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Abstract. The aim of this note is to prove that the group of Formanek–Procesi acts properly
isometrically on a finite dimensional CAT.0/ cube complex. This gives a first example of a non-
linear semidirect product between two non abelian free groups which satisfies the Haagerup
property.
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Introduction

The Haagerup property is an analytical property introduced in [12], where it was
proved to hold for free groups:

Definition 1 ([12], [6], [1]). A conditionally negative definite function on a discrete
group G is a function f W G ! C such that for any natural integer n, for any
�1; : : : ; �n 2 C with

Pn
iD1 �i D 0, for any g1; : : : ; gn in G one has

P

i;j

N�i�j f .g�1
i gj / � 0:

The group G satisfies the Haagerup property, or is an a-T-menable group, if and
only if there exists a proper conditionnally negative definite function on G.

Groups with the Haagerup property encompass the class of amenable groups,
but form a much wider class. Free groups were in some sense the “simplest” non-
amenable groups with the Haagerup property. The Haagerup property has later been
renewed by the work of Gromov, where it appeared under the term of a-T-menability.
It is now most easily presented as a strong negation of the famous Kazhdan’s property
(T): in particular a group satisfies both the Haagerup and (T) properties if and only if
it is a compact group (a finite group in the discrete case). We refer the reader to [6]
for a detailed background and history of the Haagerup property.
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What do we know about extensions of a-T-menable groups? By [14] such an
extension is a-T-menable when the quotient group is amenable. For instance, any
semidirect product Fn Ì Z, where Fn denotes the rank n free group, is a-T-menable.
Also it has been proved recently that any wreath product Fn o Fk is a-T-menable (this
is a particular case of the various theorems in [8] – see also the preliminary paper
[7]). But such a result does not hold anymore when considering arbitrary Haagerup-
by-Haagerup groups. The most famous counter-example is given by [4]: for any free
subgroup Fk of SL2.Z/ the semidirect product Z2 Ì Fk satisfies a relative version
of Kazhdans’s property (T) and thus is not Haagerup (see also [9] for the relative
property (T) of Z2 Ì SL.2; Z/ and pass to a finite-index free subgroup of SL2.Z/;
since the Haagerup property holds for a group G if and only if it holds for a finite-index
subgroup of G, this gives an example as announced).

To what extent can this result be generalized to semidirect products Fn Ì Fk

with both n and k greater or equal to 2? These semidirect products lie in some
“philosophical” sense just “above” the groups Z2 ÌFk (substitute the amenable group
Z2 by the free group Fn, the simplest example of an a-T-menable but not amenable
group) but also just above the groups Fn Ì Z (substitute the free abelian group Z by
the free non-abelian group Fk). The former analogy might lead one to think that few
groups Fk Ì Fn (n; k � 2) satisfies the Haagerup property, whereas the latter one
might lead one to think that any such group is an a-T-menable group. The purpose of
this paper is to present a first example of a non-linear a-T-menable semidirect product
Fn Ì Fk (n; k � 2). More precisely:

Definition 2. Let n be any integer greater or equal to 2. The nth-group of Formanek–
Procesi is the semidirect product FnC1 Ì� Fn, where Fn D ht1; : : : ; tni and FnC1 D
hx1; : : : ; xn; yi are the rank n and rank n C 1 free groups and � W Fn ,! Aut.FnC1/

is the monomorphism defined as follows: For i; j 2 f1; : : : ; ng, �.ti /.xj / D xj and
�.ti /.y/ D yxi .

As claimed by this definition, it is easily checked that � is a monomorphism.
These groups were introduced in [10] to prove that Aut.Fn/ is non-linear for n � 3.

Theorem 1. The nth-group of Formanek–Procesi acts properly isometrically on some
.2nC2/-dimensional CAT.0/ cube complex and in particular satisfies the Haagerup
property.

Let us briefly recall that a cube complex is a metric polyhedral complex in which
each cell is isomorphic to the Euclidean cube Œ0; 1�n and the gluing maps are isome-
tries. A cube complex is called CAT.0/ if the metric induced by the Euclidean metric
on the cubes turns it into a CAT.0/ metric space (see [3]). In order to get the above
statement, we prove the existence of a “space with walls” structure as introduced by
Haglund and Paulin [13]. A theorem of Chatterji–Niblo [5] or Nica [16] (for similar
constructions in other settings, see also [15], [17] or [11]) gives the announced action
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on a CAT.0/ cube complex. The referee pointed out two natural questions: Is the
action on the cube complex cocompact? Is there a distortion between the distance
associated to a (finite) word-metric and the wall-distance? The author thinks that the
two distances should be quasi-isometric with 2 as a multiplicative constant. These
questions are even more interesting in the more general context of the problem below.

Due to the profound structure theorem of [2] about subgroups of polynomially
growing automorphisms (our example is a subgroup of linearly growing automor-
phisms), a more elaborated version of the construction presented here should hope-
fully lead to a positive answer to the following question:

Question (folklore). Does any semidirect product Fn Ì Fk over a free subgroup of
polynomially growing outer automorphisms satisfy the Haagerup property?

We guess in fact that any semidirect product Fn Ì� Fk with �.Fk/ a free subgroup
of unipotent polynomially growing outer automorphisms acts properly isometrically
on some finite dimensional CAT.0/ cube complex, the dimension of which depends
on the way strata interleave with each other; see the brief discussion at the end of
the paper. Since any subgroup of polynomially growing automorphisms admits a
unipotent one as a finite-index subgroup [2], this would imply a positive answer to
the above question.

1. Preliminaries

1.1. Notation. We will prove Theorem 1 with n D 2. The reader will easily gen-
eralize the construction to any integer n � 2. With the notation of Theorem 1, the
group G ´ F3 Ì� F2 admits

hxi ; y; tj j t�1
j xi tj D xi ; t�1

j ytj D yxj ; i; j D 1; 2i
as a presentation. We denote by S the generating set fx1; x2; y; t1; t2g of G. In the
structure of semidirect product F3 Ì� F2 we will call horizontal subgroup the normal
subgroup F3 D hx1; x2; yi and vertical subgroup the subgroup F2 D ht1; t2i. Any
element is uniquely written as a concatenation tw where t is a vertical element, i.e.,
an element in the vertical subgroup, and w is a horizontal element, i.e., an element in
the horizontal subgroup. We denote by A the alphabet over S [ S�1 and by � the
map which, to a given word in A, assigns the unique element of G that it defines. A
reduced word is a word without any cancellation xx�1 or x�1x. Words consisting
of vertical (resp. horizontal) letters are vertical (resp. horizontal) words. A reduced
representative of an element g in G is a reduced word in the alphabet A whose image
under � is g.

We denote by � the Cayley graph of G with respect to S . Since the vertices of �

are in bijection with the elements of G, we do not distinguish between a vertex of �

and the element of G associated to this vertex. The edges of � are oriented: an edge
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of � is denoted by the pair “(initial vertex of the edge, terminal vertex of the edge)”.
The edges are labeled with the elements in S [ S�1. For instance, the edge .g; gxi /

has label xi , whereas the edge .gxi ; g/ has label x�1
i . If x is the label of an edge we

will term this edge x-edge. If E is an oriented edge, then E�1 is the same edge with
the opposite orientation. For instance, .g; gti /

�1 D .gti ; g/. A reduced edge-path
in � is an edge-path which reads a reduced word. When considering � as a cellular
complex, there is exactly one 1-cell associated to the two edges .g; gs/ (s 2 S ) and
.gs; g/, and each orientation of this 1-cell corresponds to one of these edges.

Lemma 1.1. With the notation above, the group G admits Smin ´ fy; t1; t2g � S

as a generating set.

Proof. For i 2 f1; 2g we have xi D y�1t�1
i yti , hence the lemma.

A straightforward consequence is

Corollary 1.2. Let �i be the set of 1-cells of � associated to edges with label
x˙1

i , and let �c be the closure of the complement of �1 [ �2 in � . Then �c is
(G-equivariantly homeomorphic to) the Cayley graph of G with respect to the gen-
erating set Smin defined in Lemma 1.1.

1.2. Space with walls structure. Spaces with walls were introduced in [13] in order
to check the Haagerup property. A space with walls is a pair .X; W/ where X is a
set and W is a family of partitions of X into two classes, called walls, such that for
any two distinct points x, y in X the number of walls !.x; y/ is finite. This is the
wall distance between x and y. We say that a discrete group acts properly on a space
with walls .X; W/ if it leaves invariant W and for some (and hence any) x 2 X the
function g 7! !.x; gx/ is proper on G.

Theorem 1.3 ([13]). A discrete group G which acts properly on a space with walls
satisfies the Haagerup property.

In order to get Theorem 1 we will need the (stronger) result below (we refer to
[16] for a similar statement). Let .X; W/ be a space with walls. Say that two walls
.u; uc/ 2 W and .v; vc/ 2 W cross if all four intersections u \ v, u \ vc, uc \ v and
uc \ vc are non-empty. We denote by I.W/ the (possibly infinite) supremum of the
cardinalities of finite collections of walls which pairwise cross.

Theorem 1.4 ([5]). Let G be a discrete group which acts properly on a space
with walls .X; W/. Then G acts properly isometrically on some I.W/-dimensional
CAT.0/ cube complex. In particular it satisfies the Haagerup property.
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2. Horizontal and vertical walls

2.1. Definition and stabilizers

Definition 2.1. The horizontal block Y is the set of all the elements in G which admit
tyw, with t a vertical word and w a horizontal word, as a reduced representative. A
horizontal wall is a left-translate g.Y; Yc/, g 2 G.

The vertical j -block Vj is the set of all the elements in G which admit tj tw, with
t a vertical word and w a horizontal word, as a reduced representative. A vertical
j -wall is a left-translate g.Vj ; V c

j /, g 2 G.

See Figure 1 for an illustration of the horizontal walls. By definition of a reduced
representative, in the definition of Y (resp. of Vj ), w (resp. t ) does not begin with
y�1 (resp. with t�1

j ).

y

y

y

y

y

t1

t1

t2

t2

g

Figure 1. Horizontal wall.

Lemma 2.2. The collection of all the horizontal walls is G-invariant for the left-
action of G on itself. The same assertion is true for the collection of all the vertical
walls. Moreover:

(1) The left G-stabilizer of any horizontal wall is a conjugate of the vertical sub-
group.

(2) The horizontal subgroup is both the left and right G-stabilizer of any vertical
wall.
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Proof. By definition the collection of either all the horizontal or all the vertical walls
consists of all the left G-translates of the horizontal or vertical walls .Y; Yc/ or
.Vj ; V c

j / so that it is invariant under the left G-action.
Let g 2 Y. Then g D tyw for some t in the vertical subgroup and w in the

horizontal one. If t 0 is another element in the vertical subgroup, t 0g D t 0tyw 2 Xi .
Thus the vertical subgroup is in the G-stabilizer of Y. By the relation ut D t�.t/.u/

for u in the horizontal subgroup (recall that � W F2 ,! Aut.F3/ is the monomorphism
such that G D F3 Ì� F2) we get ug D t�.t/.u/yw so that hui does not stabilize Y.
Since any element of G is the concatenation of a vertical element with a horizontal
one, these observations imply that the G-stabilizer of Y is the vertical subgroup.
Since the horizontal walls are left G-translates of the wall .Y; Yc/, the G-stabilizer
of a horizontal wall is a conjugate of the vertical subgroup.

The proof for the stabilizers of the vertical walls is similar and easier: just observe
that since the horizontal subgroup is normal in G, it is useless to take its conjugates.

2.2. Finiteness of horizontal and vertical walls between any two elements

Proposition 2.3. There are afinite number of verticalwalls betweenany two elements.

Proof. The vertical walls are the usual walls used to prove that the free group F2

satisfies the Haagerup property. Thus there are a finite number (in fact one) of
vertical walls between g 2 G and gti with ti a vertical generator. By Lemma 2.2,
each vertical wall is stabilized by the right-action of the horizontal subgroup. Thus
no vertical wall separates g from gs, g 2 G and s a horizontal generator xi or y. The
proposition follows.

Proposition 2.4. There are a finite number of horizontal walls between any two
elements in G.

This proposition is a little harder than the previous one, and we need a preliminary
lemma:

Lemma 2.5. Each side of each horizontal wall is invariant under the right-action of
the vertical subgroup: if .H ; H c/ is an horizontal wall, then for any element t of the
vertical subgroup we have H t D H and H ct D H c. In particular, each horizontal
wall is invariant under the right-action of the vertical subgroup.

Proof. We begin with the proof of the following assertion.

Claim 1. Let Y be the intersection of Y with the horizontal subgroup F3. Then Y is
invariant under the conjugation-action of the vertical subgroup F2.

Proof. Let w 2 Y . We write the reduced word w D ym0y�1m1 : : : y�i mi : : : y�k mk ,
k � 0, �i 2 f˙1g, with mi a reduced group word in the letters x˙1

1 , x˙1
2 (since w
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is reduced for each i satisfying �i C �iC1 D 0, we have mi ¤ 1). Then t�1
1 wt1 D

y	0y�1	1 : : : y�i 	i : : : y�k 	k , where 	i has the form aimib
�1
i with

ai D x1 if �i D 1 and ai D 1 otherwise,

bi D x�1
1 if �iC1 D �1 and bi D 1 otherwise,

for i D 1; : : : ; k and setting �kC1 D 1.
Therefore, if i < k and �i C �iC1 D 0, then 	i is conjugate to mi so that it is non

trivial. Whenever �i C�iC1 ¤ 0, no cancellation might occur after reduction between
y�i and y�iC1 even if 	i is reduced to the trivial word. Thus, after writing the 	i as
reduced words, the word y	0y�1	1 : : : y�k 	k we eventually get is reduced, so that
t�1
1 wt1Y � Y . The reverse inclusion being analogous we have t�1

1 wt1Y D Y and
similarly t�1

2 wt2Y D Y .

Now Y D S
t2F2

tY D S
t2F2

.tY t�1/t , which by the claim is equal to
S

t2F2
Y t .

Therefore, uYt D uY for any t in the vertical subgroup and for any u in the horizontal
one. Each one of the previous equalities holds when substituting Yc for Y so that in
particular u.Y; Yc/t D u.Y; Yc/ for any t in the vertical subgroup and for any u in
the horizontal one. Lemma 2.5 is proved.

Proof of Proposition 2.4. By Lemma 2.5, there is no horizontal wall between any
two elements g and gtj , j D 1; 2. On the other hand we have the following claim:

Claim 2. For any g 2 G,
S

t2F2
.gt; gty/˙1 disconnects �c in two connected com-

ponents, which are the two sides of the horizontal wall g.Y; Yc/.

Thus there is exactly one horizontal wall between any two elements g and gy. By
Lemma 1.1, we get the finiteness of the number of horizontal walls between any two
elements in G.

3. Vertizontal walls

Before beginning, we recall that �c denotes the Cayley graph of G with respect to
Smin D fy; t1; t2g (see Lemma 1.1). We also recall that in a Cayley graph, .g; gti /

denotes the edge with label ti (a ti -edge) oriented from g to gti and .gti ; g/ the same
edge with the opposite orientation (its label is thus t�1

i , it is a t�1
i -edge). Finally, if

E is an oriented edge, then E�1 denotes the same edge with the opposite orientation.
In particular .g; gti /

�1 D .gti ; g/.

3.1. Definition and stabilizers

Definition 3.1. With the notation above: let Hi ´ hxiC1; tiC1; yxiy
�1ti ; xi t

�1
i i

(i D 1; 2 mod 2), let EC
i ´ Hi .e; ti /, E�

i ´ Hi .ti ; e/ and Ei ´ EC
i [ E�

i .
The i -block Ti is the set of all the elements in G which are connected to the

identity vertex e by an edge-path in �c n Ei .



684 F. Gautero

See Figures 2 and 3. Beware that Figure 2 might be slightly misleading when
considering the edge-paths yxiy

�1: they are indeed preserved under the right-action
of ti but this is a consequence of the fact that a cancellation occurs between �.ti /.xi / D
xi and �.ti /.y

�1/ D x�1
i y�1. Since we did not draw the images of the edges in

these edge-paths, this cancellation does not appear in the figure.
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ti
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ti

ti

ti
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y

e

i D 1; 2

Figure 2. Some edges in Ei .
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Figure 3. Other edges in Ei .
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Remark 3.2. Observe that xiC1 D y�1t�1
iC1ytiC1, yxiy

�1ti D ytiy
�1 and xi t

�1
i D

y�1t�1
i y, i.e., Hi D hy�1t�1

iC1ytiC1; tiC1; ytiy
�1; y�1tiyi. In particular, for any

k 2 Z, ytk
i y�1 and y�1tk

i y are in Hi . See Figure 4.

Lemma 3.3. All the initial (resp. terminal) vertices of the edges in EC
i are connected

to e (resp. to ti ) by an edge-path in �c n Ei .

Proof. The edge-path .e; y�1/.y�1; y�1t�1
i /.y�1t�1

i ; y�1t�1
i y/ connects e to xi t

�1
i

in �c n Ei . The edge-path .e; y/.y; yti /.yti ; ytiy
�1/ connects e to tiyxiy

�1 D
yxiy

�1ti in �c n Ei . The edge .e; tiC1/ (indices are written modulo 2) connects e to
tiC1 in �c n Ei . The edge-path .e; t�1

iC1/.t�1
iC1; t�1

iC1y/.t�1
iC1y; t�1

iC1ytiC1/.t�1
iC1ytiC1;

t�1
iC1ytiC1y�1/ connects e to xiC1.

Since Ei is left Hi -invariant, taking and concatenating the left-translates of the
previous edge-paths by elements of Hi we connect all the initial vertices of the edges
in hxiC1; tiC1; yxiy

�1ti ; xi t
�1
i i.e; ti / D Ei by edge-paths in �c n Ei .

For connecting ti to xi (resp. ti to yxiy
�1t2

i , ti to xiC1ti ) in �c n Ei just take
the left-translate by ti of the edge-path between e and xi t

�1
i (resp. between e and

tiyxiy
�1, between e and xiC1): indeed recall that tixi D xi ti , tixiC1 D xiC1ti

and tiyxiy
�1 D yxiy

�1ti . For connecting ti to tiC1ti : first connect ti to xi by
the edge-path given above, then xi to xi tiC1 by the edge .xi ; xi tiC1/, then xi tiC1 to
xi tiC1tix

�1
i D tiC1ti by the left tiC1-translate of the edge-path between ti and xi .

We conclude as for the initial vertices.

Corollary 3.4. Any element in G is connected either to e or to ti by an edge-path in
�c n Ei .

Proof. Let g 2 G and consider any edge-path p in �c from (the vertex of �c associ-
ated to) g to e. If p � �c n Ei we are done. Otherwise p passes through some edge
in Ei , we denote by q the subpath of p from g to the initial vertex v of the first edge
of Ei in p. By Lemma 3.3, the initial (resp. terminal) vertex of each edge in EC

i is
connected to e (resp. to ti ) in �c n Ei . Thus there is an edge-path r in �c n Ei from v

to either e or ti . The concatenation qr gives an edge-path in �c n Ei from g to either
e or ti .

In what follows, in order to have a more readable text we will write each edge-path
as a concatenation of the labels of its edges: in order to ensure that this defines an
edge-path in �c n Ei the reader will have each time to remind the starting-point of
the edge-path.

Lemma 3.5. No edge-path in �c n Ei containing only y˙1-edges and t˙1
i -edges

connects e to ti .

Since the proof below is rather long, we first give an idea of what happens: the
only way to go from e to xi or ti without going through an x˙1

i -edge (which does not
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exist in �c) is to go through t˙1
i -edges appearing in the relations .y�1t�1

i y/ti D xi

or .ytiy
�1/ti .yt�1

i y�1/ D ti or their inverses (in parentheses the generators of Hi

involved - the t˙1
i -edges in Ei are those outside the parentheses). As the reader can

check (see Figure 4), the edges in Ei have been chosen to “cut” these relations. Each
time one goes through a y˙1-edge, one crosses a horizontal wall, and since e and ti
are in the same side of any horizontal wall (Claim 3), one has to cross it back, and in
particular when crossing .g; gy/ one has to go back to the right vertical orbit of g,
i.e., to some gt , t 2 F2 (Claim 6). If this is not a Hi -translate of the right vertical
orbit of the identity of G, then one has a vertical short-cut from g to gt . In this way,
by an induction process, we prove that reduced edge-paths in �c n Ei going from
e to ti , which minimize the number of horizontal edges crossed, are concatenations
of subpaths of the form tk

i yt l
i y�1 (at least when assuming that one began with a

y-edge as first horizontal edge – see Claim 9). Claims 10 and 11 rely upon the fact
that left-translating an edge-path in �c n Ei by an element in Hi yields an edge-path
in �c n Ei : each subpath yt l

i y�1 defines such an element. Hence any subpath of p

remains in the same side of Ei as e, hence the contradiction (Claim 12). By Claim 13,
if the first horizontal edge in p is a y�1-edge, then there exists a reduced edge-path
in �c n Ei from e to ti whose first horizontal edge is a y-edge and minimizing the
number of horizontal edges it crosses, hence the conclusion (Claim 13 is proved by
arguments similar to those exposed above).

ti

ti

ti

ti ti
ti

ti
ti

ti

ti
xi

xixi

y
y

y

y

y

y

y

y

e

i D 1; 2

Figure 4

Proof. We begin with an easy assertion about horizontal walls:

Claim 3. The vertices e and ti are in the same side of any horizontal wall g.Y; Yc/.
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Proof. By Lemma 2.5, each side of each horizontal wall is invariant under the right-
action of the vertical subgroup. Of course e and ti D eti belong to the same orbit for
the right-action of the vertical subgroup hence the claim.

Now an easy assertion about Definition 3.1:

Claim 4. Let 
 W G ! Z be the morphism defined by 
.y/ D 1 and 
.tj / D 0

for j D 1; 2 (since the sum of the exponents of the letters y in the relators of G is
zero, this morphism is well defined and since the elements y, t1, t2 generate G – see
Lemma 1.1 – it is defined over the whole group G). If .g; gti /

˙1 is any edge in Ei ,
then for any vertical element t 2 F2 the element gt belongs to Ker.
/.

Proof. Definition 3.1 gives Ei D Hi .e; ti /
˙1, Hi ´ hxiC1; tiC1; yxiy

�1ti ; xi t
�1
i i.

Each element in the subgroup Hi belongs to Ker.
/ since this is true for each gen-
erator. The claim follows from the fact that e belongs to Ker.
/ and all the elements
in the vertical orbit of an element in Ker.
/ also are in Ker.
/ since 
.tj / D 0 for
j D 1; 2.

Let Pe;ti be the set of all the reduced edge-paths in �c n Ei from e to ti passing
only through y˙1- and t˙1

i -edges. Let P min
e;ti

� Pe;ti be the subset formed by all
the edge-paths in Pe;ti minimizing the number of horizontal edges they cross. Let
p 2 P min

e;ti
.

Claim 5. There is at least one horizontal edge in p and this y- or y�1-edge begins at
the vertical orbit of e.

Proof. The set of all the vertical edges between vertices in a same vertical right-orbit
forms a tree (a copy of the Cayley graph of F2). Of course the vertices e and ti belong
to the same vertical right-orbit. The non-existence of a vertical edge-path between
e and ti then follows from the fact that .e; ti /

˙1 belongs to Ei . The conclusion
follows.

Claim 6. Assume that p goes through the y-edge .g; gy/, g 2 G. Then there is
k 2 Z such that p goes through the y�1-edge .gtk

i y; gtk
i /.

Proof. By definition p goes from e to ti . By Claim 3, e and ti are in the same side
of any horizontal wall. By Claim 2, if p goes through the y-edge .g; gy/, then it
changes side in the horizontal wall g.Y; Yc/ and has to cross back some y-edge with
initial vertex in the orbit of g under the right action of the vertical subgroup. This is
exactly Claim 6.

Claim 7. Assume that the first horizontal edge in p is a y-edge. Then p admits an
initial subpath of the form t

k0

i yt
k1

i y�1 (k0 might be zero).
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Proof. Assume that p does not satisfy the announced property. Then the second
horizontal edge in p also is a y-edge. Let .H ; H c/ be the horizontal wall associated
to this y-edge. By Claim 3, e and ti lie in the same side of .H ; H c/. Thus p crosses
back .H ; H c/. By Claim 2 and since we assumed that p does not cross any t˙1

iC1-edge
(indices are written modulo 2), there is a non-trivial subpath q1 of p D q0q1q2 starting
at the initial vertex g of the above y-edge and going back to some gtm

i (m 2 Z). But

the initial subpath of p leading to g is written as t
k0

i yt
k1

i . The element in G that it
defines does not belong to Ker.
/, see Claim 4. By this last claim no edge between
two vertices in the right orbit of g under the vertical subgroup belongs to Ei . Hence
the vertical edge-path r between g and gtm

i is an edge-path in �c nEi : it has the same
endpoints as q1 � p D q0q1q2 and crosses at least one horizontal edge less than q

since q1 is a reduced edge-path starting with a y-edge. Therefore the concatenation
q0rq2, possibly after reduction, defines an edge-path in Pe;ti which crosses at least
one horizontal edge less than p: this is a contradiction with p 2 P min

e;ti
.

Claim 8. Assume that p admits an initial subpath q0 of the form t
k0

i yt
k1

i y�1 : : :

t
k2j

i yt
k2j C1

i y�1 (ki ¤ 0 for i > 0). If the first horizontal edge following q0 in p is

a y-edge, then p admits an initial subpath of the form q0t
k2j C2

i yt
k2j C3

i y�1.

Proof. This amounts to proving that the second horizontal edge following q0 is a
y�1-edge. The argument for proving this claim is exactly the same as for Claim 7:
if the second horizontal edge following q0 in p also were a y-edge, then the vertical
edge-path from its initial vertex g to gtm

i is in �c n Ei : indeed the edge-path in p

from e to g reads t
k0

i yt
k1

i y�1 : : : t
k2j

i yt
k2j C1

i y�1tk2j C2y and so is not in Ker.
/

(see Claim 4). The conclusion is as in Claim 7.

Claim 9. Assume that the first horizontal edge in p is a y-edge. Then p is the reduced

concatenation of edge-paths reading words of the form t
k2j

i yt
k2j C1

i y�1 in �c n Ei .

Proof. By Claim 7, p admits a non-trivial initial subpath reading t
k0

i yt
k1

i y�1. By
Claim 8, it suffices to prove that the horizontal edge in p following this initial subpath
is not a y�1-edge. Assume that it is, i.e., p D t

k0

i yt
k1

i y�1t
k2

i y�1 : : : . By Claim 6,

the edge-path q1 D t
k2

i y�1 : : : following q0 D t
k0

i yt
k1

i y�1 in p has to go back
to some gtn

i , if g is the terminal vertex of q0 (hence the initial vertex of a y-edge).

Since p 2 P min
e;ti

, there is an edge in EC
i between g and gtn

i . Since t
km

i yt
kmC1

i y�1 D
yx

kmC1

i y�1t
kmC1

i t
km

i 2 Hi t
km

i , the edge-path q0 reads an element of the form htn
i

with h 2 Hi . By left-translation by h�1 we pull-back q1 to an edge-path starting
at e and ending at some t l

i with l > 0 since there is an edge in EC
i between the

initial and terminal vertex. Since there are at least two horizontal edges in q0, we so
get an edge-path in Pe;ti from e to ti which has less horizontal edges than p. This
contradicts p 2 P min

e;ti
.



Free-by-free group with the Haagerup property 689

Claim 10. Assume that p is the reduced concatenation of edge-paths reading words

of the form t
k2j

i yt
k2j C1

i y�1 in �c n Ei for j from 0 to l . Then
Pl

j D0 k2j � 0.

Proof. We proceed by induction on l . For l D 0 we have p D t
k0

i yt
k1

i y�1. Since
p starts at e and .e; ti / 2 Ei , we necessarily have k0 � 0. Let us assume that the
claim holds at l and let us prove that it then holds at l C 1. We observe that for any

non-negative integer j the element yt
k2j C1

i y�1 is in Hi . Thus a left-translate by (the
inverse of) such an element of an edge-path q is in �c n Ei if and only if q already
was. We first left-translate the edge-path reading t

k2

i y : : : and starting at t
k0

i yt
k1

i y�1

by .yt
k1

i y�1/�1: we get an edge-path starting at e, reading t
k0

i t
k2

i yt
k3

i y�1 : : : and
lying in �c n Ei since p is in �c n Ei . Since .e; ti / 2 Ei , this implies k0 C k2 � 0.
We continue the process by left-translating by .yt

k3

i y�1/�1 the subpath of p starting

with t
k4

i y, and more generally by .yt
k2j C1

i y�1/�1 the subpath of p starting with

t
k2j C2

i y. We eventually get k0 C k2 C � � � C k2l � 0 and the claim is proved.

Claim 11. Let g D Ql
j D0 t

k2j

i yt
k2j C1

i y�1 be an element in G. Let 
i W G ! Z be
the map which to an element g assigns the sum of the exponents of the letters xi ap-
pearing in the unique reduced representative of g of the form wt where w is a reduced
horizontal word and t is a reduced vertical one (beware that 
i is not a morphism
since its values on certain relators is non-zero). Then 
i .g/ D Pl

j D0 k2j C1.

Proof. We prove by induction on l that writing g 2 G with the generating set S

yields the expression

g D yx
k1Ck3C���Ck2lC1

i y�1t
k0Ck1C���Ck2l Ck2lC1

i :

If l D 0 then g D t
k0

i yt
k1

i y�1 D yx
�k0

i t
k0Ck1

i y�1 D yx�k0x
k0Ck1

i y�1t
k0Ck1

i D
yx

k1

i y�1t
k0Ck1

i . So the assertion holds for l D 0. Assume that it holds for l . Then

if g D QlC1
j D0 t

k2j

i yt
k2j C1

i y�1 D .
Ql

j D0 t
k2j

i yt
k2j C1

i y�1/.t
k2lC2

i yt
2k2lC3

i y�1/ by
induction hypothesis we get the equality

g D .yx
k1Ck3C���Ck2lC1

i y�1t
k0Ck1C���Ck2lC1

i /.t
k2lC2

i yt
k2lC3

i y�1/:

Hence, by permuting t
k0Ck1C���Ck2lC1Ck2lC2

i with y using the relation tiy D yx�1
i ti

(notice that the exponent of xi is the opposite of the exponent of ti ), we obtain the
following writing of g:

g D yx
k1Ck3C���Ck2lC1

i y�1yx
�k0�k1�����k2lC2

i t
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i y�1:

This is easier rewritten as follows:

g D yx
�k0�k2�����k2lC2

i t
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i y�1:
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By permuting t
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i with y�1 using the relation tiy
�1 D

xiy
�1ti (notice that the exponent of xi is equal to the exponent of ti ), this gives the

formula

g D yx
�k0�k2�����k2lC2

i x
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i

y�1t
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i :

Another rewriting gives the easier expression

g D yx
k1Ck3C���Ck2lC1Ck2lC3

i y�1t
k0Ck1C���Ck2lC1Ck2lC2Ck2lC3

i ;

and the induction is complete. Since 
i .g/ is equal to the sum of the exponents of
the xi in the previous writing, we get the claim.

Claim 12. The first horizontal edge in p is not a y-edge.

Proof. We argue by contradiction and assume that the first horizontal edge in p is
a y-edge. By Claim 9, p is the reduced concatenation of edge-paths reading words

of the form t
k2j

i yt
k2j C1

i y�1 in �c n Ei for j from 0 to l (l � 0). By Claim 10,
Pl

j D0 k2j � 0. Since the element defined by p is ti and the exponent of ti in

p is
Pl

j D0 k2j C Pl
j D0 k2j C1, we have

Pl
j D0 k2j C Pl

j D0 k2j C1 D 1. Hence
Pl

j D0 k2j C1 > 0. Claim 11 then gives 
i .ti / > 0, which is an absurdity since

i .ti / D 0, hence the claim.

Claim 13. If there is p � P min
e;ti

admitting a y�1-edge as first horizontal edge, then
there is q � P min

e;ti
admitting a y-edge as first horizontal edge.

Proof. The arguments are similar to those exposed above for proving that p does not
begin with a y-edge. Assume that the first horizontal edge in p is a y�1-edge, i.e.,
p D t

k0

i y�1 : : : with k0 � 0. If 
 is the morphism given in Claim 4, 
.tk0y�1/ D �1

so that, by this same Claim 4, there is no edge in Ei between two vertices in the orbit
of the terminal vertex of this y�1-edge under the vertical subgroup. By Claim 6, p

has to cross back the associated horizontal wall. Moreover, the number of horizontal
edges in p is minimal. Therefore this y�1-edge is followed by an edge-path of the
form t

k1

i y in �c n Ei , i.e., p D q0q1 with q0 D t
k0

i y�1t
k1

i y and q1 � �c n Ei . If
the first horizontal edge in q1 is also a y�1-edge we repeat the argument. Thus we
eventually get a non-trivial reduced edge-path p0, the first horizontal edge of which

is a y-edge such that p D t
k0

i y�1t
k1

i y : : : t
k2m

i y�1t
k2mC1

i yp0.
We noticed above that k0 � 0. From Remark 3.2, y�1t

k2j C1

i y 2 Hi . Hence

for any integer j from 0 to m the left-translate of the subpath t
k2j C2

i y�1 : : : by

.y�1t
k2j C1

i y/�1 yields an edge-path in �c n Ei . We eventually get
Pm

j D0 k2j � 0
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(the same construction and argument have been exposed with more details in the
proof of Claim 10). In G we have

t
k0

i y�1t
k1

i y : : : t
k2m

i y�1t
k2mC1

i y D x
�k1�k3�����k2mC1

i t
k0Ck1C���Ck2mCk2mC1

i ´ g

so that 
.g/ � �
i .xi / (
i is the map from G onto Z giving the exponent of xi ; see

Claim 11). So the terminal vertex of any edge-path t
k0

i y�1t
k1

i y : : : t
k2m

i y�1t
k2mC1

i y

starting at e lies in the same side as e in the grid hxi ; ti i.
Thus there is r 2 N such that t

k0

i y�1t
k1

i y : : : t
km

i y�1t
kmC1

i yt r
i ends at some

power of x�1
i ti , i.e., as a group element defines a power .x�1

i ti /
s with s 2 Z.

The left-translate of the edge-path t
k0

i y�1t
k1

i y : : : t
km

i y�1t
kmC1

i yt r
i .t�r

i p0/ by

t�r
i y�1t

�kmC1

i yt
�km

i y�1 : : : y�1t�k1yt�k0 yields, after reduction, an edge-path in
�c n Ei from e to .x�1

i ti /
�sti . Since .x�1

i ti /
�sti D ti .x

�1
i ti /

�s , by post-composing
it with an edge-path reading y�1t�s

i y if s > 0 and y�1t s
i y if s < 0 we get an edge-

path q in �c nEi which belongs to P min
e;ti

(it has at most the same number of horizontal
edges as p), and the first horizontal edge of which is a y-edge since p0 begins with a
y-edge.

If there exists an edge-path between e and ti in �c n Ei which goes only through
horizontal and t˙1

i -edges, then there exists such an edge-path p which is reduced
and minimizes the number of horizontal edges that it crosses. By Claim 5, such an
edge-path p contains at least one horizontal edge. By Claim 12, the first horizontal
edge in p is not a y-edge. It follows by Claim 13, that the first horizontal edge in p

neither is a y�1-edge. We so eventually get that there exists no edge-path in �c n Ei

from e to ti and Lemma 3.5 is proved.

Lemma 3.6. If there exists an edge-path connecting e to ti in �c n Ei , then there
exists an edge-path composed only of horizontal edges and of t˙1

i -edges connecting
e to ti in �c n Ei .

Proof. Assume the existence of an edge-path p in �c n Ei from e to ti . Then p D
w0w1 : : : w2k where

(1) w2j is an edge-path passing only through horizontal and t˙1
i -edges,

(2) w2j �1 is an edge-path defining an element in the subgroup hxiC1; tiC1i and does
not pass through any t˙1

i -edges.

Since hxiC1; tiC1i � Hi , by a left-translation of w2 : : : w2k by w�1
1 we get an

edge-path w1
2 : : : w1

2k
in �c n Ei starting at the initial vertex of w1 and ending at

w�1
1 ti . Thus the concatenation w0w1

2 : : : w1
2k

defines an edge-path in �c n Ei from e

to w�1
1 ti . By repeating this process we eventually get an edge-path q D w0w1

2 : : : wk
2k

in �c n Ei from e to w�1
2k�1

: : : w�1
1 ti where w

j
2j passes only through horizontal and

t˙1
i -edges whereas w�1

2k�1
: : : w�1

1 is an element in hxiC1; tiC1i. Since q starts at e
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and passes only through horizontal and t˙1
i -edges, its terminal vertex is an element

g in hy; ti i. Let h 2 hxiC1; tiC1i with g D hti . Then h D gt�1
i so that h 2 hy; ti i

since both g and ti belong to hy; ti i. Therefore h 2 hxiC1; tiC1i \ hy; ti i D feg. It
follows that q ends at ti so that q is an edge-path as announced.

Corollary 3.7. There are exactly two connected components in �c nEi : the connected
component of e and the connected component of ti .

Proof. By Lemmas 3.5 and 3.6, e and ti lie in two distinct connected components of
�c n Ei . By Corollary 3.4, these are the only two connected components of �c n Ei .

By Corollary 3.7, if Ti denotes an i -block (see Definition 3.1), then .Ti ; T c
i / is a

wall so that the following definition makes sense:

Definition 3.8. A vertizontal i -wall (i D 1; 2) is any left-translate g.Ti ; T c
i /, g 2 G,

of an i -block Ti (see Definition 3.1).

Lemma 3.9. The collection of all the vertizontal i -walls (i D 1; 2) is G-invariant
for the left-action of G on itself. The left G-stabilizer of any vertizontal i -wall
(i D 1; 2 mod 2) is a conjugate of the subgroup Hi D hxiC1; tiC1; yxiy

�1ti ; xi t
�1
i i.

Proof. The left G-invariance is obvious, as in the proof of Lemma 2.2. Let us check
the assertion about the left G-stabilizers. A vertizontal wall is a left G-translate of
.Ti ; T c

i /, where Ti is an i -block, see Definition 3.1. Thus its left G-stabilizer is
conjugate in G to the left G-stabilizer of .Ti ; T c

i /. Since Ti is separated from T c
i

by the left Hi -translates of .e; ti /
˙1 (see Definition 3.1), this left G-stabilizer is Hi .

3.2. Finiteness of the number of vertizontal walls between any two elements

Proposition 3.10. There are a finite number of vertizontal walls between any two
elements in G.

Proof. We consider the set of vertizontal 1-walls (the proof is the same for the
vertizontal 2-walls). We work with the generating set Smin D fy; t1; t2g given by
Lemma 1.1. Since any y˙1- and any t˙1

2 -edge lies in �c n .
S

g2G gE1/ (see Defi-
nition 3.1), no vertizontal 1-wall is intersected when passing from g to gy nor from
g to gt2 whatever g 2 G is considered. Thus one only has to check which ver-
tizontal 1-walls are intersected when passing from e to t1. There is of course the
wall .T1; T c

1 /. Assume that there is another wall g.T1; T c
1 /. Then, by definition,

this wall corresponds to the partition of �c in two components given by gE1. Thus
.e; t1/˙1 2 gE1. Let a 2 E1 with .e; t1/˙1 D ga. By definition of E1 there is
h 2 H1 (see Definition 3.1) with a D h.e; t1/˙1 hence .e; t1/˙1 D gh.e; t1/˙1.
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Since the stabilizer of any 1-cell is trivial, we get g D h�1 so that gE1 D E1. This
implies that g.T1; T c

1 / D .T1; T c
1 /, and we are done.

4. A proper action

Although obvious, the following proposition is indispensable:

Proposition 4.1. The set of all the horizontal, vertical and vertizontal walls defines
a space with walls structure .G; W/ for G. The left action of G on itself defines an
action on this space with walls structure.

Proof. By Propositions 2.3, 2.4 and 3.10, there are a finite number of walls between
any two elements so that .G; W/ is a space with walls structure.

We now prove the following result.

Proposition 4.2. The action of G on the space with walls structure .G; W/ given by
Proposition 4.1 is proper.

Proof. Before beginning let us recall that what is important is the algebraic inter-
section-number of the edge-paths with each wall: if a given path p intersects two
times a wall .W; W c/ first passing from W to W c, then crossing back from W c to W ,
this intersection-number is zero.

We work with the classical generating set S D fx1; x2; y; t1; t2g of G. Each
element g 2 G admits an unique reduced representative of the form wt with w a
reduced horizontal word and t a reduced vertical word. Since the vertical walls are
the classical walls in the free group F2, the number of vertical walls intersected goes
to infinity with the number of letters in t . Thus we can assume that g admits the
reduced horizontal word w as a reduced representative.

Recall that the intersections of the horizontal walls with the horizontal subgroup
give classical walls of the free group. By Lemma 2.5, horizontal walls are invariant
under the right-action of the vertical subgroup. In particular any two y˙1-edge in the
reduced horizontal word w define distinct horizontal walls. It follows that the number
of horizontal walls intersected goes to infinity with the number of y˙1-letters in w.
Thus we can assume that w contains only x˙1

i -letters, i D 1; 2 i.e. we can assume

that w D x
k1

i1
x

k2

i2
: : : x

kr

ir
with kj 2 Z and ij 2 f1; 2g, ij ¤ ij C1.

Two vertizontal i -walls separate e from xi in �c : the i -wall .Ti ; T c
i / and the

i -wall y�1.Ti ; T c
i /. These are indeed the two walls intersected exactly once by the

edge-path starting at e and reading y�1t�1
i yti . Of course they also separate e from

xk
i (k 2 Z). The left-translates by h 2 G of these two i -walls separate h from hxk

i .
This readily implies that there are at least two vertizontal walls intersected by any

edge-path x
kj

ij
in w. Moreover, the two i -walls given previously for passing from
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e to xk
i are necessarily distinct from those given for passing from xk

i xl
j (j ¤ i ) to

xk
i xl

j xm
i (k; l; m 2 Z): indeed xk

i xl
j (i ¤ j ) does not belong to the stabilizer of a

vertizontal i -wall. We so found a collection of i -walls intersected by the x
kj

ij
in w

which are all distinct and whose number goes to infinity with the number of times the
letters x˙1

1 and x˙1
2 alternate in w (since the number of intersections is increased by

2 each times one reads a new word of the form xk
i , i D 1 or i D 2). Therefore we

can assume that w D xk
1 with k 2 N.

The 2k left-translates by x1; x2
1 ; : : : ; xk�1

1 of the vertizontal 1-walls .T1; T c
1 / and

y�1.T1; T c
1 / separate e from xk

1 : these are indeed the walls crossed exactly once by
the edge-path in �c starting at e, ending at xk

1 and reading y�1t�k
1 ytk

1 . We thus get
the proposition.

5. The Haagerup property and dimension of the cube complex

We give here, as corollaries of the construction developed above, the two main results
we were interested in: the Haagerup property for G and the, stronger, fact that G acts
properly isometrically on a cube complex (Theorem 1).

Corollary 5.1. The group G satisfies the Haagerup property.

Proof. By Propositions 4.1 and 4.2, G acts properly on a space with walls structure
.G; W/. By [13], G satisfies the Haagerup property.

Corollary 5.2. The group G acts properly isometrically on some 6-dimensional cube
complex, where 6 is the supremum of the cardinalities of collections of walls which
pairwise cross in the space with walls structure for G given by Proposition 4.1.

Proof. Let .G; W/ be the space with walls structure for G given by Proposition 4.1.
Let us recall that W is the set of all the horizontal, vertical and vertizontal walls.
By Proposition 4.2, G acts properly on .G; W/. By [5], G acts properly isometri-
cally on some I.W/-dimensional cube complex where I.W/ is the supremum of the
cardinalities of collections of walls which pairwise cross (see Theorem 1.4).

Lemma 5.3. With the notation above: let F be a collection of walls in .G; W/ which
pairwise cross. Then there is at most one vertical wall and one horizontal wall in F .

Proof. Vertical walls are the classical walls of the free group: the two sides of such a
wall are separated by an edge of the Cayley graph with respect to a basis of the free
group (a tree). Thus two distinct such walls satisfy that one of the two sides of a wall
properly contains a side of the other. Consequently, two distinct vertical walls do not
pairwise cross. Let us now consider two distinct horizontal walls. By Claim 2, the
two sides of a horizontal wall are separated by

S
t2F2

.gt; gty/˙1. Thus, as it is the
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case for the free group, one of the two sides of a wall properly contains a side of the
other. Lemma 5.3 is proved.

Lemma 5.4. With the notation of Lemma 5.3, for each i 2 f1; 2g:

(1) The vertizontal i -walls .Ti ; T c
i / and y.Ti ; T c

i / cross.

(2) There are at most two vertizontal i -wall in F .

Proof. The following claim is obvious:

Claim 14. For any g 2 G either gEi \ Ei D ;, which is equivalent to g … Hi , or
gEi D Ei , which is equivalent to g 2 Hi .

Claim 15 below is extracted from the proof of Lemma 3.3.

Claim 15. Let g0; g1 be the two initial (resp. terminal) vertices of an edge in gEC
i ,

g … Hi (we recall that Ei D EC
i [ E�

i with EC
i D Hi .e; ti /). Then there is a

reduced edge-path in �c ngEi between g0 and g1 satisfying the following properties:

� It is a concatenation of edge-paths of four kinds: edge-path reading words of the
form .ytiy

�1/˙1, edge-paths reading words of the form .y�1tiy/˙1 and edge-
paths reading words of the form t˙1

iC1 or .y�1t�1
iC1ytiC1/

˙1
(i D 1; 2 mod 2).

� Both the initial and terminal vertices of each of the above subpaths are the initial
(resp. terminal) vertices of ti -edges in gEC

i .

Assume that two distinct vertizontal i -walls g1.Ti ; T c
i / and g2.Ti ; T c

i / cross. Then
(just apply a left-translation by g�1

1 ) .Ti ; T c
i / and g.Ti ; T c

i / cross, with g D g�1
1 g2.

It is thus sufficient to prove that there is at most one left-coset gHi (g … Hi ) such
that .Ti ; T c

i / and g.Ti ; T c
i / cross.

There is a reduced edge-path p in �c n .Ei [gEi / between e and the initial vertex
g0 of some edge in gEi . Without loss of generality assume that g0 2 gTi , which
is equivalent to .g0; g0ti / 2 gEC

i . Then fe; g0g � Ti \ gTi so that in particular
Ti \ gTi ¤ ;.

By Claim 14, since .e; ti / 2 Ei (resp. .g0; g0ti / 2 gEi and g … Hi ), we have
.e; ti / … gEi (resp. .g0; g0ti / … Ei ). Therefore, setting q D p.g0; g0ti / we get a
reduced edge-path q � �c n Ei between e and g0ti so that g0ti 2 Ti . Moreover,
since .g0; g0ti / 2 gEC

i , g0ti 2 gT c
i . Hence g0ti 2 Ti \ gT c

i so that Ti \ gT c
i ¤ ;.

Similarly, setting r D p�1.e; ti / we get an edge-path in �c n gEi so that ti 2 gTi .
Since ti 2 T c

i , this implies that gTi \ T c
i ¤ ;.

At this point we thus proved that Ti \ gTi , Ti \ gT c
i ¤ ; and gTi \ T c

i ¤ ;
(of course, if we had assumed g0 2 gT c

i instead of g0 2 gTi , we would also have
found three non-empty intersections among the four possible intersections between
the different sides of the walls; however they would not have been the same but
Ti \ gT c

i , T c
i \ gT c

i and Ti \ gTi ).
Assume now T c

i \ gT c
i ¤ ;. Since ti 2 T c

i , there exists a reduced edge-path s

in �c n Ei from ti to some element in gT c
i . Since ti 2 gTi , this edge-path s crosses

an edge .g1; g1ti / in gEC
i , and we can assume that it crosses only one such edge.



696 F. Gautero

Let us denote by q0 the subpath of s from ti to g1: q0 is a reduced edge-path in
�c n .Ei [ gEi /. Let us consider a reduced edge-path q00 in �c n gEi from g1 to g0

as given by Claim 15. Assume that q00 is contained in �c n Ei . Then q0q00p is an
edge-path in �c nEi from e to ti , which is impossible. Therefore q00 crosses an edge in
Ei . But, by construction (see Claim 15), the only t˙1

i -edges crossed by q00 belong to
subpaths of the form .ytiy

�1/˙1 or .y�1tiy/˙1 and the initial and terminal vertices
of these subpaths are in gEi . Thus these t˙1

i -edges crossed by q00 are t˙1
i -edges in

ygEi or in y�1gEi . Since they belong to ygEi \ Ei or to ygEi \ Ei , by Claim 14,
we get yg 2 Hi or y�1g 2 Hi . Hence g 2 yHi or g 2 y�1Hi . From all which
precedes, y.Ti ; T c

i / and y�1.Ti ; T c
i / do not cross since, by a left-translation by y,

if they would cross, so would y2.Ti ; T c
i / and .Ti ; T c

i /, which has been proved to be
false. We so got that if two vertizontal i -walls Z and Z0 cross, then there is g 2 G such
that, up to a permutation of Z and Z0, either Z D g.Ti ; T c

i / and Z0 D gy.Ti ; T c
i / or

Z D g.Ti ; T c
i / and Z0 D gy�1.Ti ; T c

i /. This implies item (2) of Lemma 5.4.
It only remains to check that .Ti ; T c

i / and y.Ti ; T c
i / cross. Obviously (use the

previous paragraphs with g D g0 D y) e 2 Ti \yTi , e 2 Ti \yT c
i and ti 2 T c

i \yTi

so that Ti \ yTi ¤ ;, Ti \ yT c
i ¤ ; and T c

i \ yTi ¤ ;. In order to prove that
T c

i \ yT c
i ¤ ;, let us observe that ti 2 T c

i is connected to ytix
�1
i ti by the edge-

path .ti ; tiy/.tiy; tiyti / since tiy D yx�1
i ti and tix

�1
i D x�1

i ti . The edge .ti ; tiy/

is a y-edge so belongs to �c n Ei . The edge .tiy; tiyti / D .ytix
�1
i ; ytix

�1
i ti / is

in yEi so, by Claim 14, does not belong to Ei . Hence .ti ; tiy/.tiy; tiyti / is an
edge-path in �c n Ei from ti 2 T c

i to ytix
�1
i ti , so that ytix

�1
i ti 2 T c

i . Moreover,
we have that yti 2 yT c

i is connected to ytix
�1
i ti D ytiy

�1tiy by the edge-path
.yti ; ytiy

�1/.ytiy
�1; ytiy

�1ti /.ytiy
�1ti ; ytiy

�1tiy/. The first and last edge in this
edge-path are respectively y�1- and y-edges and so belong to �c n yEi . The ti -edge
.ytiy

�1; ytiy
�1ti / is in Ei since ytiy

�1 2 Hi , see Remark 3.2. By Claim 14, it is not
in yEi . We thus proved that .yti ; ytiy

�1/.ytiy
�1; ytiy

�1ti /.ytiy
�1ti ; ytiy

�1tiy/

is an edge-path from yti 2 yT c
i to ytix

�1
i ti in �c n yEi so that ytix

�1
i ti 2 yT c

i .
Now ytix

�1
i ti 2 T c

i and ytix
�1
i ti 2 yT c

i so that T c
i \ yT c

i ¤ ;, and item (1) of
Lemma 5.4 is proved.

Let us now conclude the proof of Corollary 5.2. We consider the family

F D f.Y; Yc/; .V1; V c
1/; .Ti ; T c

i /; y.Ti ; T c
i / j i D 1; 2g

of walls of .G; W/. By Lemma 5.4, for each i the two vertizontal i -walls cross. Let
us check the other intersections:

� e 2 Y \ V1, t1 2 Y \ V c
1, y 2 Yc \ V1 and yt1 2 Yc \ V c

1 so that .Y; Yc/ and
.V1; V c

1/ cross.
� e 2 T1 \ T2, t1 2 T c

1 \ T2, t2 2 T1 \ T c
2 , t2t1 2 T c

1 \ T c
2 so that .T1; T c

1 / and
.T2; T c

2 / cross.
For the intersections T c

i \ yT c
j in the following two items, we refer the reader

to Figure 5 (the ti -edges in Ei are the thick edges, the tj -edges in yEj are the
dotted edges).
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� e 2 T1 \yT2, t1 2 T c
1 \yT2, yt2 2 T1 \yT c

2 , t1yx2 D yx�1
1 t1x2 2 T c

1 \yT c
2

so that .T1; T c
1 / and y.T2; T c

2 / cross.
� e 2 yT1 \T2, yt1 2 yT c

1 \T2, t2 2 yT1 \T c
2 , yx�1

2 t2x1 D t2yx1 2 yT c
1 \T c

2

so that y.T1; T c
1 / and .T2; T c

2 / cross.

ti ti

tj

tj

tj
tj

xi

xj

e y

y

Figure 5

� For each i 2 f1; 2g, e 2 Y \ Ti , y 2 Yc \ Ti , ti 2 Y \ T c
i , ytiy

�1ti 2 Yc \ T c
i

so that .Y; Yc/ and .Ti ; T c
i / cross for each i 2 f1; 2g.

� For each i 2 f1; 2g, e 2 Y \ yTi , y 2 Yc \ yTi , yti 2 Yc \ yT c
i , tiyti 2

Y \ yT c
i (since yti .y

�1tiy D tiyxi .tix
�1
i y�1y/ D tiyti .x

�1
i xi /.y

�1y/) so
that .Y; Yc/ and y.Ti ; T c

i / cross for each i 2 f1; 2g.
� e 2 V1\T1, x1 D y�1t�1

1 yt1 2 V1\T c
1 , t1 2 V c

1\T c
1 , yt1y�1 D t1yx1y�1 2

V c
1 \ T1 so that .V1; V c

1/ and .T1; T c
1 / cross.

� e 2 V1 \ T2, t1 2 V c
1 \ T2, t2 2 V1 \ T c

2 , t1t2 2 V c
1 \ T c

2 so that .V1; V c
1/ and

.T2; T c
2 / cross.

� e 2 V1\yT1, t1 2 V c
1\yT1, yt1 D t1yx1 2 V c

1\yT c
1 , yx1 D y.y�1t�1

1 y/t1 2
V1 \ yT c

1 so that .V1; V c
1/ and y.T1; T c

1 / cross.
� e 2 V1 \ yT2, t1 2 V c

1 \ yT2, yt2 2 V1 \ yT c
2 , yt1t2 D t1yx1t2 2 V c

1 \ yT c
2

so that .V1; V c
1/ and y.T2; T c

2 / cross.

Thus the given family F D f.Y; Yc/; .V1; V c
1/; .Ti ; T c

i /; y.Ti ; T c
i / j i D 1; 2g is

a family of 6 pairwise crossing walls of .G; W/. By Lemmas 5.3 and 5.4, in a family
of pairwise crossing walls there are at most one horizontal wall, one vertical wall and
two vertizontal i -walls for each i 2 f1; 2g. Therefore such a family contains at most
6 distinct walls. The proof of Corollary 5.2, and so of Theorem 1, at least in the case
where n D 2, is complete.

Remark5.5. As we noticed the generalization to any integer n � 3 is straightforward:
if Fn D ht1; : : : ; tni denotes the vertical subgroup of G D FnC1 Ì� Fn, then as
above the vertical walls are the classical walls of the free group Fn; if FnC1 D
hx1; : : : ; xn; yi denotes the horizontal subgroup of G, then as above the horizontal
walls are the left G-translates of the wall separated by the edges in

S
t2Fn

.t; ty/˙1.



698 F. Gautero

Finally there is a type of vertizontal wall for each letter in ft1; : : : ; tng and i -vertizontal
walls are defined as in 3.1 by posing Hi D hxj ; tj ; yxiy

�1ti ; xi t
�1
i j j ¤ ii. The

dimension of the cube complex on which G acts is 2n C 2: the C2 comes from
the fact that one can always put one horizontal and one vertical wall in a family of
pairwise crossing walls, and no more. The 2n comes from the fact that there are
n distinct types of vertizontal walls and for each vertizontal i -wall one can put two
distinct i -walls in a family of pairwise crossing walls, and no more.

Remark 5.6. By adapting our construction we get that the group FnC1 Ì� F2 (n � 3),
where �.ti / fixes any xj for j D 1; : : : ; n and �.ti /.y/ D yxi , i D 1; 2, acts on a 6-
dimensional CAT.0/ cube complex: the walls are the vertical walls defined above, the
vertizontal walls associated to ti defined in a similar way as above (in the definition
of the subgroup Hi add x3; : : : ; xn as generators) and horizontal walls associated
not only to y but also to x3; : : : ; xn. There are more types of horizontal walls but
less types of vertizontal walls than in the nth-group of Formanek–Procesi. Since two
distinct horizontal walls cannot be in a collection of pairwise crossing walls (contrary
to what happens with vertizontal walls), this explains the smaller dimension of the
complex in this case. Thus what is perhaps the most important, for the dimension of
the cube complex, is the way the images of the higher edges cover the lower strata.
Here the rose with n C 1 petals is a Bestvina–Feighn–Handel representative. The
filtration of the graph is given by ;   fx1; : : : ; xng   fx1; : : : ; xng[fyg. The image
of the highest edge y cover fx1; x2g but not the whole lower stratum fx1; : : : ; xng as
it is the case when considering the nth-group of Formanek–Procesi.
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