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Interval exchanges that do not occur in free groups

Christopher F. Novak

Abstract. A disjoint rotation map is an interval exchange transformation (IET) on the unit
interval that acts by rotation on a finite number of invariant subintervals. It is currently unknown
whether the group E of all IETs possesses any non-abelian free subgroups. It is shown that it
is not possible for a disjoint rotation map to occur in a subgroup of E that is isomorphic to a
non-abelian free group.
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1. Introduction

An interval exchange transformation (IET) is an invertible map Œ0; 1/ ! Œ0; 1/ defined
by a finite partition of Œ0; 1/ into half-open subintervals and a reordering of these
intervals by translation. The dynamics of single IETs have been actively studied
since the late 1970s. See the recent survey of Viana [16] for a presentation of many
early results in this area. The study of IET dynamics is currently quite active, due
in part to the close connection between IETs and the moduli space of translation
surfaces (see the survey of Zorich [17]), and also due to the recent resolution of some
long-outstanding problems in the area (e.g., [2], [3], and [6]).

More recently, group actions by interval exchanges have begun to be studied; see,
for instance, [1], [12], and [13]. The set E of all interval exchanges forms a group
under composition, and an interval exchange action of a group G is a homomorphism
G ! E . The study of such actions is motivated by the analogous study of group
actions on manifolds, particularly 1-dimensional ones, by means of homeomorphisms
or diffeomorphisms. The subject of group actions on 1-manifolds is well-developed
and quite active; see, for instance, [7] or [10]–[11].

In contrast, many fundamental questions which are well understood for groups
acting on 1-manifolds are currently open for the group of IETs. Perhaps foremost
among these is the following question, due to A. Katok:
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Question 1.1. Does E contain a subgroup isomorphic to F2, the non-abelian free
group on two generators?

It is easy to construct examples of non-abelian free subgroups in Diff.S1/ and
Diff.R/ by means of the ping-pong construction. More detailed results, analogous
to the Tits’ alternative, are known for HomeoC.S1/ and Diff !C.S1/I see [9] and
[5], respectively. It is also shown in [7] that for a residual set of pairs .f; g/ in
HomeoC.S1/, the group hf; gi is isomorphic to F2. However, there are examples
of groups of homeomorphisms of 1-manifolds that do not contain non-abelian free
subgroups. For instance, it is known from work of Brin and Squier [4] that this is the
case for the group PLC.Œ0; 1�/ of piecewise-linear homeomorphisms of the interval.

Remark 1.2. The paper [4] also shows that the mechanism by which PLC.Œ0; 1�/ fails
to contain non-abelian free subgroups is not an obvious one. In particular, this work
proves that PLC.Œ0; 1�/ does not satisfy a law; i.e., there does not exist ! 2 F2 n feg
such that �.!/ D id for every homomorphism � W F2 ! PLC.Œ0; 1�/. It is also the
case that E does not satisfy a law. If such a law were to exist, then it would have to
be satisfied by every finite group, since every finite group occurs as a subgroup of E .
The existence of such a universal law for finite groups is impossible; in particular, it
would imply that F2 is not residually finite, which is false (see Section III.18 of [8]).

The current work shows that a particular class of IETs, the disjoint rotation maps,
cannot occur in a non-abelian free subgroup of E , if such subgroups actually do exist.
Briefly, a disjoint rotation map r is an IET for which there is a finite partition of Œ0; 1/

into r-invariant subintervals Ij , such that r restricted to each Ij is an exchange of two
further subintervals; a graphical depiction is given in Figure 1, and a formal definition
is provided below.

Theorem 1.3. Let r be conjugate in E to a disjoint rotation map, and let g 2 E be an
arbitrary interval exchange. Then the subgroup hr; gi is not isomorphic to the free
group on two generators.

The author has learned that a proof of this result has also been obtained by F.Dah-
mani, K.Fujiwara, and V.Guirardel. The proof given here is essentially constructive,
in that it describes a nontrivial word in the generators r and g that forms the identity
map. The construction strongly relies on two features of the disjoint rotation map r ;
such maps have iterates that are arbitrarily close to the identity in an L1 sense, and the
iterates rn have essentially the same number of discontinuities as r itself. It is known
([15], Theorems 1.3 and 1.4) that almost every irreducible IET possesses iterates that
are L1 close to the identity, which raises the question of whether the construction
described below can be adapted to such maps. The immediate obstruction is that for
most such IETs f , the number of discontinuities of f n grows linearly with n; this
prevents one from showing that a particular word formed from f n and g has support
contained in a neighborhood of a fixed finite set for infinitely many n.
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It is interesting to note that conjugates of disjoint rotation maps are precisely those
IETs that can occur in the image of a continuous homomorphism R ! EI see [13].
Thus, Theorem 1.3 and the Tits’Alternative [14] imply that any linear Lie group that
continuously embeds in E must be virtually solvable.

Acknowledgements. The author is indebted to F. Dahmani, K. Fujiwara and
V. Guirardel for their gracious encouragement to publish this work, and the author
also recognizes M. Lachance for his support during the completion of this work.

2. Proof of Theorem 1.3

2.1. Notation. We now give a precise definition and notation for interval exchanges.
Let � 2 †n be a permutation of f1; 2; : : : ; ng, and let � be a vector in the simplex

ƒn D f� D .�1; : : : ; �n/ j �i > 0;
P

�i D 1g � Rn:

The vector � induces a partition of Œ0; 1/ into intervals

Ij D �
ǰ �1 ´ PiDj �1

iD1 �i ; ǰ ´ PiDj
iD1 �i

�
; 1 � j � n: (1)

Let f.�;�/ be the IET that translates each Ij so that the ordering of these intervals
within Œ0; 1/ is permuted according to � . More precisely,

f.�;�/.x/ D x C !j if x 2 Ij ;

where
!j D ��.�/j D P

i W �.i/<�.j /

�i � P
i W i<j

�i :

Note that �� W ƒn ! Rn is a linear map depending only on � .
The above notation is adapted in the following way to represent a disjoint rotation

map. Given � 2 ƒn for some n, define the points ǰ and the intervals Ij by equation
(1). Let ˛ 2 T n D .R=Z/n be given, where T n is to be identified with Œ0; 1/n.

Define the disjoint rotation map rŒ˛;�� by

rŒ˛;��.x/ D
´

x C �j j̨ ; x 2 Œ ǰ �1; ǰ � �j j̨ /;

x C �j j̨ � �j ; x 2 Œ ǰ � �j j̨ ; ǰ /:
(2)

See Figure 1 for a graphical representation of a disjoint rotation map.

2.2. Construction of a relation in hr; gi. To begin the proof of Theorem 1.3, it can
be assumed after a conjugacy in E that the map r has the form in equation (2) for
some ˛ 2 T n and � 2 ƒn. If all points are periodic under r , then r has finite order,
and Theorem 1.3 holds trivially. Thus, assume that r has infinite order; equivalently,
assume ˛ … .Q=Z/n. If the set of periodic points of r is nonempty, then after
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Figure 1. A disjoint rotation map.

replacing r by an iterate it can be assumed that all periodic points of r are fixed. After
a further conjugacy and possibly redefining n, it can be assumed that Fix.r/ D In;
in this case, ˛ D .˛1; : : : ; ˛n�1; 0/ where ˛i 2 Œ0; 1/ is irrational for 1 � i � n � 1.
Define the support of r , denoted by supp.r/, to be the complement of its fixed point
set.

A relation in hr; gi is constructed using the map h D Œg�1; s�1� B Œg�1; s�, where
Œx; y� denotes the commutator xyx�1y�1 and s D rM for some integer M to be
chosen later. It is to be shown that for suitably chosen s D rM , the support of h is
contained in a small neighborhood of a finite set.

In particular, define the finite set P by

P D fˇi j 0 � i < ng [ fg�1.ˇi / j 0 � i < ng [ fx j g is discontinuous at xg:
Let P 0 D P \ supp.r/. Since by assumption all non-fixed orbits of r are infinite, it
is possible to choose an integer d > 0 such that rd .P 0/ \ P 0 D ;. For " > 0 and
p 2 Œ0; 1/ Š R=Z, let N".p/ denote the open "-ball centered at p in R=Z; define the
sets X D X" D S

p2P N".p/ and X 0 D .X \ supp.r//. Next, fix " > 0 sufficiently
small so that

(i) the collection of sets fN".p/ W p 2 P g are pairwise disjoint, and
(ii) the sets X 0 and rd .X 0/ are disjoint.

Finally, choose an integer M > 0 such that the rotation rates M˛i 2 R=Z of
s D rM are in N"=10.0/ for i D 1; : : : ; n. To see that such an M exists, associate
to r the translation Or W T n ! T n defined by x 7! x C ˛, and note that the Or-orbit
fn˛ j n 2 Zg is a dense subset of a nontrivial subgroup of T n.

Recall that h D Œg�1; s�1� B Œg�1; s�, with s D rM for M as chosen above.

Lemma 2.1. With notation as defined above, the support of h is contained in X .

Proof. Let y 2 Œ0; 1/ n X be given; it will be shown that h fixes y. Let j; k 2
f1; : : : ; ng be such that y 2 Ij and g.y/ 2 Ik . By the definition of X , y is located
a distance of at least " away from each of the endpoints ǰ �1 and ǰ of Ij . Also, y

is at least " away from any discontinuity of g; thus, the entire neighborhood N".y/
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is translated under g by ! D g.y/ � y. Since P also contains the points g�1.ˇi /

for 0 � i < n, it follows that g.y/ is located a distance of at least " away from the
endpoints of Ik .

With these conditions in mind, we trace the orbit of y through the composition

h D .g�1s�1gs/.g�1sgs�1/:

Let �j denote the rotation (mod jIj j) induced by s on Ij ; define �k similarly. By the
construction of s D rM , we have j��j < "=10 for � 2 fj; kg. Thus, s�1.y/ D y � �j .
As s�1.y/ is still located in N".y/, we have g.s�1.y// D y � �j C ! D g.y/ � �j .
Since g.y/��j is still at least a distance of "=2 away from the endpoints of Ik , we have
s.gs�1.y// D y ��j C! C�k D g.y/��j C�k . The map g�1 translates N".g.y//

by �!, and .g.y/ � �j C �k/ 2 N".g.y//. Thus g�1.sgs�1.y// D y � �j C �k .
Let z D g�1sgs�1.y/, and note that jy � zj < "=5. Consequently, upon tracing

the action of g�1s�1gs on z, reasoning similar to the previous paragraph shows that
g�1s�1gs.z/ D z C �j � �k D y. Thus, h.y/ D y, as desired.

If it happens that the map h is the identity, then this suffices to show that hr; gi is
not isomorphic to F2. Suppose, however, that h ¤ id. Recall that d is chosen so that
rd .X 0/ and X 0 are disjoint. Consider the interval exchange k defined by

k D rd hr�d :

By Lemma 2.1, h is supported in X , and consequently, k is supported in rd .X/.
If the map r has no periodic points, then supp.r/ D Œ0; 1/ and X 0 D X . Thus, in
this situation the maps h and k have disjoint supports. It follows that h and k are
commuting, nontrivial elements of hr; gi such that k … hhi, which proves that the
group hr; gi is not isomorphic to F2 when r has no periodic points.

To handle the general situation where Fix.r/ ¤ ;, it is shown below that the
commutator T D kh�1k�1h has finite order that divides six. This again implies the
existence of a nontrivial relation in hr; gi, completing the proof of Theorem 1.3. The
proof that T 6 D id does not rely on the maps involved being IETs; it follows from
the existence of a conjugacy and the relation between the supports of h and k. In the
argument below, the support of a bijective map again refers to the complement of its
set of fixed points.

Proposition 2.2. Let h and � be bijections of a set �. Write supp.h/ D A t B ,
where A D supp.h/ \ supp.�/ and B D supp.h/ \ Fix.�/. Let k D �h��1, and let
T D kh�1k�1h. If A \ �.A/ D ;, then T 6 D id.

Remark 2.3. By Lemma 2.1 and the condition that X 0 \ rd .X 0/ D ;, it follows that
the previously defined IETs h and � D rd satisfy the hypotheses of Proposition 2.2.

Remark 2.4. We give an informal description of the proof of Proposition 2.2 before
presenting a detailed argument below. To show that T D kh�1k�1h has finite order,
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we first show that the dynamics of T can be fully described in a finite, combinatorial
manner. In particular, under the given hypotheses the support of T is a disjoint union
of three sets, denoted A, B , and C . Using the structure of T and the assumed behavior
of the maps h and k, it is shown that for each pair of sets .	; 
/ 2 fA; B; C g2, the
action of T is uniform with respect to h and k in mapping a point from 	 to 
 .
For example, it is shown that if p 2 A and T .p/ 2 B , then it must follow that
T .p/ D h.p/; it is similarly seen that if p 2 B and T .p/ 2 A, then T .p/ D h�1.p/.

Using this combinatorial description, we trace through the various possibilities
for the orbit of a point under the map T . It is seen that every point is either fixed or
has a periodic orbit of length two or three. For example, since T acts as the map h in
sending points from A to B , and since T acts as h�1 in sending points back from B

to A, any point of A following such an itinerary must be fixed by T 2.

Proof. For notation, let C D �.A/. Note that the sets A, B and C are pairwise
disjoint; A \ C D ; by assumption, while both A \ B D ; and C \ B D ; since
B � Fix.�/ and AtC � supp.�/. Since AtB D supp.h/, it follows that h fixes all
points in C . Similarly, since k D �h��1, we have supp.k/ D �.supp.h// D C tB .
Thus, k fixes all points in A. We will assume that B is nonempty since otherwise h

and k have disjoint supports, in which case T D Œk; h�1� D id.
Since k D �h��1 and � fixes all points in B , the following are true:

(a) If q 2 B and h˙1.q/ 2 B , then k˙1.q/ D h˙1.q/.
(b) If q 2 B and h˙1.q/ 2 A, then k˙1.q/ 2 C .

In addition, since supp.h/ D A t B , one of (a) or (b) must hold for every q 2 B .
Note that if p 2 � n .A t B t C /, then T .p/ D p. All other p 2 � satisfy the

hypotheses of exactly one of the following assertions:

(I) If p 2 A and h.p/ 2 A, then T .p/ D p. (�)
(II) If p 2 A and h.p/ 2 B , then T .p/ D h.p/. .A ! B/

(III) If p 2 C and k�1.p/ 2 C , then T .p/ D p. (�)
(IV) If p 2 C and k�1.p/ 2 B , then one of the following holds:

(IVa) h�1k�1.p/ 2 A, in which case T .p/ D h�1k�1.p/. .C ! A/

(IVb) h�1k�1.p/ 2 B , in which case T .p/ D k�1.p/. .C ! B/

(V) If p 2 B and h.p/ 2 B , then one of the following holds:

(Va) h�1.p/ 2 A, in which case T .p/ D h�1.p/. .B ! A/

(Vb) h�1.p/ 2 B , in which case T .p/ D p. (�)

(VI) If p 2 B and h.p/ 2 A, then T .p/ D k.p/. .B ! C/

The assertions in each of the above situations can be verified by tracing the location
(either A, B , or C ) of the point p through the commutator T D kh�1k�1hI in doing
this, one uses the conditions (a) and (b) listed above, as well as the fact that h˙1 D id
on C and k˙1 D id on A.
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For instance, situation (II) is checked as follows. By assumption, h.p/ 2 B .
Then, by (b) applied to q D h.p/, we have k�1h.p/ 2 C . Since h�1 acts trivially on
C , we have h�1k�1h.p/ D k�1h.p/, and thus T .p/ D k.h�1k�1h.p// D h.p/, as
claimed. This trace can be summarized in the following way:

(II):

�
p

A

�
h7�!

�
h.p/

B

�
k�1

7���!
�
k�1h.p/

C

�
h�1

7���!
�
k�1h.p/

C

�
k7��!

�
h.p/

B

�
:

To verify situation (IVa) as a further example, the trace is illustrated by:

(IVa):

�
p

C

�
h7�!

�
p

C

�
k�1

7���!
�
k�1.p/

B

�
h�1

7���!
�
h�1k�1.p/

A

�
k7��!

�
h�1k�1.p/

A

�
:

In situation (IVa), the application of h is trivial since h is the identity on C , the
application of k is trivial since k is the identity on A, and all other labels and locations
follow by the assumptions of (IVa). The remaining situations labelled by roman
numerals can be verified through similar reasoning.

Several useful observations about T are drawn from the above list of statements.
First, note that for each ordered pair .	; 
/ 2 fA; B; C g2, there is at most one situ-
ation in the above list such that p 2 	 and T .p/ 2 
; all such pairs are represented,
with the exception of .A; C /. Consequently, having knowledge about how T acts on
a point p with respect to the sets fA; B; C g implies information about how T acts on
p in terms of the maps h and k. As an example, using statement (II), we see that if
p 2 A and T .p/ 2 B , then it must follow that T .p/ D h.p/. As a further important
example, we see that if p and T .p/ are both in the same 	 2 fA; B; C g, then p is
fixed by T ; this observation corresponds to the situations (I), (III), and (Vb) that are
marked by (�) in the above list.

These properties are now used to show that T 6jB D idB . Let x 2 B; if T .x/ 2 B ,
then T .x/ D x by statement (Vb). Otherwise, there are two cases to consider:

Case I: Suppose that T .x/ 2 A. Then x must satisfy situation (Va), which
implies that h.x/ 2 B and h�1.x/ 2 A. Thus y D T .x/ D h�1.x/. It is now
the case that y 2 A and h.y/ D x 2 B , so y satisfies situation (II). It follows that
T .y/ D h.y/ D x, which shows that T 2.x/ D x in this case.

Case II: Suppose that T .x/ 2 C . Then x satisfies situation (VI), so h.x/ 2 A

and y D T .x/ D k.x/. Thus y 2 C and k�1.y/ D x 2 B , so y must satisfy either
situation (IVa) or (IVb). If y satisfies (IVb), then T .y/ D k�1.y/ D x, in which case
T 2.x/ D x. Otherwise, assume that y satisfies (IVa). Then h�1k�1.y/ D h�1.x/ 2
A and z D T .y/ D h�1k�1.y/ D h�1.x/ 2 A. Since z 2 A and T .z/ ¤ z, it must
be the case that z satisfies situation (II). Thus, T .z/ D h.z/ D x, and it follows that
T 3.x/ D x.

As all points x 2 B have a T -orbit consisting of one, two, or three points, it
follows that T 6jB D idB . Considering T 6jA, note that points in A \ T �1.A/ are
fixed by T , and note that points in A \ T �1.B/ are fixed by T 6 from the above
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argument. Since T .A/ � A [ B , it follows that T 6jA D idA. Similarly, since points
in C \ T �1.C / are fixed by T and all other points in C map to A [ B , we also have
that T 6jC D idC ; which completes the proof that T 6 D id.
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