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Cohomology computations for Artin groups, Bestvina–Brady
groups, and graph products
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Abstract. We compute:

� the cohomology with group ring coefficients of Artin groups (or actually, of their asso-
ciated Salvetti complexes), of Bestvina–Brady groups of type FP, and of graph products
of groups,

� the L2-Betti numbers of Bestvina–Brady groups of type FP over Q, and of graph products
of groups,

� the weighted L2-Betti numbers of graph products of Coxeter groups.

In the case of arbitrary graph products there is an additional proviso: either all factors are
infinite or all are finite.
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Introduction

This paper concerns the calculation of the group cohomology, H �.GI N /, for certain
discrete groups G, where the G-module N is either ZG or a von Neumann alge-
bra N .G/. Here N .G/ is a completion of the group algebra RG acting on L2.G/,
the Hilbert space of square summable functions on G. If G acts properly and co-
compactly on a CW complex Y , then one has the reduced L2-cohomology spaces,
L2H �.Y /. These are Hilbert spaces with orthogonal G-actions. As such, each has
a “von Neumann dimension” with respect to N .G/. The dimension of L2H n.Y /

is the nth L2-Betti number, L2bn.Y I G/. When Y is acyclic, it is an invariant of
G, denoted L2bn.G/. As shown in [30], these L2-Betti numbers can be computed
from the cohomology groups H �.GI N .G// (i.e., the cohomology of BG with local
coefficients in N .G/).

For Coxeter groups, there is a refinement of the notion of L2-Betti number. Sup-
pose that .W; S/ is a Coxeter system and p is a multiparameter of positive real
numbers (meaning that p is a function S ! .0; 1/ which is constant on conjugacy
classes). There is an associated “Hecke–von Neumann algebra”, Np.W /, which one
can use to define the “weighted L2-Betti numbers”, L2

pbn.W /, cf. [21], [15] or [11].
Associated to .W; S/, there is a finite CW complex X , called its Salvetti complex.

It is homotopy equivalent to the quotient by W of the complement of the (possibly
infinite) complex hyperplane arrangement associated to .W; S/ (cf. [9]). The funda-
mental group of X is the Artin group A associated to .W; S/. The K.�; 1/-Conjecture
for Artin groups asserts that X is a model for BA (D K.A; 1/). This conjecture is
known to hold in many cases, for example when W is either right-angled or finite,
cf. [8].

Given a simplicial graph � with vertex set S and a family of groups fGsgs2S , their
graph product,

Q
� Gs , is the quotient of the free product of the Gs by the relations

that elements of Gs and Gt commute whenever fs; tg is an edge of � . Associated to
� there is a flag complex L with 1-skeleton � . (L is defined by the requirement that
a subset of S spans a simplex of L if and only if it is the vertex set of a complete
subgraph of � .) A right-angled Coxeter group WL (a RACG for short) is a graph
product where each Gs is cyclic of order 2. Similarly, a right-angled Artin group AL

(a RAAG for short) is a graph product where each Gs is infinite cyclic. An arbitrary
graph product of groups acts simply transitively on the set of chambers of a right-
angled building of type .WL; S/. In §5.2 we consider a family of arbitrary Coxeter
systems f.Vs; Ts/gs2S . Their graph product, V ´ Q

� Vs , gives a Coxeter system
.V; T / (where T denotes the disjoint union of the Ts).

Given a right-angled Artin group AL, let � W AL ! Z be the homomorphism
which sends each standard generator to 1. Define the Bestvina–Brady group, BBL,
to be Ker � . In [4] Bestvina and Brady prove that BBL is type FP if and only if the
simplicial complex L is acyclic.

A subset of S (the fundamental set of generators of a Coxeter group W ) is spherical
if it generates a finite subgroup of W . Let �.W; S/ denote the poset of spherical
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subsets of S and let K be the geometric realization of this poset. For each spherical
subset J , let KJ (resp. @KJ ) be the geometric realization of the subposet �.W; S/�J

(resp. �.W; S/>J ). KJ is the cone on @KJ . (@K is the barycentric subdivision of
the nerve of .W; S/; @KJ is the barycentric subdivision of the link of the simplex
corresponding to J in the nerve.)

Many of the following computations are done by using a spectral sequence asso-
ciated to a double complex. The E1-terms of such a spectral sequence compute the
graded group, Gr H �.�/, associated to the corresponding filtration of the cohomol-
ogy group, H �.�/, in question.

In item (1) below, the Coxeter system is arbitrary while in (2), (3), (4) it is right-
angled. (Within parentheses we refer either to the theorem in this paper where the
computation appears or else we give a reference to the literature.) Here are the
computations.

(1) Suppose that A is the Artin group associated to a Coxeter system .W; S/, X is
the associated Salvetti complex and zX is its universal cover. Then

(a) (Theorem 4.1).

Gr H n.X I ZA/ D L
J 2�.W;S/

H n�jJ j.KJ ; @KJ / ˝ H jJ j.AJ I ZA/:

(In the case of a RAAG this formula is the main result of [28].)
(b) ([17], Corollary 2).

L2bn. zX I A/ D bn.K; @K/:

(Here bn.Y; Z/ is the ordinary Betti number of a pair .Y; Z/, i.e.,
bn.Y; Z/ ´ dim H n.Y; ZI R/.)

When the K.�; 1/-Conjecture holds for A, these formulas compute,
Gr H �.AI ZA/ and L2b�.A/, respectively.

(2) Suppose that BBL is the Bestvina–Brady subgroup of a RAAG, AL.

(a) (Theorem 4.3). Suppose that L is acyclic. Then the cohomology of BBL

with group ring coefficients is isomorphic to that of AL shifted down in
degree by 1:

Gr H n.BBLI ZBBL/ D L
J 2�.W;S/

H n�jJ jC1.KJ ; @KJ / ˝ Z.AL=AJ /:

(b) (Theorem 4.4). Suppose that L is Q-acyclic (where Q denotes the rational
numbers). Then the L2-Betti numbers of BBL are given by

L2bn.BBL/ D P
s2S

bn.Ks; @Ks/:
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(3) Suppose that G D Q
� Gs is a graph product of groups, and let .W; S/ be the

RACS associated to the graph. For each spherical subset J , GJ denotes the
direct product

Q
s2J Gs .

(a) (Theorem 4.5). If each Gs is infinite, then

Gr H n.GI ZG/ D L
J 2�.W;S/

iCj Dn

H i .KJ ; @KJ I H j .GJ I ZG//:

(b) (Theorem 4.6). If each Gs is infinite, then

L2bn.G/ D L
J 2�.W;S/

iCj Dn

bi .KJ ; @KJ / � L2bj .GJ /:

(c) ([13], Corollary 9.4). If each Gs is finite, then

Gr H n.GI ZG/ D L
J 2�.W;S/

H n.K; KS�J / ˝ yAJ :

Here KS�J denotes the union of subcomplexes Ks , with s 2 S � J , and
yAJ is a certain (free abelian) subgroup of Z.G=GJ /.

(d) ([15], Theorem 13.8, and Corollary 6.5 below). Again, when each Gs

is finite, G acts simply transitively on the set of chambers of a right-
angled building of type .W; S/ and its L2-Betti numbers are determined
by the weighted L2-Betti numbers of .W; S/ via the formula, L2bn.G/ D
L2

pbn.W /, where the multiparameter p D .ps/s2S is defined by ps D
jGsj � 1.

(4) Suppose that V is a graph product of Coxeter groups fVsgs2S , that .W; S/ is
the RACS associated to the graph and that q is a multiparameter for .V; T /.
There are the following two results concerning the weighted L2-Betti numbers
of .V; T /.

(a) (Theorem 7.2). Suppose that q is “large” in the sense that it does not lie in
the region of convergence for the growth series of any component group
Vs . Then

L2
qbn.V / D P

iCj Dn
J 2�

bi .KJ ; @KJ / � L2
qbj .VJ /:

(b) (Theorem 7.7). For V as above and q “small” in the sense that it lies in
the convergence region of each Vs , then

L2
qb�.V / D L2

pb�.W /;

where the multiparameter p for W is defined by ps D Vs.q/ � 1.
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Of course, a graph product V of Coxeter groups is again a Coxeter group. The
weighted L2-Betti numbers of arbitrary Coxeter groups are computed in [21], [15],
but only for the parameter q in a certain specified range: either q or q�1 must lie in
the closure of the region of convergence for the growth series of the Coxeter group.
The point of (4) is that for Coxeter group V which is a graph product, we now have
calculations for an extended range of q. Thus, in (4a), the formula depends only
on the weighted L2-Betti numbers of the factors Vs . (For example, if each Vs is an
infinite dihedral group these numbers are known for all q.) On the other hand, in
(4b), the formula for the L2

qb�.V / depends only on the weighted L2-Betti numbers
of the associated RACG, W . So, if we happen to know L2

pb�.W / for all p, we can
calculate L2

qb�.V / for certain q outside the usual range (cf. Example 8.4).
The calculations in (1), (2), (3a), (3b) and (4a) all follow a similar line. They

are based on the spectral sequence developed in §2. In all cases we are computing
some type of cohomology of a CW complex Y , which is covered by a family of
subcomplexes fYJ gJ 2�.W;S/, indexed by �.W; S/. For a fixed j , the E

�;j
1 -terms of

the spectral sequence form a cochain complex for a nonconstant coefficient system on
K, which associates to a simplex � of K with minimum vertex J the group H j .YJ /.
We first show that the spectral sequence decomposes at E1 as a direct sum, with a
component for each J 2 �.W; S/, and with the J -component consisting of a cochain
complex of the form C �.KJ ; @KJ / with some constant system of coefficients. We
then show the spectral sequence collapses at E2.

Since ZG is a G-bimodule, both sides of the formulas in (1a), (2a) and (3a) are
right G-modules. One can ask if these formulas give isomorphisms of G-modules.
The spectral sequence argument shows that this is indeed the case. Moreover, since
the right-hand side of each formula is finitely generated as a G-module, so is the
left-hand side (cf. [14]). In general, if we change the Gr H n.�/ on the left-hand
side to H n.�/, then these formulas do not give isomorphisms of G-modules. For
example, (3a) is not valid after this change in the case where G is the free product of
two infinite cyclic groups (cf. [14], Example 5.2). However, the possibility remains
that after dropping the Gr’s, both sides of these equations are still isomorphic as
Z-modules, which leads us to the following question.

Question. On the left-hand sides of the formulas in (1a), (2a) and (3a), is Gr H n.�/

always isomorphic to H �.�/ as an abelian group?

The calculations in (3c), (3d) and (4b) come from a different direction based on
[13] and [15]. In particular, the proof of (4b) uses an argument, similar to one in [15],
relating the ordinary L2-cohomology of a building to the weighted L2-cohomology
of its Coxeter system.

Our thanks go to the referee for some helpful comments.
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1. Basic definitions

1.1. Coxeter groups, Artin groups, buildings. Throughout this paper, we will be
given as data a simplicial graph � with finite vertex set S and edge set, Edge.�/,
together with a labeling of the edges by integers � 2. The label corresponding to
fs; tg 2 Edge.�/ is denoted by m.s; t/. These data give a presentation of a Coxeter
group W with generating set S and relations

s2 D 1; .st/m.s;t/ D 1 for all s 2 S and fs; tg 2 Edge.�/:

The pair .W; S/ is a Coxeter system; � is its presentation graph. These same data
determine a presentation for an Artin group A with generating set fasgs2S and rela-
tions,

asat : : : D atas : : : for all fs; tg 2 Edge.�/;

where there are m.s; t/ terms on each side of the equation. Given a word s D
.s1; : : : ; sn/ in S , its value is the element w.s/ of W defined by

w.s/ ´ s1 : : : sn:

The word s D .s1; : : : ; sn/ is a reduced expression if s is a word of minimum length
for its value. The pair .WJ ; J / is also a Coxeter system (cf. [11], Theorem 4.1.6).
For any J � S , the special subgroup WJ is the subgroup generated by J . The subset
J is spherical if jWJ j < 1. Let �.W; S/ denote the poset of spherical subsets of S .
The nonempty elements of �.W; S/ form an abstract simplicial complex L.W; S/,
called the nerve of the Coxeter system. (Vert.L.W; S// D S and a nonempty subset
J � S spans a simplex if and only if it is spherical.)

Given a subset I � S , an element w 2 W is I -reduced if l.sw/ > l.w/ for all
s 2 I . For I � J � S , let W I

J be the subset of all I -reduced elements in the special
subgroup WJ . (For example, W ;

J D WJ and W J
J D f1g.)

A chamber system over a set S is a set C (of “chambers”) and a family of equiv-
alence relations f�sgs2S on C indexed by S . (There is one equivalence relation for
each s 2 S .) An s-equivalence class is an s-panel. Distinct chambers C; D 2 C

are s-adjacent if they belong to the same s-panel. A gallery in C is a sequence
C D .C0; : : : ; Cn/ of adjacent chambers. Its type is the word s D .s1; : : : ; sn/ in S

where the i th letter of s is si if Ci�1 be si -adjacent to Ci . A building of type .W; S/

is a chamber system C over S equipped with a function ı W C � C ! W (called a
Weyl distance) such that

(1) Each panel contains at least two elements.
(2) Given a reduced expression s and chambers C; D 2 C , there is a gallery of type

s from C to D if and only if ı.C; D/ D w.s/.

(The above definition of building is due to Ronan and Tits, a variant can be found in
[1].) The building C is locally finite if each panel is finite.
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Example. A Coxeter group W can be given the structure of a chamber system by
declaring the s-panels to be the left cosets, wWs , where Ws (D Wfsg) is the cyclic
group of order two generated by s. Define ıW W W �W ! W by ı.w; w0/ D w�1w0.
Then .W; ıW / is a building, called the standard thin building of type .W; S/.

Given a building .C ; ı/ of type .W; S/ and a subset J of S , the J -residue con-
taining a chamber C is the subset RJ .C / � C defined by

RJ .C / ´ fD 2 C j ı.C; D/ 2 WJ g:
In other words, a J -residue is a “J -gallery connected component of C”. If J D ;,
then a J -residue is simply a chamber and if J has only one element, then a J -residue
is a panel. In the standard thin building .W; ıW /, a J -residue is a left coset of WJ .

1.2. Posets, simplicial complexes, flag complexes. Suppose that L is a simplicial
complex with vertex set S and let �.L/ denote the poset of (vertex sets of) simplices
in L (including the empty simplex). If J is the vertex set of a simplex � in L, then
denote by Lk.J; L/ (or simply Lk.J / when L is understood), the link of � in L.
The abstract simplicial complex Lk.J / has one simplex for each element of �.L/>J

(D fJ 0 2 �.L/ j J 0 	 J g).
A simplicial complex L is a flag complex if any finite, nonempty set of vertices,

which are pairwise connected by edges, spans a simplex of L. A simplicial graph
� determines a flag complex, L.�/: its simplices are the finite, nonempty sets of
vertices which are pairwise connected by edges.

Suppose that P is a poset. There is an abstract simplicial complex Flag.P / with
vertex set P and with simplices the totally ordered, finite, nonempty subsets of P . We
note that Flag.P / is a flag complex. Given a simplex � 2 Flag.P /, its least element
is its minimum vertex and is denoted by min.�/. If L is a simplicial complex, then
Flag.�.L/>;/ can be identified with the barycentric subdivision of L. Similarly,
Flag.�.L// is the cone on the barycentric subdivision of L. (The empty set provides
the cone point.)

1.3. Davis complexes and Salvetti complexes. Let M be a topological space. A
mirror structure on M over a set S is a family of subspaces fMsgs2S indexed by S ;
Ms is the s-mirror of M . If M is CW complex and each Ms is a subcomplex, then
M is a mirrored CW complex. For each x 2 M ,

S.x/ ´ fs 2 S j x 2 Msg:
If M is a mirrored CW complex and c is a cell in M , then

S.c/ ´ fs 2 S j c � Msg:
Given a building C of type .W; S/ and mirrored CW complex M over S , define an
equivalence relation � on C � M by .C; x/ � .C 0; x0/ if and only if x D x0 and



492 M. W. Davis and B. Okun

C , C 0 belong to the same S.x/-residue. Give C the discrete topology, C � M the
product topology, and denote the quotient space by

B.C ; M/ ´ .C � M/=� (1.1)

and call it the M -realization of C . When C is the standard thin building W , put

U.W; M/ ´ B.W; M/

and call it the M -realization of the Coxeter system .W; S/.

Remark. In our previous work, e.g., in [11], we used the notation U. ; / to denote a
topological realization of either a building or of a Coxeter system. However, in what
follows we will study Coxeter systems .V; T / which will also have the structure of a
RAB over an auxiliary RACS .W; S/ and we will want to distinguish the two types
of realizations of .V; T / (either as a Coxeter system or as a building).

The mirror structure is W -finite if S.x/ is spherical for each x 2 M . (In this
paper we shall always assume this.) When this is the case, U.W; M/ is a locally
finite complex and similarly, if C is locally finite building, then B.C ; M/ is a locally
finite complex.

We will use the following notation for unions and intersections of mirrors. For
any J � S , put

MJ ´ T
s2J

Ms; M J ´ S
s2J

Ms:

Also, we will write @MJ for the subset of MJ consisting of all points x 2 M such
that S.x/ is a proper subset of J .

As in §1.2, �.W; S/ (or simply �) is the poset of spherical subsets of S (including
the empty set). The geometric realization of this poset is the simplicial complex
Flag.�.W; S//. We denote it by K.W; S/ (or simply K) and call it the Davis chamber.
Most often we will want to take M D K. One gets a mirror structure on K by defining
Ks to be the geometric realization of the subposet ��fsg. Then U.W; K/ is the Davis
complex and B.C ; K/ is the standard realization of B. By construction, the W -
action on U.W; K/ is proper (i.e., each isotropy subgroup is finite) and the quotient
space K is a finite complex, hence, compact. Moreover, U.W; K/ is contractible
(by [11], Theorem 8.2.13). Note that for any J 2 � , the subcomplex @KJ is the
barycentric subdivision Lk.J / (the link in L of the simplex with vertex set J ). Also,
KJ is the cone on @KJ (i.e., KJ Š Cone.Lk.J //).

The Salvetti complex. Let A be theArtin group associated to .W; S/ and let q W A !
W denote the natural homomorphism sending as to s. There is a set-theoretic section
for q, denoted by w 7! aw , defined as follows: if s1 : : : sn is any reduced expression
for w, then aw ´ as1

: : : asn
. As explained in [8], p. 602, it follows from Tits’

solution to the word problem for Coxeter groups that w 7! aw is well defined.
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Define a partial order on W � � by .w; I / < .v; J / if and only if I < J and
v�1w 2 W I

J (where W I
J was defined in §1.1). It is proved in [9] that W � � is the

poset of cells of a cell complex X 0 on which W acts freely so that each cell of X 0
is a Coxeter cell. (Flag.W � �/ is the barycentric subdivision of X 0.) The quotient
space X ´ X 0=W is the Salvetti complex of .W; S/. It is known that �1.X/ D A.
The universal cover of X is denoted by zX . For each .w; J / 2 W � � , the flag
complex on .W � �/�.w;J / can be identified with the barycentric subdivision of a
Coxeter cell of type .WJ /. (A Coxeter cell of type WJ means the convex hull of a
generic orbit in the canonical representation of WJ ; see [11], §7.3.) So X 0 (or X )
can be given the structure of a CW complex where the cells are Coxeter cells. In
particular, each vertex of X 0 corresponds to an element of W � � of the form .w; ;/

and each 1-cell of X 0 corresponds to an element of the form .w; fsg/. Orient this
edge by declaring .w; ;/ to be its initial vertex and .ws; ;/ its terminal vertex. Since
the W -action preserves edge orientations, these orientations pass to the edges of X .
Call a vertex x of a cell C of X a top vertex of C if each edge of C which contains
x points away from x (cf. [17], §7). One can then explicitly describe CW structure
on X as follows. For each J 2 � , take a Coxeter cell CJ of type WJ . Now for each
I < J and each u 2 W I

J glue together CI and uCI via the homeomorphism induced
by u. The result is denoted XJ . (It is the Salvetti complex for AJ and therefore, a
K.AJ ; 1/.) To construct X , start with the disjoint union of the XJ , for J 2 � , and
then use the natural maps to identify XI with a subcomplex of XJ whenever I < J .
This description exhibits X as a “poset of spaces over �” (as defined in §2). On the
level of fundamental groups we know that the inclusion XJ ! X induces the natural
injection AJ ! A and that the associated “simple complex of groups” is the one
discussed in [8], §3. Similarly, for each J 2 � , let zXJ denote the inverse image of
XJ in zX . ( zXJ is a disjoint union of copies of the universal cover XJ , one copy for
each coset of AJ in A.) Thus, zX also has the structure of a poset of spaces over � .

In the right-angled case, the Salvetti complex has a simple description as a sub-
complex of a torus (and we will denote it by TL instead of X ). Let T S denote the
S -fold product of copies of S1. Define a subcomplex of T S by

TL ´ S
J 2�.L/

T J : (1.2)

(This is a special case of the “polyhedral product” construction discussed in the next
section and in [2], [20].) According to [9], its universal cover zTL is a CAT.0/-cubical
complex and hence, is contractible.

1.4. Graphproducts of groups and spaces. As in the Introduction, � is a simplicial
graph and suppose that each edge is labeled 2. Also, S D Vert.�/, L is the flag
complex determined by � and .WL; S/ is the associated RACS. (We shall generally
reserve the notation WL for the case when the Coxeter group is right-angled with
nerve L and similarly, AL for the RAAG associated to L.) Suppose that fGsgs2S is a
family of groups indexed by S . The graph product of the Gs , denoted

Q
� Gs , is the
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quotient of the free product of the Gs , s 2 S , by the normal subgroup generated by
all commutators of the form, Œgs; gt �, where fs; tg 2 Edge.�/, gs 2 Gs and gt 2 Gt .
For example, if Edge.�/ D ;, then

Q
� Gs is the free product, while if � is the

complete graph on S , then
Q

� Gs is the direct sum.
Suppose that G D Q

� Gs . We want to see that G has the structure of a RAB
of type .WL; S/. The group G can be given the structure of a chamber system as
follows: the s-panels are the left cosets gGs , with g 2 G. Write G�

s for Gs � f1g.
The projections G�

s 7! s induce a map (not a homomorphism) � W G ! WL, as
follows: any element g 2 G can be written as gs1

: : : gsn
, with gsi

2 G�
si

so that
s1 : : : sn is a reduced expression for an element w 2 W . Moreover, w depends only
on g. The map � sends g to w. The Weyl distance ı W G � G ! WL is defined by
ı.g; h/ D �.g�1h/. The following lemma is easily checked.

Lemma 1.1 ([11], Example 18.1.10). .G; ı/ is a building of type .WL; S/.

Polyhedral products. Suppose, for the moment, that S is the vertex set of an arbi-
trary simplicial complex L. Let f.Zs; As/gs2S be a family of pairs of spaces indexed
by S . For each J 2 �.L/, let Z0

J be the subspace of the product
Q

s2S Zs , consisting
of all S -tuples .xs/s2S such that

xs 2
´

Zs if s 2 J ;

As if s … J .

The polyhedral product of this family, denoted by �L.Zs; As/, is defined to be the
following subspace of

Q
s2S Zs:

�L.Zs; As/ ´ S
J 2�.L/

Z0
J : (1.3)

(This terminology comes from [2]. In [20] it is called a “generalized moment angle
complex”.)

Example 1.2. Suppose that each .Zs; As/ D .Œ0; 1�; 0/. Then �L.Œ0; 1�; 0/ can be
identified with Flag.�.L// in such a fashion that a standard subdivision of each cube
in the polyhedral product is a subcomplex of Flag.�.L//. In particular, if L is the
nerve of a RACS, then �L.Œ0; 1�; 0/ D K, the Davis chamber from § 1.3.

Graph products of spaces. We return to the assumption that L is the flag complex
determined by � .

Example 1.3. Suppose that .Zs; As/ D .Cone.Gs/; Gs/ for a family of discrete
groups fGsgs2S . The group Gs acts on Zs D Cone.Gs/ and As D Gs is an invariant
subspace. Let G0 ´ Q

s2S Gs denote the direct product. Then G0 acts on
Q

s2S Zs

and Z0 ´ �L.Cone.Gs/; Gs/ is an invariant subspace. The quotient space Z0=G0
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can be identified with the chamber K D �L.Œ0; 1�; 0/ of the previous example.
It is proved in [12] that the universal cover of Z0 is the standard realization of a
RAB. It follows that the group G of all lifts of elements in G0 is the graph product,
G D Q

� Gs . An explanation for this, which is different from that in [12], is given in
the following lemma.

Lemma 1.4. With notation as in Example 1.3, the fundamental group of Z0 D
�L.Cone.Gs/; Gs/ can be identified with the kernel of the natural surjection G DQ

� Gs ! G0 D Q
s2S Gs . Moreover, if Z ! Z0 is the corresponding covering

space, then the G0-action on Z0 lifts to a G-action on Z.

Proof. First consider the special case where S consists of two elements s and t and
� has no edges. Then Cone.Gs/ � Cone.Gt / is a 2-complex and the polyhedral
product Z0 is the union of 1-cells which do not contain the product of the cone
points. Such a 1-cell either has the form Cone.gs/ � gt or gs � Cone.gt / for some
.gs; gt / 2 Gs � Gt . These two 1-cells fit together to give a single edge e.gs; gt / ´
.Cone.gs/ � gt / [ .gs � Cone.gt // connecting gt to gs . In this way we see that Z0
is identified with (the barycentric subdivision of) the join of Gs and Gt , which we
denote Gs ˇ Gt . The group Gs � Gt acts on Gs ˇ Gt and the vertex stabilizers are
either Gs or Gt . The universal cover of Gs ˇ Gt is a tree T . The group of all lifts
of the .Gs � Gt /-action is transitive on edges, and the quotient space is a single edge
(with distinct vertices). Hence, the group of lifts is the free product Gs 
 Gt and T

is the corresponding Bass–Serre tree.
The general case follows in the same manner by considering the universal cover

of the 2-skeleton of Z0.

Next suppose that for each s 2 S we are given a path connected Gs-space Zs and
a basepoint bs 2 Zs lying in some free orbit. We can find a Gs-equivariant map of
pairs fs W .Zs; Gsbs/ ! .Cone.Gs/; Gs/. We want to define a space

Q
�.Zs; Gsbs/,

together with a G-action on it (where G ´ Q
� Gs). It will be called the graph

product of the .Zs; Gsbs/. The fs induce a map, well defined up to G0-equivariant
homotopy, f W �L.Zs; Gsbs/ ! �L.Cone.Gs/; Gs/. It is easy to see that f

induces a surjection on fundamental groups. Pulling back the universal cover of
�L.Cone.Gs/; Gs/, we get a covering space, Z ! �L.Zs; Gsbs/. We use the
notation

Q
�.Zs; Gsbs/ ´ Z for this covering space. Notice that the G0-action on

�L.Zs; Gsbs/ lifts to a G-action on Z. Also, notice that if each Zs is simply con-
nected, then Z is just the universal cover of the polyhedral product. Good references
for graph products of groups and spaces are [24] and [27].

Example 1.5. Suppose that f.Bs; ps/gs2S is a collection of path connected spaces
with base points and that B D �L.Bs; ps/ is the polyhedral product. For each s 2 S ,
let �s W Zs ! Bs be the universal cover and let Gs D �1.Bs; ps/. Let Z0 denote the
polyhedral product �L.Zs; ��1

s .ps//. Then Z0 ! B is a regular covering space
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with group of deck transformations G0 (the product of the Gs). It follows that the
universal cover of Z0 can be identified with the graph product of the .Zs; ��1

s .ps//.
Hence, �1.B/ is the graph product of the Gs .

Example 1.6. Suppose that Zs D EGs , the universal cover of the classifying space
BGs . A simple argument using induction on the number of elements of S (cf. [8],
Remark on p. 619) shows that the polyhedral product of the .BGs; ps/ is aspherical;
hence, it is a model for BG and its universal cover

Q
�.EGs; Gsbs/ is EG.

Lemma 1.7. (i) If each Gs acts properly on Zs , then G acts properly on the graph
product

Q
�.Zs; Gsbs/.

(ii) If each Zs is acyclic, then so is
Q

�.Zs; Gsbs/.

Proof. The proof of (i) is trivial. For (ii), consider the cover of Z (´ Q
�.Zs; Gsbs/)

by components of the inverse images of the fZJ gJ 2�.L/. By the Künneth Formula,
each ZJ is acyclic and the same is true for each component of its inverse image
(since such a component projects homeomorphically). There is a similar cover ofQ

�.Cone.Gs/; Gs/ with the same nerve. So Z and
Q

�.Cone.Gs/; Gs/ have the
same homology. Since

Q
�.Cone.Gs/; Gs/ is the standard realization of a building,

it is contractible; hence, acyclic. Statement (ii) follows.

Remark. Probably the correct level of generality at which to define the graph prod-
uct of a family of pairs of spaces is the following. Suppose we are given a family
of pairs f.Zs; As/gs2S , where each Zs is path connected and where As is a not nec-
essarily connected, closed nonempty subspace. Then

Q
�.Zs; As/ can be defined in

the following manner. First notice that Example 1.3 works when the discrete groups
Gs are replaced by discrete spaces Ds . Let H denote the fundamental group of
�L.Cone.Ds/; Ds/. If Ds D �0.As/ denotes the set of components of As , then,
as before, we have maps fs W .Zs; As/ ! .Cone.Ds/; Ds/. The fs induce a map
f W �L.Zs; As/ ! �L.Cone.Ds/; Ds/. Moreover, the induced map of fundamen-
tal groups f� W �1.�L.Zs; As// ! H is surjective. The corresponding covering
space Z is called the graph product of the .Zs; As/ and is denoted by

Q
�.Zs; As/.

(Notice that if each As is connected, then the graph product is the polyhedral product,
�L.Zs; As/.) In particular, this allows us to deal with the case where each As is a
Gs-orbit (not necessarily a free Gs-orbit). So suppose that As D Gs=Hs . Then the
group of lifts of the G0-action to the universal cover of �L.Cone.Gs=Hs/; Gs=Hs/

is the “graph product of pairs”,
Q

�.Gs; Hs/, defined previously in [27].

2. A spectral sequence

A poset of coefficients is a contravariant functor A from a poset P to the category
of abelian groups (i.e., it is a collection fAaga2P of abelian groups together with
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homomorphisms 'ba W Aa ! Ab , defined whenever a > b, such that 'ca D 'cb 'ba,
whenever a > b > c). The functor A also gives us a system of coefficients on the cell
complex Flag.P /: it associates to the simplex � the abelian group Amin.�/. Hence,
we get a cochain complex

C j .Flag.P /I A/ ´ L
�2Flag.P /.j /

Amin.�/;

where Flag.P /.j / means the set of j -simplices in Flag.P /.
Given a CW complex Y , a poset of spaces in Y over P is a cover V D fYaga2P

of Y by subcomplexes indexed by P so that if N.V/ denotes the nerve of the cover,
then

(i) a < b H) Ya � Yb , and
(ii) the vertex set Vert.�/ of each simplex of N.V/ has the greatest lower bound ^�

in P , and
(iii) V is closed under taking finite nonempty intersections, i.e., for any simplex �

of N.V/, T
a2�

Ya D Y^� :

Remark. Any cover leads to a poset of spaces by taking all nonempty intersections
as elements of the new cover, and removing duplicates. The resulting poset is the set
of all nonempty intersections, ordered by inclusion.

Lemma 2.1 (cf. [23]). Suppose that V D fYaga2P is a poset of spaces for Y over P .
There is a Mayer–Vietoris type spectral sequence converging to H �.Y / with E1-term

E
i;j
1 D C i .Flag.P /I H j .V//;

and E2-term
E

i;j
2 D H i .Flag.P /I H j .V//;

where the coefficient system H j .V/ is given by H j .V/.�/ D H j .Ymin.�//.

Proof. We follow the line laid down in [6], Chapter VII, §3, 4. Consider the double
complex

E
i;j
0 D L

�2Flag.P /

dim �Di

C j .Ymin.�//; (2.1)

where the differentials are defined as follows. The vertical differentials are direct
sums of the differentials d W C j .Ymin.�// ! C j C1.Ymin.�//. Similarly, the horizon-
tal differentials are direct sums of homomorphisms ı W C j .Ymin.�// ! C j .Ymin.�//

where the matrix entry corresponding to �� is Œ� W ��i�� , where Œ� W �� is the in-
cidence number and i�� W C j .Ymin.�// ! C j .Ymin.�// is the restriction map if � is
a coface of � and 0 otherwise. As in [6], p. 165, there are two spectral sequences
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associated to the double complex. The first begins by taking vertical cohomology
to get E1 and then takes horizontal cohomology to get E2. The differential on the
Er sheet has bidegree .r; �r C 1/. The second spectral sequence begins with the
horizontal differential so that the differential on the Er sheet has bidegree .�r C1; r/

The usual inclusion-exclusion argument using properties (i)–(iii) of a poset of
spaces shows that the rows of the double complex are exact, except when i D 0,
where we get C j .Y / as the E

0;j
1 -term of the second spectral sequence. This implies

that the second spectral sequence collapses at E2 and that the cohomology of the
double complex is H �.Y / (cf. the exercise in [6], p. 165).

We can rewrite (2.1) as E
i;j
0 D C i .Flag.P /I Cj .V//, where the coefficient sys-

tems are defined by Cj .V/.�/ D C j .Ymin.�//. So the first spectral sequence is the
one claimed in the lemma.

For a 2 P , let Y<a ´ S
b<a Yb . For any maximal element a 2 P , put Y¤a ´S

b¤a Yb . Consider the following two conditions on the poset of spaces.

(Z0) For any a; b 2 P with b < a, the induced homomorphism H �.Ya/ ! H �.Yb/

is the zero map.

(Z) For any a 2 P , the induced homomorphism H �.Ya/ ! H �.Y<a/ is the zero
map.

Note that (Z) implies (Z0) since the map H �.Ya/ ! H �.Yb/ factors through H �.Y<a/.

Lemma 2.2. Suppose that V D fYaga2P is a poset of spaces for Y over P .

(i) If (Z0) holds, then

E
i;j
2 D L

a2P

H i .Flag.P�a/; Flag.P>a/I H j .Ya//:

(ii) If (Z) holds, then the spectral sequence degenerates at E2 and

Gr H �.Y / D L
a2P

H i .Flag.P�a/; Flag.P>a/I H j .Ya//:

Proof. We use the double complex from the proof of Lemma 2.1. The cochain group
decomposes as a direct sum:

C i .Flag.P /I Cj .V// D L
a2P

C i .Flag.P�a/; Flag.P>a/I C j .Ya//:

The vertical differentials at E0 respect this decomposition, so at E1 the spectral
sequence always decomposes as a direct sum:

E
i;j
1 D L

a2P

C i .Flag.P�a/; Flag.P>a/I H j .Ya//:

In general, the differentials at E1 do not respect this decomposition; however, condi-
tion (Z0) implies that they do, and therefore, the spectral sequence also decomposes
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at E2:
E

i;j
2 D L

a2P

H i .Flag.P�a/; Flag.P>a/I H j .Ya//:

This proves (i).
Now suppose that (Z) holds. By induction, we can assume that (ii) is true for

all posets with fewer elements. If z 2 E
i;j
0 is a vertical cocycle, then its higher

differential is given by dr.z/ D ı.xr/, where .x0 D z; x1; : : : ; xr/ is any sequence
of elements satisfying xk 2 E

iCk;j �k
0 and ı.xk/ D d.xkC1/. Since the columns of

double complex split as direct sums over � , the vertical cocycles split as a direct sum,
and it suffices to show that higher differentials vanish for each summand. So let � be
a simplex in Flag.P /, and consider the term C j .Ymin.�//. There are two cases.

1) � is a face of a simplex � with min.�/ D min.�/. Then i�� is the identity
map and this forces higher differentials to be trivial on this term. Indeed, if z 2
C j .Ymin.�//, then d.x1/ D ı.z/, and therefore d.x1� / D ˙z, where x1� denotes the
� component of x1. Thus we can choose x0

1 D ˙ı.i�1
�� .x1� // and all higher xk D 0.

2) � is a “maximal” face, i.e., all its cofaces have strictly smaller minimum vertices.
Then a D max.�/ is a maximal element of P . The cover of Y¤a by fYb j b ¤ ag is
a poset of spaces over P¤a. Let E0;a be the subcomplex of E0 corresponding to the
pair .Y; Y¤a/:

E
i;j
0;a D L

max.�/Da
dim �Di

C j .Ymin.�//:

Note that C j .Y� / is contained in this subcomplex, so it suffices to show that the
higher differentials vanish for E0;a. The pair .Y; Y¤a/ excises to the pair .Ya; Y<a/.
So we have a short exact sequence

0 ! E0;a ! E0;�a ! E0;<a ! 0;

where

E
i;j
0;�a D L

�2Flag.P�a/

dim �Di

C j .Ymin.�//;

and

E
i;j
0;<a D L

�2Flag.P<a/

dim �Di

C j .Ymin.�//:

are double complexes corresponding to the covers (posets of spaces) of Ya by fYb j
b � ag and of Y<a by fYb j b < ag.

The E2-terms of the spectral sequences E�a and E<a are

E
i;j
2;�a D L

b�a

H i .Flag.P Œb; a�/; Flag.P .b; a�/I H j .Yb//;

and

E
i;j
2;<a D L

b<a

H i .Flag.P Œb; a//; Flag.P .b; a//I H j .Yb//:
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For b < a, Flag.Œb; a�/ is a cone on Flag..b; a�/; therefore, the only nonzero terms
in E2;�a come from b D a and i D 0, i.e., E2;�a has H j .Y / in the 0-row and 0

everywhere else. In particular, it collapses at E2. By inductive assumption E2;<a also
collapses at E2. Since, by hypothesis, H �.Ya/ ! H �.Y<a/ is the 0-map, the long
exact sequence of the pair .Ya; Y<a/ splits into short exact sequences, and similarly
for the E2-terms, it follows that the spectral sequence Ea also collapses at E2-term.
Thus, the higher differentials in E are 0.

3. Some previous cohomology computations

Suppose that G is a discrete group and Y is a G-CW complex. Let N be a left
G-module. The G-equivariant cochain complex is defined by,

C i
G.Y I N / ´ HomG.Ci .Y /I N /;

where C�.Y / denotes the usual cellular chain complex. Its cohomology is de-
noted H �

G.Y I N /. If G acts freely on Y , then C �
G.Y I N / can be identified with

C �.Y=GI N /, the cellular cochains on the quotient space with local coefficients in
N . There is a similar result even when the action is not free; however, the coefficients
will no longer be locally constant. Rather, the coefficients will be in a contravariant
functor �.N / from the poset of cells in Y=G to the category of abelian groups: �.N /

assigns to a cell c the fixed submodule N Gc , where Gc denotes the stabilizer of some
lift of c and where

C i
G.Y / D C i .Y=GI �.N //: (3.1)

For Y D EG, the universal cover of the classifying space BG, define the cochains
and cohomology of G with coefficients in N by

C �.GI N / ´ C �
G.EGI N / D C �.BGI N /;

H �.GI N / ´ H �
G.EGI N / D H �.BGI N /:

The spectral sequence arguments from §2 work with equivariant cochains (in par-
ticular with cochains with local coefficients) as long as the cover V is G-equivariant.

In what follows we will be interested principally in two cases: N D ZG, the group
ring, and N D N .G/, the group von Neumann algebra. We recall the definitions and
some results which have been proved previously.

Group ring coefficients. In the case of group ring coefficients, if G acts properly
and cocompactly on Y , there is the following formula (cf. [6], Example 4, p. 209),

H �
G.Y I ZG/ D H �

c .Y /;

where H �
c .Y / means cohomology with compact supports. Thus, Lemma 1.7 implies

the following.
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Corollary 3.1. For each s 2 S , suppose that Gs is a discrete group and that
.Zs; Gsbs/ a Gs-CW complex together with a free orbit. Also suppose that each
Gs-action is proper and cocompact and that Zs is acyclic. Then for G D Q

� Gs

and Z D Q
�.Zs; Gsbs/, we have

H �.GI ZG/ D H �
c .Z/:

The cohomology groups of Coxeter groups are computed as follows.

Theorem 3.2 ([10] as well as [14]).

H n.W I ZW / D H n
c .U.W; K// D L

J 2�.W;S/

H n.K; KS�J / ˝ yA.W /J ;

where yA.W /J is the free abelian group on the set of w 2 W which have reduced
expressions ending with letters in J .

Using this, Jensen and Meier proved the following. (A different proof of this will
be given in §4.1.)

Theorem 3.3 (Jensen–Meier [28]). Suppose that .W; S/ is a RACS and AL is the
associated RAAG. Then

H n.ALI ZAL/ D L
J 2�.W;S/

H n�jJ j.KJ ; @KJ / ˝ Z.AL=AJ /:

Theorem 3.4 ([13], Corollary 8.2). Suppose that C is a locally finite building of type
.W; S/. Then

H n
c .B.C ; K// D L

J 2�.W;S/

H n.K; KS�J / ˝ yA.C/J ;

where yA.C/J is a certain subgroup of the free abelian group on C .

In particular, by Lemma 1.1, this theorem gives the following computation of [14]
of the compactly supported cohomology of a locally finite RAB and hence, of the
cohomology with group ring coefficients of the graph product of a collection of finite
groups.

Theorem 3.5 ([14], Theorem 6.6). Suppose that fGsgs2S is a collection of finite
groups and that G D Q

� Gs . Then

H n.GI ZG/ D L
J 2�.L/

H n.K; KS�J / ˝ yA.J /;

where yA.J / is a certain ( free abelian) subgroup of Z.G=GJ /.
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L2-cohomologyandL2-Betti numbers. The real groupalgebra, RG, of G consists
of all finitely supported functions G ! R. Its standard basis is feggg2G , where eg

denotes the indicator function of fgg. The standard inner product on RG is defined
by eg � eh D ıgh, where ıgh is the Kronecker delta. The Hilbert space completion of
RG, denoted L2.G/, consists of all square summable functions G ! R. The group
G acts orthogonally on L2.G/ by either left or right translation. To fix ideas, let us
say that it is the right action defined by left translation. The von Neumann algebra of
G, denoted by N .G/, is the commutant of the G-action. It acts on L2.G/ from the
left. For ' 2 N .G/, define

trN .G/.'/ ´ .'e1/ � .e1/:

If V is a closed G-stable subspace of a finite direct sum of copies of L2.G/, then its
von Neumann dimension is defined by

dimN .G/ V ´ trN .G/.pV /;

where pV W L
L2.G/ ! L

L2.G/ is orthogonal projection onto V .
Suppose that the G-CW complex Y is proper and cocompact. Define L2C �.Y /

to be the cochain complex of real-valued, square summable cochains on Y . Denote
its reduced cohomology groups by L2H �.Y /. (Here “reduced” means Ker ı=Imı,
where ı W L2C i .Y / ! L2C iC1.Y / is the coboundary operator. It is necessary to
take the closure of Imı for the quotient to be a Hilbert space.) Define the i th L2-Betti
number by

L2bi .Y I G/ ´ dimN .G/ L2H i .Y /:

If Y is acyclic, then L2H i .Y / depends only on G and is denoted by L2H i .G/ and
similarly, L2bi .G/ ´ L2bi .Y I G/. Thus, Lemma 1.7 implies the following.

Corollary 3.6. For each s 2 S , suppose that Gs is a discrete group and that
.Zs; Gsbs/ is a Gs-CW complex together with a free orbit. Also suppose that each
Gs-action is proper and cocompact and that Zs is acyclic. Then for G D Q

� Gs

and Z D Q
�.Zs; Gsbs/, we have

L2b�.G/ D L2b�.ZI G/:

The L2-Betti numbers of Coxeter groups have proved to be difficult to compute.
Some partial results and conjectures can be found in [19]. For locally finite buildings
of very large thickness there is a complete calculation due to Dymara–Januszkiewicz
[22]. The requirement on the thickness is reduced in [15] (cf. Theorems 6.3 and 6.4
in §6.2).

In the case of Artin groups, we have the following easy computation of [17]. (A
proof of this will be given in the next section.)

Theorem 3.7 ([17]). L2bn. zX I A/ D bn.K; @K/ D Nbn�1.L/; where, as usual,
bn.K; @K/ D dim.H n.K; @KI R// and Nbn�1.L/ D dim. xH n�1.LI R//.
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In [30], Lück shows that there is an equivalence of categories between the category
of finitely generated N .G/-modules and the category of orthogonal representations
of G on Hilbert spaces which are G-isomorphic to closed, G-stable subspaces of a
finite direct sum of copies of L2.G/. Given a finitely generated N .G/-module E,
define dimN .G/ E to be the von Neumann dimension of the corresponding Hilbert
space. Then

L2bi .Y I G/ D dimN .G/ H i
G.Y I N .G//:

Just as in (3.1), we have that

H �
G.Y I N .G// D H �.Y=GI �.N .G///: (3.2)

4. New computations

4.1. Artin groups. As in §1.3, A is the Artin group associated to a Coxeter system
.W; S/ and X is its Salvetti complex. As usual, L D L.W; S/, � D �.W; S/ and
K ´ Flag.�/. We wish to compute H �.X I ZA/. Given a spherical subset J 2 � ,
AJ is the corresponding Artin group and XJ is its Salvetti complex. We know that
XJ is the classifying space for AJ . By [31] (see also [3]), for each spherical subset
J , AJ is a duality group of dimension jJ j. This means that H �.AJ I ZAJ / is zero
for 
 ¤ jJ j and that FJ ´ H jJ j.AJ I ZAJ / is free abelian.

As explained in §1.3, the cover V D fXJ gJ 2� is a poset of spaces for X . In the
case of group ring coefficients, we have a spectral sequence of the type considered
in §2 converging to H �.X I ZA/. It has E2-term: E

i;j
2 D H i .KI H j .V//, where

H j .V/ is the coefficient system, � 7! H i .Xmin � I ZA/,. By Lemma 2.2, once we
establish condition (Z) of §2 we will get the following calculation.

Theorem 4.1.

Gr H n.X I ZA/ D L
J 2�.W;S/

H n�jJ j.KJ ; @KJ / ˝ H jJ j.AJ I ZA/:

A similar argument can be used recover the calculation of the L2-Betti numbers
of X in [17]. (This computation was stated earlier as Theorem 3.7.) The spectral
sequence has E

i;j
2 D H i .KI H j .V//, where H j .V/ is the coefficient system � 7!

H i .Xmin � I N .A//. The key observation in [17] for proving Theorem 3.7 was that for
J ¤ ;, all L2-Betti numbers of AJ vanish. In particular, condition (Z) of §2 holds
(since all cohomology groups vanish except when J D ;). So E

i;j
1 is 0 for j ¤ 0

while
E

i;0
1 D C i .K; @KI N .A//;

where the coefficients are now constant. Therefore H n.X I N .A// Š H n.K; @K/ ˝
N .A/; whence, Theorem 3.7.

In the case of Theorem 4.1, condition (Z) is basically the following lemma.
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Lemma 4.2. For any J 2 � , H �.XJ I ZA/ is concentrated in degree jJ j, where it is
equal to the free abelian group FJ ˝AJ

ZA. Hence, H �.XJ I ZA/ ! H �.X<J I ZA/

is the zero map.

Proof. The first sentence is from [31]. The second sentence follows since XJ is a
jJ j-dimensional CW complex, H �.XJ I ZAJ / is concentrated in the top dimension
and X<J is a subcomplex of one less dimension.

Theorem 4.1 follows immediately from Lemma 2.2. We note that if the K.�; 1/-
Conjecture holds for A (i.e, if X D BA), then the formula in Theorem 4.1 is a
calculation of H �.AI ZA/ and Theorem 3.7 gives a formula for L2bn.A/. In par-
ticular, since the K.�; 1/-Conjecture holds for RAAG’s, Theorem 4.1 gives as a
corollary, a different proof the Jensen–Meier calculation in [28] (stated previously as
Theorem 3.3).

4.2. Bestvina–Brady groups. In this section AL is a RAAG, TL is its Salvetti
complex defined in (1.2) and � W AL ! Z is the standard homomorphism. Its kernel
BBL is the Bestvina–Brady group. We have a �-equivariant map p W zTL ! R. Put
ZL D p�1.t/ for some t 2 R � Z (say for t D 1

2
). Then BBL acts on ZL. It is

proved in [4] that if L is acyclic, then so is ZL and hence, BBL is type FP. We can
compute equivariant cohomology groups of ZL by the method used in the proof of
Theorem. 4.1.

Theorem 4.3. The compactly supported cohomology of ZL is given by

H n
c .ZL/ D H n

BBL
.ZLI ZBBL/

D L
J 2�.L/>;

H n�jJ jC1.KJ ; @KJ / ˝ Z.BBL=.BBL \ AJ //:

When L is acyclic, this is isomorphic to the compactly supported cohomology of zTL

shifted down in degree by 1; moreover, it gives a calculation of H n.BBLI ZBBL/.

Remark. If L is R-acyclic for some commutative ring R, then the same formula
gives a calculation of H n.BBLI RBBL/.

Proof. We intersect the cover f zTJ gJ 2�.L/ of zTL with ZL. Put ZJ ´ ZL \ zTJ .
Since t is not an integer, ZL does not contain any vertices of the cubical complex
zTL, i.e., ZL \ zT ; D ;. On the other hand, when J is nonempty, the intersection
of ZL with any component of zTJ is a Euclidean subspace of codimension one and
the collection of such intersections is in one-to-one correspondence with the cosets
of BBL \ AJ in BBL. So fZJ gJ 2�.L/>;

is a poset of spaces on ZL. The simplicial
complex Flag.�.L/>;/ is equal to @K (i.e., the barycentric subdivision of L). The
E

i;j
1 -term of the spectral sequence is C i .KI H j .V//, where the coefficient system

takes � to H
j
BBL

.Zmin � I ZBBL/. Since each component of ZJ is Euclidean space of
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dimension jJ j � 1, the coefficients, H
j
BBL

.ZJ I ZBBL/ are 0 whenever j ¤ jJ j � 1.
Moreover, for j D jJ j � 1,

H
j
BBL

.ZJ I ZBBL/ D H j
c .Rj / ˝BBL\AJ

ZBBL D Z.BBL=.BBL \ AJ //:

It follows that conditions (Z0) and (Z) of §2 hold (because Z<J is a subcomplex of
dimension jJ j � 2). Hence, by Lemma 2.2, the spectral sequence degenerates at E2

and E
i;j
2 D L

J E
i;j
2;J , where E

i;j
2;J is nonzero only for j D jJ j � 1, in which case,

E
i;jJ j�1
2;J D H i .KJ ; @KJ / ˝ Z.BBL=.BBL \ AJ //:

The theorem follows. (We also note that for J ¤ ;, � W AJ D ZJ ! Z is onto, so
that BBL=.BBL \ AJ / Š AL=AJ .)

Similarly, we compute the L2-Betti numbers of ZL as follows.

Theorem 4.4. Suppose that ZL is a generic level set of the function p W zTL ! R.
Then

L2bn.ZLI BBL/ D P
s2S

bn.Ks; @Ks/ D P
s2S

Nbn�1.Lk.s//:

In particular, when L is Q-acyclic,

L2bn.BBL/ D P
s2S

bn.Ks; @Ks/:

Proof. As before, the E
i;j
1 -term of the spectral sequence is C i .KI H j .V//, where

the coefficient system takes � to H j .Zmin � I N .BBL//. Since each component of
ZJ is Euclidean space of dimension jJ j � 1, the coefficients, H �.ZJ I N .BBL// are
0 whenever jJ j ¤ 1. Hence, by Lemma 2.2, the spectral sequence degenerates at E2

and only E
i;0
2 can be nonzero, where

E
i;0
2 D L

s2S

H i .Ks; @KsI N .BBL//:

The theorem follows.

Remark. Here is a different proof of Theorem 4.3 when L is acyclic. Put YC ´
p�1.Œ1

2
; 1// and Y� ´ p�1..1; 1

2
�/. We first claim that the compactly supported

cohomology of Y˙ vanishes in all degrees. It suffices to consider YC, the argu-
ment for Y� being similar. The arguments of [4] show that when L is acyclic the
inclusion of any level set p�1.t/ into a sublevel set p�1.Œ1

2
; t �/ induces an isomor-

phism on homology. The same argument shows that it induces an isomorphism
on compactly supported cohomology, H �

c .p�1.Œ1
2
; t �// ! H �

c .p�1.t//. Hence,
H �

c .p�1.Œ1
2
; t �/; p�1.t// D 0. Since there is an excision, H �

c .YC; p�1.Œt; 1/// Š
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H �
c .p�1.Œ1

2
; t �/; p�1.t//, the left-hand side also vanishes. For any compact subset

C � YC we have that YC � C 	 p�1.Œt; 1�/ for large enough t ; so

H �
c .YC/ D lim

t!1 H �
c .YC; p�1.Œt; 1///;

and by the previous discussion the right-hand side vanishes. Hence, so does H �
c .YC/.

We have YC [ Y� D zTL and YC \ Y� D ZL and a Mayer–Vietoris sequence

0 D H �
c .YC/ ˚ H �

c .Y�/ ! H �
c .ZL/ ! H �C1

c . zTL/ ! 0:

The theorem follows from the computation of H �C1
c . zTL/ in Theorem 4.1 (or in

Theorem 3.3).

Remark. Theorem 3.3 provides a calculation of H �.ALI ZAL/ as a sum of terms
involving the H ��jJ j.KJ ; @KJ /, where @KJ Š Lk.J /. In the calculation of L2-
cohomology in Theorem 3.7 only the term with J D ; enters. Hence, under the
canonical map, H �.ALI ZAL/ ! L2H �.AL/, all the terms with J ¤ ; go to 0.
Similarly, in Theorem 4.3 we calculated H �.BBLI ZBBL/ as a sum of terms involving
H ��jJ jC1.KJ ; @KJ /. (Since L is acyclic, the term with J D ; does not appear.)
On the other hand, in Theorem 4.4 for L2H �.BBL/ only the terms with jJ j D 1

occur. So the canonical map H �.BBLI ZBBL/ ! L2H �.BBL/ takes all the terms
with jJ j > 1 to 0.

Remark. The cohomology of BBL with trivial coefficients was computed by Leary
and Saadetoğlu in [29].

4.3. Graph products of infinite groups. As in the Introduction, fGsgs2S is a family
of groups and G D Q

� Gs is the graph product with respect to the simplicial graph � .
The associated flag complex is L. For each J in �.L/, GJ denotes the direct product
of the Gs with s 2 J . In this section we shall also suppose that each Gs is infinite.
Put Y D EG. As in Example 1.6, EG is the graph product of the .EGs; Gsbs/. The
cover V D fYJ gJ 2�.L/, where YJ D G �GJ

EGJ , is a poset of spaces structure
for EG. Let N stand for ZG or Nq.G/. The spectral sequence of §2 converges to
H �.GI N / and has E2-term

E
j:k
2 D H i .KI H j .V//;

where the coefficient system is given by H j .V/.�/ D H j .Gmin.�/I N /. Once we
verify that condition (Z) holds, Lemma 2.2, will provide the following calculations.

Theorem 4.5. Let G be a graph product of groups Gs , each of which is infinite. Then

Gr H n.GI ZG/ D L
J 2�.L/
iCj Dn

H i .KJ ; @KJ I H j .GJ I ZG//:
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(Note that H j .GJ I ZG/ D H j .GJ I ZGJ / ˝GJ
ZG.)

Theorem 4.6. Let G be a graph product of groups Gs , each of which is infinite. Then

L2bn.G/ D P
J 2�.L/
iCj Dn

bi .KJ ; @KJ / � L2bj .GJ /:

To establish Theorem 4.5 we need to verify conditions (Z0) and (Z) (or in fact just
condition (Z)) which precedes Lemma 2.2. These conditions follow from statements
(i) and (ii), respectively, in the next lemma.

Lemma 4.7. Suppose that GJ D Q
s2J Gs is the direct product of a collection of

infinite groups indexed by a finite set J . Let fYsgs2J be a collection of connected CW
complexes with proper Gs-actions such that each Ys contains a free orbit, Gsbs , and
put YJ ´ Q

s2J Ys . As in §1.4, for each I � J , define

Y 0
I ´ Q

s2I

Ys � Q
s2J �I

Gsbs:

Let N stand for either ZGJ or N .GJ /. Then:
(i) The map induced by inclusion, H �

GJ
.YJ I N / ! H �

GJ
.Y 0

I I N /, is the zero map.
(ii) More generally, if

Y<J ´ S
s2J

Y 0
J �s;

then the map induced by inclusion, H �
GJ

.YJ I N / ! H �
GJ

.Y<J I N /, is the zero map.

Proof. We shall prove this only in the case N D ZGJ , the case N D N .GJ / being
entirely similar. The relative version of the Künneth Formula states that for pairs of
spaces .A; B/ and .A0; B 0/,

H n..A; B/ � .A0; B 0// D L
iCj Dn

H i .A; BI H j .A0; B 0//

(where .A; B/ � .A0; B 0/ D .A � A0; .A � B 0/ [ .B � A0//). Similarly, if .A; B/ is a
pair of H -spaces and .A0; B 0/ a pair of H 0-spaces, then for left H - and H 0-modules
M and M 0,

H n
H�H 0..A; B/ � .A0; B 0/I M ˝ M 0/ D L

iCj Dn

H i
H .A; BI M ˝ H

j
H 0.A

0; B 0I M 0//:

By the exact sequence of the pair, showing H �
GJ

.YJ I ZGJ / ! H �
GJ

.Y 0
I I ZGJ / is

zero is equivalent to showing that

H �
GJ

.YI � .YJ �I ; GJ �I b/I M ˝ M 0/ ! H �
GJ

.YI � YJ �I I M ˝ M 0/ (4.1)
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is onto, where M D ZGI , M 0 D ZGJ �I and b 2 YJ �I is a basepoint. If J �
I ¤ ;, then, since GJ �I is infinite and acts properly, YJ �I is noncompact; hence,
H 0

GJ �I
.YJ �I I M 0/ D 0 and so

H
j
GJ �I

.YJ �I ; GJ �I bI M 0/ ! H
j
GJ �I

.YJ �I I M 0/

is onto. Hence,

H i
GI

.YI I M ˝ H
j
GJ �I

.YJ �I ; GJ �I bI M 0// ! H i
GI

.YI I M ˝ H
j
GJ �I

.YJ �I I M 0//

is onto. It follows from the relative Künneth Formula that the map in (4.1) is onto.
The proof of the second statement is similar using induction on the cardinality

of J . Choose s 2 J . Then Y<J D .Y<.J �s/ � Ys/ [ .YJ �s � Gsbs/. Hence,

.YJ ; Y<J / D .YJ �s; Y<.J �s// � .Ys; Gsbs/:

Let M D ZGJ �s and M 0 D ZGs . Then

H
j
Gs

.Ys; GsbsI M 0/ ! H
j
Gs

.YsI M 0/

is onto by the argument in the previous paragraph, and

H i
GJ �s

.YJ �s; Y<.J �s/I M/ ! H i
GJ �s

.YJ �sI M/

is onto by inductive hypothesis. Combining these two surjections, we see that

H i
GJ �s

.YJ �s; Y<.J �s/I M ˝ H
j
Gs

.Ys; GsbsI M 0//

! H i
GJ �s

.YJ �sI M ˝ H
j
Gs

.YsI M 0//

is onto. So, by the relative Künneth Formula,

H n
GJ �s�Gs

..YJ �s; Y<.J �s// � .Ys; Gsbs/I ZGJ / ! H n
GJ �s�Gs

.YJ �s � YsI ZGJ /

is onto, which completes the proof.

Other coefficients. As before, G D Q
� Gs is the graph product and G0 D Q

s2S Gs

is the direct product. Let p W G ! G0 be the natural projection. We say that a group
H lies between G and G0 if H D G=N for some normal subgroup N � G with
Ker p � N . If this is the case, then p factors as

G
f�! H ! G0

where f is the natural epimorphism. In this way ZH becomes a G-module. There
is the following generalization of Theorem 4.5.
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Theorem 4.8. Suppose that each Gs is infinite and H lies between G and G0. Then

Gr H n.GI ZH/ D L
J 2�.L/
iCj Dn

H i .KJ ; @KJ I H j .GJ I ZH//

where as before, H j .GJ I ZH/ D H j .GJ I ZGJ / ˝GJ
ZH . Similarly,

L2bn..EG/=N I H/ D P
J 2�.L/
iCj Dn

bi .KJ ; @KJ / � L2bj .GJ /:

We have H n.GI ZH/ D H n
H ..EG/=N / and .EG/=N is covered by complexes

of the form H �GJ
EGJ . The proof then goes through in the same manner as that

of Theorem 4.5.

5. Graph products of Coxeter groups

5.1. Polyhedral joins. As in §1.2 and §1.4, let L be a simplicial complex with vertex
set S . For each s 2 S , suppose that we are given a simplicial complex L.s/ with
vertex set Ts . For each J 2 �.L/, define L.J / to be the join,

L.J / ´ ¨
s2J

L.s/; (5.1)

and then define the polyhedral join of the L.s/ with respect to L by¨
L L.s/ ´ S

J 2�.L/

L.J /: (5.2)

To simplify notation put L ´ ¨
L L.s/. Here is an equivalent definition. Let T

denote the disjoint union
T ´ S

s2S

Ts:

and � W T ! S the natural projection. Any subset I of T can be decomposed as

I D S
s2�.I/

Is;

where Is � Ts . Then I is the vertex set of a simplex in L if and only if �.I / 2 �.L/;

and Is 2 �.L.s// for each s 2 S . In other words, a simplex I of L is determined by
a simplex J 2 �.L/ and a collection of simplices fIsgs2J , where each Is 2 �.L.s//.

Remark. Similarly, given any family of spaces fX.s/gs2S , for each J 2 �.L/, define
X.J / to be the join of the X.s/ and the polyhedral join,

¨
L X.s/, to be the union of

the X.J / as in (5.2).
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Recall that the notion of “polyhedral product” was defined by (1.3). The proof of
the next lemma is straightforward.

Lemma 5.1. The operation of applying K to simplicial complexes intertwines the
polyhedral join with the polyhedral product (defined in §1.4), i.e.,

K.
¨

L L.s// D �L.K.L.s//; @K.L.s///:

The following lemma is a well-known consequence of the Künneth Formula.

Lemma 5.2. Given two spaces A and B ,

xH n.A 
 B/ D L
iCj Dn�1

xH i .AI xH j .B//:

Also, xH �.A 
 B/ ! xH �.A/ is the zero map whenever B is nonempty. (Here
xH �.�/ means reduced cohomology. Also, we follow the convention that the reduced

cohomology of the empty set is Z in degree �1.)

Remark. If we take coefficients in a field F , the formula in Lemma 5.2 reads

xH n.A 
 BI F/ D L
iCj Dn�1

xH i .AI F/ ˝ xH j .BI F/

Similarly, for the J -fold join, X.J /, of fX.s/gs2J ,

xH n.X.J /I F/ D L
P

isDn�jJ jC1

N
s2J

xH is .X.s/I F/:

Proof of Lemma 5.2. Write CA and CB for the cones on A and B , respectively.
Then .CA; A/ � .CB; B/ D .CA � CB; A 
 B/. Since CA � CB is contractible,
xH n.A 
 B/ D H nC1..CA; A/ � .CB; B//. Hence,

xH n.A 
 B/ D H nC1..CA; A/ � .CB; B//

D L
iCj C2DnC1

H iC1.CA; AI H j C1.CB; B//

D L
iCj Dn�1

xH i .AI xH j .B//;

where the second equation is the relative Künneth Formula. This proves the first
sentence. To prove the second, note that the subspace A 
 ; � A 
 B is homotopy
equivalent to A � CB � A 
 B . So, by the exact sequence of the pair, we need only
show H �.A 
 B; A � CB/ ! xH �.A 
 B/ is onto. We have

H n.A 
 B; A � CB/ D H n.CA � B; A � B/ D H n..CA; A/ � B/

D L
iCj Dn

H i .CA; AI H j .B//:

Since the connecting homomorphism xH j .B/ ! H j C1.CB; B/ is an isomorphism,
it follows that H n.A 
 B; A/ ! xH n.A 
 B/ is onto.
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For any J 2 �.L/, put

L.< J / ´ S
s2J

L.J � s/;

where L.J � s/ is defined by (5.1).

Lemma 5.3 (cf. Lemma 4.7). The map xH �.L.J // ! xH �.L.< J //, induced by the
inclusion, is the zero homomorphism.

Proof. The proof is by induction on the cardinality of J . It is trivially true for jJ j D 1.
So assume jJ j > 1. We first claim that for each s 2 J , H �.L.J /; L.J � s// !
H �.L.< J /; L.J � s// is the zero map. We have .L.J /; L.J � s// D L.J � s/ 

.L.s/; ;/. Hence, as in Lemma 5.2,

H n.L.J /; L.J � s// D L
iCj Dn�1

xH i .L.J � s/I H j .L.s///: (5.3)

Similarly, L.< J / D .L.< .J � s// 
 L.s// [ .L.J � s/ 
 ;/; so,

H n.L.< J /; L.J � s// D H n.L.< .J � s// 
 .L.s/; ;//

D L
iCj Dn�1

xH i .L.< .J � s//I H j .L.s///: (5.4)

By inductive hypothesis, xH i .L.J � s// ! xH i
�
L.< .J � s//

�
is zero. Comparing

(5.3) and (5.4), we see that H �.L.J /; L.J � s// ! H �.L.< J /; L.J � s// is
the zero map, which proves the claim. By the exact sequence of the triple, this is
equivalent to the statement that H �.L.J /; L.< J // ! H �.L.J /; L.J � s// is
onto. By Lemma 5.2, H �.L.J /; L.J � s// ! xH �.L.J // is also onto; hence, so
is their composition, H �.L.J /; L.< J // ! xH �.L.J //. But this is equivalent to
the statement that xH �.L.J // ! xH �.L.< J // is zero, which is what we wanted to
prove.

Put K ´ K.L/. We want to use the spectral sequence of §2 to compute the
cohomology of .K; KT �I / for any I 2 �.L/. To warm up, let us do first the case
I D ;. We note that KT is (the barycentric subdivision of) L and K is the cone on
L. Since

K D �L.K.L.s//; L.s// and L D ¨
L L.s/;

.K; L/ is a pair of posets of spaces over �.L/ (cf. (5.1) and (5.2)). Lemma 5.3 says
that condition (Z) of §2 holds; so Lemma 2.2 gives the following,

Gr H n.K; KT / D L
J 2�.L/
iCj Dn

H i .KJ ; @KJ I H j .Cone.L.J //; L.J ///: (5.5)

Note that the term H j .Cone.L.J //; L.J // can be replaced by xH j �1.L.J //. Let
F ´ fs 2 S j L.s/ is the simplex on Tsg. Note that if J \ F ¤ ;, then the
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join L.J / is contractible (since one of its factors is a simplex). So in this case the
coefficients in (5.5), H j .Cone.L.J //; L.J // vanish for all j .

Next, fix I 2 �.L/. For each s 2 S , Is D I \ Ts . Define a subset G.I / of S by

G.I / ´ fs 2 �.I / \ F j Is D Tsg:
Then G.I / is the vertex set of a simplex � of L (since G.I / � �.I /). Let IL be
the full subcomplex of L spanned by S � G.I /, and let IK ´ K.IL/ be the Davis
chamber. It is not hard to see that IL is homotopy equivalent to KS�G.I/ (see [11],
Lemma A.5.5, p. 416). For each s 2 S � G.I /, let LI .s/ denote the full subcomplex
of L.s/ spanned by Ts � Is and for each J 2 �.IL/, put

LI .J / ´ ¨
s2J LI .s/: (5.6)

The usual spectral sequence argument proves the following.

Theorem 5.4. With notation as above,

Gr H n.K; KT �I / D L
J 2�.IL/
J \F D;

iCj Dn�1

H i .IKJ ; @ IKJ I xH j .LI .J ///:

There are two extreme cases of Theorem 5.4.

Corollary 5.5. Suppose that each L.s/ is a simplex. Then

H n.K; KT �I / D H n.IK; @ IK/

(D xH n�1.KS�G.I// D xH n�1.IL/).

Proof. If each L.s/ is a simplex, then in Theorem 5.4, J \ F D J is nonempty
unless J D ;. When J D ;, xH j .LI .J // is nonzero only for j D �1 and we get
the formula in the corollary.

Corollary 5.6. Suppose that no L.s/ is a simplex. Then

Gr H n.K; KT �I / D L
J 2�.L/

iCj Dn�1

H i .KJ ; @KJ I xH j .LI .J ///:

Proof. The hypothesis implies G.I / D ;; hence, IL D L and IK D K.

5.2. Cohomology of graph products of Coxeter groups with group ring co-
efficients. We continue from §1.4. We are given a family of Coxeter systems
f.Vs; Ts/gs2S and we form the graph product with respect to � . Let T denote the
disjoint union of the Ts and put V D Q

� Vs . Then .V; T / is (obviously) a Coxeter



Cohomology of graph products 513

system. The projection � W V ! WL restricts to the natural projection T ! S which
sends Ts to s. For each s 2 S define L.s/ to be L.Vs; Ts/. Clearly,

K.V; T / D �L.W;S/ K.Vs; Ts/ ´ K;

L.V; T / D ¨
L.W;S/ L.s/ ´ L:

(5.7)

Henceforth, we write L and K for L.W; S/ and K.W; S/, respectively.

Notation. For each J 2 �.W; S/, put T .J / D ��1.J / and

VJ ´ V��1.J / D Q
s2J

Vs:

We can combine Theorem 5.4 with Theorem 3.2 to get the following calculation
of H �.V I ZV /.

Theorem 5.7.

Gr H n.V I ZV / D L
I2�.V;T /

L
J 2�.IL/
J \F D;
iCj Dn

H i .IKJ ; @ IKJ I xH j �1.LI .J /// ˝ yA.V /I :

On the other hand, in Theorem 4.5 we calculated the cohomology of an arbitrary
graph product of infinite groups and in Theorem 3.5 for an arbitrary graph product
of finite groups. We would like to see that these answers agree with the above in the
case of Coxeter groups.

For any J 2 �.L/, put

�.J / ´ fI 2 �.L/ j G.I / D J g:
When each Vs is finite,

Gr H n.V I ZV / D L
I2�.L/

H n.K; KT �I / ˝ yA.V /I (by Theorem 3.2 )

D L
J 2�.L/

L
I2�.J /

xH n�1.KS�J / ˝ yA.V /I (by Corollary 5.5)

D L
J 2�.L/

H n.K; KS�J / ˝ L
I2�.J /

yA.V /I ; (5.8)

where (5.8) agrees with Theorem 3.5 with

yA.J / ´ L
I2�.J /

yA.V /I :

Next consider the situation where all Vs are infinite. First we consider the special
case where the base complex L is a simplex.



514 M. W. Davis and B. Okun

Lemma 5.8. Suppose that VJ is the J -fold product of fVsgs2J , where each Vs is
infinite. For each I 2 �.VJ ; T .J //, LI .J / denotes the J -fold join defined by (5.6).
Then

H n.VJ I ZVJ / D L
I2�.VJ ;T .J //

xH n�1.LI .J // ˝ yA.VJ /I :

Proof. Let K.J / denote the Davis chamber for .VJ ; T .J //. By Theorem 3.2,

H n.VJ I ZVJ / D L
I2�.VJ ;T .J //

H n.K.J /; KT .J /�I .J // ˝ yA.VJ /I :

Moreover, KT .J /�I .J / is homotopy equivalent to LI .J /. The formula in the lemma
follows.

Finally, consider the general case when each Vs is infinite:

Gr H n.V I ZV / D L
I2�.V;T /

H n.K; KT �I / ˝ yA.V /I

D L
I2�.V;T /

L
J 2�.W;S/

iCj Dn

H i .KJ ; @KJ I xH j �1.LI .J /// ˝ yA.V /I

D L
J 2�.W;S/

iCj Dn

H i .KJ ; @KJ I L
I2�.V;T /

xH j �1.LI .J // ˝ yA.V /I /

D L
J 2�.W;S/

ıCj Dn

H i .KJ ; @KJ I H j .V I ZV //; (5.9)

where the first equation follows from Theorem 3.2, the second from Corollary 5.6,
the third from the fact that yA.V /I is free abelian, and the last from Lemma 5.8.
Moreover, (5.9) agrees with Theorem 4.5.

6. Weighted L2-cohomology of buildings and Coxeter groups

6.1. Hecke–von Neumann algebras. Suppose that we are given a Coxeter system
.W; S/ and a function i W S ! I to an index set I such that i.s/ D i.t/ whenever
s and t are conjugate in W . A multiparameter for .W; S/ is an I -tuple t D .ti /i2I

of indeterminates (or of numbers). Write ts instead of ti.s/. If s1 : : : sn is a reduced
expression for an element w 2 W , then the monomial

tw ´ ts1
: : : tsn

depends only on w and not on the choice of reduced expression for it. (This follows
from Tits’ solution to the Word Problem for Coxeter groups, cf. [11], p. 315.) The
growth series of W is a power series in t defined by

W.t/ ´ P
w2W

tw :
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This power series has a region of convergence R.W / (a subset of CI ). If W is finite,
then W.t/ is a polynomial. For any Coxeter group W , it can be shown that W.t/ is
a rational function of t (cf. [11], Corollary 17.1.6).

For any set X , RX denotes the vector space of finitely supported real-valued func-
tions on X . For each x 2 X , ex denotes the indicator function of fxg so that fexgx2X

is the standard basis for RX . For a multiparameter q of positive real numbers, define
a inner product h ; iq on RW by

hew ; ew0iq D
´

qw if w D w0,
0 otherwise.

Let L2
q.W / denote the Hilbert space completion of RW with respect to h ; iq .

Using q, one can also give RW the structure of a Hecke algebra, determined by
the formula

esew D
´

esw if l.sw/ > l.w/,

qsesw C .qs � 1/ew if l.sw/ < l.w/.

When q D 1 (the multiparameter which is identically 1), Rq.W / is the group algebra
of W .

Define an anti-involution 
 on RqW , by .
P

xwew/� ´ P
xw�1ew . The inner

product h ; iq and the anti-involution 
 give RqW the structure of a Hilbert algebra (see
[21], Proposition 2.1). (In other words, x�, the image of x under the anti-involution
of algebras, is equal to the adjoint of x with respect to h ; iq .) This implies that
there is an associated von Neumann algebra Nq.W / (called the Hecke–von Neumann
algebra) acting from the right on L2

q.W /. One definition of Nq.W / is that it is the
algebra of all bounded linear endomorphisms of L2

q.W / which commute with the left
Rq.W /-action. An equivalent definition is that it is the weak closure of the elements
Rq.W / which act from the right on L2

q.W / as bounded linear operators.
Define the von Neumann trace of ' 2 Nq.W / by trNq .'/ WD he1'; e1iq and

similarly, for any .n � n/-matrix with coefficients in Nq.W /. This allows us to
define the von Neumann dimension of any closed subspace of an n-fold orthogonal
direct sum of copies of L2

q.W / which is stable under the diagonal Rq.W /-action: if
V � .L2

q.W //n is such a subspace and pV W .L2
q.W //n ! .L2

q.W //n is orthogonal
projection onto V , then pv 2 Nq.W /, so define

dimNq V ´ trNq .pV /: (6.1)

For any J � S and q 2 R.WJ /, there is a self-adjoint idempotent aJ 2 Nq.W /

defined by

aJ ´ 1

WJ .q/

X
w2WJ

ew



516 M. W. Davis and B. Okun

(cf. [11], Lemma 19.2.5). For s 2 S , write as instead of afsg. For s 2 S and J � S ,
define subspaces of L2

q.W / by

As ´ L2
q.W /as ; AJ ´ T

s2J

As:

These subspaces are stable under the action of RqW from the left. Moreover, AJ is
the image of the idempotent aJ if q 2 R.WJ /, and AJ D 0 whenever q … R.WJ /

(cf. [11], §19.2).
Let A>J denote the subspace

P
I>J AI of AJ and put

DJ ´ AJ \ .A>J /?:

The following is one of the main results of [15] (or see [11], Theorem 20.6.1).

Theorem 6.1 (The Decomposition Theorem of [15]). If q 2 R [ R�1, then

P
I�J

DI

is a direct sum and a dense subspace of AJ . In particular, taking J D ;,

L2
q D P

DI :

If q 2 R, the only nonzero terms in this sum are those with I cospherical (i.e., with
S � I 2 �), and if q�1 2 R, the only nonzero terms are those with I spherical.
Moreover, for q�1 2 R,

dimNq DJ D
X

I2��J

.�1/jI�J j

WI .q/
:

6.2. Weighted L2-Betti numbers. Suppose that M is a mirrored CW complex over
S . Let p be a multiparameter of positive real numbers for a Coxeter system .W; S/.
Define a measure �p on the set of cells of U.W; M/ by �p.c/ ´ pw , where w 2 W

is the element of shortest length which moves c into the base chamber M (D the image
of 1 � M in U.W; M/). As in [15] or [11], we can use �p to define the weighted
L2-cochains, L2

pC �.U.W; M//. The corresponding reduced cohomology groups
are denoted L2

pH �.U.W; M//. The weighted cochains on U.W; M/ can also be
regarded as cochains on M with respect to a certain coefficient system �.L2

p/. This
coefficient system associates to a cell c in M , the left Np-module, L2

p.W /aS.c/, i.e.,

�.L2
p/.c/ ´ L2

p.W /aS.c/:
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The corresponding cochain complex is denoted C �.M I �.L2
p// and its reduced co-

homology by H �.M I �.L2
p//. We have natural identifications,

C �.M I �.L2
p// Š L2

pC �.U.W; M//;

H �.M I �.L2
p// Š L2

pH �.U.W; M//:

(This is completely analogous to (3.1) and (3.2) of §3. See [14], [15].) The j th-
weighted L2-Betti number of U.W; M/ is defined by

L2
pbj .U.W; M// ´ dimNp L2

pH j .U.W; M// D dimNp H j .M I �.L2
p//;

where dimNp is defined by (6.1). Also, put

L2
pbj .W / ´ L2

pbj .U.W; K//:

We recall some of the main results of [15] and [21].

Theorem 6.2 (Dymara [21]). Suppose that p 2 R. Then L2
pbj .W / D 0 for j > 0,

while

L2
pb0.W / D dimNp AS D 1

W.p/
:

Theorem 6.3 ([15], Theorem 10.3). Suppose that p�1 2 R. Then

L2
pbj .U.W; M// D P

J 2�.W;S/

bj .M; M S�J / dimNp DJ ;

where the formula for dimNp DJ is given in Theorem 6.1.

Theorem 6.4 ([15], Theorem 13.8). Suppose that .C ; ı/ is a locally finite building of
type .W; S/ with a chamber transitive automorphismgroup G and that the thickness of
C is given by a multiparameter p of integers. (In other words, each s-panel contains
ps C 1 chambers.) Let M be a mirrored CW complex over S (with a W -finite mirror
structure). Then

L2bj .B.C ; M/; G/ D L2
pbj .U.W; M//:

(The group G need not be discrete. The von Neumann dimensions with respect
to G are defined using Haar measure on G, normalized so that the stabilizer of a
chamber has measure 1.)

Corollary 6.5. Let G be a graph product of finite groups fGsgs2S . Let p be the
multiparameter defined by ps ´ jGsj � 1. Then

L2bj .G/ D L2
pbj .W /:
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As in the last paragraph of §3, there is a different method which can be used to
define weighted L2-Betti numbers by using ideas of Lück [30]. As in [30] there is
an equivalence of categories between the category of Hilbert Np.W /-modules (i.e.,
Np.W /-stable closed subspaces of L2

p.W /n) and the category of ordinary projec-
tive modules for Np.W /. This allows us to define a “dimension”, dimNp M , of a
finitely generated, projective Np.W /-module which agrees with the dimension of
the corresponding Hilbert Np.W /-module. The Np.W /-dimension of an arbitrary
Np.W /-module is then defined to be the dimension of its projective part.

There is a coefficient system �.Np/ on the mirrored CW complex M defined by

�.Np/.c/ ´ Np.W /aS.c/:

The corresponding cohomology groups are denoted H �.M I �.Np//. The dimension
of H j .M I �.Np// is equal to that of H j .M I �.L2

p// (and they are both equal to
j th-weighted L2

p-Betti number of U.W; M/). (The advantage of using the coefficient
system �.Np/ instead of �.L2

p/ is that it is not necessary to use reduced cohomology
and then have to keep taking closures of images.)

7. Weighted L2-Betti numbers of graph products of Coxeter groups

As in §5.2, .WL; S/ is the RACS associated to a graph � , f.Vs; Ts/gs2S is a family of
Coxeter systems and .V; T / is the corresponding graph product of Coxeter systems.
Let q be a multiparameter for .V; T /. It restricts to a multiparameter for each Vs ,
which we will denote by the same letter. By Lemma 1.1, V is a RAB of type .WL; S/.

Let p be the multiparameter for .WL; S/ given by ps D Vs.q/�1. The following
lemma shows that the growth series of .V; T / and .WL; S/ are related by a change of
variables q ! p.

Lemma 7.1. For w 2 WL, P
v2��1.w/

qv D pw ; (7.1)

and therefore

V.q/ D W.p/:

Proof. Let s1 : : : sn be a reduced expression for w 2 W and let v 2 ��1.w/. Then v

factors as a product vs1
: : : vsn

, with vsi
2 V �

si
, and this factorization gives one-to-one

correspondence between ��1.w/ and V �
s1

� � � � � V �
sn

; moreover, qv D qvs1
: : : qvsn

.
(Recall from §1.4 that V �

s D Vs � f1g.) Hence, the growth series of ��1.w/ is the
product of the growth series of the V �

si
, and the result follows.

In the first section we compute the weighted L2-Betti numbers of V in the case
where q … R.Vs/ for each s 2 S . Notice that this necessarily entails that each Vs is
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infinite. The proof uses the spectral sequence of §2 in the same way as in §4.3. In the
second section we consider the opposite situation where q 2 R.Vs/ for each s 2 S .
For example, this holds for all q when each Vs is finite. In this case the proofs are
based on arguments from [15].

7.1. Large weights. In this section we assume that q … R.Vs/ for each s 2 S .

Theorem 7.2.

L2
qbn.V / D P

iCj Dn
J 2�.W;S/

bi .KJ ; @KJ / � L2
qbj .VJ /;

where

L2
qbj .VJ / D Q

P
k.s/Dk
s2J

L2
qbk.s/.Vs/:

Proof. The proof is almost the same as the proof of Theorem 4.5. Since .V; T / is a
Coxeter system, we prefer to use its natural action on its Davis complex rather than
on EV . Let Y ´ U.V; K/ be the Davis complex and for each J 2 �.W; S/, put

Y 0
J ´ U.VJ ; K.J //; YJ ´ V �VJ

Y 0
J :

As before,
Y 0

J D Q
s2J

Y 0
s where Y 0

s ´ U.Vs; K.s//:

Then V D fYJ gJ 2�.W;S/ is a poset of spaces on Y . The spectral sequence of
§2 has E

i;j
1 D C j .KI H j .V//, where the coefficient system is defined by � 7!

H
j
V .Ymin � I Nq.V //. It converges to H �

V .Y I Nq.V // and the Nq-dimensions of these
cohomology spaces are the L2

q-Betti numbers. Since q … R.Vs/ for each s 2 S ,
H 0

Vs
.Y 0

s I Nq.Vs// D 0 by [21], and the relative Künneth Formula gives that

H �
VJ

.Y 0
J I Nq.VJ // ! H �

VJ
.Y 0

<J I Nq.VJ //

is the zero map. By Lemma 2.2,

E
i;j
2 D L

J 2�.W;S/

H i .KJ ; @KJ / ˝ IndS
J .Nq.VJ //

where IndS
J .Nq.VJ // denotes the induced representation Nq.VJ / ˝Nq.VJ / Nq.V /,

and the spectral sequence degenerates at E2. Taking von Neumann dimensions, we
get the formula for weighted L2-Betti numbers. The last formula also follows from
the Künneth Formula.

We also have a weighted version of Theorem 4.8. Let V 0 denote the direct sum,Q
s2S Vs . A Coxeter system .V 00; T / lies between V and V 0 if its presentation is given
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by changing certain entries of its Coxeter matrix from 1 to even integers � 2, more
specifically, for any .t1; t2/ with ti 2 Tsi

and fs1; s2g … Edge.�/, we are allowed
change m.t1; t2/ from 1 to an even integer. Note that a multiparameter q for .V; T /

is also a multiparameter for .V 0; T / and for .V 00; T /. The proof of Theorem 7.2 also
gives the following.

Theorem 7.3 (cf. Theorem 4.8).

L2
qbn.U.V 00; K// D P

iCj Dn
J 2�

bi .KJ ; @KJ / � L2
qbj .VJ /:

7.2. Small weights. Throughout this section we suppose that the multiparameter q

is “small” in the sense that q 2 R.Vs/ for each s 2 S . Let M be a mirrored CW
complex over S and let B.V; M/ be the M -realization of V defined by (1.1) of §1.3.

As before, define a measure �q on the set of cells of B.V; M/ by putting �q.c/ ´
qv , where v 2 V is the shortest element such that vc lies in the base chamber M .
Again, we get a cochain complex, L2

qC �.B.V; M//. (If Y is a mirrored CW complex
over T , then associated to the Coxeter system .V; T / there is a different cochain
complex, L2

qC �.U.V; Y //.) There is a coefficient system �.Nq/ on M defined by

�.Nq/.c/ ´ Nq.V /a��1.S.c//

and the Nq.V /-dimension of H j .M I �.Nq// is L2
qbj .B.V; M//.

Let K and K denote the geometric realizations of �.W; S/ and �.V; T /, respec-
tively.

Theorem 7.4. L2
qb�.U.V; K// D L2

qb�.B.V; K//:

Proof. We use the same spectral sequence as in the proof of Theorem 7.2. It converges
to H �

V .U.V; K/I Nq.V // and has E1-term

E
i;j
1 D C j .KI H j .V//;

where the coefficient system is defined by � 7! H
j
V .Xmin � I Nq.V //. Since q 2

R.Vs/, for each s 2 S , by Dymara’s result, Theorem 6.2, the coefficients are nonzero
only for j D 0. For j D 0 the coefficient system is associated to the poset of
coefficients J 7! Nqa��1.J /. In §6.2 we denoted this coefficient system by �.Nq/.

So E
i;0
1 is the cochain complex C j .KI �.Nq//, in other words, it is the cochain

complex whose cohomology gives the b�
q .B.V; K//. Thus,

b�
q .U.V; K// D b�

q .B.V; K//:

Remark. Suppose that each Vs is finite. Then each link L.s/ is a simplex, and it fol-
lows that the natural map L ! L, induced by � , has contractible fibers. It follows that
K deformation retracts to K, respecting the mirror structure. This deformation retrac-
tion induces a V -equivariant, proper homotopy equivalence U.V; K/ ! B.V; K/.
So, when each Vs is finite, Theorem 7.4 is the expected result.
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Theorem 7.5. L2
qb�.B.V; M// D L2

pb�.U.W; M//:

Remark. If each Vs is finite and q D 1, then V is a locally finite building of
type .W; S/ of thickness ps D jVsj � 1; so this reduces to Theorem 6.4 (i.e., [15],
Theorem 13.8, or [11], Theorem 20.8.4). The key point of the proof, which goes
back to [21], is that the folding map � pulls back p-weighted harmonic cochains to
q-weighted harmonic cochains. The proof of Theorem 7.5 is a minor generalization
of the proof of [15], Theorem 13.8, to locally infinite buildings. It occupies the end
of this section.

Example 7.6. Figure 1 depicts the folding map � W B.V; M/ ! U.W; M/ in the
case of the free product of two infinite dihedral groups. Here the graph � is two
disjoint points s and t , so W is D1 generated by s and t . The vertex groups are also
D1, generated by fsC; s�g and ftC; t�g, respectively. So V D D1 
 D1, and we
let M be a segment K.
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Figure 1. D1 
 D1 as a locally infinite building over D1.

Combining the two previous theorems we get the following.
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Theorem 7.7. L2
qb�.V / D L2

pb�.W /:

Proof. We have

L2
qb�.V / ´ L2

qb�.U.V; K// D L2
qb�.B.V; K// (by Theorem 7.4)

D L2
pb�.U.W; K// (by Theorem 7.5)

´ L2
pb�.W /:

Remark 7.8 (Graph products of spherical buildings). Suppose that fCsgs2S is a
family of buildings where Cs is type .Vs; Ts/. In [12], Example 3.1 (3), the first
author defined the notion of a “graph product of buildings”,

Q
� Cs . It is a building

of type .V; T /. Suppose that each Cs is spherical of thickness qs with a chamber-
transitive automorphism group Gs ´ Aut.Cs/ (i.e., each Vs is a finite Coxeter group
and the number of chambers of Cs in a panel of type ts is qts C 1). By Theorem 6.4,
the ordinary L2-Betti numbers of C ´ Q

� Cs with respect to G ´ Q
� Gs are

given by
L2bj .B.C ; K// D L2

qbj .V / D L2
pbj .WL/;

where ps D Vs.q/ � 1 D jCsj � 1. In other words, the L2-Betti numbers of a graph
product of spherical buildings depend only on the thickness of the buildings and the
weighted L2-Betti numbers of the associated RACS, .W; S/.

The proof of Theorem 7.5. The proof is a modification of the proof in [15], Theo-
rem 13.8 in Section 13, and follows a series of lemmas.

Lemma 7.9. (i) The map � W V ! W induces an isometric embedding

�� W L2
p.W / ! L2

q.V /:

(ii) For each s 2 S , ��.as/ D aTs
. Moreover, for each spherical subset J � S ,

��.aJ / D a��1.J /.
(iii) The map �� W L2

p.W / ! L2
q.V / induces a monomorphism of von Neumann

algebras �� W Np.W / ! Nq.V /. (In particular, �� commutes with the 
 anti-
involutions on Np.W / and Nq.V /.)

Proof. To prove (i), notice that as w varies over W , the vectors ��.ew/ are orthogonal
to each other, and equation (7.1) implies that k��.ew/kq D kewkp.

Statement (ii) follows immediately from the definitions.
The idempotents as and ar , with r; s 2 S , commute if and only if r and s commute.

So, if as commutes with ar , then aTs
commutes with aVr

. Since the as generate the
Hecke algebra, statement (iii) follows from (i) and (ii).

Similarly to the equation (7.1), the measures �q and �p on the cells of B.V; M/

and U.W; M/ are related by P
c02��1.c/

�q.c0/ D �p.c/: (7.2)
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By Lemma 7.9, the map � W B.V; M/ ! U.W; M/ induces a cochain map
�� W L2

pC �.U.W; M// ! L2
qC �.B.V; M//. We also have a “transfer map”

t W L2
qC �.B.V; M// ! L2

pC �.U.W; M// defined by

t .f /.c/ ´
X

c02��1.c/

f .c0/
�q.c0/
�p.c/

:

Lemma 7.10. (i) t B �� D id W L2
pC i .U.W; M// ! L2

pC i .U.W; M//.

(ii) The maps �� and t are adjoint to each other.

(iii) These maps take harmonic cocycles to harmonic cocycles.

Proof. Statement (i) is obvious.
(ii) For f 2 L2

pC i .U.W; M// and f 0 2 L2
qC i .B.V; M//, we have

h��.f /; f 0iq D P
c02B.i/

Œ��.f /.c0/�Œf 0.c0/��q.c0/

D P
c02B.i/

f .�.c0//f 0.c0/�q.c0/

D P
c2U.i/

f .c/
P

c02��1.c/

f 0.c0/�q.c0/

D P
c2U.i/

Œf .c/�Œt.f 0/.c/��p.c/

D hf; t.f 0/ip;

where B.i/ and U.i/ denote the set of i -cells in B.V; M/ and U.W; M/, respectively.
(iii) Since �� W L2

pC �.U.W; M// ! L2
qC �.B.V; M// is induced by the cellular

map � W B.V; M/ ! U.W; M/, it takes cocycles to cocycles. We must show it also
takes cycles to cycles. If c0 2 B.i�1/ and d 0 2 B.i/ and if the incidence number
Œc0 W d 0� is nonzero, then it is equal to Œ�.c0/ W �.d 0/�. Hence,

@q.��.f //.c0/ D
X
d 0

Œc0 W d 0�
�q.d 0/
�q.c0/

f .�.c0//

D
X

d

Œc W d�
�p.d/

�p.c/
f .c/ D @p.f /.c/;

where c D �.c0/, d D �.d 0/, the first and the last equality come from the definition,
and the middle equality comes from equation (7.2). So @p.f / D 0 implies that
@q.��.f // D 0. Since t is the adjoint of ��, it also must take cocycles to cocycles
and cycles to cycles.
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Consider the diagram

L
L2

p.W /

��

��

˚aS.c/ ��
L

AS.c/ D L2
pC �.U.W; M//

P ��

��

��

L2
pH �.U.W; M//

��

��L
L2

q.V /
˚a

��1.S.c// ��
L

A��1.S.c// D L2
qC �.B.V; M//

P �� L2
qH �.B.V; M//,

where P denotes the orthogonal projection onto harmonic cocycles.

Lemma 7.11. The above diagram commutes.

Proof. The commutativity of the first square follows from Lemma 7.9.
Let x 2 L2

pC �.U.W; M//. To prove commutativity of the second square, it
is enough to show that P ��.x/ � ��P.x/ is orthogonal to any harmonic cocycle
h 2 L2

qH �.B.V; M//. We have: hP ��.x/; hiq D h��.x/; P.h/iq D h��.x/; hiq .
Hence,

hP ��.x/ � ��P.x/; hiq D h��.x � P.x//; hiq D hx � P.x/; t.h/ip D 0;

where the second and third equalities follow, respectively, from parts (ii) and (iii) of
Lemma 7.10.

Proof of Theorem 7.5. Let ec 2 L
L2

q.V / denote the unit vector e1 2 L2
q.V / in the

summand corresponding to a cell c 2 M .i/, and similarly for L2
p.W /. Note that

��.ec/ D ec . Let � denote the compositions of the maps in the top and the bottom
rows of the above diagrams, i.e., � is the orthogonal projection of the free Hecke–von
Neumann module onto harmonic cocycles. Using Lemmas 7.11 and 7.10, we get

bi
q.B.V; M// ´ dimNq.V / L2

qH i .B.V; M//

D Ph�.ec/; eciq D Ph���.ec/; ��.ec/iq

D Ph���.ec/; ��.ec/iq D Ph�.ec/; t��.ec/ip

D Ph�.ec/; .ec/ip D dimNp.W / L2
pH i .U.W; M//

´ bi
p.U.W; M//:

8. Octahedralization

Suppose that L is a simplicial complex. Its octahedralization, OL, is defined as the
polyhedral join

OL ´ ¨
L S0:

(The definition of “polyhedral join” is given in (5.1).)
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Next we work out an example which motivated most of the calculations in this
paper. For each s 2 S , Vs is the infinite dihedral group with generating set, Ts ´
fsC; s�g. Suppose that .WL; S/ is the RACS associated to the graph � and .V; T / is
the graph product of the infinite dihedral groups (so that .V; T / is also a RACS). By
(5.7), L.V; T / D OL. So in this special case we shall write WOL for V and OS for
S and call the RACS, .WOL; OS/, the octahedralization of .W; S/.

Theorem 4.5 gives the following calculation of the cohomology of WOL with
group ring coefficients.

Theorem 8.1.

Gr H n.WOLI ZWOL/ D L
J 2�.W;S/

H n�jJ j.KJ ; @KJ / ˝ Z.WOL=WOJ /:

Proof. Since D1 acts properly and cocompactly on R1, it is a 1-dimensional virtual
Poincaré duality group. It follows that the cohomology of WOJ D .D1/jJ j with
group ring coefficients is given by

H j .WOJ I ZWOJ / D
´

Z if j D jJ j,
0 otherwise:

Substituting this into the formula in Theorem 4.5 gives the result.

It is proved in [16] that the cubical complex zTL is isomorphic to U.WOL; K/,
and that WOL and AL are commensurable. Hence, Theorem 8.1 gives a calculation
of H �.ALI ZAL/. (In fact this was the method used by Jensen and Meier in their
proof of Theorem 3.3.)

Remark. Since Z � D1, there is an obvious inclusion of graph products, AL � WOL

(cf. [26]). However, whenever L is not a simplex, the image of AL is of infinite index
in WOL. In [16] it is proved that AL and WOL are both isomorphic to subgroups of
index 2jS j in a larger RACG.

Weighted L2-cohomology of WOL. We have OS D fsC; s�gs2S . Let q D
.qs˙/s2S . The growth series of the infinite dihedral group is easy to compute. (For
example, see [11], Example 17.1.2.) We have

Vs.q/ D .1 C qsC/.1 C qs�/

1 � qsCqs�
and

1

Vs.q�1/
D qsCqs� � 1

.1 C qs�/.1 C qsC/
;

and

ps D Vs.q/ � 1 D qsC C qs� C 2qsCqs�

1 � qsCqs�
:

Write q < 1 (resp. q > 1) to mean that each qs˛ < 1 (resp. > 1), for ˛ 2 fC; �g.
The following is a corollary of the results in §7.
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Theorem 8.2. Suppose that .WOL; OS/ is the octahedralization of .W; S/.
(i)

WOL.q/ D W.p/:

(ii) If q < 1, then
L2

qbn.WOL/ D L2
pbn.WL/:

If, in addition, p�1 2 R.W / (i.e., q is sufficiently close to 1), then

L2
qbn.WOL/ D P

J 2�.W;S/

bn.K; KS�J / dimNp DJ ;

where a formula for dimNp DJ is given in Theorem 6.1.
(iii) If q D 1=3, then

L2
1=3bn.WOL/ D L2bn.WL/;

(iv) If q > 1, then

L2
qbn.WOL/ D

X
J 2�.W;S/

bn�jJ j.KJ ; @KJ /
Y
s2J

qsCqs� � 1

.1 C qs�/.1 C qsC/
:

(v) If q D 1, then

L2bn.WOL/ D bn.K; @K/ D Nbn�1.L/;

where Nb�.�/ refers to the reduced Betti-number.

Proof. Statements (i), (ii) and (iii) are immediate from the formula for ps , Lemma 7.1,
and Theorems 7.7 and 6.3.

The region of convergence of the dihedral group R.D1/ is given by qsCqs� < 1.
For a spherical J , VJ is the J -fold product of D1. Thus, if q > 1, then L2

qH �.VJ /

is concentrated in degree jJ j and

L2
qbjJ j.VJ / D 1

VJ .q�1/
D

Y
s2J

qsCqs� � 1

.1 C qs�/.1 C qsC/
:

and we apply Theorem 7.2 to obtain (iv). Finally, if q D 1, then all the terms
with nonempty J in (iv) (or (ii)) vanish and we obtain (v). (Since L2bn.WOL/ D
L2bn.AL/, it also follows from Theorem 3.7.)

Remark 8.3. If q is such that qsC D qs� (D qs), then in Theorem 8.2 (i) the formula
becomes

L2
qbn.WOL/ D

X
J 2�

bn�jJ j.KJ ; @KJ /
Y
s2J

qs � 1

1 C qs

;

and in (ii) the formula for ps simplifies to

ps D 2qs

1 � qs

:
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Example 8.4. This example illustrates how the formulas in Theorem 8.2 extend the
calculations of [21], [15]. Suppose that L is a pentagon (i.e., a circle subdivided into 5

edges). Then OL is a four-valent graph with 10 vertices and 20 edges. Assume q D q,
a constant. Then p is also a constant p. By the previous remark p D 2q=.1 � q/ and
q D p=.2 C p/. By [11], Example 17.1.15, the growth series are as follows:

WL.p/ D .1 C p/2

p2 � 3p C 1
; WOL.q/ D .1 C q/2

11q2 � 8q C 1
:

The smaller roots of the denominators give the radii of convergence of these growth
series as 	L D .3 � p

5/=2 and 	OL D .4 � p
5/=11, respectively. The methods

of [21], [15] give the calculation of L2
qb�.WOL/ only for q � 	OL � :16036 or

q � 1=	OL D 4 C p
5 � 6:2361 (cf. [11], Theorem 20.7.1). However, by using

Theorem 8.2 we get the answer for all q.
First of all, we know the weighted Betti numbers of WL for all p. They are

nonzero in only one degree: for p � 	L in degree 0, for 	L � p � 1=	L in degree 1,
and for p � 1=	L in degree 2; moreover, in all cases the Betti number is the absolute
value of 1=WL.p/ (cf. [11], Corollary 20.4.5).

Using statement (ii) of Theorem 8.2, we get that, for q � 1, L2
qb�.WL/ is con-

centrated, for q � .4 � p
5/=11 in degree 0, for .4 � p

5/=11 � q � .4 C p
5/=11 in

degree 1, and for .4Cp
5/=11 � q � 1 in degree 2; moreover, in all cases the nonzero

Betti number is j1=WOL.q/j. For q � 1, we can use statement (iv) of Theorem 8.2
and the fact that L2

qb1.D1/ D .q � 1/=.1 C q/ to see that only the second weighted
Betti number is nonzero and that it is given by

L2
qb2.WOL/ D 1 C 5

�
q � 1

1 C q

�
C 5

�
q � 1

1 C q

�2

D 11q2 � 8q C 1

.1 C q/2
D 1

WOL.q/
:

Remark 8.5. Our original motivation for computing the weighted L2-cohomolo-
gy of the octahedralization of WL was to compute the ordinary L2-cohomology of
any Bestvina–Brady group BBL of type FP (which we did by the spectral sequence
method in Theorem 4.4). Although we were never able to make complete sense
of the calculation, it was supposed to go something like this. Suppose that the
multiparameter q is a positive constant q. Then it should be possible to define the
weighted L2-cohomology of AL and BBL. Moreover, the L2

q-Betti numbers of AL

should equal those of WOL and L2
q-Betti numbers of BBL should behave as if the

Davis complex for WOL were to split as a product of the complex ZL with the real
line (with D1-action) and as if the Künneth formula were true, i.e.,

L2
qbn.WOL/ D L2

qbn.BBL/ � L2
qb0.D1/ D L2

qbn.BBL/

�
1 � q

q C 1

�
for q < 1;

L2
qbnC1.WOL/ D L2

qbn.BBL/ � L2
qb1.D1/ D L2

qbn.BBL/

�
q � 1

q C 1

�
for q > 1:
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These can be rewritten as

L2
qbn.BBL/ D L2

qbn.WOL/

�
q C 1

1 � q

�
for q < 1, (8.1)

and

D L2
qbnC1.WOL/

�
q C 1

q � 1

�
for q > 1: (8.2)

Next we want to find the ordinary L2-Betti numbers of BBL by taking the limit of
either of these formulas as q ! 1. Since

WI .p/ D .1 C p/jI j D
�

2q

1 � q
C 1

�jI j
D

�
1 C q

1 � q

�jI j
;

the formula in Theorem 6.1 becomes

dimNp DJ D .�1/jJ j X
I2�.W;S/�J

�
q � 1

1 C q

�jI j
: (8.3)

After multiplying through by .1�q/=.1Cq/, the only terms on the right-hand side of
(8.3) which will be nonzero when q D 1 are those with jI j D 1 and hence, jJ j D 0

or 1. Since @K D KS is acyclic, the term for J D ; in Theorem 8.2, namely,
bn.K; KS /, vanishes. So, using Theorem 8.2 (i), formula (8.1) gives, for q < 1,

L2bn.BBL/ D lim
q!1

L2
qbn.BBL/ D P

s2S

bn.K; KS�s/ D P
s2S

bn.Ks; @Ks/;

where the last equation follows from the fact that @K is acyclic and the excision,
H �.@K; KS�s/ Š H �.Ks; @Ks/. Similarly, for q > 1, Theorem 8.2 (ii) can be
written as

L2
qbnC1.WOL/ D

X
J 2�.W;S/

bn�jJ jC1.KJ ; @KJ /

�
q � 1

1 C q

�jJ j

and (8.2) gives, for q > 1,

L2bn.BBL/ D lim
q!1

L2
qbn.BBL/ D

X
s2S

bn.Ks; @Ks/;

since when q D 1 only the terms with jJ j D 1 are nonzero. So in Theorem 8.2 both
the formulas (i) and (ii) give the same answer as Theorem 4.4.

9. Duality groups

An m-dimensional simplicial complex L is Cohen–Macaulay if for each J 2 �.L/,
xH �.Lk.J // is concentrated in degree m � jJ j and is torsion-free. For J D ;, this



Cohomology of graph products 529

means that xH �.L/ is concentrated in degree m. It also implies that any maximal sim-
plex J has dimension m, since, when J is maximal, Lk.J / D ; and our convention
is that xH �.;/ is concentrated in degree �1 (where it is D Z).

A group G of type FP is an n-dimensional duality group if H �.GI ZG/ is con-
centrated in degree n and is torsion-free.

An immediate consequence of Corollary 8.1 is the following.

Proposition 9.1 (Brady–Meier [5] and Jensen–Meier [28]). Suppose that .W; S/ is a
RACS with nerve L. Then the octahedralization, WOL, is a virtual duality group if and
only if L is Cohen–Macaulay (and consequently, the same is true for the associated
RAAG, AL).

Brady and Meier asked if these conditions are equivalent for a general Artin
group (Question 2 of [5]) and attributed the question to the first author of this pa-
per. The equivalence follows immediately from Theorem 4.1 whenever the K.�; 1/-
Conjecture holds for A. We state this as the following.

Proposition 9.2. Suppose that X is the Salvetti complex associated to a Coxeter
system with nerve L. Then H �.X I ZA/ is concentrated in degree n and is torsion-
free if and only if L is an .n � 1/-dimensional Cohen–Macaulay complex.

(The “if” direction was also proved by Brown–Meier in [7] by using a different
spectral sequence.)

Similarly, by Theorem 4.3, for Bestvina–Brady groups of type FP we have the
following.

Proposition 9.3. Suppose that L is an acyclic flag complex. Then BBL is a duality
group if and only if L is Cohen–Macaulay. (For example, L could be an acyclic,
compact manifold with boundary.)

As explained in [18], Section 6, for graph products of finite groups, Theorem 3.5
leads to a slightly different condition. A simplicial complex L has punctured homol-
ogy concentrated in dimension m (abbreviated PHm) if for each closed simplex � of
L, xH�.L � �/ is torsion free and concentrated in degree m. For an m-dimensional
simplicial complex L, the PHm condition implies that L is Cohen–Macaulay but is
not equivalent to it (cf. [18], Corollary 6.9).

Proposition 9.4 ([18], Theorem 6.2, and also cf. [25]). Let G be the graph product
of a collection of nontrivial finite groups. Then G is a n-dimensional duality group
if and only if L is PHn�1.
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