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Abstract. Initial steps in the study of inner expansion properties of infinite Cayley graphs and
other infinite graphs, such as hyperbolic ones, are taken, in a flavor similar to the well-known
Lipton–Tarjan

p
n separation result for planar graphs. Connections to relaxed versions of

quasi-isometries are explored, such as regular and semiregular maps.
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1. Introduction

The best-known separation type result is the Lipton–Tarjan [16] theorem, claiming
that there is a way of removing O.

p
n/ vertices (and the edges reaching them) from

an n-vertex planar graph, so that each of the remaining connected components has at
most n=2 vertices (see also [1], [2], [17], [18] for other proofs and generalizations).

Rather than considering finite graphs, we will look at infinite graphs, and con-
sider the separation function. The separation function at n is the supremum over
all subgraphs of size n, of the number of vertices needed to be removed from the
subgraph, in order to cut it to connected pieces of size at most n=2. We are interested
in separation functions up to constant factors. See the exact definitions in Section 1.1
below.

The separation function (or profile) is a natural coarse geometric invariant of
infinite graphs and path metric spaces. In this work we would like to view the
separation function as such an invariant, in the family of invariants like isoperimetric
profiles and volume growth.

One question we are interested in is, which separation functions are possible
for transitive graphs or Cayley graphs? What is the separation function of a given
Cayley graph? E.g., what is it for groups of intermediate growth? Our results below
will give examples of Cayley graphs with finite separation (free groups), logarithmic
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separation (planar hyperbolic groups), n.d�1/=d -separation, d 2 N (Zd , HdC1),
n=log n-separation (product of free groups).

We do not know of any example of a vertex transitive graph with separation n˛ ,
0 < ˛ < 1=2. It is maybe of interest to look at separation function for natural families
of groups, e.g., groups generated by finite automata ([19]), lamplighter groups, ran-
dom groups, Kazhdan groups …. The latter could be natural candidates for groups
with linear separation, if there is any.

Question 1.1. Is there linear separation, or n=log n is the largest growth possible?

In which groups do balls or the minimizers of the isoperimetric problem or convex
sets admit the largest separation among all sets of a fixed size?

Understanding separation is useful in figuring out the partial order given by regular
maps (see Section 1.1 below) on the collection of all spaces, or rather, on the most
familiar ones.

In [5] it was shown that bounded degree transient planar graphs admit non-constant
bounded Dirichlet harmonic functions. Gil Kalai asked in 1994 whether square root
separation can replace planarity? The answer is negative, see [5].

By a comb we mean the Z2 grid when all the edges parallel to x-axis but not
on the x-axis removed. A comb � Z is an example of a transient graph with square
root separation that does not admit non-constant bounded harmonic functions (in
particular, non-constant harmonic Dirichlet functions), and thus is not planar [5].

Question 1.2. Does spectral radius < 1 plus an additional separation condition imply
the existence of non-constant bounded harmonic functions?

Indeed, finite separation transient graphs admit non-constant bounded harmonic
functions: for any such bounded size cut separating the graph to two components
if only one component were transient we would get a transient simple random walk
escaping to infinity via infinitely many cut sets of bounded size, which is impossible,
yet having two transient components connected via a finite set implies the existence
of non-constant bounded harmonic functions. What about a weaker separation con-
dition?

In [4] it is shown that if to each level of a binary tree the edges of an expander
sequence are added, the result has no non-constant bounded harmonic functions. This
explains that some separation condition for Question 1.2 is necessary.

In Section 2 we prove that finite separation is the same as bounded treewidth (see
definition there), and we present a theorem about the structure of infinite graphs with
finite separation.

Then we study the separation of products of graphs, Section 3. First, a bound
on the separation function of a product is given. Later it is shown that for a regular
tree T ,

sepT �T .n/ � n

log n
;
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where � means up to constant factor. For functions f and g, we write f D O.g/

or g D �.f / to denote that there exists a c > 0 such that f .x/ � cg.x/ for every
x. In Section 4, on Gromov-hyperbolic graphs (or hyperbolic graphs for short), we
open with establishing the separation function for Hd followed by a gap theorem,
showing that for hyperbolic graphs the separation function is either a constant, or is
growing at least logarithmically.

A regular map between two graphs is a map that increases distances at most
by some linear function, and such that there is a uniform bound on the number of
preimages of a vertex (see Section 1.1 for the precise definition). Given a regular
map, the separators for a constant neighborhood of the image can be pulled back,
thus the separation function is monotone non decreasing under regular maps (see
Lemma 1.3). Section 5 discusses regular maps.

In the last section it is proved that there is no regular map from Z2 to the Z2

lamplighter over Z. The notion of a semi-regular map is introduced and discussed.
Asymptotic dimension is monotone under semi-regular maps, hence this seems to
be the right type of function for its study (the way that regular maps are suitable for
separation).

Many open problems are scattered along the paper.

1.1. Some definitions

Definition. Let G be a graph. Suppose that S � G is given. Let cut.S/ denote the
infimum of the sizes of subsets CS of S , so that the largest connected component of
S �CS has size smaller than jS j=2. For such a CS we will say (with a slight sloppiness
in terminology) that CS separates S .

The separation function sepG.x/ W R ! R is

sepG.x/ D sup
S�G; jS jDx

cut.S/:

Remark. The separation function can be defined in a wider context of path metric
spaces, Riemannian manifolds, in particular. For simplicity of the exposition we stick
to graphs. When the separation of a manifold is discussed, the reader can replace the
manifold by a rough isometric graph, defined as follows.

Definition. Let .X; dX /; .Y; dY / be metric spaces, and let � < 1. A �-rough isom-
etry (or �-quasi-isometry) f from X to Y is a (not necessarily continuous) map
f W X ! Y such that

��1dX .x1; x2/ � � � dY .f .x1/; f .x2// � �dX .x1; x2/ C �

holds for all x1; x2 2 X , and for every y1 2 Y there is some x1 2 X such that

dY .y1; f .x1// � �:

If such an f exists, we say that X and Y are roughly isometric.
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It is straightforward to check that roughly isometric graphs have the same separa-
tion. In particular, the separation function is a group-invariant for finitely generated
groups (it does not depend on which Cayley graph is chosen). However, there is a
coarser equivalence relation that still preserves the separation function. This equiva-
lence relation can be defined by the existence of regular maps between the two graphs
in both directions (and graphs will turn out to have monotone increasing separation
under regular maps).

Definition. Let .X; dX /; .Y; dY / be metric spaces, and let � < 1. A (not necessarily
continuous) map f W X ! Y is �-regular if the following two conditions are satisfied.

(1) dY .f .x0/; f .x1// � �.1 C dX .x0; x1// holds for every x0; x1 2 X , and
(2) for every open ball B D B.y0; 1/ with radius 1 in Y , the inverse image f �1.B/

can be covered by � open balls of radius 1 in X .

A regular map is a map which is �-regular for some finite �. Write X !reg Y if
there is a regular map from X to Y .

It is easy to check that if there is a rough isometry between bounded degree graphs
X and Y , then there is a regular map from X to Y (and also to the other direction, by
the symmetry of being roughly isometric – which is not apparent from the definition).
Hence being roughly isometric implies the existence of regular maps from X to Y

and from Y to X . However, the existence of a regular map from X to Y , and one
from Y to X , does not imply that X and Y would be rough isometric. For example,
consider two copies of Z2 “glued” along the axis f.0; n/g for X , and Z2 for Y ; see
[5].

Regular maps were studied in a somewhat different context by David and Semmes
[10]. One use of the separation function is as an obstruction for the existence of a
regular map from one graph to another. This is so because if there is a regular map
from X into Y , then cutX .x/ � C sepY .x/ for some C < 1.

Let cutc.G/ denote the minimal number of vertices that are necessary to separate
the finite graph G into c times smaller pieces. Let sepc

G.x/ ´ supS�G;jS j�x cutc.S/

(in particular, sep
1=2

G .x/ D sepG.x/). Then

sepc
G.x/ � sepG.x/: (1.1)

To see this, suppose c < 1=2, and consider some graph of size x. After we cut it
into pieces of size at most half of the original one, we can repeat the procedure for
the smaller pieces, and iterating if necessary, we can get to graphs of size at most c

times that of the original one. Now, in the constantly many steps of the procedure,
each separating set used along the way is bounded by sep

1=2

G .x/, hence their total size

is at most a constant times sep
1=2

G .x/. (When c > 1=2, do the same thing, but starting
from a c-separating set.)



On the separation profile of infinite graphs 643

Lemma 1.3. Let X and Y be graphs with a uniform upper bound d on their de-
grees, and suppose that there is a �-regular map f from X to Y . Then sepX .x/ D
O.sepY .x//.

Proof. Let A � X be an arbitrary set of vertices that induces a connected graph.
Define A0 � Y as the 2�-neighborhood of f .A/. By �-regularity, A0 is connected,
and it has size at most jAjd 2� . Let S 0 be a minimal subset of A0 that separates it into
pieces C 0

1; : : : ; C 0
m, each of size at most A0=.2�d 2�/.

Let S0 be the 2�-neighborhood of S 0 in Y . Then S ´ f �1.S0/ has size �
�d 2� jS 0j D O.cutY .jA0j// D O.cutY .jAj//, using ( 1.1). Denote by Ci the preimage
of C 0

i by f .
We claim that S is a separating set in A between C1 n S; C2 n S; : : : ; Cm n S .

Suppose not: then there is a path P in A n S between some Ci n S and Cj n S

(i 6D j ). Then f .P / is disjoint from f .S/ D S0, thus the 2�-neighborhood P 0 of
f .P / in A0 does not intersect S 0. Since P 0 is connected, this shows that some vertex
of f .Ci nS/ � C 0

i and some vertex of f .Cj nS0/ � C 0
j is connected by a path inside

A0 n S 0. This contradicts the fact that Ci and Cj are different components of A0 n S 0.
We have seen that jS j D O.cutY .jAj//, and just seen that S is a separating set

in A between C1 n S; C2 n S; : : : ; Cm n S . On the other hand, jCi n S j � jCi j �
�jC 0

i j � jAj=2.

We know and used three ways to rule out existence of regular maps between spaces:
separation, Dirichlet harmonic functions, and growth. See [5] (where �-regular maps
are called �-quasimonomorphisms). A fourth way is to use that asymptotic dimension
is monotone under regular (and more generally, semi-regular) maps; see Section 6.

Separation and growth are monotone with respect to regular maps. Flows with
finite energy can be pushed back and forth with a regular map. One should look for
additional invariants. A partial motivation to study separation is to try to figure out
the partial order given by regular maps on the collection of all spaces, or rather, on
the familiar ones.

2. Finite separation and regular maps

A graph admits the finite separation property .FS/ iff sepG.n/ is a bounded function.
Trees, and graphs that are roughly isometric to trees, are examples of graphs with
finite separation. Yet these are not the only graphs with finite separation. Consider
an infinite Sierpiński graph, which we define as some reasonable limit (say, local
convergence, with root chosen to be always one of the three extremal vertices) of the
sequence of finite Sierpiński graphs. This is an example of a graph with sepG.n/ � 3

which is not roughly isometric to a tree, as it contains arbitrary large cycles. In this
section we will try to understand the structure of graphs with finite separation.
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Theorem 2.1. If a bounded degree G has finite separation then G admits a regular
map to the 3-regular tree.

Remark. It is easy to check that every locally finite graph has a regular map to a
tree if the tree can have arbitrarily large degrees (because the uniform bound on the
number of preimages in the definition of a regular map can be ignored by “blowing
up” vertices to large enough stars).

The proof for Theorem 2.1 will proceed by showing that finite separation implies
bounded treewidth.

Definition. Let G be a finite graph, T be a tree, and consider a family V D .Vt /t2T

such that Vt � V.G/ for every t . We say that .T; V/ is a tree-decomposition of G if
the following hold:

(1)
S

t2V.T / Vt D V.G/;
(2) for every e 2 E.G/ there is a t such that both endpoints of e are in Vt ;
(3) for every x 2 V.G/, the set ft 2 V.T / j x 2 Vtg induces a connected subgraph

of T .

The width of the tree decomposition is maxt2T jVt j � 1.
The treewidth of G, denoted by tw.G/, is the minimum of the width of all tree

decompositions of G.

An important property of tree decompositions is that for every edge e D fx; yg of
T , the set Vx \ Vy is a separating set between

S
t2C1

Vt n .Vx \ Vy/ and
S

t2C2
Vt n

.Vx \ Vy/ , where C1 and C2 are the two components of T n e.
The following theorem was proved by Robertson and Seymour [20]. See Theo-

rem 12.4.4 in [11] for a proof and for more details on treewidth.

Theorem 2.2. For every m there is a k such that a graph of treewidth at least k

contains an m-by-m square grid as a minor.

Lemma 2.3. For any finite graph G, cut.G/ � tw.G/ C 1. Conversely, for every c

there exists a k such that if tw.G/ � k, then cut.G/ � c.

Proof. To see the first claim, let .T; V/ be a tree decomposition of G of width tw.G/.
Choose x 2 V.T / so that the maximum of j S

t2C Vt n Vxj over all components C of
T n x is minimal. It is easy to check that this maximum is at most jV.G/j=2; on the
other hand, this is the maximum size of components in G n Vx . Hence Vx separates,
and the first part is proved.

For the other assertion, let c be any positive integer. Choose m � .4c4C1/
1=2.c2C

1/ to be an integer, and k as in Theorem 2.2 for this m. We will show that if G has
treewidth at least k, then it cannot be separated by c vertices.
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By assumption and Theorem 2.2, such a G contains an m by m grid M as a minor.
Let G0 be a minimal subgraph of G that can be contracted to a graph isomorphic to
M . For each vertex x of M , let Wx be the set of vertices of G0 that got contracted
into x. Suppose that the vertices x1; x2; : : : ; xm2 of M are ordered so that

jWx1
j � jWx2

j � � � � � jWx
m2

j:
Consider the set X ´ fx1; x2; : : : ; x4c4g in M . Subdivide M into (at least 4c4 C 1

many) c2 C 1 times c2 C 1 pairwise disjoint subgrids (that is, subgraphs that are
grids). At least one of these subgrids does not intersect X ; let M0 be a such subgrid.
Let the vertices on the boundary of M0 be y1; y2; : : : ; y4c2 . Our plan is to choose
pairwise disjoint paths P1; : : : ; P2c2 from X to fy1; : : : ; y4c2g in M . Using these,
for each yi that is the endpoint of some Pj , we will replace Wyi

by a zWyi
that is still

connected, and has “many” vertices (and the same number for each such yi ). Then
we will show that .

S zWyi
/ [ .

S
y2M0

Wy/ is a subgraph of G with no separation of
size at most c. We will explain this construction in more detail later.

It is easy to check, using the isoperimetry of the square grid, that there is no
separating set of size � 2c2 between X and fy1; : : : ; y4c2g in M0. Hence, by the
max-flow-min-cut theorem, P1; : : : ; P2c2 can be chosen. There is no restriction in
assuming that their endpoints in fy1; : : : ; y4c2g are respectively y1; : : : ; y2c2 . For
every i 2 f1; : : : ; 2c2g, define Gi to be the subgraph of G0 induced by

S
v2Pi

V.Wv/.
The Gi are connected (by the fact that Gi can be contracted to Pi ), and pairwise
disjoint. For each i 2 f1; : : : ; 2c2g, let W 0

yi
be a connected subgraph of Gi that

contains Wyi
and has size � ´ minfjWx1

j; : : : ; jWx
4c4

jg. The choice of such W 0
yi

s
is possible since jWyi

j � � and jWxi
j � � (note that jWyi

j � jWxj
j for every

i; j 2 f1; : : : ; 4c4g, by the choice of M0), and by the fact that the endpoint of each Pi

is some element of fx1; : : : ; x4c4g. For every y 2 M0nfy1; : : : ; y2c2g, let W 0
y ´ Wy .

Finally, let H be the subgraph of G0 induced by
S

y2M0
W 0

y . We claim that H is not
separable by � c vertices.

To see this, consider some separating set S of size at most c in H . Define
SM0

as fy 2 M0 j S \ W 0
y 6D ;g. Then jSM0

j � c, and hence M0 n SM0
has a

component C of size at least jM0j � c2 D .c2 C 1/2 � c2. In particular, at least c2

of the y1; : : : ; y2c2 are in C . The subgraph of H induced by
S

y2C W 0
y is clearly

connected, and by the last sentence, it has at least c2� vertices. On the other hand,S
y2M0nC W 0

y � �jM0 n C j � c2�. This shows that the complement of
S

y2C W 0
y

in H n S has size at least c2�, while the union of all other components and S has
size at most c2�. Thus S does not cut H to pieces of proportion < 1=2. Since S was
arbitrary, this finishes the proof.

Proof of Theorem 2.1. The proof is based on the following lemma.

Lemma 2.4. Let T be a bounded degree tree. Then there is a regular map T !reg T2.

We leave the proof of the lemma as an (easy) exercise to the reader.
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The strong treewidth of a finite graph H , denoted by stw.H/, is defined as follows.
Take a so-called strong tree decomposition, which is defined to be a pair .T; V/,
V D .Vi /i2T , where T is a tree, and .Vi /i2T is a partition of V.H/, and for every
edge fx; yg 2 E.H/, x 2 Vi , y 2 Vj , then either i D j or fi; j g 2 E.T /. The
strong treewidth, stw.H/, is defined as the minimum of maxi2T jVi j over all strong
tree decompositions.

It is shown in [8] that for any family of bounded degree graphs, having bounded
treewidth is equivalent to having bounded strong treewidth (see Theorem 95 in [7]).
Take now the family � of all finite connected subgraphs of G. From Lemma 2.3 we
know that finite separation of G implies that there exists a c such that tw.H/ � c

for every H 2 � . Hence there exists a c0 such that stw.H/ � c0 for every H 2 � .
Given an H , take a strong tree decomposition .T; V/. (We may assume that every
Vi 2 V is nonempty.) Then the map � W H ! T , x 7! i , where x 2 Vi , is 1-regular.
Observe that the maximal degree of T is at most c0d , otherwise there were adjacent
vertices s, t in T such that there is no edge between

S
i2C1

Vi and
S

i2C2
Vi , where

C1 and C2 are the components one gets after deleting the edge fs; tg from T . This
would contradict the connectedness of H (since every Vi is nonempty). So, for every
H 2 � , there is a � 1-regular map into a tree of maximal degree at most c0d . A
standard compactness argument gives then that there is a 1-regular map from G to
a c0d -regular tree. Since the composition of regular maps is regular, Lemma 2.4
finishes the proof.

3. Products

How does separation behave under products? Below is a lower bound that might be
also the right upper bound. At least it is tight for the products Zd1Cd2 D Zd1 � Zd2 .

Theorem 3.1. For c D .7=8/
1=2 and any finite graphs G, H ,

cut.G � H/ � min.jH j cutc.G/; jGj cutc.H//;

where � means up to constant factors which are independent of G and H .

Proof. Take a finite graph G, and let K be a subset of V.G/. How can we tell if
K separates G? Here is how. Pick two vertices v; u in G at random independently
and uniformly. Let p be the probability that they are not in the same component of
G n K (including the case when at least one of them is in K). Then K separates only
if p > 1=2.

Now consider some set of vertices K in G � H . Let .g1; h1/ and .g2; h2/ be
two randomly independently, uniformly chosen points in G � H . Let p1 be the
probability that .g1; h1/ and .g1; h2/ are in different components of g1 � H � K,
let p2 be the probability that .g1; h2/ and .g2; h2/ are in different components of
G � h2 � K, and let p be the probability that .g1; h1/ and .g2; h2/ are in different
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components of G � H � K. Clearly, p � p1 C p2. If K separates, then p > 1=2,
so at least one of p1, p2 is greater than 1=4. Suppose that it is p1. That implies
that for at least .1=8/ � jGj choices of g1 in G the probability that h1 and h2 are in
different components of g1 � H � K \ .g1 � H/ is at least 1=8. So for those g1 we
have K \ .g1 � H/ separating g1 � H (for c D .7=8/

1=2, that is, the components
after deletion have sizes at most c times the original size). Hence, for such g1 the
cardinality of K \ .g1 �H ) is at least cutc.H/. Hence the cardinality of K is at least
C jGj cutc.H/ with some C . This proves the direction

cut.G � H/ > C min.jH j cutc.G/; jGj cutc.H//:

The other direction is obvious.

Recall (1.1). Using that, Theorem 3.1 provides us with a lower bound for the sep-
aration function of product graphs. However, it does not settle the question regarding
the separation of a product of infinite graphs, because it does not provide us with an
upper bound for the separation of a finite graph F � G � H that is not a product.

Theorem 3.2. Let G1 and G2 be two (possibly infinite) graphs. Then

sepG�H .N / D �.max
k

min.N=k sepG.k/; k sepH .N=k///:

In particular,
sepG�Z.m2=sepG.m// D �.m/:

Proof. The first half is straightforward from Theorem 3.1 (using also (1.1)). For the
second assertion, let N D m2=sepG.m/. The numbers whose minimum we take
on the right side are equal (up to constant factor) if k D m=sepG.m/, hence the
maximum on the right, given by this case, is m.

Corollary 3.3. We have

sepZd .n/ � n.d�1/=d ;

sepH2�H2.n/ D �.n
1=2=log n/;

sepR�H2 D �.n log n/
1=2:

Proof. The lower bound for sepZd .n/ follows from the finite separation of Z using
induction and Theorem 3.2. The upper bound is given in Proposition 4.1 (see the
details there), and by a similar argument one can get the upper bound for R � H2

(also using Theorem 3.5).
For H2 � H2, we use that the separation of H2 is log n by Theorem 3.2. By sym-

metry we have maxk min.n=k sepH2.k/; k sepH2.n=k// D n
1=2 log n

1=2 � n
1=2 log n.

Finally, the lower bound for sepR�H2 is straightforward from the G � Z part of
Theorem 3.2.
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The previous lower bound on sepH2�H2 will be improved in Theorem 5.1.

Conjecture 3.4. sepG�Z.n/ is always equal to the lower bound in Theorem 3.2.
This means that up to constants sepG�Z.m2=sepG.m// � m.

The value of sepH2�R.n/ is a particular case of that, the lower bound was given
in Corollary 3.3.

We are bugged by not being able to settle the question of the separation of a graph
of the form G �Z, where the separation function of G is known. If the worst case is a
product subgraph of G �Z then sepG�Z.n2= sepG.n// � n would be the answer. We
can prove this for the case when G has finite separation. To obtain sepG�Z.n/ � p

n,
take a regular map from G to a regular tree T (using Theorem 2.1). This defines a
regular map from Z � G to Z�T . The separation of the latter is

p
n; see Lemma 7.2

in [5], hence we have the
p

n upper bound. For the lower bound, apply Theorem 3.1.
Denote by T the binary tree, we have:

Theorem 3.5.
sepT �T .n/ � n

log n
:

Remark. This implies an upper bound of n=log n for the product of any two bounded
valence trees (using Theorem 2.4), and a lower bound for H2 � H2.

The proof is similar to that of Lemma 7.2 in [5].

Proof. Lower bound first. A useful representation of T � T is as follows. Consider
sequences that are finite, consist of 0’s and 1’s, and have a decimal point. Two of
these are neighbors if one is obtained from the other by adding a digit either on the
right or on the left. We will use this model for T � T . Let Bk be the set of points in
T � T that are at distance k from the root (which is “ � ”). These are just the length
� k binary sequences with a dot at some place inside. Suppose that W is a separating
set for Bk . Pick two length 2k binary sequences at random, with the dot in the center
of each. Let these be called a and b. At random, pick a k-length subword of a, and
denote it by a0, and pick a k-length subword of b, denoted by b0. Then a0 and b0 are
just independent uniformly selected random vertices in Bk n Bk�1. Let a1 be the left
half of a, that is, the part of a to the left of the dot. This is a point in Bk . Let a2 be the
right half of a. Same for b D b1 � b2, all have length k. Consider the following path
from a0 to b0 through a2 and b1. Delete the leftmost digit in a0. Then add to the right
the next digit of a2. Do so repeatedly until you reach a2. Then delete the rightmost
digit, and add on the left the digit of b1. Continue that until you reach b1. Then delete
digits on the left and add on the right the digits of b2 until you reach b0. In this path
you see length k and k � 1 subwords of the words a, b1 � a2, and b. With probability
at least 1=4, say, you must pass through the separating set W in this process. Since a,
b1 � a2 and b are equally distributed, the probability that b contains a subword in W

(of length k or k � 1) is at least 1=12. There are 4k different possible b’s. Each word
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in W with length k or k � 1 is contained in 2k or 2 � 2k different b’s. Hence the size
of W is at least 2k=24. But jBkj � k � 2k . So jW j > C jBkj=log .jBkj/.

Now the upper bound. Let S be a finite set of points in T � T . We shall find
a separating set for S of size C n=log n, where n D jS j. Let p1 and p2 be the
projections into the factors. Let D.p1.v//; D.p2.v// be the distance from the root
in the respective factors. Let m1 be the median of D.p1.v// on S , and let m2 be the
median of D.p2.v// on S . Let A1.m/ be the set of vertices in S such that D.p1.v// D
m1, and similarly for A2.m/. If the size of A1.m1/ is less than 100n=log n, then we
can take A1.m1/ as the separating set. Otherwise, let kC

1 be the least k � m1 such
that jA1.kC

1 /j < 100n=log n, let k�
1 be the greatest k � m1 such that jA1.k�

1 /j <

100n=log n. Similarly, define k�
2 and kC

2 . The separating set is A D A1.k�
1 / [

A1.kC
1 / [ A2.k�

2 / [ A2.kC
2 /. The size of A is obviously less than 400n=log n. We

just need to check that A separates well. Let K be a component of S n A, and let
v be some vertex in K. If D.p1.v// < k�

1 , then every vertex w in K satisfies this
inequality. Because m1 � k�

1 is the median for D.p1.z//, this clearly implies that
jKj � n=2. So we may assume that D.p1.v// � k�

1 holds for every vertex v in K.
Similarly, one gets D.p1.v// � kC

1 , k�
2 � D.p2.v// � kC

2 . A connected component

of t 2 T W k� � D.t/ � kC has cardinality exactly 2kC�k��1. Hence it follows that

jKj � 2k
C

1
�k�

1 � 2k
C

2
�k�

2 . But note that kC
j � k�

j � log.n/=100 C 1 for j D 1; 2,

because for each k in the range k�
j < k < kC

j we have jAj .k/j � 100n=log n. This

gives jKj � 4 � 2log n=50 < n=2. Hence A is a separating set.

The proof shows also that sepT �T �T .n/ � n=log n, and the same for any T �
T � � � � � T .

4. Hyperbolic graphs

Before proceeding to the study of more general hyperbolic graphs, we determine the
separation function of the hyperbolic space Hd . This follows from the method in
[17], [18], which can also be used to give a proof for the separation of Rd .

Proposition 4.1. For d D 2, sepHd � log n, and for d � 3, sepHd � n.d�2/=.d�1/.
For d � 1, sepZd � n.d�1/=d .

Proof. Suppose that d � 3. The lower bound follows from the fact that Rd�1 embeds
isometrically into Hd .

For the upper bound, we adapt the proof of [17] to our setting.
Take a connected fundamental domain Q of Hd by some group of isometries

acting co-compactly and properly discontinuously on Hd . The translates of Q by
this group give a tiling T of Hd ; denote the corresponding dual graph by G. For a
vertex x 2 G, let �.x/ be the corresponding tile. Clearly G is transitive and roughly
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isometric to Hd . We want to show that G has separation n.d�2/=.d�1/ if d � 3, and
log n if d D 2.

So let H be a finite subgraph of G, and T jH be the union of the corresponding set
of tiles in Hd . Denote by o a centerpoint of T jH , that is, a point with the property
that any hyperplane P through o cuts T jH into two pieces whose volumes are the
same up to a factor d . (See [17] for references showing the existence of centerpoints.)
In particular, fx 2 H j �.x/ intersects P g μ S separates H . So we want to bound
jS j.

Choose P randomly and uniformly of all hyperspaces through o. Look at T

in the corresponding Poincaré ball model; we may assume that o is the origin (and
then S is the intersection of a Euclidean hyperspace with the open unit ball). Let
the tile containing the origin be t . If d � 3, the expected number of tiles in T jH
intersected by P can be estimated as follows. The set of all tiles in T at graph-
distance k from t is of order c.d�1/k with some c > 1; the set of those intersecting
P is of order c.d�2/k (here we are using the fact that the tiles all have the same
volume, hence the same c works for both cases). Hence, if mk is the number of
tiles in T jH intersecting P and at graph distance k from t , we obtain E.jS j/ D
O.

P1
kD1 mkc.d�2/k=c.d�1/k/ D O.

P
mkc�k/. This is maximized when H is

a ball, in which case we have E.jS j/ D O.c.d�1/ log nc� log n/ (where the base of
the logarithm is cd�1). Hence, there exists a P such that the corresponding S has
O.c.d�2/ log n/ D O.n.d�2/=.d�1// elements, which is what we wanted to prove.

The proofs for H2 and for Zd proceed similarly, so we omit the details.

From this proof technique of [17], one also gets that a graph which can be sphere
packed in Rd such that the spheres in the packing have bounded ratios, have separation
at most O.n.d�1/=d /. This implies, e.g., that ZdC1 cannot be sphere packed in Rd .
For more on this, see [6].

Remark. In [15] the following is proved. Say that a graph G has growth rate d if
every ball of radius r in G contains at most rd vertices. Then there is an injective
graph homomorphism from G to Zd log d1 , where Zd log d1 is the graph on Zd log d

where two vertices are adjacent if each of their coordinates differ by at most one.
Together with the method of the previous proof, we can conclude that sepG.n/ D
O.n.d log d�1/=.d log d// for such a G.

In the standard hyperbolic plane H2, triangles do not have the same properties as
in the Euclidean plane. For instance, in the Euclidean plane, in any large isosceles
triangle, the midpoint of the hypotenuse is far away from the other two sides. This
cannot happen in hyperbolic space. That observation led E. Rips to the following
definition.

Definition. Let G D .V; E/ be a graph. Given three vertices u; v; w 2 V , pick
geodesics between any two to get a geodesic triangle. Denote the geodesics by
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Œu; v�; Œv; w�; Œw; u�. Say the triangle is ı-thin if for any v0 2 Œu; v�,

min.d.v0; Œw; u�/; d.v0; Œv; w�// � ı:

G is said to be ı-hyperbolic if there is some ı � 0 such that all geodesic triangles
in G are ı-thin.

Hyperbolic groups were introduced by Gromov [13]. They are among the central
objects in geometric group theory.

We do not have any general upper bounds on the separation of hyperbolic graphs.
Still, we have the following gap theorem.

Theorem 4.2. Let G D .V; E/ be a graph which is 	-hyperbolic and has maximal
degree M < 1. Let N be some integer. There is a c > 0, which depends only on
M , N and 	, such that if

sepG.n/ < c log n for all n > N; (4.1)

then G is roughly-isometric to a tree.

Lemma 4.3. Let G D .V; E/ be a graph which is 	-hyperbolic and has maximal
degree M < 1, and let v0 be some vertex of G.

Let us write u 	 v whenever u, v are two vertices of G with d.u; v0/ D d.v; v0/

and there is a sequence of vertices u D u1; u2; : : : ; uk D v in G with d.uj ; v0/ D
d.u; v0/ and d.uj ; uj C1/ � 2	 for each j D 1; : : : ; k � 1.

Let N be some integer. There are D; c > 0, which depend only on M , N and 	

such that if (4.1) holds, then d.u; v/ < D whenever u 	 v.

Proof. For each vertex v ¤ v0, let 
1v be one of the neighbors of v that is closer
to v0, and set 
1v0 D v0. Inductively, define 
nC1v D 
1
nv, and set 
.v/ D
fv; 
1v; 
2v; : : : ; v0g. Note that this is a geodesic from v to v0, and 
.u/ � 
.v/

holds whenever u 2 
.v/.
Now assume that u1; u2; : : : ; uk is a sequence of vertices such that d.uj ; v0/ D

d.u1; v0/ and d.uj ; uj C1/ � 2	 for each j D 1; : : : ; k � 1. Also assume that (4.1)
holds for some c satisfying

c�1 > .2	 C 3/ log M; (4.2)

and for some N . We need to show that d.u1; uk/ < D for some D D D.	; M; N /.
It follows from (4.2) that

c log 11 C c log Q C cQ log M <
Q � 	

2	 C 3
(4.3)

holds for all sufficiently large Q. So let Q be an integer large enough to satisfy (4.3)
and

10M Q > maxfN; 2	g:



652 I. Benjamini, O. Schramm and Á. Timár

Also set
L D 10M Q; R D d.u1; v0/:

It is clear that we may assume R > LCQ, for otherwise D D 2.LCQ/ suffices.
Let t be the largest integer in f1; : : : ; kg such that the cardinality of A D f
LCQuj j
j D 1; : : : ; tg is at most Q. See figure below. Our plan is to prove that jAj < Q. The
definition of t then shows that t D k. As we shall see, the diameter of A is bounded
by 2	jAj. Hence it follows from t D k and jAj < Q that d.u1; uk/ � D with
D D 2	Q C 2L C 2Q (consider the path from u1 to uk constructed by following

.u1/ to A, taking the shortest path to A \ 
.uk/, and then following 
.uk/ to uk),
and the lemma follows. So the main task is to show that jAj < Q.

For every w 2 A let xw be one of the uj ’s in fu1; : : : ; utg so that w D 
LCQxw ,
and let sw be the segment of 
.xw/ between xw and w; that is, sw D f
j xw j j D
1; 2; : : : ; L C Qg.

Let U be the set of vertices of G that are at distance at most Q from A or that are
in one of the segments sw ; w 2 A, and let H be the graph obtained by restricting G

to U . By construction, the segments sw ; w 2 A are disjoint, and consequently,

jU j � jAj.L C Q/ > jAjL D 10jAjM Q:

On the other hand, a ball of radius Q in G has clearly no more than M Q vertices,
and it follows that

jU j � jAj.L C M Q/ D 11jAjM Q:

From (4.1) and 10M Q > N it follows that there is a set of vertices U0 � U with

jU0j � c log jU j � c log.11jAjM Q/ (4.4)

such that every component of H � U0 has less than 6jAjM Q vertices.
We are trying to prove that jAj < Q. By construction jAj � Q, so assume that

jAj D Q. Therefore, from (4.4) and (4.3) it follows that

jU0j � c log 11 C c log Q C cQ log M <
Q � 	

2	 C 3
� Q=3: (4.5)

Let A0 be the set of w 2 A such that the segment sw does not meet U0. Because
these segments are disjoint, and jAj D Q, it follows from (4.5) that

jA0j > 2Q=3:

Let r be an integer in the range ŒR � L � Q; R � L � 	�, and let

Vr D fv 2 V j jd.v; v0/ � r j � 	g:
We claim that there is a path whose vertices are in Vr \ U that intersects each sw ,
w 2 A. For each j D 1; : : : ; t � 1, let yj be the vertex on 
.uj / that has distance r

from v0. Consider the triangle in G formed by taking 
.uj /, 
.uj C1/ and a shortest
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curve j̨ joining uj and uj C1. Since G is 	-hyperbolic, there is a vertex zj C1 in
j̨ [ 
.uj C1/ whose distance to yj is at most 	. Because the length of j̨ is at most

2	, the distance from j̨ to v0 is at least R � 	. On the other hand,

d.zj C1; v0/ � d.zj C1; yj / C d.yj ; v0/ � 	 C r < R � 	;

and it follows that zj C1 … j̨ . Hence zj C1 2 
.uj C1/, and there is a path ǰ in U

from yj to zj C1 with all vertices in Vr (since d.zj C1; v0/ < R � L). Let �j C1 be the
arc of 
.uj C1/ connecting zj C1 with yj C1. It is now clear that the union of all the
arcs ǰ and �j is a curve whose vertices are in Vr \U that intersects each sw ; w 2 A.
This construction with r D R � Q � L also shows that the diameter of A is bounded
by 2	jAj, as we have promised.

Let m be the largest integer smaller than .Q � 	/=.2	 C 2/. Set rj D R � Q �
L C 2j.	 C 1/ for j D 0; 1; : : : ; m, and note that the sets Vrj

are disjoint. Since

jU0j < m C 1

follows from (4.5), there must be some such rj so that U0 does not meet Vrj
. From

the above it then follows that there is a connected component of H �U0 that intersects
each sw ; w 2 A. Consequently, there is a connected component X of H � U0 that
contains each sw ; w 2 A0. The number of vertices of X is at least

jA0jL � 2QL=3 D 20jAjM Q=3 > 6jAjM Q:

This contradicts the definition of U0, and the contradiction establishes jAj < Q and
the lemma.

Lemma 4.4. Let G be a 	-hyperbolic graph, let v0 be some vertex in G, and let 	
be the equivalence relation defined in Lemma 4.3. Let V1 be the set of vertices of
G whose distance from v0 is divisible by 3	 C 1, and let zV D V1=	 be the set of
equivalence classes of 	 in V1. Let zG D . zV ; zE/ be defined by letting Œ Qv; Qu� 2 zE
whenever for some v 2 Qv, u 2 Qu there is a geodesic passing through v0, v, u and
d.v; u/ D 3	 C 1. Then zG is a tree.

Proof. Let Qd denote the distance in zG, and set Qv0 D fv0g 2 zV , the equivalence class
of v0. It is clear that if v 2 Qv 2 zV , then Qd. Qv; Qv0/ D .3	 C 1/d.v; v0/.

Let Qv 2 zV �f Qv0g. By construction, Qv has no neighbor Qu with Qd. Qv; Qv0/ D Qd. Qu; Qv0/.
We claim that there is exactly one neighbor Qu of Qv such that Qd. Qv; Qv0/ D Qd. Qu; Qv0/C1.
Indeed, let v1; v2 2 Qv, and suppose that d.v1; v2/ � 2	. Let s1 be a shortest path
from v1 to v0, and let s2 be a shortest path from v2 to v0. Let u1 be the vertex on
s1 whose distance from v1 is equal to 3	 C 1, and let u2 be the vertex on s2 whose
distance from v2 is 3	C1. Let s3 be a shortest segment joining v1 and v2. Because G

is 	-hyperbolic, there is a vertex w in s3[s2 whose distance to u1 is at most 	. But the
length of s3 is at most 2	, and hence the distance from s3 to u1 is at least 	C1. Thus,
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w … s3 and w 2 s2. Since jd.w; v0/�d.u2; v0/j D jd.w; v0/�d.u1; v0/j � 	, and
w 2 s2, we get d.w; u2/ � 	. So d.u1; u2/ � d.u1; w/ C d.w; u2/ � 2	, which
implies that u1 and u2 belong to the same equivalence class in zV . It now follows that
Qv has exactly one neighbor Qu 2 zV with Qd. Qv; Qv0/ D Qd. Qu; Qv0/ C 1.

Suppose that zG is not a tree. Then there is a simple closed loop zC in zG. Consider
a vertex Qv in zC , where Qd. Qv; Qv0/ is maximal. The two edges adjacent to Qv in zC must
connect Qv with neighbors Qu with Qd. Qv; Qv0/ � Qd. Qu; Qv0/, but Qv has at most one such
neighbor. This contradicts the existence of zC , and hence zG is a tree.

Proof of Theorem 4.2. Let v0 be some vertex in G, and let V1, zG be as in Lemma 4.4.
For each v 2 V choose some geodesic 
.v/ from v to v0, and let v0 be the vertex
closest to v in 
.v/\V1. Let �v denote the equivalence class of v0 in zV D V=	. It is
an easy exercise to check that the 	-hyperbolicity of G implies that � is a contraction.
On the other hand, it follows from Lemma 4.3 that Qd.�v; �u/ � C �1d.v; u/ � C

holds for some C > 0 and every v; u 2 V . We conclude that � is a rough-isometry.
Now Lemma 4.4 shows that zG is a tree, which completes the proof of the theorem.

Question 4.5. Show that for any planar hyperbolic graph G,

sepG.n/ < C log n

for some C.G/ D C > 0.

Note that, by Proposition 4.1, this cannot be true in general if we omit planarity.

5. More on regular maps

Let T denote the binary tree. The next result is shown to be true in [9], even with a
quasi-isometric embedding.

Theorem 5.1. H2 !reg T � T .

Using Theorem 3.5 and the remark after its proof, the previous theorem implies
that sepH2�H2.n/ � n=log n because T � T !reg H2 � H2 !reg T � T � T � T .

Question 5.2. Is H2 !reg T � Z?

There may be something special about the n=log .n/ separation function. The
following problems are weaker than Question 1.1.

Question 5.3. (1) Suppose that G, H have separation functions � n=log n. Is it true
that G � H has separation function � n=log n?

(2) Is it true that balls in infinite transitive graphs have

cut.B.r// � jB.r/j=log jB.r/j‹
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The last question, if true, would answer negatively an old question of the first
author, namely, if there is any Cayley graph where the balls form an expander family
(see [4]). Without assuming transitivity, the answer to this question is clearly no:
take some infinite tree with expanders put on each set of points at the same distance
from the origin (as in [4]).

We have found that sepH2�R.n/ is at least
p

n log n (Corollary 3.3). This implies
that H2 � R does not have a regular map to H3 which has separation only of orderp

n (Proposition 4.1).

Question 5.4. Is H3 !reg H2 � R?

We doubt that the answer would be positive, but as we mention in Section 1.1,
we know only four ways to rule out regular maps: separation, Dirichlet harmonic
functions, asymptotic dimension and growth. Neither does the job here.

6. Semi-regular maps

In a private communication, Yehuda Shalom asked: Is it true that a Cayley graph of
an amenable group which is not virtually cyclic admits a bilipschitz embedding of
Z2 ? Yehuda suggested that the lamplighter group .Z=2Z/2 o Z is a counterexample
(see e.g. [19] for a detailed definition).

Here is a proof not using any of the arguments applied in the sections before but
rather using the notion of semi-regular maps defined below. This will allow us to
prove that there is no regular map Z2 !reg Lamplighter.Z/.

Definition. Call a map f W X ! Y semi-regular, denoted by X !s-reg Y , if f

is Lipschitz and for every r there is a c.r/ < 1 such that for every y 2 Y every
connected component of f �1.B.y; r// has diameter at most c.r/.

It is an easy exercise to verify that a composition of semi-regular maps is semi-
regular.

Also, a regular map is semi-regular (we assume bounded degree; there are analo-
gous definitions appropriate for general metric spaces).

Note that the canonical map Lamplighter.Z/ ! Z (location of the lamplighter)
is semi-regular, with c.r/ of order r2r .

Proposition 6.1. There is no semi-regular map Z2 !s-reg Z.

By combining with the above, it follows that there is no semi-regular map Z2 !s-reg

Lamplighter.Z/. In particular, there is no regular map Z2 !reg Lamplighter.Z/.



656 I. Benjamini, O. Schramm and Á. Timár

Proof. Let g W Z2 ! Z be Lipschitz. We look at “quasi-level sets” of g, and show
that there is some quasi-connected component of a quasi-level set that is large (at this
point, this is a vague statement; the precise formulation will become clear shortly).
Take k large, and consider the map a.z/ ´ b.z=k/c, a W Z� > Z. Fix k large
enough so that ja.g.z// � a.g.z0//j < 2 if z and z0 are within distance 2 in Z2.
Let X be the graph obtained from Z2 by adding diagonals. Given r 2 Z, let S.r/

denote the set of connected components in X of fx 2 X j a.g.z// D rg. Let
S
 ´ S

r2Z S.r/. This is a partition of X . Note that if S 2 S.r/ is finite, then
there is a unique S 0 2 S.r C 1/ [ S.r � 1/ that is adjacent to S and “surrounds” it.
Let r 2 Z be such that S.r/ is nonempty. Let S0 2 S.r/. Inductively, define SnC1

to be Sn if Sn is infinite, and if not, let SnC1 be some S 2 S
 which surrounds Sn.
Clearly, jSnj � n. Hence g is not semi-regular.

Note: This also shows that there is no regular map

Z2 !reg Lamplighter.Lamplighter.Z//:

There is a more general way to see the proposition, which we will sketch in a later
remark.

Before Question 5.2, maybe consider

Question 6.2. Does H2 !s-reg T � Z?

Gromov [14] defined the notion of asymptotic dimension of a metric space, which
is defined as follows. Say that X has asymptotic dimension at most D if for every
s > 0 there is a partition (i.e., coloring) X D Y1 [ Y2 [ � � � [ YDC1 such that each Yj

can be partitioned into a collection of pieces of bounded diameter (depending only
on s), with the distance between any two of the pieces at least s. See [3] for a nice
survey on the asymptotic dimension.

Now, if X maps semi-regularly into Zd , then the asymptotic dimension of X is
bounded from above by the asymptotic dimension of Zd (which is d , [3]). To see
this, just pull back the colorings in the definition of asymptotic dimension using the
semi-regular map. By a similar argument one can show that there is no (semi-)regular
map from T � T � T to T � T (because the asymptotic dimension of the former is 3,
and that of the latter is 2), and that there is no (semi-)regular map from Rd (d � 3)
to T � T (even though the separation of T � T is larger).

The question is whether this observation captures the partial order among “good”
classes of spaces. To better understand the partial order given by semi-regular em-
beddings, the following is a relevant question.

Question 6.3. Suppose that G is a transitive (homogeneous) locally finite graph with
asymptotic dimension d . Does it follow that Zd !s-reg G and G !s-reg Zd ?
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Remark. We have just mentioned that the asymptotic dimension is monotone in-
creasing under semi-regular maps. Hence there is no semi-regular map from Zn to
Zm when n > m, giving an alternative proof for the above proposition.

Remark. Later Oded showed that H2 and R2 are semi-regularly equivalent. The
proof is unfortunately lost.
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