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Abstract. We prove that an irreducible lattice in a semisimple algebraic group is virtually
isomorphic to an arithmetic lattice if and only if it admits a faithful self-similar action on a
rooted tree of finite valency.
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1. Introduction

Let � be a group. A virtual endomorphism of � is a homomorphism ' W ƒ ! � ,
where ƒ is a finite index subgroup in � . An invariant normal subgroup of ' is a normal
subgroup N C � contained in ƒ such that '.N / < N . A virtual endomorphism ' is
essential (or the group � is '-simple) if � contains no nontrivial normal '-invariant
subgroups. We will be interested in the question

Question 1. Which virtual endomorphisms are essential and when does � admit
essential virtual endomorphisms?

We will only consider the case of lattices � in semisimple algebraic linear Lie
groups G. (Note that the case of nilpotent groups was analyzed in [2].) Therefore,
without loss of generality, the subgroups ƒ can be taken torsion-free and G can be
assumed to have no compact factors. In particular, existence of a nontrivial invari-
ant normal subgroup is equivalent to the existence of an infinite invariant normal
subgroup. Our main result is

Theorem 2. Let � be an irreducible lattice in a linear semisimple algebraic Lie
group G. Then the following are equivalent:

(a) � is virtually isomorphic to an arithmetic lattice in G, i.e., contains a finite
index subgroup isomorphic to such arithmetic lattice.

(b) � admits an essential virtual endomorphism ' W ƒ ! � .
�This research was partially supported by the NSF grants DMS-05-54349, DMS-09-05802.
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Moreover, except for the case when the symmetric space of G is the hyperbolic
plane H2, we will classify all essential virtual endomorphisms; see Corollary 13.

We note that conjugacy classes of irreducible faithful self-similar actions of a
group � on a rooted tree (of finite valency) are in 1-1 correspondence with conjugacy
classes of essential virtual endomorphisms of � , [20], [22], [21]. Therefore,

Corollary 3. Let � be an irreducible lattice in a linear semisimple algebraic Lie
group G. Then the following are equivalent:

(a) � is virtually isomorphic to an arithmetic lattice in G.
(b) � admits an irreducible faithful self-similar action on a regular rooted tree

(of finite valency).

An explicit example of a self-similar action on a rooted tree using the construction
from the proof of Theorem 2 was worked out by Zoran Šunić and is presented in
Section 4.

2. Preliminaries

Rooted trees and group actions (see e.g. [20]). A rooted tree is a simplicial tree
T with a choice of a vertex r 2 T , called the root. We will consider only rooted
trees of finite valence which is the same (equal to n C 1) for all vertices different
from the root, while the root has valence n. Such rooted trees are called regular. A
descending edge of a vertex u 2 T is an edge e emanating from u which is separated
from the root r by u. The descending tree Tu of a vertex u 2 T is the subtree of
T where all edges are separated from r by u. A group action on a rooted tree is
a simplicial action of a group G on a tree T which fixes the root. Such action is
called irreducible if it is transitive on the set of edges emanating from the root of the
tree. Let X D fx1; : : : ; xng be an alphabet. Thus, for every vertex u of T we can
(bijectively) label all edges descending from u by the elements of X . We can then
identify vertices of T with words w 2 X� in the alphabet X . An action G Õ T on
a rooted tree is called self-similar if the following property holds:

For every g 2 G, x 2 X and a word w 2 X� there exist h 2 G; y 2 X such that
g.xw/ D yh.w/.

More geometrically, one can define self-similarity as follows. For every vertex
u of T connected to r by an edge, we fix an isomorphism �u W Tu ! T sending u

to r . Then, we require that for every vertex u as above, for every g 2 G, there exists
h 2 G such that

�v B gjTu
D h B �u

where v D g.u/. Note that the isomorphisms �u define isomorphisms �w W Tw ! T

for every vertex w 2 T . Self-similarity of G Õ T then means that for every g 2 G

and vertex w of T there exists h 2 G such that

�g.w/ B gjTw
D h B �w :
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Informally speaking, the restriction of g to Tw is a copy of the action of h on T ,
which explains the name self-similar.

Lie groups and symmetric spaces (see e.g. [14]). Let G be a reductive Lie group
with finitely many connected components. (Reductivity of G means that the Cartan–
Killing form of G is nondegenerate.) We endow G with a left-invariant Riemannian
metric which is invariant under the action of the maximal compact subgroup K < G

on the right. Then the quotient X D G=K with the (G-invariant) metric projected
from G is a symmetric space. The action of G on X may have kernel, but this
kernel is necessarily compact (and contained in K). The above metric always has
nonpositive (sectional) curvature. The symmetric space X is said to have rank r if
r is maximal dimension of a Euclidean space that can be isometrically embedded in
X . (The number r is also the real rank of the Lie group G.) The space X has rank 1

iff its sectional curvature KX is strictly negative. Then (after rescaling the metric on
X ), we can assume that �1 � KX � �a2 < 0.

The symmetric space X is said to be irreducible if it does not split nontrivially as
a Riemannian direct product. Equivalently, the isometry group of X is simple as Lie
group (i.e., has simple Lie algebra).

A Lie group G is semisimple if every irreducible component of the Lie algebra of
G is simple (and has dimension at least 3). Every such group is reductive. Moreover,
a reductive group (without compact factors) is semisimple iff the symmetric space
X D G=K does not split off a Euclidean factor.

Lattices in G (see e.g. [17], [23] or [28]). Let G be a semisimple group above. A
lattice in G is a discrete subgroup � < G such that �nG has finite volume. Equiva-
lently, X=� has finite volume. Let X D X1 �� � ��Xn be the de Rham decomposition
of X in irreducible factors. Then a lattice � < G (and G itself) contains a finite-
index subgroup � 0 which preserves each factor Xi in this decomposition. For a proper
subset I � f1; : : : ; ng let XI denote the product

Q
i2I

Xi :

Let � 0
I denote the image of � 0 in the isometry group Isom.XI / of XI . The lattice �

is said to be irreducible if every projection � 0
I is a dense subgroup of Isom.XI /. For

instance, if n D 1 then � is irreducible.
Every lattice � < G is finitely generated. If G is a linear algebraic group (more

precisely, is the set of real or complex points of an algebraic group), then by a theorem
of Selberg [24], � contains a torsion-free subgroup of finite index, i.e., is virtually
torsion-free. (Discreteness of � is irrelevant here, what is important is that � is
finitely generated.)

Thick-thin decomposition. Let M be a manifold of negative sectional curvature
�1 � KM � �a2 < 0 and " be a positive number. The thick-thin decomposition
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of M (with respect to ") is the partition of M in two subsets Mthick D MŒ";1/ and
Mthin D M.0;"/ where M.0;"/ consists of points x 2 M such that there exists a
homotopically nontrivial loop � in M based at x, whose length is < ". The key result
is that there exists a number " D �.n; a/ (which depends only on the dimension of
M and the number a, and is called a Margulis constant) such that every component
of the thin part of M has virtually nilpotent fundamental group. Moreover, if M

has finite volume, then Mthin has only finitely many components. Furthermore, one
can choose � < �.n; a/ such that Mthin is diffeomorphic to N � RC, where N is
the boundary of Mthin, while Mthick is diffeomorphic to M . In particular, one cannot
embed �1.M/ in �1.C / for any component C of Mthin. (See [1] or [26].) We will
apply these results in the case when M is locally symmetric, i.e., is the quotient of
a rank 1 symmetric space X by a discrete torsion-free group � of isometries. The
group � then acts faithfully on X . Finiteness of the volume of M is equivalent to
saying that � is a lattice in G.

Discrete groups of isometries of rank 1 symmetric spaces. We refer to [15] or
[5] for this material. Let X be a rank 1 symmetric space as above; it has the ideal
boundary @X . Let � < Isom.X/ be a discrete group of isometries of X . Then
we have the following dichotomy: Either � is non-elementary, or elementary. Ele-
mentary groups can be characterized by the property that they are virtually nilpotent,
equivalently, every such group fixes a point in X [ @X or has an invariant geodesic in
X . Moreover, unless � is finite, the fixed-point set of � in @X contains at most two
points; accordingly, � can have at most one invariant geodesic. In contrast, every
nonelementary � contains a free nonabelian subgroup. If two elements of a discrete
group � < Isom.X/ have a common fixed point in @X , then they belong to an el-
ementary subgroup of � . If two elements of � commute then they have a common
fixed point in X [ @X . Thus, if ˛; ˇ; � 2 � and

Œ˛; ˇ� D 1; Œˇ; �� D 1;

then ˛, ˇ, � generate an elementary subgroup of � . In particular, a discrete group
� cannot contain a subgroup isomorphic to F2 � F2, where F2 is the rank 2 free
group. If � is a lattice in Isom.X/, then � never acts on X as an elementary group
(unless X is 1-dimensional). One way to see this is to note that � is Zariski dense in
G (see [3]); thus, if � is virtually nilpotent, then G is virtually nilpotent as well. On
the other hand, the isometry group of X is always a simple Lie group. Alternatively,
one observes that elementary groups have finite limit sets, which, in turn, implies that
X=� always has infinite volume (unless X is 1-dimensional).

Let N be a normal subgroup in a discrete group � < Isom.X/, where X is a
rank 1 symmetric space. If N is infinite and elementary, then its fixed point set (or
the invariant geodesic) is invariant under � . Thus, in this case, � is elementary itself.
We, therefore, conclude that every normal subgroup N in a lattice � < G D Isom.X/

is either elementary (in which case it is finite and, hence, trivial) or is nonelementary,
in which case it contains a free nonabelian subgroup.
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Commensurators. Let G be an Lie group and � < G be a subgroup. The commen-
surator of � in G, denoted CommG.�/ is the subset of G consisting of elements g

such that the groups � and g�g�1 are commensurable, i.e., �\g�g�1 has finite index
in both � and g�g�1. Most of the time we will abbreviate CommG.�/ to Comm.�/

when the group G is clear. It is immediate that Comm.�/ is a subgroup of G contain-
ing � . Moreover, Comm.�/ is the same for all commensurable subgroups � < G.
For an abstract group � one also defines the abstract commensurator Comma.�/,
which is the group of (equivalence classes of) isomorphisms between finite-index
subgroups of � . If � is an irreducible lattice in G such that X D G=K ¤ H2, then
by the Mostow Rigidity Theorem, Comm.�/ Š Comma.�/.

Valuations, symmetric spaces and buildings. Let F be an (algebraic) number
field, i.e., a finite extension of Q. Each embedding 	 W F ,! C determines an
archimedean norm j � j� on F (the restriction of the absolute value on C); we let
F� denote the completion of F with respect to this norm. Let O be the ring of
integers of F . Given a prime ideal p in O we let Fp denote the completion of F

with respect to the nonarchimedean valuation 
p on F determined by p. Typical
examples of nonarchimedean valuations are the p-adic valuations on F D Q, where
the valuation is given by the norm ˇ̌̌

ˇ a

bpn

ˇ̌̌
p̌

D pn;

where p is prime and a; b are integers coprime with p. The completion Qp is then
the field of p-adic numbers. In general, F is a finite extension of Q and 
p restricts
to some q-adic valuation on Q for some prime q 2 Z. The reader unfamiliar with
valuations can think of this example as the model since the general case is very similar.

Let G be a semisimple algebraic group defined over O. We let G1 denote the
finite product Q

� W F ,!C
G.F� /

where the product is taken over all embeddings 	 W F ,! C (there are only finitely
many of these). The image of G.F / under the diagonal embedding is dense in G1
(this is a special case of the weak approximation theorem). The group G1 is a real
or complex semisimple Lie group. Let K1 < G1 be a maximal compact subgroup.
We will be interested in the symmetric space X D G1=K1. Note that G1 need not
act faithfully on X , the kernel C of the action is compact and comes from compact
factors of the group G1 as well as from finite normal subgroups in the noncompact
factors of G1. We let G ´ G1=C . We will regard G as the isometry group of
the symmetric space X . Then G has no compact factors and nontrivial finite normal
subgroups. Similarly, for each prime ideal p, the group Gp ´ G.Fp/ acts as a group
of isometries of a Euclidean building Xp , which is a certain regular cell complex
where each facet is isometric to a polytope in Rn. The group of integer points G.Op/

is the stabilizer in Gp of a special vertex op 2 Xp . See e.g. [6].
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Arithmetic groups (see e.g. [17], [27], [28]). An arithmetic subgroup of the group
G1 as above is a group � commensurable to the group G.O/, embedded diagonally.
(Note that the group G.O/ need not be discrete in the group G.F /.) Projections of
arithmetic groups to the group G are also called arithmetic. The difference between
these two notions of arithmeticity comes from finite normal subgroups which � <

G.F / may contain and can be safely ignored for the purpose of this paper. Whenever
convenient, we will consider arithmetic subgroups of G or their lifts to G1.

The basic examples of arithmetic groups the reader should think about are:

1. G D SL.n/, F D Q, G D SL.n; R/, G.O/ D SL.n; Z/.
2. F D Q.

p
2/, O D ZŒ

p
2�, G < GL.n/ is the automorphism group O.q/ of the

quadratic form

q.x/ D x2
1 C � � � C x2

n � p
2x2

nC1:

Then G.O/ is O.q; O/, the group of matrices with coefficients in O that preserve
q. The field F is totally real and has two embeddings to C. Accordingly,
G1 Š O.n; 1/ � O.n C 1/, since q has the signature .n; 1/, while its image
q� under the embedding 	 W F ! R sending

p
2 to �p

2, is positive-definite.
Then G D PO.n; 1/ is the group of isometries of the hyperbolic n-space (which
can be realized as the projectivization of the hyperboloid fx W q.x/ D �1g).
The group G.O/ acts as a lattice on Hn. This lattice is irreducible even though
G1 splits as a nontrivial direct product.

The following deep results of Margulis (see [17] as well as [28]) will be the key
for this paper:

Theorem 4 (Margulis Arithmeticity Theorem). If G has rank � 2 then every irre-
ducible lattice in G is arithmetic.

Theorem 5 (Margulis Commensurator Theorem). Let � < G be an irreducible
lattice (where G may have rank 1). Then � is arithmetic iff Comm.�/ is dense in G.

Theorem 6 (Margulis Finiteness Theorem). Let � < G be an irreducible lattice of
rank � 2. Then for every normal subgroup ƒ C � either ƒ is finite or �=ƒ is finite.

In the arithmetic case, the commensurator of � D G.O/ in G1 is described by
A. Borel (see [3]):

Comm.�/ D G.F /;

embedded diagonally in G1.

In view of the Margulis Arithmeticity Theorem, the study of non-arithmetic lat-
tices is reduced to the case of rank 1 symmetric spaces (and Lie groups). There are
four classes of such symmetric spaces: Hn (the real-hyperbolic n-space), CHn (the
complex-hyperbolic n-space, n � 2), HHn (the quaternionic-hyperbolic n-space,
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n � 2) and OH2 (the octonionic hyperbolic plane). In the last two cases the Mar-
gulis Arithmeticity Theorem is supplemented by the following theorem which is a
combination of work by Corlette [7] and by Gromov and Schoen [12]:

Theorem 7 (Corlette, Gromov and Schoen). Every lattice in the isometry group of
HHn (n � 2) and OH2 is arithmetic.

On the other hand, for n � 2, the isometry of Hn contains non-arithmetic lat-
tices (Gromov and Piatetsky-Shapiro [11]) while the isometry groups of CH2 and
CH3 also contain non-arithmetic lattices (Deligne and Mostow [8]). Arithmeticity
of lattices in the isometry groups PU.n; 1/ of CHn (n � 4) is an open problem.

Rigidity and non-rigidity. Let � < G be an irreducible lattice in a semisimple Lie
group G as above. Then, by the Mostow Rigidity Theorem [19], unless X D G=K is
the hyperbolic plane, every discrete embedding � W � ! G is given by conjugating
the identity embedding � ,! G by an isometry of X . In particular, for every discrete
embedding � W � ! G, there exists a finite-index subgroup � 0 < � such that �j� 0
is induced by an automorphism of G. The group of automorphisms of G is a finite
extension of the group of inner automorphisms of G.

Therefore, arithmeticity of � is the intrinsic group-theoretic property of � , in-
dependent of the embedding � ,! G. In contrast, if � is a lattice in PSL.2; R/,
the group of orientation-preserving isometries of the hyperbolic plane, � could be
isomorphic to an arithmetic group without being an arithmetic group itself. For in-
stance, all torsion-free lattices satisfy this property. Moreover, it is possible that � is
not isomorphic to an arithmetic group but is commensurable to a group � 0 which is
torsion-free and, hence, is isomorphic to an arithmetic group. For instance, consider
groups T D T .p; q; r/ with presentations

hx; y; z j xyz D 1; xp D yq D zr D 1i; 1

p
C 1

q
C 1

r
< 1:

Then every T embeds as a lattice (unique up to conjugation) in PSL.2; R/, but this
lattice is arithmetic only for 85 different unordered triples .p; q; r/; see [25].

By combining the Mostow Rigidity Theorem and the Margulis Finiteness Theo-
rem, we get:

Corollary 8. Let yG.F / denote the finite extension of G.F / by its outer automor-
phisms. Let � < G.F / be an irreducible lattice of rank � 2. Then for every virtual
endomorphism of � , ' W ƒ ! � , either ' has finite image or it is induced by some
˛ 2 yG.F /.

Proof. Suppose that ' has finite kernel and, thus, infinite image. Thus, ' is induced
by conjugation via some isometry ˛ of X . The orbifold M 0 ´ X='.�/ has finite
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volume, therefore, the orbifold-covering M 0 ! M D X=� (induced by ') has
to have finite degree. This means that '.�/ has finite index in � . The isometry ˛

belongs to the finite extension of G by its outer automorphisms. We keep the notation
˛ for its lift to an automorphism of G1. Since ˛ conjugates a lattice ƒ < G.F / to
another lattice in G.F /, it follows that ˛ belongs to yG.F /.

We see, therefore, that every virtual automorphism of � with infinite image is
induced by an element of the commensurator of � , which is an element of a fi-
nite extension of G1. In order to avoid heavy notation, we will keep the notation
Comm.�/ for the above finite extension yG.F / of G.F /. We note that yG.F / still acts
by isometries of the Euclidean buildings Xp defined above, extending the actions of
G.F /.

3. Proof of Theorem 2

In what follows, � is a lattice (arithmetic or not) in a real or complex Lie group G1.
Given an element ˛ 2 Comm.�/ we let ' D '˛ denote the automorphism of G1
induced by conjugation

'.g/ D ˛g˛�1:

Then ˛ induces virtual endomorphisms of �: '.�/ \ � is a finite-index subgroup
�1 < � . Thus, �2 ´ '�1.�1/ is also a finite-index subgroup in � and, hence
' W �2 ! �1 is a virtual endomorphism of � .

3.1. Arithmetic case. Assume now that � is arithmetic. We will use the notation
introduced in the previous section. We say that ˛ 2 Comm.�/ virtually normalizes
the lattice � if there exists a finite-index subgroup � 0 < � which is normalized by ˛.

Lemma 9. One of the following mutually exclusive possibilities holds: Either ˛

virtually normalizes � or there exists a prime ideal p in O such that ˛ acts on Xp

with unbounded orbits (i.e., is a hyperbolic isometry).

Proof. Suppose that ˛ acts on every Xp with bounded orbits. Then, as in the proof
of the Margulis Arithmeticity Theorem (see [17] or [28], pp. 120–121), matrix en-
tries of powers of ˛ have uniformly bounded denominators which, in turn, implies
that the groups ˛N G.O/˛�N intersect G.O/ along subgroups of finite index which
are bounded by a constant independent of N . Taking the intersection of all these
subgroups, we obtain a finite-index subgroup ƒ < G.O/ which is normalized by ˛.
Therefore, ' preserves a finite-index subgroup of ƒ \ � .

Suppose that ˛ acts hyperbolically on some Xp and virtually normalizes � , i.e.,
˛� 0˛�1 D � 0 for some finite-index subgroup � 0 < � . Since � 0 is commensurable
to G.O/, it also fixes a point in Xp (although, not necessarily op). Since ˛ acts
hyperbolically on Xp and normalizes � 0, the fixed-point set of � 0 in Xp is unbounded.
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Therefore, this fixed-point set contains an ideal boundary point � of the building Xp .
Algebraically, this means that � 0 normalizes a parabolic subgroup P < Gp . Since � 0
is commensurable to G.O/, it is also Zariski dense in Gp . Therefore, Gp also would
have to normalize P (and, thus, fix �). However (since G is semisimple), Gp cannot
have proper normal parabolic subgroups.

One can give a more geometric argument as follows. The ideal boundary @Xp of
Xp is a spherical building and, by the Cartan decomposition for Gp , the group G.O/

acts transitively on the chambers of @Xp . Since � 0 is commensurable to G.O/, the
orbit of � under G.O/ is finite. This contradicts the fact that @Xp is infinite.

We note that the property that ˛ 2 Comm.�/ acts hyperbolically on some Xp

amounts to saying that the matrix coefficients of powers of ˛ have arbitrarily high
denominators. For instance, if G D SL.n/ then any diagonal matrix where some
diagonal entries belong to F n O, satisfies this property.

Theorem 10. Let � < G.F / be an arithmetic group, ˛ 2 Comm.�/ be an element
which acts as a hyperbolic isometry of some Xp , and ƒ < � be a finite-index subgroup
such that '˛.ƒ/ � � . If N < ƒ is a normal subgroup of � such that '˛.N / � N ,
then N is finite.

Proof. As before, let X be the symmetric space of G and let M ´ X=N . The
manifold M isometrically covers X=� . We also obtain an isometric covering

q D N̨ W M ! M

induced by the endomorphism ' D '˛ of the fundamental group of M .
1. First, consider the case when G has rank � 2. Then, by Margulis Finiteness

Theorem, every normal subgroup of � is either finite or has finite index in � . Assum-
ing N has finite index in � , the manifold M has finite volume and, since q preserves
the volume form, it has to be a diffeomorphism. Thus, '.N / D N , which (by the
previous lemma) contradicts our choice of ˛.

2. We now consider the more interesting case when G has rank 1. We assume that
N is an infinite group. Therefore, it is Zariski dense in G. In what follows, we will
lift thick-thin decompositions from X=� to M and, by abuse of terminology, will
refer to them as lifted thick-thin decompositions of M D Mthick [Mthin. By choosing
" in the definition of the thick-thin decomposition sufficiently small, we can assume
that each component of Mthin is non-compact; in particular, Mthick is connected. (The
thick part of M can be disconnected only if X Š H2.)

Note that the group � acts on M isometrically, we use the notation N� for the
isometry of M induced by � 2 � . For any lifted thick-thin decomposition of M , the
action � Õ Mthick is cocompact since .X=�/thick is compact.

Consider the iterations qk of the isometric endomorphism q W M ! M . Pick
a connected compact subset C � Mthick whose fundamental group maps onto a
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Zariski dense subgroup H of N and which contains a fundamental domain for the
(cocompact) action � Õ Mthick.

Since each component of Mthin has virtually nilpotent fundamental group, while H

is not virtually nilpotent, it follows that qk.C / is never contained in Mthin. Therefore,
for each k there exists xk 2 C such that qk.xk/ 2 Mthick.

Since the action � Õ Mthick is cocompact, for every k there exists �k 2 � such
that

N�k B qk.xk/ 2 C:

Set Ň
k ´ N�k Bqk and let D be the diameter of C . Since q is isometric, qk.C / also has

diameter � D, which implies that Ň
k.C / is contained in the D-neighborhood of C .

Therefore, by Arzela–Ascoli theorem, the sequence of isometries Ň
k is precompact.

Lemma 11. The set NI ´ f Ň
k W k 2 Ng is finite.

Proof. If not, then there will be arbitrarily large k, m such that Ň
k ¤ Ň

m and the
restrictions Ň

kjC; Ň
mjC are arbitrarily close in the sup-metric. In particular, for large

k, m, they are homotopic and, hence, induce the same (up to conjugation in N ) map
H ! N given by

h 7! ˇkhˇ�1
k ; h 7! ˇmhˇ�1

m :

Since H is Zariski dense in G, its centralizer in G is trivial and, thus, we have the
equality of the cosets

ˇk � N D ˇm � N:

Hence, Ň
k D Ň

m. Contradiction.

We continue with the proof of Theorem 10. Let I � yG.F / denote the finite set
of representatives of lifts of the isometries Ň

k 2 NI . For each k 2 N,

�k � ˛k � N � I � N;

and, thus,

˛k 2 ��1
k � I � N;

where �k 2 � .
We now consider the action of the isometries in the above equation on the building

Xp , where p is such that ˛ W Xp ! Xp is hyperbolic. The group � fixes a point
xp 2 Xp , the images I � xp form a finite set. Therefore, the set

��1
k � I � N � xp D ��1

k � I � xp

is bounded in Xp . However, by our assumption, orbits of h˛i on Xp are unbounded.
Contradiction.

Corollary 12. Suppose that � has no finite normal subgroups. Then every ˛ as in
Theorem 10 induces an essential virtual endomorphism '˛ of � .
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The following corollary then classifies all virtual endomorphisms of arithmetic
groups induced by conjugation (which is the case unless X Š H2):

Corollary 13. Let � < G.F / be arithmetic with no finite normal subgroups, ƒ < �

be a finite-index subgroup and ' W ƒ ! � be an essential virtual endomorphism of
� such that ' D '˛ , where ˛ 2 Comm.�/. Then ˛ does not normalize finite-index
subgroups of � , equivalently, ˛ acts hyperbolically on some Xp . Conversely, for
every ˛ 2 Comm.�/ that acts hyperbolically on some Xp , the virtual endomorphism
'˛ of � is essential.

3.2. Non-arithmetic case. We now consider virtual endomorphisms of non-arith-
metic lattices. Then � is a lattice in a rank 1 Lie group G. Without loss of generality,
we may assume that G acts faithfully on the associated symmetric space X D G=K.
In this section we will also assume that the Lie algebra of G is not isomorphic to
sl.2; R/, i.e., the symmetric space X D G=K of G is not isometric to the hyperbolic
plane. We assume that � < G is non-arithmetic. Our assumptions imply that �

contains no nontrivial normal finite subgroups. The same, of course, applies to finite-
index subgroups ƒ < � .

Proposition 14. Under the above assumptions, every virtual endomorphism ' of �

is not essential.

Proof. 1. Suppose that ' W ƒ ! � is not injective. Let K denote the kernel of '.
Note that this subgroup is not necessarily normal in � . Since ƒ contains no nontrivial
normal subgroups, it follows that the group K is infinite.

We first consider the case when ƒ is normal in � . Let �1; : : : ; �n be the generators
of � . Consider the conjugates

Ki ´ ��1
i K�i � �; K0 ´ K:

Define homomorphisms

'i W ƒ ! �; 'i .g/ D '.�ig��1
i /; i D 1; : : : ; nI '0 ´ ':

For every nonempty subset I � f0; : : : ; ng consider the normal subgroup KI C G

given by the intersection
KI ´ T

i2I

Ki

This subgroup is the kernel of the homomorphism

ˆI W ƒ ! Q
i2I

�;

where the i -th component of ˆI is 'i , i 2 I . We let �i denote the i -th factor of the
product group

Q
i2I � .
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Suppose that for J D f0; : : : ; ng, KJ is infinite. Let I be a smallest (with respect
to the inclusion) subset of J such that KI is finite (i.e., trivial, since it is a normal
subgroup in ƒ). Since each 'i has infinite kernel, I contains at least two elements.
By the choice of I , for every i 2 I ,

Hi ´ ˆI .ƒ/ \ �i

is infinite. Since Hi is normal in ˆI .ƒ/, the subgroup Hi contains a free nonabelian
subgroup Fi . Hence, the group ƒ contains a direct product of free nonabelian sub-
groups. This is impossible since ƒ is isomorphic to a discrete subgroup of isometries
of the negatively curved symmetric space X defined above. Contradiction. Thus, KJ

is infinite and we obtain an infinite normal subgroup N D KJ C ƒ of the group �

such that '.N / D 1 � N .
We now consider the case when ƒ is not necessarily normal in � . If ' W ƒ ! � is

a virtual endomorphism with infinite kernel, we find a finite index subgroup ƒ0 � ƒ

which is normal in � . Then the restriction '0 D 'jƒ0 still has infinite kernel and we
obtain a contradiction as above.

2. Suppose now that ' is injective. Then, by the Mostow Rigidity Theorem, the
homomorphism ' is induced by conjugation via some ˛ 2 Comm.�/. Recall that,
by the Margulis Commensurator Theorem, Comm.�/ is not dense in G. Since �

is Zariski dense in G, it follows that Comm.�/ is discrete. Therefore, since � is a
lattice, Comm.�/ is a finite extension of � . Thus, ƒ has finite index in Comm.�/

and, hence, contains a finite index subgroup N < ƒ which is normal in Comm.�/.
In particular,

˛N˛�1 D N

and N C � is a normal subgroup. Clearly, N is an infinite '-invariant subgroup of
� and, thus, ' is not essential.

3.3. Subgroups of SL.2 ; R/. Suppose now that � is a subgroup in a Lie group
G which is locally isomorphic to SL.2; R/, i.e., the symmetric space of G is the
hyperbolic plane H2. Then the abstract commensurator of a lattice � < G is not
isomorphic to the commensurator of � in G.

Lemma 15. Every lattice � < G contains a finite index torsion-free subgroup ƒ

which is isomorphic to an arithmetic subgroup of G. (This isomorphism, of course,
need not be induced by conjugation, thus ƒ itself need not be arithmetic.)

Proof. It suffices to consider the case of G D SL.2; R/. Then G contains both
cocompact and non-cocompact arithmetic lattices � 0, � 00. (This is a special case of
Borel’s theorem on existence of cocompact and non-cocompact arithmetic lattices in
the given algebraic group, [3].) Specifically, one can take � 0 such that the quotient
orbifold H2=� 0 is S2.2; 4; 8/, the sphere with three cone points of the orders 2, 4,
8 (see [25]), while for � 00 one can take the modular group SL.2; Z/, whose quotient
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is the orbifold S2.2; 3; 1/, the sphere with two cone points of orders 2, 3 and one
puncture.

We leave it to the reader to construct an 8-fold orbifold cover S2 ! S2.2; 4; 8/

where S2 is the surface of genus 2, and a 6-fold orbifold cover S2.1; 1; 1/ !
S2.2; 3; 1/, where S2.1; 1; 1/ is the sphere with 3 punctures. Thus, � 0 contains
an index 8 subgroup isomorphic to �1.S2/, while � 00 contains an index 6 subgroup
isomorphic to the free group of rank 2, F2. Let � < G be a lattice. Then � contains
a torsion-free subgroup of finite index ƒ; the quotient H2=ƒ is a surface which is
compact if and only if H2=� is. Suppose that H2=� is compact. Then H2=ƒ is
a surface Sg of genus g � 2. Every such surface is a .g � 2/-fold cover over S2.
Hence, ƒ is isomorphic to an index 8.g � 2/ subgroup ƒ0 < � 0, which is, of course,
arithmetic. If H2=� is not compact, then ƒ is isomorphic to a free group Fr of rank
r � 2. Then F2 contains an index r � 2 subgroup isomorphic to Fr . Hence, ƒ is
isomorphic to an index 6.r � 2/ subgroup ƒ00 < � 00, which is again arithmetic.

The reader uncomfortable with orbifold covers may instead use the following
observation: Every two compact surfaces Sg , Sh of genus � 2 are finite covers
over S2, while every two finite rank nonabelian free groups Fr , Fs are finite index
subgroups in F2. Therefore, Sg , Sh admit a common finite cover, while Fr , Fs admit
isomorphic finite index subgroups. Therefore, for every cocompact lattice � < G

there exists a finite index subgroup isomorphic to a finite index subgroup of � 0,
while for every non-cocompact lattice � < G there exists a finite index subgroup
isomorphic to a finite index subgroup of � 00.

Now, in view of the above lemma, by Theorem 10, ƒ, and, hence, � , admits
essential virtual endomorphisms '.

By combining this lemma with Theorem 10 and Proposition 14, we obtain Theo-
rem 2.

4. An example of a faithful, self-similar action of PSL2.Z/ on the ternary
rooted tree

The following explicit example of a faithful self-similar action on a tree associated
with an element of Comm.�/ was computed by Zoran Šunić.

Let X D f0; : : : ; k � 1g. Every automorphism g of the tree X� decomposes as

g D �g .gj0; gj1; : : : ; gjk�1/;

where �g is a permutation of the alphabet X , called root permutation of g, describing
the action of g on the first level of the tree, and gj0; : : : ; gjk�1 are tree automorphisms,
called sections of g, describing the action of g on the subtrees below the first level.
For every letter x in X and word w over X ,

g.xw/ D �g.x/gjx.w/:
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We provide a brief description of the self-similar action on a rooted k-ary tree by
automorphisms associated to a virtual endomorphism � W ƒ ! � (for the original
definition see [20], Proposition 4.9, or [21], Proposition 2.5.10).

Choose a left transversal T D ft0; t1; : : : ; tk�1g for ƒ in � , with t0 D 1, i.e.,
representatives of the quotient �=ƒ. For g 2 � , let Ng denote the representative of
the left coset gƒ.

A self-similar action of � on the rooted k-ary tree induced by � is defined as
follows. For g 2 � , define the root permutation �g of X D f0; 1; : : : ; k � 1g by

�g.x/ D y if and only if gtx D ty

and the section of g at x 2 X by

gjx D �.gtx
�1

gtx/:

The action induced by the virtual endomorphism � may be not faithful. It is faithful
precisely when the virtual endomorphism is essential. In the following example we
will abuse the notation and use matrix notation for the elements of PSL.2; Z/.

Example 16 (� D PSL2.Z/ D Z2 � Z3). It is well known that the two free factors
of � may be generated by the elements represented by the matrices

a D
�

0 1

�1 0

�
and b D

�
0 1

�1 1

�

of orders 2 and 3, respectively.
Let ƒ be the subgroup

ƒ D ˚�
x 2y
z w

� j x; y; z; w 2 Z; xw � 2yz D 1
� � �:

It is easy to establish that, for any two matrices

M1 D
�

x1 y1

z1 w1

�
and M2 D

�
x2 y2

z2 w2

�

in � , M �1
2 M1 2 H if and only if

y1 	 y2 .mod 2/ and w2 	 w2 .mod 2/:

Therefore j� W ƒj D 3 and left coset representatives of ƒ in � are given by

1 D
�

1 0

0 1

�
; b D

�
0 1

�1 1

�
; b2 D

��1 1

�1 0

�
:

Define � W ƒ ! � by

�

�
x 2y

z w

�
D

�
x y

2z w

�
:
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Since � is just conjugation by the diagonal matrix D D Diag.2; 1/ with entries 2 and
1 along the main diagonal, it is indeed a homomorphism.

Any �-invariant subset of ƒ must be a subset of the subgroup of lower triangular
matrices. Indeed, if �

x y

z w

�

belongs to a � invariant subset of ƒ, then iterations of the endomorphism � can be
applied to it arbitrarily many times. Thus y is divisible by arbitrarily high powers
of 2, implying that y D 0. However, since the conjugation by a turns lower triangular
matrices into upper triangular matrices, every normal, �-invariant subgroup of � is
a subgroup of the group of diagonal matrices in � , which is trivial. Thus � is an
essential endomorphism.

We calculate the root permutation of a and b,

a � 1 D b2; a � b D b; a � b2 D 1;

b � 1 D b; b � b D b2; b � b2 D 1;

as well as the sections,

aj0 D �.a � 1
�1 � a � 1/ D �.ba/ D baba;

aj1 D �.a � b
�1 � a � b/ D �.b�1ab/ D bab�1;

aj2 D �.a � b2
�1 � a � b2/ D �.ab2/ D ab�1ab�1;

and, for i D 0; 1; 2,

bji D �.b � bi
�1 � b � bi / D 1:

Therefore, a faithful, self-similar action of � D PSL2.Z/ D Z2 � Z3 on the
ternary rooted tree is given by

a D .02/ .baba; bab�1; ab�1ab�1/; b D .012/ .1; 1; 1/:

Note that

ba D .12/.baba; bab�1; ab�1ab�1/:

It is easy to see that c D ba has infinitely many distinct sections. Indeed, since

c2n D .c4n; �; �/;

we see that some of the sections of c are c, c2, c4, c8, c16; : : : . Since c D ba has
infinite order, all these sections are distinct.
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5. Concluding remarks

Lattices � in groups virtually isomorphic to SL.2; R/ are the only case where we
do not get a complete classification of essential virtual endomorphisms ' of � . By
appealing to the results of the previous section, one sees that an essential virtual
endomorphism ' of � has to be injective and cannot preserve a finite-index subgroup
of � . We conjecture that, provided � is not virtually free, for every essential virtual
endomorphism ' of such � , there exists a finite-index subgroup � 0 < � and a discrete
embedding � W � 0 ,! G such that 'j� 0 is induced by some ˛ 2 Comm.�.� 0//. If
this were the case, then the classification of essential virtual endomorphisms of �

would reduce to the arithmetic case as in Corollary 13. On the other hand, if � is
virtually free, its finite-index subgroups can be mapped isomorphically to infinite-
index subgroups of � and we do not have even conjectural classification of essential
virtual endomorphisms.

We observe that our results should, in principle, generalize to Gromov-hyperbolic
groups which are not lattices. The problem, however, is that:

1. Among hyperbolic groups � , very few are known to be weakly cohopfian, in
the sense that if ƒ < � is a finite index subgroup and ' W ƒ ! � is an injective
homomorphism, then the image of ' is a finite index subgroup of � . Examples of
weakly cohopfian hyperbolic groups are Poincaré duality groups (e.g., fundamental
groups of closed aspherical manifolds). Hyperbolic groups which act geometrically
on rank 2 hyperbolic buildings provide good candidates for weakly cohopfian groups
in view of [4]. (One can show that such groups are weakly cohopfian provided that
they are locally quasiconvex, such examples are given by [18].) On the other hand,
there are no known examples of 1-ended hyperbolic groups which are not weakly
cohopfian.

2. Among hyperbolic groups � which are Poincaré duality groups, the only
known examples where the abstract commensurator Comm.�/ is a finite extension
of � , are the non-arithmetic lattices. There are few more classes of hyperbolic groups
with small abstract commensurators: Fundamental groups of compact hyperbolic n-
manifolds with totally-geodesic boundary, n � 3, surface-by-free groups [9], as well
as some rigid examples constructed in [16]. (In all these examples, the entire quasi-
isometry group of � is a finite extension of � .) Conjecturally, the fundamental groups
of Gromov–Thurston manifolds [13] should also have small abstract commensurators.

Question 17. Does the faithful action of an arithmetic group � on a rooted tree
constructed in Theorem 2 ever correspond to a finite-state automaton? In the example
computed by Zoran Šunić in Section 4, the number of states is infinite. See however
the examples of self-similar S-arithmetic groups constructed by Glasner and Mozes
in [10].
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