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Abstract. We prove that a random group of the graph model associated with a sequence of
expanders has the fixed-point property for a certain class of CAT.0/ spaces. We use Gromov’s
criterion for the fixed-point property in terms of the growth of n-step energy of equivariant
maps from a finitely generated group into a CAT.0/ space, for which we give a detailed proof.
We estimate a relevant geometric invariant of the tangent cones of the Euclidean buildings
associated with the groups PGL.m;Qr /, and deduce from the general result above that the
same random group has the fixed-point property for all of these Euclidean buildings with m
bounded from above.
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Introduction

Random groups were introduced by Gromov [7] as a framework in which he justified
his previous claim that ‘most’ discrete groups are hyperbolic [6]. While this standard
model, called the density model, of random groups has been actively studied, Gromov
[8] introduced another model, called the graph model, of random groups in search
for infinite groups that cannot be uniformly embedded into Hilbert spaces, thereby
being a counterexample to a version of Baum–Connes conjecture. Note that the graph
model is formed by choosing an infinite sequence of finite graphs with increasing ver-
tices, and Gromov chose a sequence of (bounded-degree) expanders satisfying some
additional conditions so that the corresponding random group was non-elementary
hyperbolic, hence infinite. Throughout the introduction, we assume that this choice
is made and fixed. In the same paper, Gromov claimed that a random group of the
graph model had the fixed-point property for all Hadamard manifolds (possibly of
infinite dimensions). Here we say that a group � has the fixed-point property for a
metric space Y if for any homomorphism � W � ! Isom.Y /, �.�/ has a global fixed
point in Y . If Y is a family of metric spaces and � has the fixed-point property for all
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members of Y, we say that � has the fixed-point property for Y. Silberman [21] then
rigorously proved that the same random group had the fixed-point property for Hilbert
spaces, which is equivalent to saying that the random group had Kazhdan’s property
(T). We refer the reader to Ollivier’s monograph [20] for extensive information on
random groups.

In the present paper, we prove that a random group of the graph model has the fixed-
point property for a certain class of CAT.0/ spaces, including all Hadamard manifolds.
We therefore justify the above mentioned claim of Gromov in a generalized form. To
state our main result more in detail, recall that we [11] introduced a certain geometric
invariant, denoted by ı, of CAT.0/ space which takes values in the interval Œ0; 1�.
It is worth mentioning that the invariant of a CAT.0/ space can be computed as the
supremum of its values for all tangent cones of the space. For 0 � ı0 < 1, let
Y�ı0

denote the class of CAT.0/ spaces Y satisfying ı.Y / � ı0, or equivalently
ı.TCpY / � ı0 for all p 2 Y . Then a random group is infinite hyperbolic and has the
fixed-point property for all members of Y�ı0

. This result is compared to the authors’
previous result that if ı0 < 1=2, a random group in Zuk’s triangular model has the
fixed-point property for all members of Y�ı0

.
As in Silberman’s, our proof is built of two parts, one geometric and the other

probabilistic. The probabilistic part follows Silberman’s argument mostly verbatim,
but our presentation has some advantages. First, we simplify his argument by re-
placing the large deviation inequality for the Bernoulli walk he used by the central
limit theorem. This also enables us to allow degree two vertices in the graphs and
therefore state our result in a form applicable to subdivided expanders. Secondly,
we generalize Silberman’s spectral gap inequality for maps from a finite graph into a
Hilbert space to the inequality for maps with CAT.0/ targets, and this enables us to
state the result for more general CAT.0/ spaces than Hilbert spaces. The geometric
part of the proof is completely different from Silberman’s; we use Gromov’s criterion
for the fixed-point property in terms of the growth of n-step energy of equivariant
maps from a group into a CAT.0/ space. Since Gromov does not give a detailed proof
to this result, we undertake to do so.

With the general result at hand, it is important to compute or estimate from above
the invariant ı of a CAT.0/metric cone. To do this, we relate it to a modified version
of distortion of the cone, which we call the radial distortion.

The following fact is well known. Suppose that a discrete group � has the fixed-
point property for Hilbert spaces, all symmetric spaces associated with the groups
PGL.m;R/ and PGL.m;C/, and all Euclidean buildings associated with the groups
PGL.m;Qr/with r prime. Then � is nonlinear, in the sense that it admits no faithful
linear representation, and more strongly, any finite-dimensional linear representation
of � has finite image. It is therefore interesting to see which of these spaces are in
the above class of CAT.0/ spaces. Since Hilbert spaces and the symmetric spaces are
Hadamard manifolds and hence trivially belong to this class, it remains to investigate
the Euclidean buildings. As mentioned above, the estimation of the invariant ı of
their tangent cones can be reduced to that of the radial distortion of these cones. By
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carrying out the latter task, we conclude that the invariant ı of the tangent cones of
the Euclidean buildings are bounded from above by a constant less than one which
depends only on the dimensions of the buildings. Combining this and the general
result above, we finally conclude that a random group of the graph model has the
fixed-point property for all of the Euclidean buildings with dimensions bounded from
above by a positive integer, specified in advance.

This paper is organized as follows. In Section 1 we prepare some definitions,
notations and results concerning CAT.0/ spaces which are necessary in later sections.
In Section 2 under the situation that an isometric action of a finitely generated group
on a CAT.0/ space is given, we study the n-step energy of an equivariant map from the
group into the CAT.0/ space. After some preliminaries, we give a proof to Gromov’s
result which states that if the n-step energy grows strictly slower than n times the
(single-step) energy, then the action is forced to have a global fixed point. In fact,
we prove the result in a slightly generalized form, which will be necessary in the
next section. We then treat the special case that the target space is an affine Hilbert
space, and conclude this section by proving a sort of converse of Gromov’s result
holds for some CAT.0/ spaces. In Section 3 we first recall the formalism of the graph
model of random groups, and then prove a fixed-point theorem for random groups, a
version of which will be stated in terms of the invariant ı. In Section 4 we first give
an upper bound for the invariant ı of a CAT.0/ metric cone, restricted to measures
with barycenter at the cone point, in terms of the radial distortion of the cone. We
then estimate ı of the tangent cones of the Euclidean buildings associated with the
groups PGL.m;Qr/ by determining the radial distortion of the cones.

Part of this paper was announced in [9], [13].

1. Preliminaries on CAT.0/ spaces

In this section, we briefly recall some definitions and results concerning CAT.0/
spaces. We refer the reader to [2] for a detailed exposition on the subject. We follow
the notations used in [11], §1.

Let Y be a metric space and p; q 2 Y . A geodesic joining p to q is a map
c W Œ0; l� ! Y satisfying c.0/ D p, c.l/ D q and d.c.t/; c.t 0// D jt � t 0jd.p; q/=l
for any t; t 0 2 Œ0; l�. A geodesic c W Œ0; l� ! Y with l D d.c.0/; c.l// is called unit
speed; a unit speed geodesic is nothing but an isometric embedding of an interval.
We say that Y is a geodesic space if any two points in Y are joined by a geodesic.

Consider a triangle in Y whose vertices are p1; p2; p3 2 Y and sides are three
geodesic segments p1p2, p2p3, p3p1 joining pairs of these vertices. We denote this
triangle by�.p1; p2; p3/ and call such a triangle a geodesic triangle. Take a triangle
�.Sp1; Sp2; Sp3/ in R2 with the same side lengths: dR2.Spi ; Spj / D dY .pi ; pj /. We call
�.Sp1; Sp2; Sp3/ a comparison triangle for �.p1; p2; p3/. A point Nq 2 Spi Spj is called
a comparison point for q 2 pipj if dY .pi ; q/ D dR2.Spi ; Nq/. A geodesic triangle
�.p1; p2; p3/ inY is said to satisfy the CAT.0/ condition ifdY .q1; q2/ � dR2.Sq1; Sq2/
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for any pair of points q1; q2 on the sides of�.p1; p2; p3/ and their comparison points
Sq1, Sq2. A geodesic space Y is called a CAT.0/ space if every geodesic triangle in
Y satisfies the CAT.0/ condition. Roughly speaking, a CAT.0/ space is a geodesic
space all of whose geodesic triangles are thinner than Euclidean triangles.

Note that, for a CAT.0/ space Y , the uniqueness of a unit speed geodesic joining
any pair of points in Y , and the contractibility of Y immediately follow from the
definition. Throughout this paper, we assume metric spaces under consideration
are complete. (We should point out here that a complete CAT.0/ space was given a
distinguished name ‘Hadamard space’in [11], though we will not use this terminology
in the present paper.)

The following is a characterization of CAT.0/ spaces, which is often used as an
alternative definition of CAT.0/ spaces.

Proposition 1.1 ([2]). A geodesic space Y is a CAT.0/ space if and only if, for any
p 2 Y and any geodesic c W Œ0; 1� ! Y ,

d.p; c.t//2 � .1 � t /d.p; c.0//2 C td.p; c.1//2 � t .1 � t /d.c.0/; c.1//2

holds.

Proposition 1.2. Let Y be a CAT.0/ space, and � a probability measure on Y .
Suppose that the integral Z

Y

d.p; q/2d�.p/

is finite for some (hence any) point q 2 Y . Then there exists a unique point p0 2 Y
which minimizes the function

q 7!
Z

Y

d.p; q/2d�.p/; q 2 Y:

For a proof, see [15], p. 639, Lemma 2.5.1. We call the point p0 the barycenter
of � and denote it by N� or bar.�/. Mostly, we will consider a measure � with finite
support; � is given as a convex combination � D Pm

iD1 ti Diracpi
of Dirac measures

Diracpi
’s, where

Pm
iD1 ti D 1 and ti � 0 for i D 1; : : : ; m. In such a case, we often

say N� is the barycenter of fp1; : : : ; pmg with weight ft1; : : : ; tmg.

Definition 1.3. Let Y be a CAT.0/ space.
(1) Let c and c0 be two nontrivial geodesics in Y starting from p 2 Y . The angle

†p.c; c
0/ between c and c0 is defined by

†p.c; c
0/ D lim

t;t 0!0
† Np.c.t/; c.t//;

where † Np.c.t/; c.t// denotes the angle between the sides Npc.t/ and Npc0.t/ of the
comparison triangle �. Np; c.t/; c.t// � R2.
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(2) Let p 2 Y . We define an equivalence relation � on the set of nontrivial
geodesics starting from p by c � c0 () †p.c; c

0/ D 0. Then the angle †p in-
duces a distance on the quotient .SpY /

ı D fnontrivial geodesics starting from pg=�,
which we denote by the same symbol †p . The completion .SpY;†p/ of the metric
space ..SpY /

ı;†p/ is called the space of directions at p.
(3) Let TCpY be the cone over SpY , namely,

TCpY D .SpY � RC/=.SpY � f0g/:
Let v; v0 2 TCpY . We may write v D .u; t/ and v0 D .u0; t 0/, where u; u0 2 SpY

and t; t 0 2 RC. Then

dT CpY .v; v
0/ D t2 C t 02 � 2t t 0 cos †p.u; u

0/

defines a distance on TCpY . The metric space .TCpY; dT CpY / is again a CAT.0/
space and is called the tangent cone of Y at p. We define an ‘inner product’on TCpY

by
hv; v0i D t t 0 cos †p.u; u

0/:

We often denote the length t of v by jvj; thus we have jvj D phv; vi D dT CpY .0p; v/,
where 0p denotes the cone point, which is the equivalence class of .u; 0/ 2 SpY �RC
in TCpY .

(4) Define a map �p W Y ! TCpY by �p.q/ D .Œc�; dY .p; q//, where c is the
geodesic joining p to q and Œc� 2 SpY is the equivalence class of c. Then �p is
distance-nonincreasing.

A complete, simply connected Riemannian manifold Y with nonpositive sectional
curvature, often called a Hadamard manifold, is a typical example of CAT.0/ space.
For such a Y , SpY (resp. TCpY ) is the unit tangent sphere (resp. the tangent space)
at p. The map �p is the inverse of the exponential map. Hilbert spaces, metric
trees and Euclidean buildings supply other examples of CAT.0/ spaces (see §4 for
Euclidean buildings).

2. The n-step energy of equivariant maps

Let � be a finitely generated group, and Y a CAT.0/ space. Suppose that a ho-
momorphism � W � ! Isom.Y / is given. In [8], Gromov formulated a sufficient
condition for �.�/ to have a global fixed point (i.e., there exists a point p 2 Y such
that �.�/p D p) in terms of the growth of n-step energy of �-equivariant maps. The
purpose of this section is to give a detailed proof of Gromov’s result.

We consider a random walk on � given by transition probability measures
f�.	; � /g�2� on � which is �-invariant, finitely supported, symmetric, and irre-
ducible. In other words, we are given a nonnegative function � on � � � satisfying
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(a) �.		 0; 		 00/ D �.	 0; 	 00/ for any 	 , 	 0, and 	 00 2 � ,

(b) for any 	 2 � , �.	; 	 0/ D 0 for all but finitely many 	 0 2 � ,

(c) for any 	 2 � ,
P

� 02� �.	; 	
0/ D 1,

(d) �.	; 	 0/ D �.	 0; 	/ for any 	; 	 0 2 � ,

(e) for any 	 , 	 0 2 � , there exist 	0; 	1; : : : ; 	n 2 � such that 	 D 	0, 	 0 D 	n,
and �.	i ; 	iC1/ 6D 0, i D 0; : : : ; n � 1.

The last condition is called the irreducibility of a random walk and means that � is
‘connected’ with respect to �, that is, for any pair of points in � , one can move from
one to the other with positive probability. Though we could begin with a discrete
countable group � , the existence of such a � would force � to be finitely generated.

We say a map f W � ! Y is �-equivariant if f satisfies f .		 0/ D �.	/f .	 0/
for all 	; 	 0 2 � . (Here we regard � itself as a space with left �-action.) We define
the energy E�;�.f / of a �-equivariant map f by

E�;�.f / D 1
2

X
� 02�

�.	; 	 0/ dY .f .	/; f .	
0//2; (2.1)

where 	 is an arbitrarily chosen element of � . Note that since f is �-equivariant and
� is �-invariant, the right-hand side of (2.1) does not depend on the particular choice
of 	 . It is often convenient to choose 	 D e, the identity element of� . A�-equivariant
map f is said to be harmonic if f minimizes E�;� among all �-equivariant maps.
Note that the image of a �-equivariant map f W � ! Y is the �.�/-orbit of the point
f .e/, and f is determined by the choice of f .e/ 2 Y . Therefore, the set of all
�-equivariant maps from � to Y , denoted by M�, can be identified with Y . Then the
energy functional E�;� becomes a convex continuous function on M� Š Y .

We define the link L� of 	 2 � with respect to � by L� D f	 0 2 � j �.	; 	 0/ >
0g, and for a �-equivariant map f , define a map F� W L� ! TCf .�/Y by F� .	

0/ D
�f .�/.f .	

0//, where TCpY is the tangent cone of Y at p and �p W Y ! TCpY is
the natural projection. Denote by ���f .e/ 2 TCf .e/Y the barycenter of the push-
forward measure .Fe/�.�.e; �//. Then a �-equivariant map f is harmonic if and only
if ���f .e/ D 0f .e/. Note that 2.���f .e// should be interpreted as the negative of
the gradient of E�;� at f . (Indeed, they coincide when Y is a Riemannian manifold.
See [10], [11].)

The following proposition gives a sufficient condition for the existence of a fixed-
point of �.�/ in terms of the energy functional.

Proposition 2.1 ([10], [11]). Let � be a finitely generated group equipped with a
�-invariant, finitely supported, symmetric, and irreducible random walk �. Let Y
be a CAT.0/ space and � W � ! Isom.Y / a homomorphism. Suppose that there
is a positive constant C such that j���f .e/j2 � CE�;�.f / holds for every �-
equivariant map f . Then �.�/ admits a global fixed point.
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In fact, under the assumption, j���ft .e/j decreases to 0 rapidly along the Jost–
Mayer gradient flow ft of E�;�, and is integrable on Œ0;1/. (See [12] and [18] for
the Jost–Mayer gradient flow.) This means that the length of the flow starting from
f0 D f is finite up to time infinity. In particular, by taking a divergent sequence
ftigi2N � R, we obtain a Cauchy sequence ffti gi2N � M� and a �-equivariant
map f1 as its limit. Since j � ��ft .e/j ! 0, under the assumption again, we see
that f1 satisfies E�;�.f1/ D 0, which implies that d.f .	/; f .	 0// D 0 whenever
�.	; 	 0/ 6D 0. Since � is irreducible, any pair of elements in � can be connected by
a path consisting of segments of the form .	; 	 0/ such that �.	; 	 0/ 6D 0. Therefore,
f1 must be a constant map. (Actually, the irreducibility of � is necessary only at
this point.) Since f1.�/ is a �.�/-orbit consisting of a single point, it is fixed by
�.�/.

For � as above, denote by �n the nth convolution of �:

�n.	; 	 0/ D X
�12�

: : :
X

�n�12�

�.	; 	1/ : : : �.	n�1; 	
0/:

We define the n-step energy E�n;�.f / of a �-equivariant map f by

E�n;�.f / D 1
2

X
�2�

�n.e; 	/dY .f .e/; f .	//
2:

2.1. Examples of n-step energy. We first take a glance at examples of the compu-
tation of E�n;�.f /. In what follows, we drop � in E�n;� and use the symbol E�n ,
unless no confusion is likely to occur.

Example 1. Let � D Z and � the standard random walk on Z:

�.k; l/ D
´

1
2

if k � l D ˙1;
0 otherwise.

Let Y D R and � W Z ! Isom.R/ a homomorphism such that �.1/.t/ D ut C 
 for
t 2 R, where u D ˙1 and 
 2 R. Let f W Z ! R be a �-equivariant map such that
f .0/ D ˛ 2 R. Then for k 2 Z,

�.k/.t/ D

8̂<
:̂
t C k
 if u D 1;

t if u D �1 and k is even;

�t C 
 if u D �1 and k is odd;

and

f .k/ D

8̂<
:̂
˛ C k
 if u D 1;

˛ if u D �1 and k is even;

�˛ C 
 if u D �1 and k is odd:
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Note that �.Z/ has a global fixed point in R exactly when u D 1 and 
 D 0, or
u D �1, and f is harmonic exactly when u D 1, or u D �1 and ˛ D 
=2.

We now compute the n-step energy of f . Suppose that, among n steps, a walker
makes exactly j steps to the right (C1). Then the walker should make n� j steps to
the left (�1), and he arrives at 2j � n 2 Z. There are nCj ways of such walks, each
taking place with probability .1=2/n. Therefore,

E�n.f / D 1

2

X
k2Z

�n.0; k/ jf .k/ � f .0/j2

D 1

2

nX
j D0

nCj

2n
jf .2j � n/ � f .0/j2

D

8̂<
:̂
1
2

Xn

j D0

nCj

2n .2j � n/2
2 D n�2

2
if u D 1;

0 if u D �1 and n is even;

2.˛ � �
2
/2 if u D �1 and n is odd:

We conclude that E�n.f / D nE�.f / for all n if u D 1, and E�n.f / � E�.f / for
all n if u D �1. In the computation above for the u D 1 case, we have used the fact
that

nX
j D0

nCj

2n
j D .the average of B.n; 1=2// D n

2
;

nX
j D0

nCj

2n

�
j � n

2

�2 D .the variance of B.n; 1=2// D n

4
;

where B.n; 1=2/ denotes the symmetric binomial distribution.

As we will see in §2.3 (Corollary 2.11), when the target space Y is a Hilbert space,
E�n.f / � nE�.f / holds for any �-equivariant map f , and the equality holds if and
only if f is harmonic.

Example 2. We take � D Fm to be the free group of rankm generated by s1; : : : ; sm.
Let S D ˚

s1̇ ; : : : ; sṁ
�
, and � the standard random walk on Fm with respect to the

generator set S :

�.	; 	 0/ D
´

1
2m

if 	 0 D 	sfor some s 2 S;
0 otherwise:

Clearly, � is Fm-invariant, finitely supported, symmetric, and irreducible. Let Y be
the Cayley graph of Fm with respect to S . Then Y is a 2m-regular tree. We give
a distance on Y by setting the length of each edge to be 1. Let � W Fm ! Isom.Y /
be the homomorphism that gives the action on Y coming from the left action of Fm
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on Fm itself, and f W Fm ! Y the standard embedding of Fm into its Cayley graph
Y . We give an estimate of E�n.f /. We denote by �n.r/ the probability of a walker
on Fm being at distance r from the starting point e after taking n steps following �.
Thus

E�n.f / D 1
2

nX
rD0

�n.r/r2:

LetXn be the Bernoulli walk on Z starting from 0which moves right with probability
p D .2m � 1/=2m and left with probability q D 1=2m. Denote by bn.r/ the
probability that Xn D r 2 Z:

bn.r/ D nC.nCr/=2

�
2m � 1
2m

�.nCr/=2 �
1

2m

�.n�r/=2

:

Note that the average E.Xn/ and the variance V .Xn/ are given by

E.Xn/ D n.p � q/ D n.m � 1/=m and V .Xn/ D 4npq D n.2m � 1/=m2;

respectively. Recall that�n.r/ � bn.r/=p D 2mbn.r/=.2m�1/ holds as explained
in [21]. Then, by the variance equality,

E�n.f / � 1

2

nX
rD0

2m

2m � 1b
n.r/r2 D m

2m � 1E.X2
n /

D m

2m � 1
�
V .Xn/C E.Xn/

2
� � m

2m � 1n
2:

2.2. General case. First we recall the well-known variance inequalities on a CAT.0/
space.

Lemma 2.2. Let Y be a CAT.0/ space with metric d . Let � D Pm
iD1 ti Diracvi

be
a probability measure with finite support on Y and N� 2 Y the barycenter of �. Then
we have

mX
iD1

tid.vi ; w/
2 �

mX
iD1

tid.vi ; N�/2 C d. N�;w/2 (2.2)

for all w 2 Y , and

1
2

mX
iD1

mX
j D1

ti tjd.vi ; vj /
2 �

mX
iD1

tid.vi ; N�/2: (2.3)

Proof. We include a proof for the sake of completeness. Set l D d. N�;w/ andF.w/ DPm
iD1 tid.vi ; w/

2. Let c W Œ0; 1� ! Y be the (constant-speed) geodesic joining N� and
w; c.0/ D N�, c.1/ D w. By Proposition 1.1, d.vi ; c.
//

2 �.l
/2 is a convex function
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of 
 , and hence the same is true of the function '.
/ D F.c.
//� .l
/2. Therefore,

F. N�/ � .l
/2 � '.
/

� .1 � 
/'.0/C 
'.1/

D .1 � 
/F. N�/C 
.F.w/ � l2/;

and so 
F. N�/C l2
.1�
/ � 
F.w/. Dividing the both sides by 
 and letting 
 ! 0,
we obtain (2.2). (2.3) follows by integrating (2.2) against d�.w/.

We use this lemma to derive the following

Lemma 2.3. Let Y be a CAT.0/ space and p 2 Y . Let � D Pm
iD1 ti Diracvi

be a
probability measure with finite support on TCpY and N� 2 TCpY the barycenter of
�. Then for any w 2 TCpY , we have

h N�;wi �
mX

iD1

ti hvi ; wi: (2.4)

The equality holds if w D N�.

Proof. First we treat the w D N� case (by just revising the proof of Lemma 2.7 in
[11]). Set  .
/ D Pm

iD1 tid.vi ; 
 N�/2, which takes its minimum at 
 D 1. On the
other hand, we can rewrite

 .
/ D
mX

iD1

ti jvi j2 C 
2j N�j2 � 2

mX

iD1

ti hvi ; N�i;

and the right-hand side takes its minimum at 
 D Pm
iD1 ti hvi ; N�i=j N�j2 (if N� ¤ 0p ,

which we may assume). Therefore,

j N�j2 D
mX

iD1

ti hvi ; N�i: (2.5)

Now for w arbitrary, applying (2.2) to TCpY and rewriting in terms of the inner
product on TCpY and using (2.5), we obtain

mX
iD1

ti jvi j2 C jwj2 � 2
mX

iD1

ti hvi ; wi �
mX

iD1

ti jvi j2 C jwj2 � 2h N�;wi:

Cancelling out the common expression on the both sides, we obtain (2.4).

We restate Lemma 2.3 in the form which we will use later.
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Lemma 2.4. Let � be a finitely generated group equipped with a �-invariant, finitely
supported and symmetric random walk �, and Y a CAT.0/ space. Suppose that a
homomorphism � W � ! Isom.Y / is given, and let f W � ! Y be a �-equivariant
map. Then for any v 2 TCf .e/Y ,

h���f .e/; vi � X
�2�

�.e; 	/hFe.	/; vi (2.6)

holds.

We now prove the following

Proposition 2.5. Let �, �0 be �-invariant, finitely supported and symmetric random
walks on � . Then, for any �-equivariant map f ,

E���0.f / � E�.f /CE�0.f / � h���f .e/;���0f .e/i (2.7)

holds, where � 	 �0 denotes the convolution of � and �0.

Proof. Since �f .�/ W Y ! TCf .�/Y is distance-nonincreasing, we obtain

E���0.f / D 1
2

X
�;� 0

�0.e; 	/�.	; 	 0/d.f .e/; f .	 0//2

� 1
2

X
�;� 0

�0.e; 	/�.	; 	 0/df .�/.F� .e/; F� .	
0//2

D 1
2

X
�;� 0

�0.e; 	/�.	; 	 0/.jF� .e/j2 C jF� .	
0/j2 � 2hF� .e/; F� .	

0/i/

D 1
2

X
�

�0.e; 	/d.f .e/; f .	//2 C 1
2

X
�

�0.e; 	/
X
� 0

�.e; 	�1	 0/

� d.f .e/; f .	�1	 0//2 � X
�;� 0

�0.e; 	/�.	; 	 0/hF� .e/; F� .	
0/i;

(2.8)

where we have used jF� .	
0/jDd.f .	/; f .	 0//Dd.f .e/; f .	�1	 0// and �.	; 	 0/D

�.e; 	�1	 0/; these follow from the �-equivariance of f and the �-invariance of �
respectively. The first and second terms in the last expression of (2.8) equal toE�0.f /

andE�.f / respectively. On the other hand, using Lemma 2.4 twice, we estimate the
third term from below as

� X
�

�0.e; 	/
X
� 0

�.	; 	 0/hF� .e/; F� .	
0/i

� � X
�

�0.e; 	/hF� .e/;���f .	/i

D � X
�

�0.e; 	�1/hFe.	
�1/;���f .e/i

� �h���0f .e/;���f .e/i:

(2.9)
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To deduce the equality on the third line, one has to notice that �.	�1/ induces an
isometry �.	�1/� W TCf .�/Y ! TCf .e/Y , which maps F� .e/ and ���f .	/ to
Fe.	

�1/ and ���f .e/ respectively. We have also used �0.e; 	/ D �0.e; 	�1/.
Combining these inequalities completes the proof.

Remark 1. Note that the difference between the both sides of (2.7) comes from the
curvature of Y and the nonlinearity of the tangent cones of Y . The former possibly
makes the projection Y ! TCpY distance-decreasing and causes strict inequality
in (2.8). On the other hand, the latter may force the inequalities in (2.6), and thus
in (2.9), to become strict ones. In particular, (2.7) becomes an equality when Y is a
Hilbert space.

Corollary 2.6. For any �-invariant, finitely supported and symmetric random walk
�, �-equivariant map f , and positive integer n,

E�n.f / � nE�.f / �
n�1X
iD1

h��if .e/;��1f .e/i (2.10)

holds, where ��if .e/ denotes the barycenter of .Fe/�.�i .e; � //.
Proof. To prove by induction, suppose that the inequality is true for n � 1. Then by
the proposition above

E�n.f / � E�n�1.f /CE.f / � h��n�1f .e/;��1f .e/i

� .n � 1/E�.f / �
n�2X
iD1

h��if .e/;��1f .e/i CE�.f /

� h��n�1f .e/;��1f .e/i

D nE�.f / �
n�1X
iD1

h��if .e/;��1f .e/i:

This completes the proof of Corollary 2.6.

Remark 2. By the previous remark, (2.10) becomes an equality when Y is a Hilbert
space. See the next subsection for more on the Hilbertian case.

Remark 3. If f is harmonic, then we have E�n.f / � nE�.f /, and the strict
inequality possibly holds by the reason as explained in Remark 1. It is natural
to expect that E�n.f /=E�.f / is bounded by a constant depending on some kind
of growth rate of Y . As the following lemma shows, such a constant should not
exceed n2.

Lemma 2.7. Let � be a �-invariant, finitely supported and symmetric random walk
on � , and f W � ! Y a �-equivariant map. Then the following estimates hold:
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(1) j ���f .e/j2 � 2E�.f /.

(2) E�n.f / � n2E�.f /.

(3) j ���nf .e/j2 � 2n2E�.f /.

Proof. We first prove (1). Using the variance inequality (2.2), we obtain

j ���f .e/j2 D dT Cf .e/Y .0f .e/;���f .e//
2

� X
�2�

�.e; 	/ dT Cf .e/Y .0f .e/; Fe.	//
2

D X
�2�

�.e; 	/ dY .f .e/; f .	//
2 D 2E�.f /:

To prove (2), we compute

E�n.f / D 1
2

X
�1;:::;�n

�.e; 	1/ � � ��.	n�1; 	n/d.f .e/; f .	n//
2

� 1
2

X
�1;:::;�n

�.e; 	1/ � � ��.	n�1; 	n/
� nX

iD1

d.f .	i�1/; f .	i //
�2

� 1
2

X
�1;:::�n

�.e; 	1/ � � ��.	n�1; 	n/ � n
nX

iD1

d.f .	i�1/; f .	i //
2;

(2.11)

where 	0 D e. Note that by �-invariance of � and the �-equivariance of f ,

1
2

X
�1;:::;�n

�.e; 	1/ : : : �.	n�1; 	n/d.f .	i�1/; f .	i //
2

D 1
2

X
�i�1;�i ;�n

�i�1.e; 	i�1/�.	i�1; 	i /�
n�i .	i ; 	n/d.f .	i�1/; f .	i //

2

D 1
2

X
�i�1;�i

�i�1.e; 	i�1/�.	i�1; 	i /d.f .	i�1/; f .	i //
2

D 1

2

X
�i�1;�i

�i�1.e; 	i�1/�.e; 	
�1
i�1	i /d.f .e/; f .	

�1
i�1	i //

2

D X
�i�1

�i�1.e; 	i�1/E�.f / D E�.f /:

Together with (2.11), this implies E�n.f / � n2E�.f /. Now (3) follows from (1)
and (2).

Proposition 2.8. Let � be a �-invariant, finitely supported, symmetric random walk
and f W � ! Y a �-equivariant map. Then

E�n.f / � nE�.f / � n.n � 1/
2

q
2E�.f / j���.f /j (2.12)

holds.
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Proof. By Corollary 2.6 and Lemma 2.7 (3), we obtain

E�n.f / � nE�.f / �
n�1X
iD1

h��if .e/;��1f .e/i

� nE�.f / �
n�1X
iD1

i

q
2E�.f /j ��1f .e/j:

This implies (2.12).

We can now prove

Theorem 2.9 (Gromov [8]). Suppose that there exist a positive integer n and a
positive real number " such that

E�n.f / � .n � "/E�.f / (2.13)

holds for any �-equivariant map f W � ! Y . Then there exists a positive constant
C as in Proposition 2.1. In particular, �.�/ admits a global fixed point.

Proof. Suppose that (2.13) holds for a �-equivariant map f . By (2.12), we see

.n � "/E�.f / � nE�.f / � n.n � 1/
2

q
2E�.f / j���f .e/j;

from which we get

j���f .e/j2 � 2"2

n2.n � 1/2E�.f /:

This completes the proof of Theorem 2.9.

In the next section, we will need the following result, which is slightly more
general than the above theorem and follows immediately from its proof.

Corollary 2.10. Suppose that there exist a positive integer n and a positive real
number " satisfying the following condition: for any �-equivariant map f W � ! Y ,
there exists l � n such that

E�l .f / � .l � "/E�.f /:

Then there exists a positive constant C as in Proposition 2.1. In particular, �.�/
admits a global fixed point.
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2.3. Affine case. Next we examine the behavior of E�n.f / in the affine case,
namely, the case when Y is taken to be a real Hilbert space.

Let � be a finitely generated group and � a �-invariant, finitely supported and
symmetric random walk on � . Let � W � ! Isom.H / be a homomorphism and
f W � ! H a �-equivariant map, where H is a Hilbert space. Then ���f .	/ is
given by

���f .	/ D X
� 02�

�.	; 	 0/.f .	 0/ � f .	//:

Recall that according to the semi-direct product decomposition Isom.H / D O.H /Ë
H , where O.H / is the orthogonal group of H , � is decomposed into the pair .�0; b/

of a homomorphism �0 W � ! O.H / and a map b W � ! H , so that �.	/v D
�0.	/v C b.	/ for 	 2 � and v 2 H . We note that ���f W � ! H is �0-
equivariant; in fact,

���f .	
0	/ D X

� 002�

�.	 0	; 	 00/.f .	 00/ � f .	 0	//

D X
� 002�

�.	; 	 0�1	 00/.�.	 0/f .	 0�1	 00/ � �.	 0/f .	//

D X
� 002�

�.	; 	 0�1	 00/�0.	
0/.f .	 0�1	 00/ � f .	//

D �0.	
0/.���f .	//:

Note that we have used the �-invariance of � and the linearity of �0.	
0/.

As in the general case, the set of �0-equivariant maps from � to H , denoted by
M�0

, is identified with H through the correspondence M�0
3 ' 7! '.e/ 2 H . An

inner product on M�0
is defined in a natural way as

h'; iM�0
´ h'.e/;  .e/i.D h'.	/;  .	/i/:

We define an averaging operator M by

M'.	/ D X
� 02�

�.	; 	 0/'.	 0/; ' 2 M�0
:

Since �0.	/ is linear, we see that M' 2 M�0
:

M'.	 00	/ D X
� 02�

�.	 00	; 	 0/'.	 0/

D X
� 02�

�.	; 	 00�1	 0/�0.	
00/'.	 00�1	 0/

D �0.	
00/M'.	/:
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Thus, M is a linear operator acting on M�0
Š H . Since � is symmetric and �-

invariant, M is selfadjoint:

hM'; iM�0
D hM'.e/;  .e/i D X

�

�.e; 	/h�0.	/'.e/;  .e/i

D X
�

�.e; 	�1/h'.e/; �0.	
�1/ .e/i

D h';M iM�0
:

Using this operator M , we can rewrite ��nf , where ��n D ���n , as follows.

��nf .	/ D X
� 02�

�n.	; 	 0/.f .	 0/ � f .	//

D X
�1;� 02�

�.	; 	1/�
n�1.	1; 	

0/.f .	 0/ � f .	1/C f .	1/ � f .	//

D X
�1

�.	; 	1/.��n�1f .	1/C f .	1/ � f .	//

D M.��n�1f /.	/C .��1f /.	/;

and thus,
��nf D M.��n�1f /C .��1f /:

Proceeding inductively, we see that

��nf D .M n�1 CM n�2 C � � � CM C I /.��1f /: (2.14)

In particular, we see that if f is �-harmonic, then f must be �n-harmonic.

Corollary 2.11. Let Y be a Hilbert space. For any �-invariant, finitely supported
and symmetric random walk � on � , �-equivariant map f W � ! Y , and a positive
integer n,

E�n.f / � nE�.f /

holds. The equality holds if and only if f is harmonic.

Proof. According to Corollary 2.6 and Remark 2, it is enough to show that
h��if .e/;��1f .e/i � 0 for each i in order to prove the inequality. When i D 1,
this is obvious. Suppose that i D 2mC 2, m � 0. By (2.14), we get

h��if .e/;��1f .e/i D
mX

kD0

h.M 2k CM 2kC1/.��1f /.e/;��1f .e/i

D
mX

kD0

h.I CM/M k.��1f /.e/;M
k.��1f /.e/i

(2.15)
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since M is selfadjoint. Now for ' 2 M�0
,

h.I CM/'; 'iM�0
D h'.e/; '.e/i C X

�2�

�.e; 	/h�0.	/'.e/; '.e/i � 0;

where we have used jh�0.	/'.e/; '.e/ij � j'.e/j2 which holds since �0.	/ is or-
thogonal. Thus the operator I CM is nonnegative, and applying this to (2.15), we
obtain h��if .e/;��1f .e/i � 0.

Suppose that i D 2mC 3, m � 0. Then (by (2.14) again)

h��if .e/;��1f .e/i
D h��i�1f .e/;��1f .e/i C hMmC1.��1f .e//;M

mC1.��1f .e//i � 0:

Now suppose that E�n.f / D nE�.f /. Then h��1f .e/;��1f .e/i D 0, and
hence f is harmonic. The converse is obvious.

2.4. Converse of Theorem 2.9. The following proposition shows that an assertion
slightly stronger than the converse of Theorem 2.9 holds for some CAT.0/ spaces.

Proposition 2.12. Let Y be either a CAT.0/ Riemannian manifold or an R-tree,
and � W � ! Isom.Y / a homomorphism. Suppose that �.�/ admits a global fixed
point. Then there exists a positive constant C� such that E�n.f / � C�E�.f / for
any n 2 N and �-equivariant map f . In particular, taking n > C�, we obtain n, "
as in Theorem 2.9.

Proof. Let f W � ! Y be a �-equivariant map. Denote by F the fixed-point set
of �.�/, and let p0 2 F be the nearest point from f .e/. Since f .e/ 2 F implies
E�.f / D E�n.f / D 0, we may assume f .e/ 62 F . Set R D d.f .e/; p0/ D
d.f .e/; F /. Since, for any 	 2 � , d.f .	/; p0/ D R, and hence d.f .e/; f .	// �
2R, we see that E�n.f / � 2R2 for any n 2 N. Let S D fs 2 � j �.e; s/ 6D 0g.
Suppose that there exists a positive constant � such that maxf†p0

.f .e/; f .s// j s 2
Sg � � holds for any �-equivariant map f . Then, for any �-equivariant map f , we
have maxfd.f .e/; f .s// j s 2 Sg � 2R sin.�=2/. This implies that

E�.f / � 2R2 sin2 �
2

min
s2S

�.e; s/;

and we can take
C� D .sin2 �

2
min
s2S

�.e; s//�1:

Suppose that Y is a Riemannian manifold. Note that f .e/ lies in a geodesic
starting from p0 which is normal to F , and p0 depends on f . So take any point
p 2 F , and set

�p D inf
V 2TpF ?;jV jD1

maxf†p.V; �.s/�V / j s 2 Sg;
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where �.s/� denotes the differential of �.s/, which induces an isometry on TpF
?.

Note that �p is positive. In fact, since TpF
? is finite-dimensional, �p D 0 implies the

existence of a unit vector V 2 TpF
? fixed by �.s/� for any s 2 S , and hence fixed by

�.	/� for any 	 2 � since S generates � by the �-invariance and the irreducibility of
�. Then the geodesic exp tV must be fixed by �.�/. This contradicts the definition
of F , since V is normal to F . Let q 2 F be another point in F . Let c W Œ0; 1� ! Y

be the unique geodesic starting from p and terminating at q, and Pt W TpY ! Tc.t/Y

the parallel translation along c. Note that c must lie in F , and hence it is fixed by
�.�/. Therefore, for any V 2 TpV , t 7! �.s/�Pt .V / is a parallel vector field along
c with initial vector �.s/�P0.V / D �.s/�V . By the uniqueness of a parallel vector
field with a given initial condition, we see that �.s/�P1.V / D P1.�.s/�V /, namely
�.s/� commutes withP1. Thus the action of �.s/ on TqY is conjugate to that on TpY

by P1. In particular, �p D �q , that is, �p does not depend on the choice of p 2 F .
Hence we can take � above to be �p .

Now suppose thatY is an R-tree, and letf ,F ,p0 andR be as above. SinceY is an
R-tree, the angle †p0

.f .e/; f .s// equals either0or� . Suppose that there exists s 2 S
such that Œp0; f .e/�\ Œp0; f .s/� D fp0g, where Œp0; q� denotes the geodesic segment
joiningp0 andq. Then Œp0; f .e/�[Œp0; f .s/� is an arc (a topological segment) joining
f .e/ and f .s/, which must be unique in Y by the definition of R-tree. In other words,
Œp0; f .e/� [ Œp0; f .s/� is a geodesic segment joining f .e/ and f .s/. Therefore
†p0

.f .e/; f .s// D � . Now assume the contrary: Œp0; f .e/� \ Œp0; f .s/� 6D fp0g
for all s 2 S . Let cs W Œ0; R� ! Y , s 2 S , and ce W Œ0; R� ! Y be unit speed geodesics
starting from p0 and terminating at f .s/ and f .e/ respectively. By our assumption,
there exists a positive constant Ts for each s 2 S such that cs.Œ0; Ts�/ � ce.Œ0; R�/.
Since the geodesics are of unit speed, this means csjŒ0;Ts � D cejŒ0;Ts � for each s 2 S .
Because S is a finite set, we get a positive constant T ´ minfTs j s 2 Sg. By
the definition of T , cejŒ0;T � D csjŒ0;T � for all s 2 S and ce.Œ0; T �/ 6D fp0g. It is
clear that ce.Œ0; T �/ must be fixed by �.s/ for all s 2 S , and hence by �.�/. This
means that there is a fixed point p D c.T / of �.�/ which is closer to f .e/ than
p0. This contradicts our choice of p0. Therefore, for any �-equivariant map f ,
maxf†p0

.f .e/; f .s// j s 2 Sg must be equal to � , and we can take � to be � . This
completes the proof.

Remark 4. From the proof, one sees thatC� for an R-tree equals .mins2S �.e; s//
�1

and does not depend on�. It is plausible that Proposition 2.12 is also true for Euclidean
buildings.

3. Fixed-point property of random groups

In this section, we will prove that a random group of Gromov’s graph model associated
with a sequence of expanders satisfying some additional conditions has the fixed-point
property for a certain large class of CAT.0/ spaces.
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3.1. Preliminaries on graphs. Let G D .V;E/ be a finite connected graph, where
V and E are the sets of vertices and undirected edges, respectively. We denote the
set of directed edges by ÅE. Let �G and �G denote the standard random walk on G
and the standard probability measure on V given by

�G.u; v/ D
´

1
deg.u/

if ¹u; vº 2 E,

0 otherwise,
and �G.u/ D deg.u/

2jEj ;

respectively. Note that �G is symmetric with respect to �G : �G.u/�G.u; v/ D
�G.v/�G.v; u/. The discrete Laplacian �G of G, acting on real-valued functions '
on V , is defined by

.�G'/.u/ D '.u/ � X
v2V

�.u; v/'.v/; u 2 V:

Let �1.G;R/ denote the second eigenvalue of �G . It is characterized variationally
as

�1.G;R/ D inf
'

1
2

P
u2V �G.u/

P
v2V �G.u; v/.'.u/ � '.v//2P

u2V �G.u/.'.u/ � x'/2 ;

where ' is a nonconstant real-valued function on V , and x' denotes the average of
', given by x' D Œ

P
u2V deg.u/'.u/�=Œ

P
u2V deg.u/�. The girth of G, denoted by

girth.G/, is the minimal length of a cycle (i.e., a closed path) in G, and the diameter
of G, denoted by diam.G/, is the maximum distance between a pair of points in G.

Let fGl D .Vl ; El/gl2L be a sequence of finite connected graphs with L an
unbounded set of positive integers and jVl j ! 1 as l ! 1. We say that fGlgl2L is
a sequence of (bounded degree) expanders if it satisfies the following conditions for
some positive integer d0 and positive real number �0:

(i) 2 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,
(ii) �1.Gl ;R/ � �0 for all l 2 L.

3.2. Graph-model random groups and their hyperbolicity. We first recall the
formulation of Gromov’s graph model of random groups [8], [20]. Let � D Fk

be the free group generated by S D fs1̇ ; : : : ; s˙
k

g. Let G D .V;E/ be a finite
connected graph, and we use the notations as in the previous subsection. A map
˛ W ÅE ! S satisfying ˛..u; v// D ˛..v; u//�1 for all .u; v/ 2 ÅE is called an S -
labelling of G. For such an ˛ and a path Ep D .Ee1; : : : ; Eel/ in G, where Eei 2 ÅE,
define ˛. Ep/ D ˛.Ee1/ � � � � � ˛.Eel/ 2 � . Then set R˛ D f˛.Ec/ j Ec is a cycle in Gg and
�˛ D �=R˛ , where R˛ is the normal closure of R˛ . Let ƒ.G; k/ denote the set of
all S -labellings of G, consisting of .2k/jE j elements, and make it into a probability
space by putting a uniform probability measure on it. When jV j ! 1, the group �˛

for a randomly and uniformly chosen ˛ 2 ƒ.G; k/ is a ‘random group’.
To be precise, choose a sequence of finite connected graphs fGl D .Vl ; El/gl2L

with L an unbounded set of positive integers and jVl j ! 1 as l ! 1. Given a
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group property P (e.g., Kazhdan’s property (T)), we say that a random group has
property P if the probability of �˛ having property P goes to one as l ! 1, that is,
if jf˛ 2 ƒ.Gl ; k/ j �˛ has property Pgj=jƒ.Gl ; k/j ! 1 as l ! 1. In actual use,
we primarily assume that fGlgl2L is a sequence of expanders. In what follows, we
will make precise what kind of properties the expanders should further have in order
to prove the corresponding graph model useful for our purpose.

We begin with the specific example of expanders that was discovered by Lubotzky,
Phillips and Sarnak [16].

Example 3. Let p and q be distinct primes which are congruent to 1 modulo 4. The
LPS expanders Xp;q are .p C 1/-regular Cayley graphs of the group PSL.2;Fq/ if
the Legendre symbol

�
p
q

� D 1 and of PGL.2;Fq/ if
�

p
q

� D �1, where Fq is a finite
field with q elements (Š Z=qZ). They are so-called Ramanujan graphs and also
satisfy some other extremal combinatorial properties:

Case i.
�

p
q

� D �1; Xp;q is bipartite of order n D jXp;qj D q.q2 � 1/,
(a) girth.Xp;q/ � 4 logp q � logp 4,
(b) diam.Xp;q/ � 2 logp nC 2 logp 2C 1.

Case ii.
�

p
q

� D 1; n D jXp;qj D q.q2 � 1/=2 and Xp;q is not bipartite,

(a) girth.Xp;q/ � 2 logp q,
(b) diam.Xp;q/ � 2 logp nC 2 logp 2C 1.

Let us introduce a new parameter l D Œlogp q�, where p is fixed and q varies, and set
Gl D Xp;q . (Note that the map q 7! l is not one-to-one. So for each l we choose a
single q among those mapped to l .) Then in the both cases the conditions (a), (b) are
rewritten as

girth.Gl/ � const1 � l and diam.Gl/ � const2 � l
respectively. Note that one can choose const1 D 2 and const2 D 6C ol.1/.

With this example as a model, we consider a sequence of finite connected graphs
fGl D .Vl ; El/gl2L with L an unbounded set of positive integers satisfying the
following conditions for some positive integer d0 and positive real number �0:

(i) 3 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,
(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) �1.Gl ;R/ � �0 for all l 2 L.

For a fixed positive integer j , we also consider the graph G.j /

l
obtained from Gl by

subdividing every edge ofGl into j edges by adding j�1 vertices. Set l 0 D jl so that
l 0 varies over jL. Then the sequence of graphs fG.j /

l 0=j
gl 02jL satisfies the following

conditions:

(i0) 2 � deg.u/ � d0 for all l 0 2 jL and all u 2 V.G.j /

l 0=j
/ ,
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(ii0) girth.G.j /

l 0=j
/ � l 0 and diam.G.j /

l 0=j
/ � const � l 0 for all l 0 2 jL,

(iii0) �1.G
.j /

l 0=j
;R/ � c.�0; j / > 0 for all l 0 2 jL.

(For (iii0), see [21].) Moreover, if an arbitrary ˇ > 1 is given, then by choosing j
large enough, we can arrange so that fG.j /

l 0=j
gl 02jL satisfies

(iv0) the number of embedded paths in G.j /

l 0=j
of length less than l 0

2
is less than

const � ˇl 0=2.

(For this point, we refer the reader to [5], p. 17.)
Henceforth, we will fix a sequence of finite connected graphs fGlgl2L satisfying

the conditions (i)-(iii). We will also fix a sufficiently large j , and consider the graph
model of random groups associated with the sequence of graphs fG.j /

l 0=j
gl 02jL. The

fact that a random group of this model is an infinite group follows from the following
theorem due to Gromov [8] (see also [5]).

Theorem 3.1. Let fGl D .Vl ; El/gl2L be a sequence of finite connected graphs with
L an unbounded set of positive integers. Suppose that fGlgl2L satisfies the following
conditions for some positive integer d0 and a choice of ˇ > 1 sufficiently close to 1:

(i) 2 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,

(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) the number of embedded paths inGl of length less than l
2

is less than const �ˇl=2.

Then a random group of the graph model associated with fGlgl2L is non-elementary
hyperbolic; in particular, it is an infinite group.

3.3. Fixed-point theorem. We first recall (see [22])

Definition 3.2. For a finite connected graph G and a CAT.0/ space T , the Wang
invariant �1.G; T / is defined by �1.G; T / D inf RQ.'/, where the infimum is taken
over all nonconstant maps ' W V ! T and

RQ.'/ D
1
2

P
u2V �G.u/

P
v2V �G.u; v/dT .'.u/; '.v//

2P
u2V �G.u/dT .'.u/; bar.'��G//2

: (3.1)

Theorem 3.3. Given positive integers k; d0 and positive real number �0, there exists
g0 D g0.�0/ such that if G D .V;E/ is a finite connected graph and Y is a family
of CAT.0/ spaces satisfying

(i) 2 � deg.u/ � d0 for all u 2 V ,

(ii) girth.G/ � g0,

(iii) �1.G; TCpY / � �0 for all Y 2 Y and all p 2 Y ,

then with probability at least 1 � a1e
�a2jV j, where a1 D a1.k; �0/ and a2 D

a2.k; d0; �0/, �˛ has property FY.
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The geometric part of the proof of the theorem is based on Corollary 2.10. We
use it with the following setting: the group � is the free group Fk generated by
S D fs1̇ ; : : : ; s˙

k
g, and the random walk � is the standard one, that is, it is given by

�.	; 	 0/ D
´

1
2k

if 	 0 D 	s for some s 2 S ,

0 otherwise.

The probabilistic part of the proof of Theorem 3.3 is based on the following
proposition. A similar proposition was formulated and proved by Silberman [21]
when the target space is a Hilbert space, in the course of detailing Gromov’s argument
in [8], 3.12. Our proof is simpler than Silberman’s, and we will present it in the
Appendix. (Our proof, however, is less elementary than Silberman’s, as we replace
his explicit calculation of binomial coefficients by use of the central limit theorem.)

Proposition 3.4 (cf. [21], Proposition 2.14). Suppose that G D .V;E/ is a finite
connected graph and n is a positive integer satisfying

(i) 2 � deg.u/ � d for all u 2 V ,

(ii) 2 � n � girth.G/=2.

Then with probability at least 1 � a1e
�a2jV j, a1 D a1.k; n/, a2 D a2.k; d; n/, the

following assertion holds: for any CAT.0/ space Y , any homomorphism �.˛/ W �˛ !
Isom.Y / and any �.˛/-equivariant map f .˛/ W �˛ ! Y , there exists an l (depending
on f .˛/),

p
n < l � n, such that

E�l ;�.f / � C

�1.G; Y /
E�;�.f /;

where � D �.˛/ B pr, f D f .˛/ B pr with pr denoting the projection from � onto �˛ ,
and C is an absolute constant.

Proof of Theorem 3.3. For any CAT.0/ space Y , it is easy to verify that �1.G; Y / �
infp2Y �1.G; TCpY / (see [22]). Therefore, for any Y 2 Y, we have �1.G; Y / � �0.

Now let n be the minimum positive integer satisfying C=�0 <
p
n, and set

g0 D 2n. Then the assertion of Proposition 3.4 holds with the high probability as
stated there. Therefore, if Y 2 Y, we obtain

E�l ;�.f / � C
	0
E�;�.f / � .l � "/E�;�.f /;

where " D p
n � C=�0. By Corollary 2.10, �.�/ D �.˛/.�˛/ fixes a point in Y .

Combining Theorem 3.1 and Theorem 3.3, we obtain

Theorem 3.5. Let fGl D .Vl ; El/gl2L be a sequence of finite connected graphs with
L an unbounded set of positive integers, and let Y be a family of CAT.0/ spaces.
Suppose that they satisfy the following conditions for somepositive integerd0, positive
real number �0 and a choice of ˇ > 1 sufficiently close to 1:
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(i) 2 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,

(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) �1.Gl ; TCpY / � �0 for all l 2 L, all Y 2 Y and all p 2 Y ,

(iv) the number of embedded paths inGl of length less than l
2

is less than const �ˇl=2.

Then a random group of the graph model associated with fGlgl2L is infinite hyper-
bolic and has property FY.

To formulate a class of CAT.0/ spaces so that the condition (iii) of Theorem 3.5
is satisfied, we recall the definition of the invariant of a CAT.0/ space introduced in
[11].

Definition 3.6. Let T be a CAT.0/ space. Let � D Pm
iD1 ti Diracvi

be a probability
measure with finite support on T and N� 2 T the barycenter of �. Consider all maps
 W supp� ! Rm satisfying

k.vi /k D dT . N�; vi /; k.vi / � .vj /k � dT .vi ; vj /;

and set

ı.�/ D inf



	




Z

T

.v/ d�.v/





2. Z
T

k.v/k2 d�.v/

�
2 Œ0; 1�:

We then define
ı.T / D sup

�
ı.�/ 2 Œ0; 1�:

Here, if we restrict the choices of � to those with barycenter at a given v 2 T , we
denote the corresponding number by ı.T; v/.

Theorem 3.7. Let 0 � ı0 < 1, and let Y�ı0
denote the class of CAT.0/ spaces Y

satisfying ı.TCpY / � ı0 for all p 2 Y . Let fGl D .Vl ; El/gl2L be a sequence
of finite connected graphs with L an unbounded set of positive integers, satisfying
the following conditions for some positive integer d0, positive real number �0 and a
choice of ˇ > 1 sufficiently close to 1:

(i) 3 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,

(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) �1.Gl ;R/ � �0 for all l 2 L,

(iv) the number of embedded paths inGl of length less than l
2

is less than const �ˇl=2.

Then a random group of the graph model associated with fGlgl2L is infinite hyper-
bolic and has property FY�ı0

.

Proof. If Y 2 Y�ı0
, then by [11], Proposition 5.3,

�1.Gl ; TCpY / � .1 � ı.TCpY //�1.Gl ;R/ � .1 � ı0/�1.Gl ;R/

for all p 2 Y .
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We now consider the sequence of graphs fG.j /

l 0=j
gl 02jL as in the previous subsection,

where j is chosen large enough so that the condition (iv0) is satisfied for a choice
of ˇ > 1 sufficiently close to 1. The graph G.j /

l 0=j
satisfies the condition (iii0) :

�1.G
.j /

l 0=j
;R/ � c.�0; j / > 0.

Corollary 3.8. Let 0 � ı0 < 1, and let Y�ı0
denote the class of CAT.0/ spaces Y

satisfying ı.TCpY / � ı0 for all p 2 Y . Let fGl D .Vl ; El/gl2L be a sequence of
finite connected graphs with L an unbounded set of positive integers, satisfying the
following conditions for some positive integer d0 and positive real number �0:

(i) 3 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,

(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) �1.Gl ;R/ � �0 for all l 2 L.

For each l 2 L, let G.j /

l
be the j -subdivision of Gl , and set l 0 D jl . Here, j is

chosen large enough so that fG.j /

l 0=j
gl 02jL satisfies

(iv0) the number of embedded paths in G.j /

l 0=j
of length less than l 0

2
is less than

const � ˇl 0=2

for a choice of ˇ > 1 sufficiently close to 1. Then a random group of the graph model
associated with fG.j /

l 0=j
gl 02jL is infinite hyperbolic and has property FY�ı0

.

Proof. One has only to verify that �1.G
.j /

l 0=j
; TCpY / is bounded from below by a

positive constant, independent of l 0, Y and p. As was already noted, we have
�1.G

.j /

l 0=j
;R/ � c.�0; j / for all l 0 2 jL. Therefore, as in the preceding proof,

�1.G
.j /

l 0=j
; TCpY / � .1 � ı0/c.�0; j /;

providing the desired estimate.

Remark 5. With the notations and assumptions as in Theorem 3.5, it is plausible that
�1.G

.j /

l
; TCpY / � c.�0; j / > 0 holds for all l 2 L, all y 2 Y and all p 2 Y . If this

was the case, we would obtain a version of Theorem 3.5 for the sequence of graphs
fG.j /

l 0=j
gl 02jL.

4. Distortion and the invariant ı

In view of the assumption for CAT.0/ spaces in Corollary 3.8, it is important to
estimate the invariant ı of the tangent cones of a CAT.0/ space. In this section, we
first give an upper bound of ı.T; 0T /, where T is a CAT.0/ metric cone with cone
point 0T , in terms of the radial distortion (defined below) of T . We then estimate the
radial distortion of the tangent cones of some Euclidean buildings.
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We begin with some definitions.

Definition 4.1. (1) For a metric space S , let T D C.S/ D .S � R�0/=.S � f0g/.
Define a distance dT on T by dT .v; v

0/ D t2 C t 02 � 2t t 0 cos minfdS .u; u
0/; �g,

where v D .u; t/; v0 D .u0; t 0/ 2 T . The metric space .T; dT / is called the metric
cone over S .

(2) LetDrad.T / denote the infimum numberD satisfying the following condition:
there exists a map  W T ! H , where H is a Hilbert space, such that

.v/ D t � .u/ with k.u/k D 1 (4.1)

and
1

D
� dT .v; v

0/ � k.v/ � .v0/k � dT .v; v
0/ (4.2)

for all v D .u; t/; v0 D .u0; t 0/ 2 T . If no such map exists, then we defineDrad.T / D
1. The number Drad.T / is called the radial distortion of T . Note that Drad.T / is
not less than the usual distortion (cf. [17]) of T .

Lemma 4.2. Let T be a CAT.0/ space, and � a finite-support probability measure
on T . Let  W T ! H be a 1-Lipschitz map, where H is a Hilbert space. Then we
have Z

T

k.v/ � ��k2 d�.v/ � 1

D./2

Z
T

dT .v; N�/2 d�.v/;
whereD./ is the distortion of , that is, the minimum numberD such that (4.2) holds
for all v; v0 2 T .

Proof. By using (2.3) and the fact that the inequality becomes an equality for a Hilbert
space, we obtainZ

T

k.v/ � ��k2 d�.v/ D 1

2

Z
T

k.v/ � .w/k2 d�.v/d�.w/

� 1

D./2
� 1
2

Z
T

dT .v; w/
2 d�.v/d�.w/

� 1

D./2

Z
T

dT .v; N�/2 d�.v/:

Proposition 4.3. Let T be a CAT.0/ metric cone with cone point 0T . Then we have

ı.T; 0T / � 1 � 1

Drad.T /
2
:

Proof. Let  W T ! H be a map with the properties (4.1) and (4.2). Let � be a
finite-support probability measure on T such that N� D 0T . Then

ı.�/ � k R
T
.v/ d�.v/k2R

T
k.v/k2 d�.v/

D k��k2R
T

k.v/k2 d�.v/
:
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On the other hand,Z
T

k.v/ � ��k2 d�.v/ D
Z

T

k.v/k2 d�.v/ � k��k2:

Therefore,

ı.�/ � 1 �
R

T
k.v/ � ��k2 d�.v/R

T
k.v/k2 d�.v/

� 1 � 1

D./2

by Lemma 4.2, and the proposition follows.

Remark 6. It should be useful in future study to have an estimate of the Wang
invariant �1.G; T / from below. Indeed, we can show that

�1.G; T / � 1

D.T /2
�1.G;R/; (4.3)

whereD.T / denotes the (usual) distortion of T , holds for a finite connected graphG
and any CAT.0/ space T which is not necessarily a cone. By the variance inequality
(2.3), the denominator of (3.1) is estimated as

X
u2V

�G.u/dT .'.u/; bar.'��G//
2 � 1

2

X
u;v2V

�G.u/�G.v/dT .'.u/; '.v//
2;

and therefore,

RQ.'/ �
1
2

P
u2V �G.u/

P
v2V �G.u; v/dT .'.u/; '.v//

2

1
2

P
u;v2V �G.u/�G.v/dT .'.u/; '.v//2

: (4.4)

Now suppose that  W T ! H is a map satisfying (4.2), where H is a Hilbert space.
Then clearly,

the right-hand side of (4.4)

� 1

D2

1
2

P
u2V �G.u/

P
v2V �G.u; v/k. ı '/.u/ � . ı '/.v/k2

1
2

P
u;v2V �G.u/�G.v/k. ı '/.u/ � . ı '/.v/k2

D 1

D2

1
2

P
u2V �G.u/

P
v2V �G.u; v/k. ı '/.u/ � . ı '/.v/k2P

u2V �G.u/k. ı '/.u/ � bar.. ı '/��G/k2

� 1

D2
�1.G;H / D 1

D2
�1.G;R/;

and we conclude (4.3). Note that we have used the fact that the variance inequality
(2.3) becomes an equality for a Hilbert space.

As mentioned in the Introduction, the fixed-point property for Euclidean buildings
(of certain types) is of particular interest. In the remainder of this section, we will
estimate the radial distortion of the tangent cones of some Euclidean buildings.
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A building is a simplicial complex which is the union of a family of subcomplexes,
called apartments, satisfying a certain set of axioms (see [3]). One of the axioms
requires that the apartments are isomorphic to a Coxeter complex of the same type.
Here a Coxeter complex is a certain simplicial complex canonically associated with a
Coxeter group; e.g., the Coxeter complex of the symmetric group SnC1 is isomorphic
to a triangulated .n � 1/-sphere. A building is called Euclidean if its apartments are
isomorphic to a Euclidean Coxeter complex; e.g., the Coxeter complex of type zAn,
which is associated with the group SnC1 Ë .ZnC1=Z.1; : : : ; 1// and is isomorphic
to a triangulated Euclidean n-space. A Euclidean building can be equipped with a
distance by transplanting the Euclidean distance onto each apartment, and the building
becomes a CAT.0/ space with this distance (see [3], Chapter 6).

Henceforth, we restrict our attention to the Euclidean building associated with
the simple algebraic group PGL.nC 1;Qr/, where r is a prime and Qr is the r-adic
number field. Let Yn;r denote this building; it is n-dimensional, and its apartments
are simplicially isometric to the Euclidean Coxeter complex of type zAn.

If n D 1, Y1;r is a regular tree of degree r C 1 with all edges having equal length.
If p is an interior point of an edge, then the tangent cone at p is isometric to a line,
whose radial distortion and ı take trivial values. Suppose that p is a vertex. Then
the tangent cone at p is isometric to the (r C 1)-pod PrC1, which is the union of
rC1 half-lines with all endpoints identified. The radial distortion ofPrC1 is realized
by arranging it in Rr so that the half-lines pass through the vertices of a regular r-
simplex, and thus Drad.PrC1/ D p

2r=.r C 1/. On the other hand, ı.PrC1/ D 0 as
verified in [11], p. 172, Example 3.

If n D 2, Y2;r is two-dimensional, and its apartments are simplicially isometric
to the Euclidean plane with equilateral triangulation. Simplicially, the links of its
vertices are all isomorphic to the same generalized triangle of degree r C 1, which
is a regular bipartite graph of degree r C 1 with 2.r2 C r C 1/ vertices and will be
denoted by Gr . Metrically, this means that the tangent cone at p 2 Y2;r is isometric
to a Euclidean plane if p is an interior point of a maximal simplex, to the product of
(r C 1)-pod PrC1 with a line if p is an interior point of an edge, and to the metric
cone C.Gr/ over the graph Gr equipped with a distance by assigning length �=3 to
each edge if p is a vertex. In the first case the values of the invariants in question
are trivial, while in the second case they are identical to those of PrC1. Therefore, it
remains to examine the third case that p is a vertex of Y2;r , in which case it is known
[11] that

ı.C.Gr// � .
p
r � 1/2

2.r � p
r C 1/

:

In fact, let �0 be the probability measure on C.Gr/ given by �0 D PN
iD1

1
N

Diracei
,

where N D 2.r2 C r C 1/ and ei , i D 1; : : : ; N , are the vertices of Gr . Then the
barycenter of �0 coincides with the cone point of C.Gr/, and we showed that

ı.�0/ D .
p
r � 1/2

2.r � p
r C 1/

:
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In order to verify the ‘�’-part of this equality, we [11], §7, introduced a certain family
of 1-Lipschitz embeddings of the cone C.Gr/ into Euclidean spaces. We now recall
these embeddings and then use them to estimate the radial distortion of C.Gr/.

Let V D LN
iD1 Rei be the real vector space having the vertices ei as formal basis

vectors. Note that there is a natural inclusion C.Gr/ ,! V . We consider all positive
semidefinite inner products h � ; � i on V whose value hei ; ej i on each pair of vertices
ei , ej depends only on the combinatorial distance dGr

.ei ; ej / between these vertices.
We also require that the inner products of adjacent vertices are the same as those in
C.Gr/. Thus we consider symmetric bilinear forms h � ; � ia;b on V defined by

hei ; ej ia;b D

8̂̂
<̂
ˆ̂̂:
1 if dGr

.ei ; ej / D 0;

1=2 if dGr
.ei ; ej / D 1;

a if dGr
.ei ; ej / D 2;

b if dGr
.ei ; ej / D 3;

and restrict the parameters a; b to the range where h � ; � ia;b is positive semidefinite.
For a, b in this range, consider the sum of the eigenspaces belonging to the positive
eigenvalues of the Gram matrixGa;b D .hei ; ej ia;b/, and letWa;b be the correspond-
ing subspace of V . Restricted onWa;b the inner product h � ; � ia;b is positive definite,
and the natural projection V ! Wa;b preserves the inner products. The composition
of the maps C.Gr/ ,! V ! Wa;b gives a map from C.Gr/ into the Euclidean space
Wa;b . We denote this map by a;b; it is radial and 1-Lipschitz; it is also isometric
when restricted to the cone over each edge of Gr .

It is easy to see that the distortion of a;b is computed as

D.a;b/ D max

´r
2 � 2 cos.2�=3/

2 � 2a ;

r
2 � 2 cos�

2 � 2b

μ

D max

´r
3

2 � 2a ;
r

2

1 � b

μ
:

(4.5)

On the other hand, Ga;b can be readily related to the adjacency matrix of Gr , whose
eigenvalues were computed by Feit and Higman [4]. It follows that the eigenvalues
of Ga;b are given by

.r2 C r C 1/.a˙ b/C .1 � a/˙ .1=2 � b/.r C 1/

with multiplicities 1 and
.1 � a/˙ .1=2 � b/pr

with multiplicities r2Cr . Under the constraint that these are nonnegative, the quantity
(4.5) takes its minimum with

a D r � 1 � p
r

2r
; b D r2 � r � .r C 1/

p
r

2r2
:
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(Incidentally, these values coincide with those giving the optimal upper bound of
ı.�0/.) The minimum value 2r=

p
.r C 1/.r C p

r/ gives an upper bound of
Drad.C.Gr//. Note, in particular, that Drad.C.Gr// < 2 for all primes r . With
the above values of a, b, Ga;b has positive eigenvalues r2 C 1 � .r C 1/

p
r ,

.r C 1C p
r/=r with multiplicities 1, r2 C r respectively and zero eigenvalue with

multiplicity r2 C r C 1. Therefore, Wa;b has dimension r2 C r C 1. Observe that
as r tends to infinity, the above values of a, b both approach 1=2. This means that
when r is large, the images of the vertices of Gr inWa;b are nearly at equidistance to
one another.

We now treat the case of general n. Analogously to the n D 2 case, if p 2 Yn;r

is not a vertex, then the tangent cone of Yn;r at p is isometric to a metric cone of the
form

Qm
iD1 Tki ;r � Rl , where Tki ;r is the tangent cone of Yki ;r at a vertex, l > 0

and
Pm

iD1 ki C l D n. Since Drad.
Qm

iD1 Tki ;r � Rl/ D max1�i�mDrad.Tki ;r/, we
assume henceforth that p is a vertex of Yn;r . Then the tangent cone at p is isometric
to the metric cone C.�n;r/ over the spherical building �n;r associated with the finite
group PGL.n C 1;Fr/, and the apartments of �n;r are simplicially isometric to the
tessellated unit .n�1/-sphere associated with the symmetric group SnC1. A chamber
of �n;r has n vertices e1; : : : ; en, and the distances between them measured by the
metric of C.�n;r/ are given by

dC.�n;r /.ei ; ej / D
q
2 � 2

p
Œi.nC 1 � j /�=Œj.nC 1 � i/�

when the vertices are appropriately ordered. The minimum of these distances is

dmin D
´q

2 � 2p.n � 1/=.nC 3/ if n is odd;p
2 � 2n=.nC 2/ D 2=

p
nC 2 if n is even:

Motivated by the observation we made at the end of the preceding paragraph, we
construct an embedding of C.�n;r/ into a Euclidean space as follows. Denote the
number of vertices of �n;r byN . First take a regular simplex � withN vertices in RN

whose vertices are located in the unit sphere with center at the origin and at the distance
dmin to one another. Next map one by one the vertices of �n;r to those of � , and then
extend it naturally to a radial embedding of C.�n;r/. Clearly, this embedding, which
we call , is 1-Lipschitz and has the same distortion as that of its restriction to �n;r .
To estimate the distortion, we have to bound the ratio dC.�n;r /.v; v

0/=k.v/ � .v0/k
from above over all pairs of distinct points v, v0 in �n;r . It is easy to see that if we
vary v, v0, the above ratio is maximized when they are at vertices of �n;r . Since
�n;r is a building, we may also assume that v; v0 are in the same apartment of �n;r .
Therefore, the problem is reduced to bounding dC.�n;r /.v; v

0/=k.v/ � .v0/k from
above over all pairs of distinct vertices v, v0 in a fixed apartment of �n;r . Now this
ratio is clearly bounded from above by 2=dmin, which therefore gives an upper bound
of the distortion of . Note that the constant 2=dmin is monotone increasing with n,
and diverges to infinity as n ! 1.
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We record the consequence of the preceding discussion as

Proposition 4.4. The radial distortion and the invariant ı of all tangent cones of the
Euclidean building Yn;r are bounded from above by´

2=

q
2 � 2p.n � 1/=.nC 3/ if n is odd;p

nC 2 if n is even;

and ´
.2C 2

p
.n � 1/=.nC 3//=4 if n is odd;

.nC 1/=.nC 2/ if n is even;

respectively.

Proof. Let T be a tangent cone of Yn;r . Then Drad.T / is bounded as stated, and so
is ı.T; 0T /. For v ¤ 0T , the tangent cone TCvT is isometric to the product of lower
dimensional cones and possibly a Euclidean space. Since ı.T; v/ � ı.TCvT; 0v/

(see [11], Lemma 6.2) and the invariant ı behaves in the same way as the radial
distortion for the product, we conclude that ı.T; v/ and hence ı.T / is also bounded
as stated.

Remark 7. As noted above, the upper bound in the proposition diverges to infinity
as n ! 1. The embedding  does not preserve the shape of chambers of �n;r , and
one might expect that by constructing an embedding so that it preserves the shape
of chambers of �n;r , one would get a better upper bound. However, numerical test
done for n D 3 indicates that the upper bound so obtained should diverge to infinity
as r ! 1 even though n is kept bounded.

Combining the proposition above with Corollary 3.8, we obtain

Theorem 4.5. For a fixed positive integer N , let B�N denote the family of all the
Euclidean buildings Yn;r with n � N and r arbitrary prime. Let fGl D .Vl ; El/gl2L

be a sequence of finite connected graphs, withL an unbounded set of positive integers,
satisfying the following conditions for some positive integer d0 and positive real
number �0:

(i) 3 � deg.u/ � d0 for all l 2 L and all u 2 Vl ,

(ii) girth.Gl/ � l and diam.Gl/ � const � l for all l 2 L,

(iii) �1.Gl ;R/ � �0 for all l 2 L.

For each l 2 L, let G.j /

l
be the j -subdivision of Gl , and set l 0 D jl . Here, j is

chosen large enough so that fG.j /

l 0=j
gl 02jL satisfies

(iv0) the number of embedded paths in G.j /

l 0=j
of length less than l 0

2
is less than

const � ˇl 0=2
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for a choice of ˇ > 1 sufficiently close to 1. Then a random group of the graph model
associated with fG.j /

l 0=j
gl 02jL is infinite hyperbolic and has property FB�N .

5. Appendix

In thisAppendix, we will prove Proposition 3.4. LetG D .V;E/ be a finite connected
graph, and Y a CAT.0/ space. For a map ' W V ! Y and a positive integer n, the
n-step energy of ' is defined by

E�n
G
.'/ D 1

2

X
u2V

�G.u/
X

v2V

�n
G.u; v/dY .'.u/; '.v//

2;

where �G is the standard random walk on G and �G is the standard probability
measure on V (cf. §3.1). We have the following

Lemma 5.1. For any map ' W V ! Y and any positive integer n, we have

E�n
G
.'/ � 2

�1.G; Y /
E�G

.'/:

Proof. Let x' D bar.'��G/. Using the triangle inequality and the symmetry of �n
G

with respect to �G , we obtain

E�n
G
.'/ � 1

2

X
u2V

�G.u/
X

v2V

�n
G.u; v/.dY .'.u/; x'/C dY .'.v/; x'//2

� 1
2

X
u2V

�G.u/
X

v2V

�n
G.u; v/.2dY .'.u/; x'/2 C 2dY .'.v/; x'/2/

D 2
X

u2V

�G.u/
X

v2V

�n
G.u; v/dY .'.u/; x'/2

D 2
X

u2V

�G.u/dY .'.u/; x'/2:

(5.1)

On the other hand, by the definition of �1.G; Y /, we have

X
u2V

�G.u/dY .'.u/; x'/2 � 1

�1.G; Y /
E�G

.'/: (5.2)

Combining (5.1) and (5.2), we obtain the desired inequality.

Let � D Fk be the free group generated by S D fs1̇ ; : : : ; s˙
k

g, and let � act on

itself from the left. Let ˛ W ÅE ! S be an S -labelling of G. Recall that associated
with ˛ is the group �˛ D �=R˛ , where R˛ D f˛.Ec/ j Ec is a cycle in Gg and R˛ is
its normal closure. As in [21], we will exclusively work on � rather than on �˛ .
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For each positive integer n, define the ‘push-forward’ of �n
G with respect to ˛ by

N�n
�;˛.	; 	

0/ D X
u2V

�G.u/
X

j EpjDn;p0Du

�˛. Ep/D�0

�n
G. Ep/ D X

j EpjDn

�˛. Ep/D�0

�G.p0/�
n
G. Ep/;

where p0 is the initial vertex of Ep. Note that N�n
�;˛ is a �-invariant random walk on � .

For a homomorphism �.˛/ W �˛ ! Isom.Y / and a �.˛/-equivariant map f .˛/ W �˛ !
Y , set � D �.˛/ B pr and f D f .˛/ B pr, where pr is the natural projection from �

onto �˛ . Then f is a �-equivariant map, for which we can transplant the estimate of
Lemma 5.1 to obtain

E N�n
�;˛
.f / � 2

�1.G; Y /
E N��;˛

.f / (5.3)

for all positive integers n (cf. [21], p. 155–156).
For n; 	; 	 0 fixed, regard N�n

�;˛.	; 	
0/ as a random variable of ˛, and denote its

expectation by N�n
�;G.	; 	

0/. We have the following lemma, which compares N�n
�;G

with the standard random walk �� on � , given by

��.	; 	
0/ D

´
1

2k
if 	 0 D 	s for some s 2 S ,

0 otherwise.

Lemma 5.2 (cf. [21], Lemma 2.12). Suppose that deg.u/ � 2 for all u 2 V , and
choose a positive integer n so that n < girth.G/=2. Then there exist weightsP n

G.l/ �
0 with

Pn
lD0 P

n
G.l/ D 1, independent of 	 , 	 0, such that

N�n
�;G.	; 	

0/ D
nX

lD0

P n
G.l/�

l
�.	; 	

0/:

Moreover, there exists an absolute constant C < 1 such that

Qn
G ´ X

l�p
n

P n
G.l/ � C

unless n D 1.

Proof. Note that any ball of radius n in G is a tree; this is the most fundamental
fact for the whole proof. The former part of the lemma can be proved by following
Silberman’s argument almost verbatim, and the weights P n

G.l/ are given by

P n
G.l/ D X

u2V

�G.u/P
n
G;u.l/;

whereP n
G;u.l/ is the probability that an n-step random walk starting from u reaches a

vertex at distance l from u. Here we prove the latter part of the lemma by an argument
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simpler than that proposed by Silberman. To do this, consider the standard Bernoulli
walk on Z, and let bn.r/ denote the probability that an n-step walk starting from zero
reaches an integer less than or equal to r in absolute value. Since deg.u/ � 2 for all
u 2 V , the random walk on G travels further than the Bernoulli walk on Z. More
precisely, we have X

l�p
n

P n
G;u.l/ � bn.

p
n/:

We now recall that the n-step Bernoulli walk has variance n. Then by the central limit
theorem, we obtain

bn.
p
n/ !

n!1

Z 1

�1

1p
2�
e�x2=2dx < 1:

Therefore, there exists C < 1 such that
X

l�p
n

P n
G;u.l/ � C

for all n (other than 1). Averaging over u, we conclude the latter assertion of the
lemma.

The following lemma also can be proved by going on the same lines as Silberman’s
proof of [21], Lemma 2.13, which applies a general result on the concentration of
measure to the random variable N�n

�;˛.	; 	
0/ defined on the set all S -labellings ˛.

Lemma 5.3 (cf. [21], Lemma 2.13). In addition to the assumptions of Lemma 5.2,
suppose that deg.u/ � d for all u 2 V . Then with probability at least 1�a1e

�a2jV j,
where a1 D a1.k; n/, a2 D a2.k; d; n/, we have

N�n
�;˛.	; 	

0/ � 1

2
N�n

�;G.	; 	
0/ and N��;˛.	; 	

0/ � ��.	; 	
0/

for all 	; 	 0 2 � .

With the ingredients above, the proof of Proposition 3.4 proceeds as in [21], proof
of Proposition 2.14. We include it for the sake of completeness.

Proof of Proposition 3.4. If follows from Lemma 5.3 that

E N�n
�;˛
.f / � 1

2
E N�n

�;G
.f /; E N��;˛

.f / � E��
.f /

hold with the probability as in the statement of the proposition. By combining this
with (5.3), we obtain

E N�n
�;G
.f / � 4

�1.G; Y /
E��

.f /
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with the same probability. By Lemma 5.2, we can estimate E N�n
�;G
.f / from below:

E N�n
�;G
.f / D

nX
lD0

P n
G.l/E�l

�
.f /

� X
p

n<l�n

P n
G.l/E�l

�
.f /

�
� X

p
n<l�n

P n
G.l/

�
E

�
l0
�

.f /:

Here E
�

l0
�

.f / D minfE�l
�
.f / j p

n < l � ng. We also have
Pp

n<l�n P
n
G.l/ D

1 �Qn
G � 1 � C . Therefore, we conclude that

E
�

l0
�

.f / � 1

1 � C
4

�1.G; Y /
E��

.f /

holds with high probability.

Added in proof. During the submission of the present paper, we learned that Naor
and Silberman [19] proved that the graph-model random group has the fixed-point
property for a family of p-uniformly convex geodesic metric spaces with a certain
Poincaré-type constant uniformly bounded. For a family of CAT.0/ spaces (which
are 2-uniformly convex), this condition is equivalent to the uniformly-boundedness
of the Wang invariant (the condition (iii) in Theorem 3.5). However, our Theorem 4.5,
the fixed-point theorem for a family of Euclidean buildings with dimensions bounded
from above, does not follow from their result.

Let Y<1 denote the class of CAT.0/ spaces Y satisfying supp2Y ı.TCpY / < 1,
which contains all of the Euclidean buildings Yn;r (cf. §4 for the notation). By
using our Corollary 3.8, it is shown that the group of Theorem 7.7 of [1], called the
Gromov monster, has the fixed-point property for Y<1. It should be mentioned that
the Gromov monster has the fixed-point property for a larger class of metric spaces,
as shown by combining Theorem 1.2 of [19] with Theorem 7.7 of [1]. It is also
worthwhile to mention that Kondo [14] has found examples of CAT.0/ space Y for
which supp2Y ı.TCpY / D 1.
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