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(Self-)similar groups and the Farrell–Jones conjectures

Laurent Bartholdi�

Abstract. We show that contracting self-similar groups satisfy the Farrell–Jones conjectures
as soon as their universal contracting cover is non-positively curved. This applies in particular
to bounded self-similar groups.

We define, along the way, a general notion of contraction for groups acting on a rooted tree
in a not necessarily self-similar manner.

Mathematics Subject Classification (2010). 20E08, 19D10, 20F65.

Keywords. Self-similar bounded group, K-theory.

1. Introduction

Few properties are known to hold for all groups; in the recent years, counterexamples
have been found to numerous “plausible conjectures”, usually formulated as ques-
tions: is there an infinite, finitely generated group all of whose elements have finite
order? is there an amenable group that cannot be produced using extensions and
filtered colimits of virtually abelian groups? is there a group whose word growth is
strictly between polynomial and exponential?

The “Farrell–Jones conjectures”, predicting how the algebraic K-/L-theory of the
group ring RG may be expressed in terms of the algebraic K-/L-theory of R and
the group theory of G, is one of the prominent remaining conjectures [7]. If it is
satisfied by the group G, numerous group-theoretical consequences for G follow, in
particular RG has no non-trivial idempotents if G is torsion-free and R is a domain
of characteristic 0. The Farrell–Jones conjectures are inherited under many group-
theoretical operations (finite direct and free products, filtered colimits), but possibly
not under wreath products; we say the Farrell–Jones conjectures hold with wreathing
if they hold for all wreath products G o P with a finite permutation group P .

In search of a possible counterexample to the Farrell–Jones conjectures, it might
have been speculated that the “self-similar groups” studied by Alëshin, Grigorchuk,
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Gupta and Sidki since the 1970s would play an important role; indeed, these groups
have served to answer or illuminate all the questions in the first paragraph.

Self-similar groups are groups acting in a recursive manner on a regular rooted
tree Td . If the recursion of every element involves only a linearly growing subtree of
Td , the group is said to be bounded.

We show in this note that, if it is at all possible, considerable care will be required
to construct a counterexample within the class of self-similar groups. We prove (see
below for precise definitions):

Theorem A. Let G be a bounded self-similar group. Then G satisfies the Farrell–
Jones conjectures.

TheoremB. LetG be a contracting similar group. ThenG satisfies the Farrell–Jones
conjectures if its universal contracting cover satisfies the Farrell–Jones conjectures
with wreathing.

Corollary C. The Alëshin, Grigorchuk, Gupta–Sidki, GGS, and generalized Grig-
orchuk groups all satisfy the Farrell–Jones conjectures.

Acknowledgments. Wolfgang Lück encouraged me to write this short note, with the
intent of narrowing the domains of group theory in which a counterexample is to be
searched.

Thomas Schick and Wolfgang Lück generously provided valuable feedback on a
preliminary version, and clarified for me the status of the Farrell–Jones conjectures
with respect to wreath products.

2. The Farrell–Jones conjectures

We review very briefly the statement of the Farrell–Jones conjectures; we include
them for definiteness but will never work directly with their definition.

A model for the virtually cyclic classifying spaceEvc.G/ is a topologicalG-space
X whose isotropy groups are all virtually cyclic, and such that for any topological
G-space Y with virtually cyclic isotropy groups there exists up to G-homotopy a
unique G-map Y ! X .

The Farrell–Jones conjectures assert that the natural map

HG
n .E

vc.G/;S/ ! HG
n .f :g;S/;

induced by Evc.G/ ! f:g, is an isomorphism for all n. Here S is either the K-theory
spectrum KA or the L-theory spectrum Lh�1i

A
over the orbit category associated with

an additive G-category A.
For our purposes, it suffices to note that the class of groups for which the con-

jectures are known to hold contains virtually abelian groups, hyperbolic groups [6]
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for n � 1, CAT.0/ groups [6], [28], cocompact lattices in virtually connected Lie
groups, threefold groups [4] and arithmetic groups over algebraic number fields (un-
published). It is closed under taking subgroups, colimits (Corollary 0.8 of [5]), and
finite direct and free products. (This is the advantage of using the more general ver-
sion with coëfficients in an additive category – the inheritance properties come almost
for free.)

Note that, in general, it is not known whether the conjectures are inherited under
finite extensions. Since every finite extension is a subgroup of the wreath product
with a finite group [23], the question reduces to whether the conjecture is inherited
by finite wreath products. This is known in some specific cases, in particular for
cocompact lattices in virtually connected Lie groups, threefold groups, arithmetic
groups over algebraic number fields, and CAT.0/ groups, as we now explain.

CAT.0/ spaces are metric spaces in which triangles are at least as thin as in
euclidean space; see the classical reference [13]. CAT.0/ groups, also called non-
positively curved groups, are groups acting properly, isometrically and cocompactly
on a CAT.0/ space of finite topological dimension. That class contains virtually
abelian groups, and is closed under direct, free and finite wreath products.

Lemma 1. If G is CAT.0/, then so is G o P for any finite permutation group P .

Proof. Let G act properly discontinuously on the CAT.0/ space X , and let P be a
permutation group on n points. ThenG oP D Gn ÌP acts properly discontinuously
onXn, withGn acting coördinatewise andP by permutation of the coördinates.

3. (Self-)similar groups

We summarize the notion of self-similar group, presenting it in a slightly more general
and algebraic manner than is usual; see [25] or [8] for classical references. By G o d
we denote the permutational wreath productGd ÌSd with the symmetric group on d
letters.

A self-similar group is a groupG endowed with a homomorphism � W G ! G od ,
called its self-similarity structure. The integer d is the degree of the self-similarity
structure. Usually, the self-similarity is implicit, and one simply denotes by G the
self-similar group.

The map � can be applied diagonally to all entries in Gd , yielding a map Gd !
.G o d/d , and therefore a map G o d ! .G o d/ o d � G o .d2/; more generally, we
get maps G o dn ! G o dnC1 which we all denote by �. We may compose these
maps, and write �n for the iterate �n W G ! G o dn.

By projecting to the permutation part, we have homomorphisms G ! Sdn and,
assembling them together, a permutational action of G on Td ´ F

n�0f1; : : : ; dgn;
one may identify Td with the vertex set of a rooted d -regular tree, by connecting
v1 : : : vn to v1 : : : vnvnC1 for all vi 2 f1; : : : ; dg, in such a way that G acts by
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graph isometries. This action need not be faithful; if it is, then G is called a faithful
self-similar group.

A self-similar group is contracting if there exists a finite subsetN � G such that,
for all g 2 G and all n large enough, �n.g/ 2 N dn � Sdn . The smallest such N is
called the nucleus of G.

Let zF denote the free group onN . By definition, the nucleus satisfies the condition
�.N / � N d � Sd . The restriction of � to N can therefore uniquely be extended to
a homomorphism Q� W zF ! zF o d . Set

R D fw 2 N [N 2 [N 3 � zF j w DG 1g:

Similarly, we have Q�.R/ � Rd � 1. Set F D zF=R. The homomorphism Q� then
induces a homomorphism again written � W F ! F o d .

Note thatF is a finitely presented group, and that the natural mapN � zF ! N �
G defines a homomorphism F ! G. We will see in Lemma 2 that F is contracting,
with nucleusN . However, the self-similarity structure ofF need not be faithful, even
if that of G was faithful. We call F the universal contracting cover of G. Note also
that in general the homomorphism F ! G need not be onto, or equivalentlyN need
not generate G. This is, however, the case in all examples we present here.

Here are some extreme examples; more classical ones appear in §4. The full group
W of isometries of Td is self-similar, but not contracting; actually not even countable.
Its subgroup fg 2 W j  n.g/ 2 f1gdn �Sdn for some ng is faithful, self-similar, and
contracting with nucleus f1g. Any group G, with � W G ! Gd the diagonal embed-
ding, defines a non-faithful self-similar structure onG, which is contracting precisely
when G is finite. Consider finally A a finite group, and G the group of finitely-
supported functions Z ! A. Take d D 2, and set  .f / D hhf0; f1ii with f0.n/ D
f .2n/ and f1.n/ D f .2n � 1/. This defines a self-similarity structure on G, which
is not faithful, and contracting with nucleus N D ffunctions supported on f0; 1gg.
Our main result does not give any interesting information on such actions.

3.1. Similar groups. We now extend the definitions above to more general groups.
A group G is similar if there exists a sequence G D G0; G1; : : : of groups, a
sequence of integers d1; d2; : : : , and a sequence of homomorphisms �n W Gn !
GnC1 o dnC1. The similarity structure is faithful if the corresponding permutational
action on

F
n�0f1; : : : ; d1g � � � � � f1; : : : ; dng is faithful. Again abusing notation,

the compositions of �n’s are written �m
n W Gn ! GnCm o dnC1dnC2 : : : dnCm.

Let N0; N1; : : : be a sequence of finite sets, with Nn � Gn for all n. We say that
G contracts to .Nn/n�0 if for every g 2 Gn and every m large enough, �m

n .g/ 2
N

dnC1dnC2:::dnCm

nCm � SdnC1dnC2:::dnCm
.

In that case, it is possible, up to enlarging the Nn’s, to assume �n.Nn/ �
N

dnC1

nC1 � SdnC1
, and we always make that additional assumption. We call the se-

quence N0; N1; : : : a nucleus of G.
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Note however that the sequence N0; N1; : : : is not unique – for example, it is
always possible to replace finitely many of the initial terms by 1. We say G is
generated by the nucleus if Nn generates Gn for all n.

Extending the previous definition, let Fn be the finitely presented group

Fn ´ hNn j words of length � 3 that are � 1 in Gni:

We then have induced homomorphisms Fn ! FnC1 o dnC1, defining a similarity
structure for the group F ´ F0.

Lemma 2. The similar group F contracts to .Nn/n�0.

We again call F the universal contracting cover ofG; note that it depends on the
choice of .Nn/n�0.

Proof. Consider n 2 N. For every g 2 N�2
n � Gn, there exists m 2 N such that

�m
n .g/ 2 N dnC1dnC2:::dnCm

nCm �SdnC1dnC2:::dnCm
, by the contraction condition. Since

there are finitely many g’s under consideration, there exists mn 2 N such that

�mn
n .N 2

n / 2 N dnC1dnC2:::dnCmn

nCmn
� SdnC1dnC2:::dnCmn

:

On the other hand, consider zw 2 zFn a word of length ` � 2 in the alphabet Nn, and
denote by zw and w respectively its image in Gn and in Fn. The entries in Q�mn

n . zw/
have length precisely `, by construction. They are termwise equal, in GnCmn

, to the
entries of �mn

n . zw/. Since FnCmn
contains all relations of length � 3, these entries

are also termwise equal in FnCmn
. It follows that, for every w 2 Fn of length � 2,

all entries of �mn
n .w/ all belong to NnCmn

.
Consider now g 2 Fn, of length ` � 2k in the alphabet Nn. Set inductively

n0 D n and niC1 D ni C mni
. By the previous paragraph, the entries of �mn

n .g/

have length � 2k�1 over NnCmn
D Nn1

, and more generally the entries of �nk�n
n

have length � 20 in Nnk
, that is, they belong to Nnk

.

We call a similar group contracting if it has been endowed with a sequence
.Nn/n�0 to which it contracts. Note that this fixes the choice of a contracting finitely
presented cover. Similar contracting groups naturally include self-similar groups, by
considering constant sequences G, �, N and F .

Note that we explicitly allow the sequences G; � to be constant while the Nn’s
increase. Quite generally, if each Gn is countable, then there exists a sequence of
finite sets to which it contracts; namely, enumerateGn D fgn;1; gn;2; : : : g, and letNn

be the set of coördinates of �n�m
m .gm;i / for all i; m � n. Understandably, our main

result applies formally to such constructions but does not yield any useful information.
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3.2. Main result

Proposition 1. LetG be a faithful contracting similar group, generated by its nucleus.
If all terms Fn of the universal contracting cover of G satisfy the Farrell–Jones
conjectures with wreathing, then G satisfies the Farrell–Jones conjectures.

Proof. In the self-similar case, set K0 D 1 G F , and KnC1 D ��1.Kd
n / for all

n 	 0; and finally K1 D S
n�0Kn. More generally, in the similar case, set Kn D

ker.�n/ G F and K1 D S
n�0Kn.

There is a natural homomorphism � W F=K1 ! G, which we prove to be an
isomorphism. Let g 2 F be in the kernel of � ; then, because F is contracting, there
is n 2 N such that �n.g/ belongs toN d1:::dn

n �Sd1:::dn
; furthermore, the permutation

is trivial because �n�.g/ D �n.1/ D 1, and the entries in Nn are trivial because Fn

contains relations of length 1 in Nn. Therefore g 2 Kn, so g 2 K1, as was to be
shown.

We then haveG D limF=Kn, and because the Farrell–Jones conjectures are stable
under colimits it suffices to see that F=Kn satisfies the Farrell–Jones conjectures. By
the first isomorphism theorem, F=Kn is a subgroup of Fn o d1 : : : dn, so it suffices
to show that Fn o d1 : : : dn satisfies the Farrell–Jones conjectures. Since Fn satisfies
the Farrell–Jones conjectures with wreathing, we are done.

As stated in the introduction, Proposition 1 applies in particular to contracting sim-
ilar groups whose universal contracting cover are CAT.0/ groups, lattices in virtually
connected Lie groups, or arithmetic groups over algebraic function fields.

4. Examples

We now give some examples of contracting, similar groups, recall some of their basic
properties, and show that they satisfy the Farrell–Jones conjectures.

We follow a slightly unorthodox path to define (self-)similar groups: we first
give their contracting covers, and then simply say that the group itself is the faithful
quotient of the cover. This, of course, defines uniquely the self-similar group G in
question: it is the quotient of its universal contracting coverF by the normal subgroup
K1 G F .

We denote by hhg1; : : : ; gd ii� an element of the wreath product G o d , with �
written as a product of disjoint cycles.

4.1. The Alëshin and Grigorchuk groups. The Alëshin–Grigorchuk group is ob-
tained as follows. Set

F D ha; b; c; d j a2; b2; c2; d2; bcd i D C2 
 .C2 � C2/;
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and define � W F ! F o 2 by

�.a/ D hh1; 1ii.1; 2/; �.b/ D hha; cii; �.c/ D hha; d ii; �.d/ D hh1; bii:
Let G be the faithful self-similar quotient of F .

This group (up to finite index) was first considered in [1], providing a “tangible”
example of infinite, finitely generated, torsion group (the first examples of groups
with these properties are due to Golod [17]. Sushchansky [27] also constructed self-
similar p-groups for odd prime p). Grigorchuk proved in [18] that its word growth
is strictly between polynomial and exponential, and in [20] that it is amenable, but
not elementary amenable. It is contracting, with nucleus f1; a; b; c; dg.

SinceF is CAT.0/, as a free product of finite groups,G satisfies the Farrell–Jones
conjectures by Proposition 1.

More elaborate examples have also been constructed by Grigorchuk [19]. Fix
an infinite sequence ! D !0!1 : : : of epimorphisms .C2 � C2/ Š hb; c; d i !
hai Š C2, and assume that ! contains infinitely many of each of the three possible
epimorphisms. Define homomorphisms �n W F ! F o 2 for all n 	 0 by

�n.a/ D hh1; 1ii.1; 2/; �n.x/ D hh!n.x/; xii for x 2 fb; c; dg:
Let G! be the faithful similar quotient of F using this similarity structure.

Again, G! is contracting with nucleus Nn D f1; a; b; c; dg for all n 2 N, so all
such groups satisfy the Farrell–Jones conjectures. There are uncountably many such
groups, and they are all torsion 2-groups of intermediate word growth.

4.2. The Gupta–Sidki groups. The Gupta–Sidki groups are obtained as follows.
Choose a prime p 	 3, set

F D ha; t j ap; tpi D Cp 
 Cp;

and define � W F ! F o p by

�.a/ D hh1; : : : ; 1ii.1; : : : ; p/; �.t/ D hha; a�1; 1; : : : ; 1; tii:
Let G be the faithful self-similar quotient of F .

These groups are shown in [22] to be infinite, finitely generated torsion p-groups.
SinceF is CAT.0/, as a free product of finite groups,G satisfies the Farrell–Jones

conjectures by Proposition 1.

4.3. Bounded groups. Assume that G is a self-similar group, and that, for every
g 2 G, there exists a bound B 2 N such that, for all n 2 N, there are at most
B non-trivial entries in �n.g/. Note that it suffices to check this property for the
generators of G; and that it holds for the generators of the Grigorchuk group with
B D 2, and those of the Gupta–Sidki groups with B D 3.
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It is then known (see [12]) thatG is contracting. More precisely,G is isomorphic
to a subgroup of a self-similar group of very special type (see [9]). Fix an integer
d 	 2, set

F D Sd 
 .Sd o Sd � 1/;
and define � W F ! F o d by

�.�/ D hh1; : : : ; 1ii�; �.g ´ hhf1; : : : ; fd�1ii�/ D hhf1; : : : ; fd�1; gii�:
SinceF is CAT.0/, as a free product of finite groups,G satisfies the Farrell–Jones

conjectures by Proposition 1.
Note that the faithful quotient of F is amenable; this is how [9] shows that all

bounded self-similar groups are amenable.

4.4. Dynamics. Let f be a branched covering of a topological space M; this means
there is an open dense subset M0 � M and a covering f W M0 ! M. We assume f
has finite degree d . Let Pf denote the post-critical locus of f :

Pf D
[

n�1

f n.M n M0/:

Assume finally that M nPf is path-connected. Choose a basepoint 
 2 M nPf , and
for each x 2 f �1.
/ choose an arc `x from 
 to x in M nPf . Number also f �1.
/
as fx1; : : : ; xd g.

These data define a self-similar group as follows. It is again defined via a cover,
F ´ �1.M n Pf ;
/. Consider � 2 F . For each xi 2 f �1.
/, let �i denote the
unique f -lift of � that starts at xi , and let it end at x�.i/ 2 f �1.
/. Define then
� W F ! F o d by

�.�/ D hh`�1
�.1/�1`1; : : : ; `

�1
�.d/�d`d ii�;

with the product of paths given by concatenation in the right-to-left order.
If M is in fact a locally simply connected metric space, and f is uniformly

expanding (meaning there exists � > 1 such that d.f x; fy/ > �d.x; y/ whenever
d.x; y/ is sufficiently small), then F is contracting.

This applies in particular to M a complex manifold and f a holomorphic map
(which is then expanding for the Kobayashi metric).

The special case M D C and f a degree-2 polynomial has been extensively
studied in [10]. The coverF is a free group, so this provides more examples of groups
satisfying the Farrell–Jones conjectures. One important such example, associated
with the map f .z/ D z2 � 1, has been studied in [21] and [11]; it is amenable,
orderable, of exponential growth, and residually poly-Z.

Other examples, on higher-dimensional manifolds, have been considered by Koch
et al. [24], [14]. There, the universal contracting cover is the sphere braid group.
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5. Conclusion

We have shown that if a counter-example to the Farrell–Jones conjectures exists in
the class of (self-)similar groups, it will not be an easy matter to find it.

For one thing, with very few exceptions, non-contracting self-similar groups are
intractable (it required considerable effort to prove that the elementary example of [2]
is a free group!)

For another, calculations in a contracting self-similar groups are usually reduced
to calculations in a finitely presented group, in which one may manipulate words. It
would be surprising that the Farrell–Jones conjectures fail for a self-similar group,
yet be unsettled for its cover.

Since the Farrell–Jones conjectures are not settled for the sphere braid group,
we have, at the present, no argument to check the Farrell–Jones conjectures on the
faithful self-similar quotient of the braid groups that arise in this manner.

Let G be a self-similar group, and let e 2 N be given. Assume that, for every
g 2 G, there exists a bound B 2 N such that, for all n 2 N, there are at most Bne

non-trivial entries in �n.g/. Then G is said to be of polynomial activity growth of
degree e; see [26], who proves that such groups do not contain free subgroups.

It is then known [3] that G embeds, possibly for larger d , in a specific group
P.d; e/ of polynomial activity growth, defined by its cover as follows. Set†�1 D Sd

and †i D †i�1 o Sd�1 for i D 0; : : : ; e; set

F D †�1 
 � � � 
†e;

and define � W F ! F o d by

�.�/ D hh1; : : : ; 1ii�;
�.g/ D hhf1; : : : ; fd�1; gii� for g D hhf1; : : : ; fd�1ii� 2 †i ; i 	 0:

These are non-contracting self-similar groups if e 	 1; for e � 1, the faithful quotient
is amenable [11], [3], while amenability of the faithful quotient is open for larger e.

The arguments in [26] show that the nucleus N of P.d; e/, while infinite, admits
a partial well ordering, such that every g 2 N has the form g 2 †�1 or �.g/ D
hhg1; : : : ; gd�1; gii with gi < g for all i 2 f1; : : : ; d � 1g. Presumably this means
that arguments similar to those given here show that P.d; e/, and therefore all its
subgroups, satisfy the Farrell–Jones conjectures.

It has been conjectured by Nekrashevych that all contracting self-similar groups
are amenable; although no conclusive link has been established between amenability
and the Farrell–Jones conjectures.

At the other extreme of contracting self-similar groups lie bireversible groups.
These are self-similar groups .G; �/ such that the map G � f1; : : : ; dg ! G �
f1; : : : ; dg, given by .g; i/ 7! .gi ; �.i// if �.g/ D hhg1; : : : ; gd ii� , is a bijection.
They are related to the infinite simple groups constructed in [16], [15]. They would
seem like a natural class in which to look at counterexamples, though all examples
studied up to now are lattices in virtually connected Lie groups.
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