For
a group G, a positive integer n, and a fixed generating set A, one defines the sphere
of radius n to be the set of elements in G of length n, with respect to A. Then the
spherical density of a set S of elements in G measures the proportion of elements
of length n in S in the sphere of radius n as n goes to infinity (see Section 2). The
annular density of a set S records the proportions of S in two successive spheres.

While the spherical density of visible elements does not exist for the groups we
consider, one can instead look at the ‘odd spherical density’ and ‘even spherical
density’ of visible elements of odd and even length, respectively. In this paper we
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compute the annular, odd and even spherical densities of visible elements in a class of
groups containing the surface groups of compact connected orientable surfaces, with
or without boundary. In [9] the annular density of visible elements was computed for
all free groups of finite rank ([9], Theorem A), and odd and even spherical density
values were also given for the free group of rank two ([9], Theorem 3.7). Since the
limits we obtain are different from 0 and from 1, this shows that visible elements form
a set of intermediate density in the groups we study. Intermediate density of sets in
groups has been displayed for the first time in [9] for visible and test elements. Then
Dunfield and Thurston ([6]) proved that for a random 2-generator one-relator group
the property that this group splits as a mapping torus of a free group automorphism
is ‘intermediate’. However, this tends to be a relatively rare behaviour for many
combinatorial and algebraic properties encountered in group theory and most of the
properties studied so far in the literature (see [10]) turn out to be negligible or generic,
that is, with density equal to 0 or 1, respectively. For example, in a finitely generated
free group the set of all powers is negligible, as is the set of primitive elements, any
subgroup of finite index or the union of all proper free factors ([1], [14]). On the other
hand, the set of all words whose symmetrizations satisfy theC 0.1

6
/ small cancellation

condition, or the set of words with nontrivial images in the abelianization are generic
([1], [14]).

We would also like to mention the results of [11], where densities of sets of
conjugacy classes in free and surface groups are investigated. More precisely, the
density considered in [11] is the asymptotic density of sets of root-free conjugacy
classes of hyperbolic elements in surface groups, and for free groups, the density
is similar to the annular density but records the proportion in two successive balls
instead of two successive spheres.

A consequence of our results is the fact that the solvability of homogeneous
equations in the class of groups we study is a non-negligible and non-generic property.
LetG be a finitely generated group,A a fixed generating set, andX D fX1; : : : ; Xng,
n � 1, a set of variables. An equation in variables X1; : : : ; Xn with coefficients
g1; : : : ; gmC1 in G is a formal expression given by

g1X
"1

i1
g2X

"2

i2
: : : X

"m

im
gmC1 D 1;

where m � 1, "j 2 f1;�1g for all 1 � j � m, and ij 2 f1; : : : ; ng. An equation
is homogeneous if the variables are on the left-hand side of the equation and the
constants are on the right-hand side of the equation,

X
"1

i1
X

"2

i2
: : : X

"m

im
D w; (1.1)

where w 2 G. We say that the equation (1.1) is a homogeneous equation of type
.m; jwjA/ or an .m; jwjA/-homogeneous equation, where jwjA denotes the length of
w with respect to A.

We will be interested in the asymptotic behavior of .m; jwjA/-homogeneous equa-
tions when G is a surface or a free group andm and jwjA go to infinity. Our study of
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the asymptotics of homogeneous equations was motivated by two related questions:
firstly, how often does a homogeneous equation in a free or surface group have so-
lutions, and secondly, how likely is it for two random words u and v in the group
to have that v is an endomorphic image of u? The second question asks what the
‘generic’ answer to the endomorphism problem in free groups is (see [5] for more on
the endomorphism problem) and was also inspired by the work of Kapovich, Schupp
and Shpilrain ([10]). They show that the probability of two elements u and v in Fk

to be in the same automorphic orbit is 0 as the lengths of u and v go to infinity. The
following paragraph clarifies the relation between the two questions.

Suppose that z.X1; : : : ; Xn/ is the word inX1; : : : ; Xn representing the left-hand
side of (1.1), i.e., z.X1; : : : ; Xn/ D X

"1

i1
X

"2

i2
: : : X

"m

im
. Let Fn be the free group of

rank n on generators x1; : : : ; xn. Notice that the equation (1.1) has solutions if and
only if there exists an homomorphism � W Fn ! G such that �.z.x1; : : : ; xn// D w,
where z is written in the generators x1; : : : ; xn. The following ratios quantify the
pairs of elements of the form .z; w/.

Definitions 1.1. Let F , G be countable groups and lF W F ! N and lG W G ! N
be length functions as defined in Definition 2.1.

(1) The .s; t/-mapping ratio e�.F;G; s; t/ is the ratio of the pairs of elements
.f; g/ 2 F � G such that lF .f / � s, lG.g/ � t and with the property that g is a
homomorphic image off among all pairs .f; g/ 2 F �G with lF .f / � s, lG.g/ � t ,
that is,

e�.F;G; s; t/

D ]f.f; g/ 2 F �G W lF .f / � s; lG.g/ � t; �.f / D g for some � 2 Hom.F;G/g
]f.f; g/ 2 F �G W lF .f / � s; lG.g/ � tg :

(2) The spherical .s; t/-mapping ratio e� .F;G; s; t/ is the ratio of the pairs of
elements .f; g/ 2 F �G such that lF .f / D s, lG.g/ D t and with the property that
g is a homomorphic image of f among all pairs .f; g/ 2 F � G with lF .f / D s,
lG.g/ D t , that is,

e� .F;G; s; t/

D ]f.f; g/ 2 F �G W lF .f / D s; lG.g/ D t; �.f / D g for some � 2 Hom.F;G/g
]f.f; g/ 2 F �G W lF .f / D s; lG.g/ D tg :

In Section 3 we will study the asymptotic behavior of the .s; t/-mapping ratio
e�.F;G; s; t/ for F and G free abelian groups with lG and lF being the restriction
of the k � kp norm, 1 � p � 1. We will show that the limit of e�.F;G; s; t/, as s
and t go to infinity, is neither 0 nor 1. The computation of the asymptotic behavior
of this ratio is based on the densities of visible elements in a free abelian group. In
Section 4 we study the annular, even and odd spherical densities of visible elements
in free and surface groups:
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Corollary 4.11. Let k � 2 and let F be a free group of rank k or a surface group of
genus k. LetA be the symmetric generating set of F , r the rank of the abelianization,
and V1 the set of visible elements in F . Then

(i) limm!1 �A.2m;V1/
�A.2m;F /

D 2r �2
.2r �1/�.r/

,

(ii) limm!1 �A.2m�1;V1/
�A.2m�1;F /

D 2r

.2r �1/�.r/
,

where �A.n; S/ is the number of elements of length n in the set S � F , and � is
Euler’s � function.

We obtain our main result in Theorem 4.10, which relates the densities of visible
points in surface and free groups with the densities in the abelianization. In Section 5
we study the asymptotic behavior of the spherical .s; t/-mapping ratio e� .F;G; s; t/

when F andG are free or surface groups. We exploit the connection of e� .F;G; s; t/

with e�.Fab; Gab; s; t/ to obtain upper and lower bounds for e� :

Theorem 5.1. LetGk andGn be free or surface groups and letA, B be their respec-
tive generating sets. Let r.k/ and r.n/ denote the ranks of the abelianization of Gk

andGn, respectively. Let "; ı 2 f0; 1g and � be Euler’s � function. Then the following
inequalities hold:

2r.n/ � 2.1 � "/
.2r.n/ � 1/�.r.n// � lim inf

s!1;t!1 e� .Gn; Gk; 2s C "; 2t C ı/;

lim sup
s!1;t!1

e� .Gn; Gk; 2s C "; 2t C ı/

� 1 � 2r.k/ � 2.1 � ı/
.2r.k/ � 1/�.r.k//

�
1 � 2r.n/ � 2.1 � "/

.2r.n/ � 1/�.r.n//
�
:

As a corollary, we obtain that the probability of an .s; t/-homogeneous equation in
a surface group to be satisfiable is neither 0 nor 1 as s, t go to infinity (Corollary 5.2).

The results developed in this paper lend themselves to generalizations. For exam-
ple, one can extend Theorem 4.10 to those strongly Markov groups whose abelian-
ization is free abelian by using Sharp’s Corollary 2.1 [13]. One may try to generalize
our results to word-hyperbolic groups, which are strongly Markov. However, they
could have finite abelianization, and hence no homomorphism onto Z. In [3], Cale-
gari and Fujiwara deal with this situation by considering quasimorphisms to Z which
are, informally, homomorphisms up to bounded error. The central limit theorem of
Calegary and Fujiwara may be used to compute densities in hyperbolic groups of sets
related to these quasimorphisms.

The asymptotic density of satisfiable homogeneous and one-variable equations
in free groups has recently been considered by B. Gilman, A. Miasnikov and V. Ro-
man’kov in [7], who also study the asymptotic behavior of equations in free abelian
and free nilpotent groups in [8].
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2. Notation

Definitions 2.1. Let F be a finitely generated group, and let A be a finite generating
set of F . If w 2 F , then jwjA denotes the length of the shortest word in A˙1

representing w.
For 1 � p � 1, let lp W Zr ! R denote the restriction to Zr of the k � kp-norm

from Rr .
A length function for a set S is a function l W S ! N such that, for every n 2 N,

the set l�1.f0; 1; 2; : : : ; ng/ is finite. The functions j � jA and lp are examples of length
functions in F and Zr .

Definitions 2.2. LetF be a group (or more generally, a set) and lF W F ! N a length
function.

(1) Let S � F and n � 0. Then

�lF
.n; S/ D ]fx 2 S W lF .x/ � ng

and

�lF
.n; S/ D ]fx 2 S W lF .x/ D ng

denote the cardinality of the intersection of S with the ball and sphere of radius n in
F , respectively.

(2) Let S � F . The asymptotic density of S in F is

N�lF
.S/ D lim sup

n!1
�lF

.n; S/

�lF
.n; F /

:

If the limit exists, then we denote it by �lF
.S/ and we call it the strict asymptotic

density.
(3) Let S � F . The spherical density of S in F is

N�lF
.S/ D lim sup

n!1
�lF

.n; S/

�lF
.n; F /

:

If the limit exists, then we denote it by �lF
.S/ and we call it the strict spherical

density.
(4) Let S � F . The annular density of S in F is

N�lF
.S/ D lim sup

n!1
1

2

�
]fx 2 S W lF .x/ D n � 1g
]fx 2 F W lF .x/ D n � 1g C ]fx 2 S W lF .x/ D ng

]fx 2 F W lF .x/ D ng
�

If the limit exists, then we denote it by �lF
.S/ and we call it the strict annular

density.

When F is a group, finitely generated by A, and lF D j � jA, the word length, we
will just write �A, �A and �A. Similarly if F D Zr and lF D lp , the restriction of the
p-norm, we will just write �p , �p and �p .
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Definitions 2.3. For a nonzero element z 2 Zr we denote by gcd.z/ the greatest
common divisor of its coordinates. If z D .0; : : : ; 0/ 2 Zr we set gcd.z/ D 1.
Note that gcd is invariant under the action of Aut.Zr/ D SL.r;Z/. Hence, for all
z 2 Zr , gcd.z/ does not depend on the basis of Zr .

An element of z 2 Zr is called visible if gcd.z/ D 1. If gcd.z/ D t , then we call
the element t -visible.

We denote by Fab the abelianization of the group F , that is, Fab D F=ŒF; F �.
Suppose that Fab is a free abelian group of finite rank and let ab W F ! Fab be the
abelianization map. We say that an element f 2 F is visible (resp. t -visible) if
ab.f / is visible (resp. t -visible) in Fab.

3. Densities of visible elements in Zr

Let r � 2 be an integer and let Ut denote the set of all t -visible elements in Zr . For
a complex number k, recall that the Riemann zeta function is given by

�.k/ D
1X

nD1

1

nk
; Re.k/ > 1:

A classical result in number theory provides the value for the strict asymptotic
density of t -visible elements in Zr .

Proposition 3.1 ([4]). For any integer t � 1,

�1.Ut / D 1

t r�.r/
:

By [9], Theorem A (1), one can substitute �1 by �p for the sets Ut :

Proposition 3.2 ([9], Theorem A (1)). For any integer t � 1 and any p, 1 � p � 1,

�p.Ut / D �1.Ut /:

The following lemma shows that homomorphisms between groups with free
abelian abelianization (of finite rank) send t -visible elements to .tm/-visible ele-
ments, where t , m are positive integers. The second part of the lemma shows that a
visible element in a group can be mapped to any element via a homomorphism.

Lemma 3.3. Let F , G be groups whose abelianization is free abelian of finite rank.
Let f 2 F .

(i) Let � W F ! G be a group homomorphism. Then gcd.ab.�.f /// is a multiple
of gcd.ab.f //. In particular, if gcd.ab.f // D 1, then gcd.ab.�.f /// D 1.
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(ii) If, moreover gcd.ab.f // D 1, then for any element g in G there exists an
homomorphism � W F ! G such that �.f / D g.

Proof. Let n be the rank of Fab and let fe1; : : : ; eng be a basis of Fab. For f 2 Fab,
we denote by .f /i the i th coordinate of f with respect to the basis. That is, f D
.f /1e1 C � � � C .f /nen.

(i) Let g D �.f /. Then .ab.g//j D Pn
iD1.ab.f //i .�.ei //j .

Thus each .ab.g//j is a multiple of gcd.ab.f // since each .ab.f //i is a multiple
of gcd.ab.f //.

(ii) Since gcd.ab.f // D 1, gcd..ab.f //1; : : : ; .ab.f //n/ D 1 and therefore there
exist integers p1; : : : ; pn such that

Pn
iD1.ab.f //ipi D 1. Consider the homomor-

phism  1 W Fab ! hx j i which sends ei to xpi for all 1 � i � n. It follows that
 1.ab.f // D x. Let  2 W hx j i ! G be any homomorphism sending x to g. This
shows that the composition of ab,  1 and  2 produces a homomorphism � W F ! G

such that �.f / D g.

Corollary 3.4. Let Zn and Zk be the free abelian groups of ranks n and k, respec-
tively. Then the following inequalities hold with respect to lp for 1 � p � 1:

1

�.n/
� lim inf

s!1;t!1 e�.Z
n;Zk; s; t/; (3.1)

lim sup
s!1;t!1

e�.Z
n;Zk; s; t/ � 1 � 1

�.k/

�
1 � 1

�.n/

�
: (3.2)

Proof. We fix some p, 1 � p � 1. Let eab.s; t/ ´ e�.Zn;Zk; s; t/ with respect
the length lp and let juj D lp.u/.

By Lemma 3.3 (ii)

eab.s; t/ � ]f.u; v/ 2 Zn � Zk W juj � s; jvj � t; gcd.u/ D 1g
�p.s;Zn/�p.t;Zk/

D ]fu 2 Zn W juj � s; gcd.u/ D 1g
�p.s;Zn/

:

Taking limits, we obtain (3.1) by Propositions 3.1 and 3.2.
By Lemma 3.3 (i),

eab.s; t/ � 1 � ]f.u; v/ 2 Zn � Zk W juj � s; jvj � t; gcd.u/ ¤ 1; gcd.v/ D 1g
�p.s;Zn/�p.t;Zk/

D 1 �
�
1 � ]fu 2 Zn W juj � s; gcd.u/ D 1g

�p.s;Zn/

�

� ]fv 2 Zk W jvj � t; gcd.v/ D 1g
�p.t;Zk/

:

Taking limits, we obtain (3.2) by Propositions 3.1 and 3.2.
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One of the key ingredients needed to extend the previous result to the analogue
for surface groups is determining the asymptotic density of elements of even length
in Zk . This was done in [9], Proposition 3.6, for k D 2, and we now compute the
value for a general k.

Proposition 3.5. Let k � 2, and let U ev
1 D fz 2 U1 W l1.z/ is eveng denote the set of

visible elements of even length in Zk . Then

�1.U ev
1 / D 2k�1 � 1

2k � 1 �1.U1/ D 2k�1 � 1
.2k � 1/�.k/ :

Proof. Let n be a positive integer and let Œ0; n� D f0; 1; : : : ; ng. For X1; : : : ; Xk 2
fA;O;Eg we denote by X1X2 : : : Xk.n/ the number of all z D .z1; : : : ; zk/ 2 U1

such that zi 2 Œ0; n� and the parity of zi is Xi . Here A stands for “any”, E stands for
“even” and O stands for “odd”.

We will use the conventionX : : : X„ ƒ‚ …
k times

D Xk for anyX 2 fA;O;Eg andk � 1. Note

that X1X2 : : : Xk.n/ D Xs.1/Xs.2/ : : : Xs.k/.n/, for any permutation s of f1; : : : ; kg,
and that Ek.n/ D 0 for any k; n � 1.

The total number of elements in U1 in Œ0; n�k is

Ak.n/ D
kX

iD1

�
k

i

�
Ek�iOi .n/: (3.3)

Let U ev
1 .n/ be the set U ev

1 \ Œ0; n�k . Then

jU ev
1 .n/j D

Œk
2 �X

iD1

�
k

2i

�
Ek�2iO2i .n/: (3.4)

We claim that

Ek�iOi .n/ D Ok.n/C o.nk/ for all 1 � i � k. (3.5)

Assume first that (3.5) holds. From (3.4) and (3.5) we get

jU ev
1 .n/j D

Œk
2 �X

iD1

�
k

2i

�
Ok.n/C o.nk/;

and since
PŒk

2 �
iD1

�
k
2i

� D 2k�1 � 1, we get

jU ev
1 .n/j D .2k�1 � 1/Ok.n/C o.nk/:
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Since
Pk

iD1

�
k
i

� D 2k � 1, from (3.3) and (3.5) we obtain

Ok.n/.2k � 1/ D Ak.n/C o.nk/;

and hence

jU ev
1 .n/j D 2k�1 � 1

2k � 1 Ak.n/C o.nk/:

Since �1.U1/ D limn!1 Ak.n/

nk D 1
�.k/

, we get

�1.U ev
1 / D lim sup

n!1
jU ev

1 .n/j
nk

D lim
n!1

2k�1�1

2k�1
Ak.n/C o.nk/

nk

D 2k�1 � 1
2k � 1 �1.U1/ D 2k�1 � 1

.2k � 1/�.k/ :

This completes the proof of the proposition. We now show (3.5). Notice first that

OiEk�i�1A.n/ D OiEk�i .n/C OiC1Ek�i�1.n/:

Hence it is enough to show

OiEk�i�1A.n/ D 2OiEk�i .n/C o.nk/ for all 1 � i � k:

Let � W N ! f�1; 0; 1g denote the Möbius function and recall that
P

d jn �.d/ is
equal to 1, if n D 1 and 0 otherwise. Hence

OiEk�i�1A.n/ D
X

0�xj �n; 2−xj
j D1;:::;i

X
0�xj �n; 2jxj
j DiC1;:::;k�1

X
0�xk�n

X
d jgcd.x1;:::;xk/

�.d/

and

OiEk�i .n/ D
X

0�xj �n; 2−xj
j D1;:::;i

X
0�xj �n; 2jxj

j DiC1;:::;k

X
d jgcd.x1;:::;xk/

�.d/:

Now we switch the order in the summation. We rearrange the terms depending
on d j gcd.x1; : : : ; xk/, writing xi D yid . Since there is an odd coordinate, 2 − d .
We obtain

OiEk�i�1A.n/ D
X
2−d

�.d/
X

0�yj �n=d; 2−yj
j D1;:::;i

X
0�yj �n=d; 2jyj
j DiC1;:::;k�1

X
yk�n=d

1

and

OiEk�i .n/ D
X
2−d

�.d/
X

0�yj �n=d; 2−yj
j D1;:::;i

X
0�yj �n=d; 2jyj

j DiC1;:::;k

1:



628 Y. Antolín, L. Ciobanu and N. Viles

Hence OiEk�i�1A.n/ � 2OiEk�i .n/ is equal toX
2−d

�.d/
X

0�yj �n=d; 2−yj
j D1;:::;i

X
0�yj �n=d; 2jyj
j DiC1;:::;k�1

�h n
d

i
� 2

h n
2d

i�
: (3.6)

The term in parenthesis is either 0 or 1, and it is always 0 for d > n. Thus the
asymptotic behavior of (3.6) is of type

O.
P

d�n

P
0�yj �n=d

j D1;:::;k�1

1/ � O.
nP

dD1

.n=d/k�1/

D O.nk�1. 1
k�2

� 1

.k�2/nk�2 //

D O.nk�1/ � o.nk/:

4. Densities of visible elements in surface groups

The main result of this section is an extension of [9], Theorem A, that allows us to
compute densities of visible elements in free and surface groups. We need to fix some
notation.

Notation 4.1. For k > 2, we denote by Fk the free group of rank k and by Sk the
surface group of genus k.

We will work with the standard presentation for Fk ,

ha1; : : : ; ak j i;
and let A D fa1; : : : ; akg˙1.

A presentation for Sk has the form

ha1; b1; : : : ; ak; bk j Œa1; b1� : : : Œak; bk�i:
In this case we let A D fa1; b1; : : : ; ak; bkg˙1.

Let r denote the rank of the abelianization, that is, r D k for Fk , and r D 2k

for Sk .

Our main result is based on the following local limit theorem of Sharp in [13].

Theorem 4.2 (see Theorems 1, 3, 4 in [13]). Let F be Fk or Sk , and A and r be the
corresponding generating set and rank of the abelianization of F , as in Notation 4.1.

Let ab W F ! Zr be the abelianizationmap. Then there exists a symmetric positive
definite real matrixD such that, uniformly in ˛ 2 Zr ,

lim
n!1

ˇ̌̌
.detD/1=2nr=2

�
�A.n; ab�1.˛//

�A.n; F /
C �A.nC 1; ab�1.˛//

�A.nC 1; F /

�

� 2

.2	/r=2
e�h˛;D�1˛i=2n

ˇ̌̌
D 0:

(4.1)
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Proof. For F D Sk this is exactly [13], Theorem 4, with g D r=2. For F D Fk

and D the diagonal matrix with all entries equal to �2, one obtains exactly [13],
Theorem 1.

Since the proof of the main theorem of this section does not use the fact that F
is a free or surface group, but only the conclusions of Theorem 4.2, we will fix the
following hypothesis.

Hypothesis 4.3. Let F be a group generated by a finite set A such that Fab Š Zr

and D be a symmetric positive definite real matrix such that the limit (4.1) goes to
zero uniformly in ˛ 2 Zr .

By Theorem 4.2, the free group Fk and the surface group Sk of Notation 4.1
satisfy Hypothesis 4.3.

Definition 4.4. Let Gr be the set of all M 2 SL.r;Z/ such that M D Ir in
SL.r;Z=2Z/. Then Gr is a finite-index subgroup of SL.r;Z/.

Definition 4.5. We say that a bounded open subset of Rr is nice if its boundary is
piecewise smooth.

Proposition 4.6 ([9], Proposition 3.3). Let S � Zr be a Gr -invariant subset such
that ı D �1.S/ exists. Let
 � Rr be a nice bounded open set and for t 2 R, t > 0,
let

�t;S .
/ ´ ].S \ t
/
t r

:

Then we have
lim

t!1�t;S .
/ D ı�.
/; (4.2)

where � is the Lebesgue measure.

Although [9] indicates that the proof is similar to that of [9], Proposition 2.3, we
include here a proof for Proposition 4.6 for the sake of completeness.

Proof. Each�t;S can be regarded as a measure on Rr . We prove the result by showing
that �t;S weakly converges to ı� as t ! 1.

By Helly’s theorem (see, for instance, [2], Theorem 25.9), there exists a sequence
ftig with limi!1 ti D 1 such that the sequence�t1;S ,�t2;S , … is weakly convergent
to some limiting measure. We now identify this measure by showing that for every
convergent subsequence of �ti ;S the limiting measure is equal to ı�.

Indeed, we assume that � D ftig is a sequence with limi!1 ti D 1 such that the
sequence �ti ;S converges to the limiting measure �� D limi!1 �ti ;S . Every �ti ;S

is invariant with respect to the Gr -action on Rr . Therefore the limiting measure ��

is alsoGr -invariant. Moreover, the measures �t;S are dominated by the measures �t

defined as �t .
/ D ].Zr \t�/
tr .
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It is well known that if 
 � Rr is a nice bounded open set, then the measures
�t converge to the Lebesgue measure �. It follows that �� is absolutely continuous
with respect to �. It is also known that the natural action ofGr on Rr is ergodic with
respect to � (see [15] for the proof of ergodicity). Therefore�� is a constant multiple
c� of �. The constant c can be computed for a set such as the open unit ball B in the
k � k1 norm on Rr defining the length function l1 on Zr . By assumption we know
that

�1.S/ D lim
t!1

]fz 2 Zr W z 2 S \ tBg
]fz 2 Zr W z 2 tBg D ı:

We also have

lim
t!1

]fz 2 Zr W z 2 tBg
t r

D �.B/

and hence

lim
t!1

]fz 2 Zr W z 2 tBg
t r

]fz 2 Zr W z 2 S \ tBg
]fz 2 Zr W z 2 tBg D lim

t!1
]fz 2 Zr W z 2 S \ tBg

t r

D ı�.B/:

Therefore c D ı and �� D ı�. The above argument shows in fact that every
convergent subsequence of �t;S converges to ı� and limt!1 �t;S D ı�.

Definition 4.7. Let F be a group generated by the finite set A such that Fab Š Zr .
For an integer n > 1 and a point x 2 Rr , let pn be given by

pn.x/

D 1

2

�
�A.n � 1; fg 2 F W ab.g/ D x

p
ng/

�A.n � 1; F / C �A.n; fg 2 F W ab.g/ D x
p
ng/

�A.n; F /

�
:

This is a distribution supported on finitely many points of 1p
n

Zr .

We need the following results from [12], [13] about the sequence of distribu-
tions pn.

In our context, we need to restate our Hypothesis 4.3

Proposition 4.8 ([12], [13], [9]). Let F , A, r satisfy Hypothesis 4.3. Then there
exists a normal distribution N with density n such that:

(a) The sequence of distributions pn converges weakly to n and we have

sup
x2Zr =

p
n

jnr=2pn.x/ � n.x/j �! 0 as n ! 1: (4.3)

(b) For c > 0, let 
c ´ fx 2 Rr W kxk > cg. Then

lim
c!1. lim

n!1
P

x2�c
pn.x// D 0:
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Proof. Let D be the matrix of Hypothesis 4.3, and let n.x/ D e�hx;D�1xi=2

.2�/r .det D/1=2 , the
density of a normal distribution N. Firstly, we prove the limit in (4.3).

After performing some easy computations,

jnr=2pn.x/ � n.x/j
D 1

2.detD/1=2

ˇ̌̌
.detD/1=2nr=2

�
�
�A.n � 1; ab�1.x

p
n//

�A.n � 1; F / C �A.n; ab�1.x
p
n//

�A.n; F /

�
� 2

.2	/r
ehx;D�1xi=2

ˇ̌̌

D 1

2.detD/1=2

ˇ̌̌
.detD/1=2nr=2

�
�
�A.n � 1; ab�1.˛//

�A.n � 1; F / C �A.n; ab�1.˛//

�A.n; F /

�
� 2

.2	/r
e

�h p̨
n

; D�1˛p
n

i=2
ˇ̌̌

D 1

2.detD/1=2

ˇ̌̌
.detD/1=2nr=2

�
�
�A.n � 1; ab�1.˛//

�A.n � 1; F / C �A.n; ab�1.˛//

�A.n; F /

�
� 2

.2	/r
e�h˛;D�1˛i=2n

ˇ̌̌
;

using the limit (4.1) of the Hypothesis 4.3 and the fact that this limit is uniform in
˛ D x

p
n, we obtain the desired result.

In order to show that the sequence of probability distributions fpng converges
weakly to n, we use [2], Theorem 25.8, that is, it is necessary and sufficient that for
every bounded continuous function f .x/ on Rr the following holds:

lim
n!1

Z
Rr

f .x/pn.x/ d�.x/ D
Z

Rr

f .x/n.x/ d�.x/:

We can write
ˇ̌̌ Z

Rr

f .x/pn.x/ d�.x/ �
Z

Rr

f .x/n.x/ d�.x/
ˇ̌̌

D
ˇ̌̌ Z

Rr

f .x/.pn.x/ � n.x// d�.x/
ˇ̌̌

6
Z

Rr

jf .x/j jnr=2pn.x/ � n.x/j d�.x/:

Given thatf is a bounded continuous function and by the limit (4.3) proved above,
the hypothesis of the Dominated Convergence Theorem is satisfied. Applying this
last result, we obtain

ˇ̌̌ Z
Rr

f .x/pn.x/ d�.x/ �
Z

Rr

f .x/n.x/ d�.x/
ˇ̌̌

n!1����! 0;

and the weak convergence of the sequence fpng is proved.
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We now prove .b/. For c > 0, let 
c D fx 2 Rr W kxk < cg, and denote by 
c

the complement of 
c . Then, by the weak convergence of the pn to n, we have that

lim
c!1. lim

n!1
P

x2�c
pn.x// D lim

c!1.1 � lim
n!1

P
x2�c

pn.x//

D 1 � lim
c!1

Z
x2�c

n.x/ d�.x/ D 0:

Theorem 4.9. Let 
 � Rr be a nice bounded open set. Let S � Zr be a Gr -
invariant subset such that ı D �1.S/ exists. Then there exists a normal distribution
N such that

lim
n!1

X
x2S\p

n�

pn.x=
p
n/ D ıN.
/:

Proof. Note that the proof is the same as that of Theorem 3.4 in [9]. The only
difference lies in the use of Proposition 4.6.

There exists a normal N distribution with density n satisfying the conclusions of
Proposition 4.8.

We haveX
x2S\p

n�

pn.x=
p
n/ D

X
y2 1p

n
S\�

pn.y/

D n�r=2
X

y2 1p
n

S\�

n.y/C n�r=2
X

y2 1p
n

S\�

.nr=2pn.y/ � n.y//:

The local limit theorem of Proposition 4.8 (a) tells us that, as n ! 1, each summand
n�r=2pn.y/� n.y/ of the sum in the last line above converges to zero, and hence so
does their Cesaro mean.

Using the following convergence of the measures defined in Proposition 4.6,

lim
n!1�p

n;S .
/ D ı�.
/

(recall that �p
n;S .
/ ´ ].S\p

n�/p
n

r ), we have

lim
n!1

X
x2S\p

n�

1

.
p
n/r

n.x=
p
n/ D

Z
�

n.y/ı d�.y/ D ıN.
/:

We obtain the main result of this section by basically following [9], Theorem A.
Our theorem provides the formula for the ‘spherical densities’ of visible elements in
groups that satisfy Hypothesis 4.3, which include free groups of all finite ranks and
surface groups.



On the asymptotics of visible elements and homogeneous equations in surface groups 633

Theorem 4.10 (see also [9], Theorem A). Let F , A, r satisfy Hypothesis 4.3, let
S � Zr be a Gr -invariant subset and zS D ab�1.S/.

(i) The strict annular density �A. zS/ exists and, moreover, �A. zS/ D �1.S/.
(ii) Let U1 denote the set of visible elements in Zr and V1 D ab�1.U1/ denote the

visible elements inF . LetU ev
1 D fz 2 U1 W l1.z/ is eveng denote the visible elements

of even length. If ab�1.U ev
1 / D fv 2 V1 W jvjA is eveng, then

lim
m!1

�A.2m; V1/

�A.2m; F /
D 2�1.U ev

1 / D 2r � 2
.2r � 1/�.r/ ;

lim
m!1

�A.2m � 1; V1/

�A.2m � 1; F / D 2�1.U1/ � 2�1.U ev
1 / D 2r

.2r � 1/�.r/ :

Proof. For c > 0 let 
c ´ fx 2 Rr W kxk < cg and let 
c be the complement of

c . Then

lim
c!1 N.
c/ D 1: (4.4)

Let " > 0 be arbitrary. By (4.4) and Proposition 4.8 (b) we can choose c > 0 such
that

jN.
c/ � 1j � "=3 and lim
n!1

X
x2�c

pn.x/ � "=6:

Let S be a Gr -invariant subset of Zr . By Theorem 4.9 and the above formula
there is some n0 � 1 such that for all n � n0 we haveˇ̌̌ X

x2S\p
n�c

pn.x=
p
n/ � �1.S/N.
c/

ˇ̌̌
� "=3 (4.5)

and X
x2�c

pn.x/ � "=3: (4.6)

Let

Q.n/ ´ �A.n � 1; ab�1.S//

2�A.n � 1; F / C �A.n; ab�1.S//

2�A.n; F /
:

For n � n0 we let

Q.n/ D
�
]fg 2 F W ab.g/ 2 S; jgjA D n � 1 and k ab.g/k < cpng

2�A.n � 1; F /
C ]fg 2 F W ab.g/ 2 S; jgjA D n and k ab.g/k < cpng

2�A.n � 1; F /
�

C
�
]fg 2 F W ab.g/ 2 S; jgjA D n � 1 and k ab.g/k � c

p
ng

2�A.n � 1; F /
C ]fg 2 F W ab.g/ 2 S; jgjA D n and k ab.g/k � c

p
ng

2�A.n � 1; F /
�
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D
X

x2S\p
n�c

pn.x=
p
n/C

X
x2S\.Rr np

n�c/

pn.x=
p
n/:

In the last line of the above equation, by (4.5), the first sum differs from �1.S/N.
c/

by at most "=3 since n � n0, and by (4.6) the second sum is � "=3 given the choice
of c and n0. Therefore, again by the choice of c, we have jQ.n/ � �1.S/j � ".
Since " is arbitrary, this proves (i).

We now prove (ii). First notice that since U1 is SL.r;Z/-invariant, it is also Gr -
invariant. We check thatU ev

1 isGr -invariant as well. Let u 2 Z. Then u 2 U ev
1 if and

only if
P

1�i�r.u/i mod 2 D 0 and gcd.u/ D 1. Let M 2 Gr . As M 2 SL.r;Z/,
gcd.Mu/ D gcd.u/ D 1. Also, as M D Ir in SL.r;Z=2Z/,

X
1�i�r

.Mu/i mod 2 D
X

1�i�r

.u/i mod 2 D 0:

Hence, U ev
1 is Gr -invariant.

We now take S D U ev
1 , for n � 2 even. Then

Q.n/ D �A.n � 1; ab�1.U ev
1 //

2�A.n � 1; F / C �A.n; ab�1.U ev
1 //

2�A.n; F /
D �A.n; ab�1.U ev

1 //

2�A.n; F /
:

The latter equality follows from the fact that ab�1.U ev
1 / D fv 2 V1 W jvjA is eveng.

By (i),

lim
m!1

�A.2m; V1/

�A.2m; F /
D 2 lim

m!1Q.2m/ D 2�1.U ev
1 /:

Thus limm!1 �A.2m�1;V1/
�A.2m�1;F /

D 2�1.U1/�2�1.U ev
1 /. By Proposition 3.1 and Propo-

sition 3.5, we obtain the desired results.

We now focus on surface and free groups.

Corollary 4.11. Let k � 2 and let F be a free group of rank k or a surface group of
genus k. Let A and r be as in Notation 4.1. Then

(i) limm!1 �A.2m;V1/
�A.2m;F /

D 2r �2
.2r �1/�.r/

,

(ii) limm!1 �A.2m�1;V1/
�A.2m�1;F /

D 2r

.2r �1/�.r/
.

Proof. By Theorem 4.2, F , A and r satisfy the hypotheses of Theorem 4.10. It only
remains to show that ab�1.U ev

1 / D fv 2 V1 W jvjA is eveng. Let f be an element of
F such that ab.f / D 0 2 Zr . Then any word representing w has the same number
of a and a�1 and thus it has even length.

Since ab maps elements of A to unit vectors, for u 2 U ev
1 there exists v 2

ab�1.U ev
1 / of even length. If ab.v/ D ab.v0/, then ab.v0v�1/ D 0. Hence v0v�1 has

even length, and so does v0. Thus Theorem 4.10 (ii) applies.
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5. Asymptotic behavior of homogeneous equations in surface groups

We now study the asymptotic behavior of e� .Gn; Gk; s; t/ when Gn and Gk are
surface or free groups, or more generally, satisfy the hypothesis of Theorem 4.10(ii).

Theorem 5.1. Let Gk and Gn be free or surface groups and let A, B be their re-
spective generating sets, as in Notation 4.1. Let r.k/ and r.n/ denote the ranks of
the abelianization of Gk and Gn, respectively. Let "; ı 2 f0; 1g. Then the following
inequalities hold:

2r.n/ � 2.1 � "/
.2r.n/ � 1/�.r.n// � lim inf

s!1;t!1 e� .Gn; Gk; 2s C "; 2t C ı/;

lim sup
s!1;t!1

e� .Gn; Gk; 2s C "; 2t C ı/

� 1 � 2r.k/ � 2.1 � ı/
.2r.k/ � 1/�.r.k//

�
1 � 2r.n/ � 2.1 � "/

.2r.n/ � 1/�.r.n//
�
:

Proof. LetVt andWt denote the sets of t -visible elements inGn andGk , respectively.
Let

E.s; t/ D f.u; v/ 2 Gn �Gk W jujA D s; jvjB D t; �.u/ D v

for some � 2 Hom.Gn; Gk/g:

Then e� .Gn; Gk; s; t/ D jE.s;t/j
�B .s;Gn/�A.t;Gk/

.

By Lemma 3.3 we have the following inequalities:

�B.s;W1/�A.t; Gk/ � jE.s; t/j � �B.s; Gn/�A.t; Gk/ �
X
r¤1

�B.s;Wr/�A.t; V1/:

The left inequality holds because every element v inGk is the homomorphic image
of a visible element in Gn. The right inequality holds because no visible element in
Gk is the homomorphic image of an r-visible element in Gn if r ¤ 1.

By dividing both sides by �B.s; Gn/�A.t; Gk/, we get

�B.s;W1/

�B.s; Gn/
� e� .Gn; Gk; s; t/ � 1 �

P
r¤1 �B.s;Wr/�A.t; V1/

�B.s; Gn/�A.t; Gk/
D f .s; t/;

where

f .s; t/ D 1 � �A.t; V1/

�A.t; Gk/

�B.s; Gn/ � �B.s;W1/

�B.s; Gn/
:

Let us useˇm;k to denote the limits, which depend on the parity ofm and the rank of the

abelianization ofGn andGk , found in Corollary 4.11. That is,ˇm;k D 2r.k/�2

.2r.k/�1/�.r.k//

ifm is even, andˇm;k D 2r.k/

.2r.k/�1/�.r.k//
ifm is odd. In order to simplify the exposition
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we will abuse the fact that ˇm;k depends on the parity ofm and for the next paragraph
ignore the parities of s and t .

Then
lim

s!1;t!1f .s; t/ D 1 � ˇt;k.1 � ˇs;n/;

and we get the inequalities

ˇs;n � lim inf
s!1;t!1 e� .Gn; Gk; s; t/ � lim sup

s!1;t!1
e� .Gn; Gk; s; t/ � 1�ˇt;k.1�ˇs;n/:

Now taking into account the parities of s and t we get the inequalities in the statement
of the theorem.

Thus the probability of an .s; t/-homogeneous equation to be satisfiable is neither
0 nor 1 as s, t go to infinity. One sees this by choosing Gn to be the free group on
n generators and Gk a surface group of genus g � 2 or a free group of rank � 2 in
Theorem 5.1.

Corollary 5.2. LetG be a surface group of genus g � 2 or a free group of rank � 2.
Let

A.s; t/ D ]fsatisfiable .s; t/-homogeneous equations in G in n variablesg
]f.s; t/-homogeneous equations in G in n variablesg :

Then
0 < lim inf

s!1;t!1A.s; t/ � lim sup
s!1;t!1

A.s; t/ < 1:

Similarly, by choosing both Gn and Gk in Theorem 5.1 to be surface groups one
obtains the following.

Corollary 5.3. Let † be an orientable closed surface of genus k � 2. We fix
a presentation for 	1.†/, ha1; b1; : : : ; ak; bk j Œa1; b1� : : : Œak; bk�i. For a closed
curve � in † we denote by Œ�� the image of � in 	1.S/ and by jŒ��j the length of Œ��
with respect to fa1; b1; : : : ; ak; bkg.

We say that �2 is the image of �1 if it is the image of �1 under a continuous map
S ! S .

Let

B.s; t/ D ]f.Œ�1�; Œ�2�/ 2 	1.S/
2, .jŒ�1�j; jŒ�2�j/ D .s; t/ with �2 the image of �1g

]f.Œ�1�; Œ�2�/ 2 	1.S/
2, .jŒ�1�j; jŒ�2�j/ D .s; t/g :

Then
0 < lim inf

s!1;t!1B.s; t/ � lim sup
s!1;t!1

B.s; t/ < 1:
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Thus for a fixed orientable surface†, the probability of a closed curve in† to be
the image of another closed curve in † by a continuous map is neither 0 nor 1 as the
curves get more and more “complicated.”
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