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Existence, covolumes and infinite generation of lattices
for Davis complexes

Anne Thomas™

Abstract. Let X be the Davis complex for a Coxeter system (W, S). The automorphism group
G of X is naturally a locally compact group, and a simple combinatorial condition due to
Haglund-Paulin and White determines when G is nondiscrete. The Coxeter group W may be
regarded as a uniform lattice in G. We show that many such G also admit a nonuniform lattice
I', and an infinite family of uniform lattices with covolumes converging to that of I". It follows
that the set of covolumes of lattices in G is nondiscrete. We also show that the nonuniform
lattice I is not finitely generated. Examples of X to which our results apply include buildings
and non-buildings, and many complexes of dimension greater than 2. To prove these results, we
introduce a new tool, that of “group actions on complexes of groups”, and use this to construct
our lattices as fundamental groups of complexes of groups with universal cover X.
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1. Introduction

Let G be a locally compact topological group, with Haar measure . A discrete
subgroup I' < G is a lattice if I'\G carries a finite G-invariant measure, and is
uniform if T\ G is compact. Some basic questions are:

(1) Does G admit a (uniform or nonuniform) lattice?
(2) What is the set of covolumes of lattices in G, that is, the set of positive reals

V(G) := {u(I'\G) | T < G is a lattice}?

(3) Are lattices in G finitely generated?

These questions have been well studied in classical cases. For example, suppose
that G is a reductive algebraic group over a local field K of characteristic 0. Then G
admits a uniform lattice, constructed by arithmetic means (Borel-Harder [4]), and a
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nonuniform lattice only if K is archimedean (Tamagawa [28]). If G is a semisimple
real Lie group, the set V(G) is in most cases discrete (see [23] and its references). If
in addition G is simple and higher-rank, then G and hence its lattices have Kazhdan’s
property (T) (see, for example, [24]). Since countable groups with property (T) are
finitely generated, it follows that all lattices in G are finitely generated.

A nonclassical case is G the automorphism group of a locally finite tree 7. The
study of lattices in G = Aut(7") was initiated by Bass and Lubotzky, and has yielded
many surprising differences from classical results (see the survey [23] and the refer-
ence [3]). For example, the set V(G) is in many cases nondiscrete, and nonuniform
tree lattices are never finitely generated.

In fact, the automorphism group G of any locally finite polyhedral complex X is
naturally a locally compact group (see Section 2.1). For many X with dim(X) > 2,
there is greater rigidity than for trees, as might be expected in higher dimensions.
For instance, Burger—-Mozes [9] proved a ‘Normal Subgroup Theorem’ for products
of trees (parallel to that of Margulis [24] for higher-rank semisimple Lie groups),
and Bourdon—Pajot [7] and Xie [33] established quasi-isometric rigidity for certain
Fuchsian buildings. On the other hand, lattices in G = Aut(X) can exhibit the
same flexibility as tree lattices. For example, the set V(G) is nondiscrete for certain
right-angled buildings [29] and Fuchsian buildings [30]. Another example is density
of commensurators of uniform lattices in G, proved by Haglund [15] for certain 2-
dimensional Davis complexes, and by Haglund [18] and Kubena—Thomas [21] for
right-angled buildings. Apart from right-angled buildings, very little is known for X
of dimension > 2. Almost nothing is known for X not a building.

In this paper we consider Questions (1)—(3) above for lattices in G = Aut(X),
where X is the Davis complex for a Coxeter system (W,S) (see [11] and Sec-
tion 2.2 below). The Davis complex is a locally finite, piecewise Euclidean CAT(0)
polyhedral complex, and the Coxeter group W may be regarded as a uniform lat-
tice in G. Our results are the Main Theorem and its Corollaries 1.1 and 1.2 be-
low, which establish tree-like properties for lattices in many such G. After stating
these results, we discuss how they apply to (barycentric subdivisions of) Fuchsian
buildings and Platonic polygonal complexes, and to many Davis complexes ¥ with
dim(X) > 2.

To state the Main Theorem, recall that for a Coxeter system (W, S) with W = (S |
(st)™st),and any T C S, the special subgroup Wr is the subgroup of W generated
by the elements s € T'. A special subgroup Wr is spherical if it is finite, and the set
of spherical special subgroups of W is partially ordered by inclusion. The poset of
nontrivial spherical special subgroups is an abstract simplicial complex L, called the
nerve of (W, S). We identify each generator s € S with the corresponding vertex
Wisy = (s) of L, and denote by A the group of label-preserving automorphisms of L,
that is, the group of automorphisms o of L such that mg; = my(5)e() forall s,z € S.
The group G = Aut(X) is nondiscrete if and only if there is a nontrivial & € A such
that o fixes the star in L of some vertex s (see Haglund—Paulin [19] and also White
[32]).
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Main Theorem. Let (W, S) be a Coxeter system, with nerve L and Davis complex
3. Let A be the group of label-preserving automorphisms of L. Assume that there
are vertices s1 and s, of L, and nontrivial elements a1, oy € A such that fori = 1,2:

(1) o fixes the star of s3—; in L;
(2) the subgroup (o;) of A acts freely on the («; )-orbit of s;, inparticular o (s;) # si;
(3) for allt; # s; such that t; is in the (o;)-orbit of s;, my;;;, = 00; and

(4) all spherical special subgroups Wy with s; € T are halvable along s; (see
Definition 1.4 below).

Then G = Aut(X) admits

* a nonuniform lattice I'"; and
* an infinite family of uniform lattices (I'y) such that w(I',\G) — w(T'\G),
where | is Haar measure on G.

Corollary 1.1. The set of covolumes of lattices in G is nondiscrete.
Corollary 1.2. The group G admits a lattice which is not finitely generated.

Corollary 1.2 follows from the proof of the Main Theorem and Theorem 1.3 below.
By the discussion above, Corollary 1.2 implies that the group G in the Main Theorem
does not have property (T). This was already known for G = Aut(X), where X is any
Davis complex (Haglund—Paulin [19]); our results thus provide an alternative proof
of this fact in some cases.

We describe several infinite families of examples of Davis complexes X to which
our results apply in Section 5 below. To establish these applications, we use prop-
erties of spherical buildings in [25], and some results of graph theory from [12]. In
two dimensions, examples include the Fuchsian buildings considered in [30], and
some of the highly symmetric Platonic polygonal complexes investigated by Swiat-
kowski [27]. Platonic polygonal complexes are not in general buildings, and even
the existence of lattices (other than the Coxeter group W) in their automorphism
groups was not previously known. An example of a Platonic polygonal complex is
the (unique) CAT(0) 2-complex with all 2-cells squares, and the link of every vertex
the Petersen graph (Figure 1 below). The Main Theorem and its corollaries also apply
to many higher-dimensional ¥, including both buildings and complexes which are
not buildings.

To prove the Main Theorem, we construct the lattices I, and I' as fundamental
groups of complexes of groups with universal covers X (see [8] and Section 2.3 be-
low). The construction is given in Section 4 below, where we also prove Corollary 1.2.

Complexes of groups are a generalisation to higher dimensions of graphs of
groups. Briefly, given a polyhedral complex Y, a (simple) complex of groups G(Y')
over Y is an assignment of a local group G4 to each cell o of Y, with monomor-
phisms G, — G, whenever t C o, so that the obvious diagrams commute. The
action of a group G on a polyhedral complex X induces a complex of groups G(Y')
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Figure 1. Petersen graph.

over Y = G\X. A complex of groups is developable if it is isomorphic to a com-
plex of groups induced in this way. A developable complex of groups G(Y') has
a simply-connected universal cover G(7 ), equipped with a canonical action of the
Sfundamental group of the complex of groups w1(G(Y)).

A key difference from graphs of groups is that complexes of groups are not in
general developable. In addition, even if G(Y) is developable, with universal cover
say X, it may be impossible to identify X of dimension > 2 using only local data such
as the links of its vertices (see Ballmann—Brin [1] and Haglund [14]). To ensure that
our complexes of groups are developable with universal cover X, we use covering
theory for complexes of groups (see [8] and [22], and Section 3.1 below). The main
result needed is that if there is a covering of complexes of groups G(Y) — H(Z),
then G(Y) is developable if and only if H(Z) is developable, and the universal covers
of G(Y') and H(Z) are isometric (see Theorem 3.2 below).

The other main ingredient in the proof of the Main Theorem is Theorem 1.3
below, which introduces a theory of “group actions on complexes of groups”. This is
a method of manufacturing new complexes of groups with a given universal cover, by
acting on previously-constructed complexes of groups. Given a complex of groups
G(Y), and the action of a group H on Y, the H -action extends to an action on G(Y)
if there is a homomorphism from H to Aut(G(Y)). Roughly, this means that for
each cell 0 of Y, each i1 € H induces a group isomorphism G; — Gyp.q, so that
the obvious diagrams commute (see Section 3.1 below for definitions). In Section 3
below we prove:

Theorem 1.3. Let G(Y') be a (simple) complex of groups over Y, and suppose that
the action of a group H on Y extends to an action on G(Y'). Then the H -action
induces a complex of groups H(Z) over Z = H\Y such that there is a covering
of complexes of groups G(Y) — H(Z). Moreover there is a natural short exact
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sequence
1 - m(GY)) > ni(H(Z)) - H—1,

and if H fixes a vertex of Y, then
m(H(Z)) = m(G(Y)) x H.

Theorem 1.3 is also used in [21], and we expect this result to be of independent
interest. To our knowledge, group actions on complexes of groups have not previously
been considered. In [2], Bass—Jiang determined the structure of the full automorphism
group of a graph of groups, but did not define or study the graph of groups induced
by a group action on a graph of groups. A more precise statement of Theorem 1.3,
including some additional facts about H(Z), is given as Theorem 3.1 below.

The Main Theorem is proved as follows. The action of the Coxeter group W on X
induces a complex of groups G (Y1) over Y1 = W\ X, with local groups the spherical
special subgroups of W. We then construct a family of finite complexes of groups
G(Yy) and H(Z,), and two infinite complexes of groups G(Y) and H(Z ), so
that there are coverings of complexes of groups as sketched in Figure 2 below.

G(Yy) /G(YO\
H(Zn)/ \G(\Yl) H(Zx) G(7)

Figure 2. Coverings of complexes of groups.

The fundamental groups of H(Z,) and H(Z,) are, respectively, the uniform
lattices I';;, and the nonuniform lattice I', in G = Aut(X). For the local groups
of G(Yy) and G(Y), we use condition (4) in the Main Theorem to replace certain
spherical special subgroups Wr by the subgroup half(Wr), defined as follows:

Definition 1.4. Let Wr be a spherical special subgroup of W, and suppose s € T.
Then Wr is halvable along s if the union

(T —{sh U{sts |t €T —{s}}
generates an index 2 subgroup, denoted by halfs(Wr), of Wr.

The complexes of groups H(Z,) and H(Z,) are induced by group actions on,
respectively, G(Y,) and G(Y). To construct these group actions, we use the auto-
morphisms «; and o, of L.

I am grateful to Benson Farb for introducing me to these questions, and for his
continuing encouragement and advice. I also thank G. Christopher Hruska and Kevin
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Wortman for many useful discussions. This particular work was inspired by conver-
sations with Tadeusz Januszkiewicz and Jacek Swiatkowski, and much of this project
was carried out at the Mathematical Sciences Research Institute in Fall 2007, where 1
benefited from talking with Angela Kubena, Michael W. Davis, Jonathan P. McCam-
mond and Damian Osajda. I would also like to thank Karen Vogtmann for helpful
comments on this manuscript, and an anonymous referee for careful reading and
worthwhile suggestions.

2. Background

In this section we present brief background. In Section 2.1 we describe the natural
topology on G the group of automorphisms of a locally finite polyhedral complex X,
and characterise uniform and nonuniform lattices in G. Section 2.2 constructs the
Davis complex X for a Coxeter system (W, S), following [11]. In Section 2.3 we
recall the basics of Haefliger’s theory of complexes of groups (see [8]), and describe
the complex of groups G(Y7) induced by the action of W on X.

2.1. Lattices in automorphism groups of polyhedral complexes. Let G be a lo-
cally compact topological group. We will use the following normalisation of Haar
measure i on G.

Theorem 2.1 (Serre, [26]). Suppose that a locally compact group G acts on a set V
with compact open stabilisers and a finite quotient G\V. Then there is a normali-
sation of the Haar measure . on G, depending only on the choice of G-set V', such
that for each discrete subgroup I of G we have

=

w(T\G) = Vol(T\V) := ) _ T
ve\v 'V

Suppose X is a connected, locally finite polyhedral complex. Let G = Aut(X).
With the compact-open topology, G is naturally a locally compact topological group,
and the G-stabilisers of cells in X are compact and open. Hence if G\ X is finite, there
are several natural choices of sets V' in Theorem 2.1 above. By the same arguments
as for tree lattices ([3], Chapter 1), it can be shown (for any suitable set V') that a
discrete subgroup I' < G is a lattice if and only if the series Vol(I'\\ V') converges,
and I' is uniform if and only if this is a sum with finitely many terms. In Section 2.2
below we describe our choice of G-set V' when G is the group of automorphisms of
a Davis complex X.

2.2. Davis complexes. In this section we recall the construction of the Davis com-
plex for a Coxeter system. We follow the reference [11].
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A Coxeter group is a group W with a finite generating set S and presentation of
the form

W={(seS|s*=1foralls €S, (st)™' = 1foralls,t € S withs # 1)

with mg; an integer > 2 or mg; = 00, meaning that st has infinite order. The pair
(W, S) is called a Coxeter system.

Example 1. This example will be followed throughout this section, and also referred
to in Sections 2.3 and 4 below. Let

W = (51,52,53,54,85 | $7 = 1, (5154)™ = (5254)™ = (5350)" = 1,

(Slss)m/ = (sts)ml = (S3S5)m/ =1)

where m and m’ are integers > 2.

Let (W, S) be a Coxeter system. A subset T of S is spherical if the corresponding
special subgroup Wr is spherical, that is, Wr is finite. By convention, Wy is the trivial
group. Denote by § the set of all spherical subsets of S. The set § is partially ordered
by inclusion, and the poset S~y is the nerve L of (W, S) (this is equivalent to the
description of L in the introduction above). By definition, a nonempty set 7" of
vertices of L spans a simplex o7 in L if and only if 7 is spherical. We identify the
generator s € S with the vertex {s} of L. The vertices s and ¢ of L are joined by an
edge in L if and only if mg;, is finite, in which case we label this edge by the integer
mysy. The nerve L of Example 1 above, with its edge labels, is sketched in Figure 3
below.

Figure 3. Nerve L of Example 1, with edge labels.

We denote by K the geometric realisation of the poset §. Equivalently, K is the
cone on the barycentric subdivision of the nerve L of (W, S). Note that K is compact
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and contractible, since it is the cone on a finite simplicial complex. Each vertex of K
has type a spherical subset of S, with the cone point having type @. For Example 1
above, K and the types of its vertices are sketched on the left of Figure 4.

{51.54} 54 {s3.54} K4
{s3.54} @
N B ) . S S X
¥ K21
{51,855} ' 85 {s3.55} : Ks
¢ r
{5‘2,55}

Figure 4. K and types of vertices (left) and mirrors (right) for Example 1.

For each s € S let K be the union of the (closed) simplices in K which contain
the vertex s but not the cone point. In other words, Kj is the closed star of the vertex
s in the barycentric subdivision of L. Note that K and K, intersect if and only if
my; is finite. The family (K)ses is a mirror structure on K, meaning that (Kj)ses
is a family of closed subspaces of K, called mirrors. We call K the s-mirror of K.
For Example 1 above, the mirrors K; = Kj; are shown in heavy lines on the right of
Figure 4.

For each x € K, put

Sx):={se S |xe K}

Now define an equivalence relation ~ on the set W x K by (w, x) ~ (w’, x’) if and
only if x = x” and w™'w’ € Wy(y). The Davis complex X for (W, S) is then the
quotient space

S = (W x K)/~.

The types of vertices of K induce types of the vertices of 3, and the natural W -action
on W x K descends to a type-preserving action on %, with compact quotient K, so
that the W -stabiliser of a vertex of X of type T € § is a conjugate of the spherical
special subgroup Wr.

We identify K with the subcomplex (1, K) of X, and write wK for the translate
(w, K), where w € W. Any wK is called a chamber of X. The mirrors K of K, or
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any of their translates by elements of W, are called the mirrors of ¥. Two distinct
chambers of ¥ are s-adjacent if their intersection is an s-mirror, and are adjacent if
their intersection is an s-mirror for some s € S. Note that the chambers wK and
w’K are s-adjacent if and only if w™'w’ = s, equivalently w’ = ws and w’s = w.
For Example 1 above, part of the Davis complex X for (W, §) is shown in Figure 5.
There are 2m copies of K glued around the vertices of types {s;, s4}, fori = 1,2, 3,
since Wiy, 5,1 has order 2m. Similarly, there are 2m’ copies of K glued around the

vertices of types {s;, ss}, fori = 1,2, 3.

The Davis complex ¥ may be metrised with a piecewise Euclidean structure such
that ¥ is a complete CAT(0) space (Moussong, see Theorem 12.3.3 of [11]). From

now on we will assume that 3 is equipped with this metric.

5453 K|

s1saK N g 54K
777777777777 s1K K 53K
s155K s5K \

Figure 5. Part of X, for Example 1.

S5S1K
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Suppose that G = Aut(X) is the group of automorphisms of a Davis complex
3. Since W acts cocompactly on X, with finite stabilisers, it may be regarded as a
uniform lattice in G. We take as the set V' in Theorem 2.1 above the set of vertices
of ¥ of type @. Then the covolume of W is 1, since W acts simply transitively on V.

2.3. Complexes of groups. We now outline the basic theory of complexes of groups,
following Chapter II1.€ of [8]. The definitions of the more involved notions of
morphisms and coverings of complexes of groups are postponed to Section 3.1 below.

In the literature, a complex of groups G(Y) is constructed over a space or set Y
belonging to various different categories, including simplicial complexes, polyhedral
complexes, or, most generally, scwols (small categories without loops). In each case
there is a set of vertices, and a set of oriented edges with a composition law. The
formal definition of a scwol is:

Definition 2.2. A scwol X is the disjoint union of a set V(X) of vertices and a set
E(X) of edges, with each edge a oriented from its initial vertex i (a) to its terminal
vertex ¢ (a), suchthati(a) # t(a). A pairofedges (a, b) is composableifi(a) = t(b),
in which case there is a third edge ab, called the composition of a and b, such that
i(ab) =i(b),t(ab) =t(a)andifi(a) = t(b)andi(b) = t(c) then (ab)c = a(bc)

(associativity).

We will always assume that scwols are connected (see Section IIL.€.1.1 of [8]).
Morphisms of scwols and group actions on scwols are defined as follows:

Definition 2.3. Let X, Y and Z be scwols. A nondegenerate morphism f:Y — Z
is a map that sends V(Y) to V(Z), sends E(Y) to E(Z) and is such that:

(1) foreacha € E(Y), we have i(f(a)) = f(i(a)) and t(f(a)) = f(t(a));

(2) for each pair of composable edges (a, b) in Y, we have f(ab) = f(a) f(b);
and

(3) for each vertex o € V(Y), the restriction of f to the set of edges with initial
vertex o is a bijection onto the set of edges of Z with initial vertex f (o).

A morphism of scwols f: Y — Z is a functor from the category Y to the category Z
(see Section III.€.A.1 of [8]). An automorphism of a scwol X is a morphism from
X to X that has an inverse.

Definition 2.4. An action of a group G on a scwol X is a homomorphism from G to
the group of automorphisms of X such that foralla € E(X) andall g € G:

(1) g-i(a) # t(a); and
(2) ifg-i(a) =i(a)theng-a = a.

Suppose now that X is the Davis complex for a Coxeter system (W, §), as defined
in Section 2.2 above. Recall that each vertex 0 € V(X) has type T a spherical subset
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of S. The edges E(X) are then naturally oriented by inclusion of type. That is, if the
edge a joins the vertex o of type T to the vertex o’ of type T’, then i(a) = o and
t(a) = o’ exactly when T € T'. Tt is clear that the sets V(X) and E(X) satisfy the
properties of a scwol. Moreover, if Y is a subcomplex of X, then the sets V(YY) and
E(Y) also satisfy Definition 2.2 above. By abuse of notation, we identify ¥ and Y
with the associated scwols.

We now define complexes of groups over scwols.

Definition 2.5. A complex of groups G(Y') = (Go, Va, a,p) Overascwol Y is given
by:
(1) a group G4 for each o € V(Y), called the local group at o;
(2) amonomorphism ¥, : Giq) = Gy(q) along the edge a foreacha € E(Y); and
(3) for each pair of composable edges, a twisting element g, 5 € G¢(q), such that

Ad(ga,b) oYab = Ya oYy

where Ad(g,,5) is conjugationby g, 5 in G;(4), and for each triple of composable
edges a, b, c the following cocycle condition holds

VYa (gb,c) 8a,bc = 8a,b 8ab,c-

A complex of groups is simple if each g, p is trivial.

Example. This example will be followed throughout this section, and used in the
proof of the Main Theorem in Section 4 below. Let (W, S) be a Coxeter system with
nerve L and let K be the cone on the barycentric subdivision of L, as in Section 2.2
above. Put Y; = K, with the orientations on edges discussed above. We construct
a simple complex of groups G(Y7) over Y; as follows. Let 0 € V(Y;). Then o
has type a spherical subset T of S, and we define G, = Wr. All monomorphisms
along edges of Y are then natural inclusions, and all g, j are trivial. For (W, S) asin
Example 1 of Section 2.2 above, the complex of groups G(Y1) is shown in Figure 6
below. In this figure, D2, and D,,, are the dihedral groups of orders 2m and 2m’
respectively, and C; is the cyclic group of order 2.

Suppose a group G acts on a scwol X, as in Definition 2.4 above. Then the
quotient ¥ = G\ X also has the structure of a scwol, and the action of G induces
a complex of groups G(Y) over Y (this construction is generalised in Section 3.2
below). Let Y = G\ X with p: X — Y the natural projection. For each o € V(Y),
choose a lift 6 € V(X) such that p(0) = o. The local group G, of G(Y) is then
defined to be the stabiliser of ¢ in G, and the monomorphisms ¥, and elements g, 5
are defined using further choices. The resulting complex of groups G(Y') is unique
up to isomorphism (see Definition 3.3 below).

A complex of groups is developable if it is isomorphic to a complex of groups
G(Y) induced, as just described, by such an action. Complexes of groups, unlike
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(s4) = C2
Wisi.say = Doam & ® Wiss.s543 = Dom
Wiss 543 = Dop? - o
Wy = {1
(s1) =Co & 4 a3 (53) = Cs
(s2) & 2
Wisi.ssy = Dap ’ I : Wess.ssy = Domr
: (s5) = C2
Wiss.ss3 = Dopr ¢

Figure 6. The complex of groups G (Y1), for Example 1 of Section 2.2.

graphs of groups, are not in general developable. The complex of groups G(Y7)
above is developable, since it is the complex of groups induced by the action of W
on X, where for each o € V (Y1), with o of type T, we choose ¢ in X to be the vertex
of(1,K) = K C X of type T.

Let G(Y') be acomplex of groups. The fundamental group of the complex of groups
71(G(Y)) is defined so that if Y is simply connected and G(Y) is simple, 71 (G(Y'))
is isomorphic to the direct limit of the family of groups G, and monomorphisms .
For example, since Y; = K is contractible and G (Y1) is a simple complex of groups,
the fundamental group of G(Y;) is W.

If G(Y) is a developable complex of groups, then it has a universal cover é(\Y ).
This is a connected, simply-connected scwol, equipped with an action of 71 (G(Y)),
so that the complex of groups induced by the action of the fundamental group on the
universal cover is isomorphic to G(Y'). For example, the universal cover of G(Y7)
is 2.

Let G(Y) be a developable complex of groups over Y, with universal cover X and
fundamental group I'. We say that G (Y') is faithful if the action of I' on X is faithful,
in which case we may identify I with its image in Aut(X). If X is locally finite, then
with the compact-open topology on Aut(X), by the discussion in Section 2.1 above
the subgroup I' < Aut(X) is discrete if and only if all local groups of G(Y) are finite.
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Moreover, if Aut(X) acts cocompactly on X, a discrete I' < Aut(X) is a uniform
lattice in Aut(X) if and only if ¥ =~ I'\ X is finite, and a discrete I' < Aut(X) is
a nonuniform lattice if and only if ¥ = I'\ X is infinite and the series Vol(I'\\}V)
converges, for some V' C X on which G = Aut(X) acts according to the hypotheses
of Theorem 2.1 above.

3. Group actions on complexes of groups

In this section we introduce a theory of group actions on complexes of groups. The
mainresultis Theorem 3.1 below, which makes precise and expands upon Theorem 1.3
of the introduction. The terms appearing in Theorem 3.1 which have not already been
discussed in Section 2.3 above will be defined in Section 3.1 below, where we also
introduce some notation. In Section 3.2 below we construct the complex of groups
induced by a group action on a complex of groups, and in Section 3.3 we construct
the induced covering. Using these results, in Section 3.4 we consider the structure of
the fundamental group of the induced complex of groups.

We will require only actions on simple complexes of groups G(Y) by simple
morphisms; this case is already substantially technical. If in addition the action on
Y has a strict fundamental domain, it is possible to make choices so that the induced
complex of groups is also simple, and many of the proofs in this section become
much easier. However, in our applications, the group action will not necessarily have
a strict fundamental domain.

Theorem 3.1. Let G(Y) be a simple complex of groups over a connected scwol Y , and
suppose that the action of a group H on Y extends to an action by simple morphisms
on G(Y). Then the H-action induces a complex of groups H(Z) over Z = H\Y,
with H(Z) well defined up to isomorphism of complexes of groups, such that there
is a covering of complexes of groups

GY)— H(Z).
Moreover there is a natural short exact sequence
1l > m((GY)) »>m(H(Z) - H — 1,
and if H fixes a vertex of Y, then
mi(H(Z)) = m(G(Y)) x H.

Finally, if G(Y) is faithful and the H-action on G(Y) is faithful, then H(Z) is
faithful.

We will use the following general result on functoriality of coverings (which is
implicit in [8], and stated and proved explicitly in [22]).
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Theorem 3.2. Let G(Y) and H(Z) be complexes of groups over scwols Y and
Z. Suppose there is a covering of complexes of groups ®: G(Y) — H(Z). Then
G(Y) is developable if and only if H(Z) is developable. Moreover, ® induces a
monomorphism of fundamental groups

11(G(Y)) = mi(H(Z))
and an equivariant isomorphism of universal covers
G(Y) = H(Z).

3.1. Definitions and notation. We gather here definitions and notation needed for
the statement and proof of Theorem 3.1 above. Throughout this section, ¥ and Z
are scwols, G(Y) = (Gg, ¥,) is a simple complex of groups over Y, and H(Z) =
(Hz.04,h4p) is a complex of groups over Z.

Definition 3.3. Let f: Y — Z be a morphism of scwols (see Definition 2.3 above).
A morphism ®: G(Y) — H(Z) over f consists of
(1) ahomomorphism ¢, : G, — Hp(s) foreach o € V(Y'), called the local map at
o; and
(2) anelement ¢(a) € Hy(f(q)) for each a € E(Y') such that the diagram

Va
Gi(a) Gi@)
¢i(a)l \L¢t(a)
Ad(¢(a))obr(a)
Hy (i(ay) Hy(1(a))

commutes and for all pairs of composable edges (a, b) in E(Y),
¢(ab) = ¢(a) Ya(P (D) hr@),rb)-

A morphism is simple if each element ¢ (a) is trivial. If f is an isomorphism of
scwols, and each ¢, an isomorphism of the local groups, then ® is an isomorphism
of complexes of groups.

We introduce the following, expected, definitions. An automorphism of G(Y) is
an isomorphism ®: G(Y) — G(Y). It is not hard to verify that the set of automor-
phisms of G(Y') forms a group under composition, which we denote Aut(G(Y)) (see
Section II1.€.2.4 of [8] for the definition of composition of morphisms). We then say
that a group H acts on G(Y) if there is a homomorphism

H — Aut(G(Y)).

Our notation is as follows. Suppose H acts on G(Y). Then in particular, H acts
on the scwol Y in the sense of Definition 2.4 above. We write the action of H on Y as
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o—~h-candavr h-a,forhe H,o € V(Y)anda € E(Y). Theelementh € H
induces the automorphism ®” of G(Y). The data for ®” is a family (¢3)gey(y) of
group isomorphisms ¢g : Gy — Gp., and a family of elements (¢” (a))qe E(y) With
P"(a) € G (h-a)» satistying the definition of morphism above (Definition 3.3).

We say that the H -action is by simple morphisms if each ®” is simple, that is, if
each ¢"(a) € G (h-q) is the trivial element. Explicitly, for each a € E(Y') and each
h € H, the diagram

Ya
Gi(a) Gt

¢ih(a)l lﬁ(a)

Yha
Ghi(a) . Ghi(a)

commutes.
.y . . 4 . .
We note also that the composition of simple morphisms ®" o d" is the simple
. / .
morphism ®"'" with local maps

Wh =g o ph. (1)

Finally we recall the definition of a covering of complexes of groups.

Definition 3.4. A morphism ®: G(Y') — H(Z) over a nondegenerate morphism of
scwols f: Y — Z (see Definition 2.3 above) is a covering of complexes of groups
if further:

(1) each ¢y is injective; and
(2) foreacho € V(Y)and b € E(Z) such that t(b) = f(0), the map on cosets

Dy /p ( I Go/%(@'@))) — Hyo)/0p(H;p))

acf—1w)
t(a)=o0

induced by g — ¢5(g)¢(a) is a bijection.

3.2. The induced complex of groups and its properties. Suppose that a group H
acts by simple morphisms on a simple complex of groups G(Y) = (Gg,V¥,). In
this section we construct the complex of groups H(Z) induced by this action, prove
that H(Z) is well defined up to isomorphism of complexes of groups and discuss
faithfulness.

Let Z be the quotient scwol Z = H\Y and let p: Y — Z be the natural
projection. For each vertex t € V(Z) choose a representative T € V(Y') such that
p(T) = t. Let Stabg (7) be the subgroup of H fixing 7 and let G; be the local group
of G(Y) at 7. Since the H-action is by simple morphisms, by equation (1) above
there is a group homomorphism ¢ : Stabg (T) — Aut(G3z) given by ((h) = qbé‘. For
each t € V(Z) we then define the local group H, to be the corresponding semidirect
product of G; by Stabg (7), that is,

H; = Gz X Staby (7) = G; x Staby (7).
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For each edge a € E(Z) with i(a) = t there is, since H acts on Y in the
sense of Definition 2.4 above, a unique edge a € E(Y) such that p(a) = a and
i(a) = i(a) = t. Foreach a € E(Z) choose an element 1, € H such that

hg - t(a) = t(a).
Lemma 3.5. Let g € G;3) = Gi(Tz) and h € Staby (i(_a)). Then the map

ha —
Ou: (8, 1) > (&) © Va(Q), hahthy")
is a monomorphism H;gy — H; ().
Proof. We will show that 6, is a group homomorphism. Since ¢f(‘;), ¥ and the
conjugation i + h,hh ! are all injective, the conclusion will then follow.

Letg,g' € Gy and h, h' € Stabg (i(a)). Note that since & and b’ fix i (a) =
i(a), they fix the edge a and hence fix the vertex (@) as well. We have

0a((g. 1)(8. 1)) = Oa(gPlis(8). hI') = (1) © V(g9 (8)), hahh' 1)
while
Oa(. 1)0a (', 1) = (pis) © Va(g). h hh—l)wf&) o Ya(g)). ha'hy")

= (@l 0 Va9 o gl o a(g), hahh k).

. . —1 . .
After applying equation (1) above to the map ¢"¢"a" and some cancellations, it
remains to show that

ﬁ l(a)(g ) = ¢t(a) © ‘//a(g)
This follows from the fact that ®” is a simple morphism with /1 - @ = a. O

To complete the construction of H(Z), for each composable pair of edges (a, b)
in E(Z), define
hap = hahbh;bl.

One checks that h, , € Stabgy (t(_a)) hence (1,5,,) € Hy(,). By abuse of notation
we write 1, p for (1,h4).

Proposition 3.6. The datum H(Z) = (Hy, 04, hgp) is a complex of groups.

Proof. Given Lemma 3.5 above, it remains to show that for each pair of composable
edges (a,b) in E(Z),
Ad(ha,b) © eab = ea ° ebv

and that the cocycle condition holds. Let (g, /) € H;p) = Gz(b) X Stabg (l (b)). We
compute

Ad(a,p) © 6ap(g. 1) = (et 0 8 o Yzz(g). haphavhhigyhyh)
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while
6 2 05(8. 1) = (1) > Va o $1s o V5(9). hahphhy hy).

By definition of A, j it remains to show equality in the first component.
By equation (1) and the definition of A, p,

ha.b _ ha hb h;l}
Pian = P1@ ° Puar) © Pitary

Hence it suffices to prove

hp

DI o Vs = Vao L o V. @)

Since G(Y) is a simple complex of groups, and ab is the composition of the edges
h;l -a and b, we have

Vap = Viy1a ° Vi

Applying this, and the fact that ¢ is a simple morphism on the edge h;ld, we have

1(b)

hp ol _
Prapy ° Vab = sy © Viyra ° Vs = Vao© ¢t(b) V-
Hence equation (2) holds.
The cococycle condition follows from the definition of /4, ;. We conclude that
H(Z) is a complex of groups. O

We now have a complex of groups H(Z) induced by the action of H on G(Y).
This construction depended on choices of lifts T and of elements &, € H. We next
show (in a generalisation of Section II1.€.2.9 (2) of [8]) that:

Lemma 3.7. The complex of groups H(Z) is well defined up to isomorphism of
complexes of groups.

Proof. Suppose we made a different choice of lifts 7’ and elements £/, resulting in a
complex of groups H'(Z) = (H.,0,. ' u.p)- Anisomorphism A = ()Lg, A(a)) from
H(Z) to H'(Z) over the identity map Z — Z is constructed as follows. For each
T € V(Z), choose an element k; € H such that k; - T = 7/, and define a group

isomorphism A, : H, — H. by

Ae(g.h) = ($5(g), kohk 1),

Foreacha € E(Z), define A(a) = (1, k;q)hak
of [8], Aa) € Hz(a)

The verification that A = (A4, A(a)) is an isomorphism of complexes of groups
is straightforward. O

iyl ™. Note that by IILE 2.9 (2)



782 A. Thomas

We remind the reader that faithfulness of a complex of groups is defined in the
final paragraph of Section 2.3 above.

Lemma 3.8. If G(Y) is faithful and the H -action on Y is faithful then H(Z) is
faithful.

Proof. This follows from the construction of H(Z), and the characterisation of faith-
ful complexes of groups in Proposition 38 of [22]. O

3.3. The induced covering. Suppose H acts by simple morphisms on a simple
complex of groups G(Y), inducing a complex of groups H(Z) asin Section 3.2 above.
In this section we construct a covering of complexes of groups A: G(Y) — H(Z)
over the quotient map p: ¥ — Z.

For o € V(Y), the local maps Ay : Go — Hp() are defined as follows. Recall
that for each vertex t € V(Z) we chose alift T € V(Y) Now foreacho € V(Y), we
choose k, € H suchthatky-0 = p(o). Hence (;Sa isanisomorphism Go — G 5.
The local map Ay : G5 — Hp(s) is then defined by

Aot g = (957(8), ).

Note that each A, is injective.
For each edge a € E(Y), define

M) = (Lkyakidyhyh

where p(a) = b € E(Z). Note that since H acts on Y in the sense of Definition 2.4
above, we have k;(4) - @ = b hence kt(a)kl.—(;)hgl fixes #(b). Thus A(a) € H,@) as
required.

Proposition 3.9. The map A = (Ay, A(a)) is a covering of complexes of groups.

Proof. It may be checked that A is a morphism of complexes of groups. As noted,
each of the local maps A is injective. It remains to show that for each o € V(Y') and
b € E(Z) such that t(b) = p(c) = 7, the map on cosets

Aop: ( [ Go/lﬁa(Gi(a))) — He/0y(H;p))

acp~l(p)
t(a)y=o0

induced by g — Ay (g)A(a) = (957 (2), k kl(a) —1) is a bijection.
We first show that A/, is injective. Suppose a and a’ are in p~1(b) with #(a) =
t(a’) = o, and suppose g, g’ € G, with g representing a coset of ¥,(Gi(g)) in G4

and g’ a coset of ¥4/ (Gj(g)) in Go. Assume that A4 (g)A(a) and A, (g")A(a’) belong
to the same coset of 6, (H;)) in H-.
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Looking at the second component of the semidirect product H, it follows from
the definition of 65 (Lemma 3.5 above) that for some & € Stabg (i (b)),

1(a

Thus kl(a/)kl(a) = h fixes i (b). Hence kl( )k,(a/) fixes k; (a)z(b) = i(a), and so
kz(a)kt(a/) fixes a. Thus k;j(g) - a = ki) -a = b = ki) -a’, hencea = a’.

Looking now at the first component of 1, (g)A(a) and A, (g")A(a") = As(g)A(a)
in the semidirect product H., by definition of 8, for some x € Gin) we have

—1

£ (9) = 00 (oo ™ o gl oy = 80 ()8 0 gl o W5 0.

t(b) t(b)

Since ¢§" is an isomorphism, and kl._(}l) -b = a, this implies that

(&)78 = 610 o Y5(x) = Va0 s () € Va(Gi)

as required. Thus the map A, is injective.

To show that A4/ is surjective, let g € Gz and h € Stabg (7),sothat (g, h) € H-.
Let a be the unique edge of ¥ with 7(a) = o and such that k, -a = hhpb. Let g’ be
the unique element of G, such that ¢5° (g') = g € Gz. We claim that A,(g")A(a)
lies in the same coset as (g, ). Now

Ao ()M (a) = ($57 (). kokihyhy") = (8. kakigyhy ).

so it suffices to show that kgki_(;)hgl € hhy, Stabg (i (b))h; *. Equivalently, we wish
to show that h;lh_lkaki_(;) fixes i (b). We have k;(4)-i(a) = i(b) by definition, and
the result follows by our choice of a. Thus A/ is surjective.

Hence A is a covering of complexes of groups. O

3.4. The fundamental group. Suppose H acts by simple morphisms on a simple
complex of groups G(Y), inducing a complex of groups H(Z) as in Section 3.2
above. In this section we establish the short exact sequence of Theorem 3.1 above, and
provide sufficient conditions for the fundamental group of H(Z) to be the semidirect
product of the fundamental group of G(Y') by H.

Fix 0p a vertex of Y and let p: Y — Z be the natural projection. We refer the
reader to Section III.€.3 of [8] for the definition of the fundamental group of G(Y)
at 0g, denoted by 71 (G(Y), 0¢9). We will use notation and results from that section
in the following proof. Let 71 (H(Z), p(09)) be the fundamental group of H(Z) at

p(00).
Proposition 3.10. There is a natural short exact sequence

1 - 71(G(Y),00) = m1(H(Z), p(09)) > H — 1.
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Proof. To obtain a monomorphism 71 (G(Y), 0¢) — w1 (H(Z), p(0p)), we use the
morphism of complexes of groups A: G(Y) — H(Z) defined in Section 3.3 above.
By Proposition II1.€.3.6 of [8], A induces a natural homomorphism

w1(A,00): m1(G(Y),00) — m1(H(Z), p(00)).

Since A is a covering (Proposition 3.9 above), Theorem 3.2 above implies that this
map 1 (A, 0¢) is in fact injective.

We next define a surjection 71 (H(Z), p(op)) — H. The group H may be
regarded as a complex of groups over a single vertex. There is then a canonical
morphism of complexes of groups ®: H(Z) — H, defined as follows. Recall that
for each t € V(Z), the local group H. is given by H; = Gz x Stabg (7). The local
map ¢, : H; — H in the morphism & is defined to be projection to the second factor
Stabg (7) < H. Foreach edge b of Z, we define ¢ (b) = hj. It may then be checked
that ® is a morphism.

By Proposition II1.€.3.6 of [8], the morphism & induces a homomorphism of
fundamental groups

m1(®, p(00)): m1(H(Z), p(oo)) — H.

By III.€.3.14 and Corollary III.€.3.15 of [8], if G(Y) were a complex of trivial
groups, this map would be surjective. Since the image of w1 (P, p(0p)) does not in
fact depend on the local groups of G(Y'), we have that in all cases, 71 (P, p(op)) is
surjective, as required.

It follows from definitions that the image of the monomorphism 1 (A, 09) is the
kernel of the surjection 71 (®, p(0p)). Hence the sequence above is exact. O

Corollary 3.11. If H fixes a vertex of Y,

n1(H(Z), p(0o)) = m1(G(Y), 00) x H.

Proof. Suppose that H fixes the vertex o of Y. For the surjective homomorphism
m1(®, p(0og)): m1(H(Z), p(0g)) — H given in the proof of Proposition 3.10 above,
we construct a section t: H — mw1(H(Z), p(09)).

The vertex o is the unique lift 7 of a vertex p(0) = 7 € Z. Hence

H, = G; xStaby () = G5 x H.

By definition of the surjection 71 (®, p(09)): m1(H(Z), p(op)) — H, a section
t: H— m1(H(Z), p(0yp)) is then given by the inclusion H — H. 0

This completes the proof of Theorem 3.1.
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4. Proof of the Main Theorem

We now prove the Main Theorem and Corollary 1.2, stated in the introduction.
Throughout this section, we adopt the notation of the Main Theorem, and assume
that the vertices s and s, of the nerve L, and the elements «; and o of the group A
of label-preserving automorphisms of L, satisfy conditions (1)—(4) of its statement.
In Section 4.1 we introduce notation, and construct a family of finite polyhedral com-
plexes Y, for n > 1, and an infinite polyhedral complex Yo,. We then in Section 4.2
construct complexes of groups G(Y},) and G(Y) over these spaces, and show that
there are coverings of complexes of groups G(Y,) — G(¥1) and G(Y) — G(Y7).
In Section 4.3 we define the action of a finite group H, on Y;,, and of an infinite group
H, on Y, and then in Section 4.4 we show that these actions extend to actions on
the complexes of groups G(Y;) and G(Y). In Section 4.5 we combine these results
with Theorem 3.1 above to complete the proof of the Main Theorem. Corollary 1.2
is proved in Section 4.6.

4.1. Thespaces Y, and Y. Inthissection we construct afamily of finite polyhedral
complexes Y, and an infinite polyhedral complex Y.

We first set up some notation. Fori = 1,2, let ¢; > 2 be the order of ;. It
will be convenient to put, for all k > 0, 5511 = s1 and s, 42 = 52, and similarly
Qok+1 = U1, Uok+2 = ®2, @ok+1 = ¢1 and gax 42 = ¢2. Conditions (1)—(4) of the
Main Theorem then become:

(1) foralln > 1, a, fixes the star of 5,41 in L;

(2) for all n > 1, the subgroup (&) of A acts freely on the {w,)-orbit of s,, in
particular o, () 7 Su;

(3) foralln > 1, and all #, # s, such that 7, is in the («,)-orbit of s,, my,;, = 00;
and

(4) foralln > 1, all spherical special subgroups of W which contain s, are halvable
along sy,.

We now use the sequences {s,} and {o;,} to define certain elements and subsets
of W. Let w; be the trivial element of W and for n > 2 let w, be the product

W, = $152...5,—1 € W.

Denote by W, , the one-element set {w,}. Forn > 2, and 1 < k < n, in order to
simplify notation, write ow/#—1-»/k for the composition of automorphisms

Jn—1seodk — pyJn—1 Jk
o’ =0,
where 0 < j; < q; fork <i <n. Letwj,_,,... ;. be the element of W

wjnflg--A,jk
— wnaln—l (sn_l)aln—laln—z (sn—Z) . a]n—ls---a]k+1 (sk+l)a])1—la---alk (Sk)'
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Now forn > 2and 1 < k < n, define
Wk,n = {wjn_l,m,jk e W | 0< j,‘ < qi for k <i< }’l}.
Note that if j,—; = Othen wj,_,, . . € Wkn_1.

Example. Let (W, S) be the Coxeter system in Example 1 of Section 2.2 above, with
nerve L shown in Figure 3 above. Fori = 1,2, let ; € A be the automorphism
of L which fixes the star of s3_; in L and interchanges s; and s3. Then if m and
m'’ are both even, the Main Theorem applies to this example. (If 7 = {s}, then Wr
is halvable along s with halfs(Wr) the trivial group. If T = {s, ¢}, then Wr is the
dihedral group of order 2m;, and Wr is halvable along s if and only if mg; is even,
in which case half s (Wr) is the dihedral group of order m;.) Note that g, = g» = 2,
and so, for instance,

Wiz = {1, s1a1(51), S182002(52)02(51), S15202(52) 201 (51) ),
Wa 3 = {51, 515202(52)},
W33 = {5152}.

The following lemma establishes key properties of the sets Wy ,,.

Lemma 4.1. Foralln > 1:
(1) The sets W1, Wa n, ..., Wy.n are pairwise disjoint.
Q) Foralll <k <n,if

Wip—1sesjr = Wil 4o,

(where 0 < ji < q; fork < i < n), then jx = ji, jk+1 = Jjip - and
jn—l = j;;—l-

Proof. Givenl <k <k’ <n,with0 < j; <g; fork <i <nand0 < j/ < g; for
k' <i < n, suppose that

Win—tsesdkc = Wi il )
Then
aln—1 (Sn_l)ajn—l,jn—z (Sn—2) .. e L EIY ) TP S | (sk+1)otj”_" ----- Jk!s-sJk (%)
= a1 (sum)or =192 (5 ) .. n= TR (s a1k (5p0).

By condition (1) above, for each k < i < n, the automorphism ¢; fixes s; 41, thus

qln—1sdit1 (si+l)ajn—la--~aji (si) = qIn—1soJit1sdi (Si+l)ajn—1=~-~=ji (si)

= fn—1sesdi (Si418:)-
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Also since o; fixes the star of ;41 but o; (s;) # si, we have mg, 5, = 0o. Since
a/n=1>Ji is a label-preserving automorphism, it follows that the product of the two
generators

ajn_l,...,ji+1 (Si+1)ajn—1,-..,ji (sl)

has infinite order, for each k < i < n. Similarly for each k¥’ < i < n. Thus the only

way for equation (3) to hold is if k = k’, and for each k < i < n, aiji (s;) = ozl.jf (87).
Since {w;) acts freely on the {«;)-orbit of s; and we specified 0 < j; < ¢;, the result
follows. 0

Forn > 1,and 1 < k < n, define Y , to be the set of chambers
Yin = {wK | w e W}

Recall that we are writing wK for the pair (w, K). By Lemma 4.1 above, for fixed ,
the sets Y1 5, ..., Yy » are pairwise disjoint. We now define Y, to be the polyhedral
complex obtained by “gluing together” the chambersin Y; 5, ..., ¥, », using the same
relation ~ as in the Davis complex X for (W, §). More precisely,

ue= (1 Vo)~

where, for x, x’ € K, we have (w, x) ~ (w’, x") if and only if x = x" and w™'w’ €
Ws(x). Note that Y1 = Y; 1 = K. To define Y, for each k > 1, noting that W , is
only defined for 1 < k < n, put

o0
Wk,oo = U Wk,n-
n=k

Then Y o is the set of chambers
Yk,oo = {wK | w e Wk,oo}-

Similarly to the finite case, the sets Y1 o0, Y2,00,... are pairwise disjoint, and we
define

o0
Yoo = (1 Yeoo)/~
k=1
for the same relation ~. Note that there are natural strict inclusions as subcomplexes
YicY,C---CY, C--- Y.

(In fact, Y, and Y, are subcomplexes of the Davis complex 3, but we will not adopt
this point of view.) We define a mirror of ¥, or Y to be an interior mirror if it is
contained in more than one chamber.
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s101(s1)K

s152002(s2)2(s1) K

s15200(s2)az01 (51) K

sysastay(s)ar(s2)ay(s1)K

sysas1o1(sp)aq (s2)arar(s1)K

sysasior (s (s2)aion(s) K

sys28101(s1)K

ao2(s2)

0102(51) 0 sy 5510y (51)ora(s2) K

ooy (sy)
s1s251001(s1)apaz(s2)aonoy (s1) K

Figure 7. Dual graph for Y4, with vertices and edges labelled.

Example. Let (W, S), a; and «, be as in the previous example of this section. To
indicate the construction of ¥, and Y in this case, Figure 7 below depicts the dual
graph for Yy, that is, the graph with vertices the chambers of Y4, and edges joining
adjacent chambers. The edges are labelled with the type of the corresponding interior
mirror. Figure 8 sketches the dual graph for Y.

We now describe features of Y,, and Yo, which will be needed below. The first
lemma follows from the construction of Y}, and Y, and Lemma 4.1 above.

Lemma 4.2. Let w = wj,_,,...jx € Win. All of the chambers of Y, to which
wK € Yy , is adjacent are described by the following.

(1) Forn > 1and 1 < k < n, the chamber wK is adjacent to exactly one chamber
of Yit1,n, namely it is a/n=1Jk (sy)-adjacent to the chamber w;, _, ik t1 K
of Yixin-

(2) Forn >2and 1 <k < n, the chamber wK is adjacent to exactly qr_ distinct
chambers of Yi_1 n, namely for each 0 < jr_; < qr—1, the chamber wK is
afn=tssdkedk=1 (s _y )-adjacent to the chamber wj, .. i, i K of Yk—1 -

Similarly for Y.
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o

Figure 8. Dual graph for Y.

Corollary 4.3. (1) Any vertex of Yy, is contained in at most two distinct chambers of
Y,, and similarly for Y.
(2) Any two interior mirrors of Yy, or Yoo are disjoint.

Proof. Suppose o is a vertex of Y, contained in the chamber wK, where w is as in
Lemma 4.2 above. If o is contained in more than one chamber of Y}, or Y, then o
is contained in an interior mirror K, for some s € S. By the construction of Y,, and
Lemma 4.2 above, s is either an image of s, or one of gz — distinct images of s;_1,
under some element of A. Suppose s is in the image of s;. Condition (1) of the Main
Theorem implies that mg, 5, _, = oo. Hence the mirror Kj is disjoint from each of
the g1 mirrors of types the gx_; images of sz_;. Therefore the only chambers of
Y, which contain o are the two chambers wK and wsK. Now suppose that s is one
of the gr_1 images of sg_; under some element of A. Condition (3) of the Main
Theorem implies that the mirrors of types each of these images are pairwise disjoint,
and so again o is contained in only two distinct chambers of Y,. Similarly, any two
interior mirrors of Y}, or Y, are disjoint. O

Corollary 4.4. Foralln > 2, there are g, disjoint subcomplexes of Yy, denoted by
Ynjﬁflforo < Jn—1 < gn-1, each isomorphic to Y,—_1, and with Yno_1 =Y,-1 CY,
For each 0 < j,_1 < qn—1, the subcomplex Ynjﬁfl is attached to the chamber
wp K = 5182 ...5,—1K of Y, along its mirror of type a/n=1(s,—1). An isomorphism

Fin=t: Y, — Y]
is given by sending the chamber

Wpy—ojx K € Yien—1
to the chamber

Wiyt jn—2smrix K € Yiens

and the vertex of wj, ... j. K of type T to the vertex of wj,_, j, ... j. K of type
aln=1(T), for each spherical subset T of S.
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Proof. Induction on n, using Lemma 4.2 and Corollary 4.3 above. O

4.2. Complexes of groups G(Y,) and G(Yo,). We now construct complexes of
groups G(Y;) over each Y, and G(Y~) over Yo, and show that there are coverings
G(Y,) — G(Y1) and G(Ys) — G(Y1). To simplify notation, write Y for Y}, or Y.

To define the local groups of G(Y), let 0 be a vertex of Y, of type T. By
Corollary 4.3 above, o is contained in at most two distinct chambers of Y. If o is
only contained in one chamber of Y, put G, = Wr. If o is contained in two distinct
chambers of Y, then by Corollary 4.3 above ¢ is contained in a unique interior mirror
K, with s € T. By the construction of Y, s is in the A-orbit of some s,, n > 1. By
condition (4) of the Main Theorem, it follows that the group W7 is halvable along s.
We define the local group at o to be G, = half(Wr).

The monomorphisms between local groups are defined as follows. Let a be an
edge of Y, with i(a) of type T and (a) of type T’, so that T < T’. If both of the
vertices i (a) and f (a) are contained in a unique chamber of ', then the monomorphism
V¥, along this edge is defined to be the natural inclusion Wy — Wr/. If i(a) is
contained in two distinct chambers, then i (@) is contained in a unique interior mirror
K, withs € T. Thus s € T’ as well, and so 7(a) is also contained in the mirror
K. From the definitions of half;(W7) and half (W7~), it follows that there is a
natural inclusion half (W) < half;(Wr/), and we define ¥, be this inclusion.
Finally suppose that i (@) is contained in a unique chamber of Y but # (@) is contained
in two distinct chambers of Y. Then for some k > 1, i(a) is in a chamber of
Yk » (respectively, Y o), and ¢ (a) is either in Yx_; , or in Yi 1, (respectively, in
Yk—1,00 OF Yk 41,00). Moreover (a) is contained in a unique interior mirror K, with
seT' —T.Ift(a)is in Yx_y , (respectively, Yx_; o), then we define v/, to be the
natural inclusion Wr < half(W7/). If t(a) is in Yg41,, (respectively, Yi11,00),
then we define ¥, to be the monomorphism defined on the generators t € T of Wr
by ¥, (t) := sts € halfs(Wr), that is, ¥, = Ad(s).

It is not hard to verify that for all pairs of composable edges (a,b) in Y, ¥, =
Y4 o Y. Hence we have constructed simple complexes of groups G(Y;) and G(Y o)
over Y, and Y, respectively. Note that these complexes of groups are faithful, since
by construction the local group at each vertex of type @ is trivial. Note also that
G (Y1) is the same complex of groups as constructed in Section 2.3 above, which has
fundamental group W and universal cover X.

Example. Let (W, S), @; and a, be as in the examples in Section 4.1 above. The
complex of groups G(Y>) is sketched in Figure 9. From left to right, the three
chambers here are K, 51 K and s1a1(s1) K. We denote by D,,, the dihedral group of
order 2m, with D,, the dihedral group of order m, and similarly for D,,, and D,
(recall that m and m’ are even).

Proposition 4.5. There are coverings of complexes of groups G(Y,) — G(Y1) and
G(Yoo) = G(Y1).
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Wiss.sat 2= Dam halfs, (Wis, .543) = D halfs, (Wi 543) = D Wis,.s43 = Dom
(s4) ’ ; (s4) ’ ‘ (s4)
Wiss.say = Dam & Wisi sy = Dam ¥ Wisi 54y = Dam ¥
(s3) ¢ & - il B S L (s1)
halfg, (Wis,h) = {1} half gy (Wissh) = {1}
(s2) 8" " (s2)8" - ; (s2) 8 "
(s5) S (ss) S (s5)
Wess.ss3 = Dogw halfg, (Wi, ss3) = D halfs, (Wess s53) = Dt/ Wisy 553 = Doy
[ 1' ¢
Wess.ssy = Do Wisa.ssy = Dame Wisz.ss3 = Do

Figure 9. Complex of groups G(Y2).

Proof. Let f,,: Y, — Y1 and f: Yoo — Y7 be the maps sending each vertex of Y,
or Yoo of type T to the unique vertex of Y7 = K of type T. Then by construction
of ¥, and Yo, the maps f,, and fo, are nondegenerate morphisms of scwols. We
define coverings @, : G(Y,) — G(Y1) and @ : G(Y) — G(Y1) over f, and
foo respectively. To simplify notation, write Y for respectively Y, or Yo, f for
respectively f, or foo, and @ for respectively ®,, or ®.

Let o be a vertex of Y, of type T. If the local group at ¢ is G, = Wr then the
map of local groups ¢s: G — Wr is the identity map. If the local group at o is
halfy(Wr), for some s € T, then ¢, : halfg(Wr) — Wr is the natural inclusion as
an index 2 subgroup. To define elements ¢ (a), if the monomorphism v, in G(Y') is
natural inclusion, define ¢(a) = 1. If ¥, is Ad(s), then define ¢(a) = s. It is then
easy to check that, by construction, ® is a morphism of complexes of groups.

To show that @ is a covering of complexes of groups, we first observe that each
of the local maps ¢ is injective. Now fix o a vertex of Y, of type 7’, and b an edge
of Y1 = K such that 1(b) = f(0), with i (b) of type T (hence T < T’). We must
show that the map

o 1 Go/Va(Giw) = Wr//Wr

acf=1m
t(a)y=o0
induced by g = ¢, (g)¢(a) is a bijection, where G, and G; () are the local groups
of G(Y).

First suppose that o is contained in a unique chamber of Y. Then by construction,
there is a unique edge a of Y with i(a) of type T and t (a) = o, hence a unique edge
a € f~Y(b)witht(a) = 0. Moreover, Go = Wz, Gi(q) = Wr, the monomorphism
V¥, is natural inclusion hence ¢(a) = 1, and ¢ : G, — Wy is the identity map.
Hence @,/ is a bijection in this case.
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Now suppose that o is contained in two distinct chambers of Y. Then o is
contained in a unique interior mirror K of Y, with s € T’. Assume first that s € T
as well. Then there is a unique edge a of Y with i(a) of type T and ¢ (a) = 0. This
edge is also contained in the mirror K. Hence there is a unique a € f~1(b) with
t(a) = o. By construction, we have G, = halfs(Wr/), the map ¢ : Go — Wy is
natural inclusion as an index 2 subgroup, G;(,) = half(Wr), the map v, is natural
inclusion, and ¢ (a) trivial. Since the index [Wr/ : Wr] = [halfs (W) : halfs(Wr)]
is finite, it is enough to verify that the inclusion halfs(W7/) — Wy induces an
injective map on cosets

half(Wr+) /halfs(Wr) — Wy / Wr.

For this, suppose that w, w’ € halfy(Wr/) and that wWr = w'Wyr in Wrp,. Then
w~lw’ € Wr N halfy(Wr). By definitions, it follows that w™'w’ € half(Wr), as
required.

Now assume that ¢ is contained in the interior mirror Ky, with s ¢ T. There
are then two edges aj,a, € f~1(b) such that t(a;) = t(az) = o. Without loss
of generality, ¥, is natural inclusion Wr — half (W7/) and ¢(a;) = 1, while
Ya,(g) = sgs with ¢(az) = s. Since the index [halfs(Wr/) : Wr] = %[WT/ s Wr]
is finite, it is enough to show that the map on cosets @, is surjective. Let w € Wr-.
If w € halfs(Wr/) < Wy, then the image of the coset w4, (Gi(q,)) = wWr in G,
is the coset wWr in Wr.. If w ¢ halfs(W7/), then since half(W7/) has index 2 in
Wrs, and s ¢ halfg(Wr-), there is a w’ € half(Wg/) < Wrs such that w = w's.
The image of the coset w4, (Gi(ay)) = W (sWrs) in half (Wr) is then the coset
w'¢p(a)Wr = w'sWr = wWr in Wy, Thus @4/ is surjective, as required.

We conclude that ® is a covering of complexes of groups. O

4.3. Group actionson Y, and Y. In this section we construct the action of a finite
group H, on Y, in the sense of Definition 2.4 above, and that of an infinite group
Hy on Y.

We first define the groups H, and H. For eachn > 1, let C;, denote the cyclic
group of order ¢g,. Note that Cy, = (a,). We define H; to be the trivial group and
H, = Cy,. Forn > 3, we define H, to be the wreath product

Hy = Hp—12Cq, | = (.. ((Cg12Cg2) 0 Cy3) 2. . )2Cy,, = Cgy 2Cg5 2+ 2Cy,,

that is, H, is the semidirect product by C,, _, of the direct product of g, copies of
H,,_1, where Cy,,_, acts on this direct product by cyclic permutation of coordinates.
Note that H, is a finite group of order

|Hn| — q?243-~-4n—]qg3-~~Qn—l o qZZ—zl Gn—1. (4)
We define Hyo to be the infinite iterated (unrestricted) wreath product

Hoo :=Cy 2Cy 2+ 2Cy, [ 2....
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We then have natural inclusions
H <H,<---<H,<---< Hy.

The following lemma will be needed for the proof of Corollary 1.2 in Section 4.6
below.

Lemma 4.6. The group Hy is not finitely generated.

Proof. By definition of Hy,, for any nontrivial 7 € H there is an n > 1 such that
h e H,. O

We now define the actions of H, and He on Y, and Y, respectively. This uses
the label-preserving automorphisms o, € A. Note that the action of A on the nerve
L extends to the chamber K, fixing the vertex of type . This action does not in
general have a strict fundamental domain. Inconveniently, this action also does not
satisfy condition (2) of Definition 2.4 above, since for any nontrivial « € A, there is
an edge a of K with i(a) of type @ but a(a) # a. However, to satisfy Definition 2.4,
it suffices to define actions on Y}, and Y, and then extend in the obvious way to the
scwols which are the barycentric subdivisions of these spaces, with naturally oriented
edges.

For each n > 1 fix a generator a, for the cyclic group Cg,,. Recall that o, € A
has order ¢,. Thus for any a € A, there is a faithful representation C,, — A, given
by a, — aa,a~!. Recall also that o, fixes the star in L of the vertex s,, and
that (o, ) acts freely on the (o, )-orbit of s,,. Hence a,, — aa,a~! induces an action
of C4, on the chamber K, which fixes pointwise the mirror of type «(s,+1), and
permutes cyclically the set of mirrors of types aa;” (s,), for 0 < j, < gn.

We define the action of H,, on Y, inductively as follows. The group H; is trivial.
For n > 2, assume that the action of H,_; on Y,_; has been given. The subgroup
Cy,_, of Hy then fixes the chamber w, K = s5155...5,_1K of ¥, setwise, and
acts on this chamber via a,— +— a,—1. By the discussion above, this action fixes
pointwise the mirror of type s, of w, K, and permutes cyclically the g,—; mirrors
of types ai”__ll (sn—1), with 0 < j,_1 < ¢gn—1, along which (by Lemma 4.4 above),
gn—1 disjoint subcomplexes of Y;, each isomorphic to Y,,_;, are attached.

By induction, a copy of H,—_; in H, acts on each of these copies of Y,_; in
Y,. More precisely, for 0 < j,—; < ¢qn—1, the j,—ist copy of H,—; in H, acts
on the subcomplex Y;”"7!' of Lemma 4.4 above. This action is given by conjugat-
ing the (inductively defined) action of H,_; on Y,—; C Y, by the isomorphism
F/n=1:Y, 1 — Y/"7" in Lemma 4.4. By definition, the action of C,, , cyclically
permutes the subcomplexes Yn]ﬁjl, and so we have defined an action of H, on Y.
The action of Hy on Y is similar.

We now describe the fundamental domains for these actions. For each n > 1
and each 1 < k < n, observe that H, acts transitively on the set of chambers

n—1
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Yin Let Ky = K, and for n > 2 let K,, be the quotient of the chamber w, K =
5152 ...5,—1 K by the action of C, < H, as defined above. In K,,, the mirrors of
types &' (sy—1), for 0 < ju,—1 < gn—1, have been identified. By abuse of notation,
we refer to these identified mirrors as the mirror of type s,—; of K,. Note also that
Cy,_, < H, fixes pointwise the mirror of type s, of w, K, and so we may speak of
the mirror of type s, of K;. Then a fundamental domain for the action of H, on Y,

is the finite complex

n—1

Zn = (Kl UK2U"'UK,,)/N,

where ~ means we identify the s;_j-mirrors of K;_; and K;, for 1 < i < n.
Similarly, a fundamental domain for the action of Hs, on Y is the infinite complex

Zoo = (KiUK,U---UK,U--)/~.

Finally we describe the stabilisers in H, and He, of the vertices of Y, and Y.
Let wK be a chamber of Y,, or Y. Then there is a smallest k > 1 such that
wK € Y. By construction, it follows that the stabiliser in H, or Hy, of any vertex
in the chamber wK is a subgroup of the finite group Hy. Hence H, and H, act with
finite stabilisers. Note also that for every n > 1, the action of H,, fixes the vertex
of type @ in the chamber w, K. We may thus speak of the vertex of type @ in the
quotient K, defined above. In fact, in the fundamental domains Z, and Z, defined
above, the vertex of type @ in K,,, for n > 1, has a lift in ¥, or Yo, with stabiliser the
finite group H,. We observe also that the actions of H, and H, are faithful, since
the stabiliser of the vertex of type @ of K; = K is the trivial group H;. Figure 10
shows Z and the stabilisers of (lifts of) its vertices of type @ for the example in
Section 4.1 above.

Figure 10. Fundamental domain Z .

4.4. Group actions on G(Y,) and G(Y). In this section we show that the actions
of H, and Hy on Y, and Y, defined in Section 4.3 above, extend to actions (by
simple morphisms) on the complexes of groups G(Y,) and G(Ys). To simplify
notation, write H for H, or Hs, Y for Y, or Yo, and Z for Z,, or Z . Technically,
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instead of working with G(Y'), we work with the corresponding naturally defined
complex of groups over the barycentric subdivision of Y, so that the action of H
satisfies Definition 2.4 above. By abuse of notation we will however continue to
write G(Y).

Recall that for o a vertex of Y of type 7', the local group G is either Wr or
half(Wr), and the latter occurs if and only if o is contained in an interior s-mirror
of Y withs € T. Let wK be a chamber of Y and let # € H. By definition of the
H -action, there is an o € A such that for each vertex o in wK, with o of type T,
the vertex i - ¢ of h - wK has type a(T). Moreover, if ¢ is contained in an interior
s-mirror then /-0 is contained in an interior ¢« (s )-mirror. We may thus define the local
map ¢g: Gos — Gyj.4 by ¢§(t) = «(z) foreacht € T, and (if G, = halfy(Wr)),
¢f,’(sts) = a(s)a(t)a(s). Then ¢ is an isomorphism either Wy — Wa(T), or
half s (Wr) — half,(5)(Wy (1)), as appropriate. It is not hard to verify that these local
maps define an action of H on G(Y') by simple morphisms.

4.5. Conclusion. In this section we combine the results of Sections 4.1-4.4 above
to complete the proof of the Main Theorem.

Recall that G(Y7) is developable with universal cover X (see Section 2.3). By
Proposition 3.9 and Theorem 3.2 above, it follows that the complexes of groups G(Y;)
and G(Y) are developable with universal cover X. Let H(Z,) be the complex of
groups induced by H,, acting on G(Y,), and H(Z) that induced by H,, acting
on G(Ys). By Theorem 3.1 above, there are coverings of complexes of groups
G(Y,) > H(Z,) and G(Ys) — H(Zs). Hence (by Theorem 3.2 above) each
H(Z,) and H(Z ) is developable with universal cover X.

Let I, be the fundamental group of H(Z,) and I' the fundamental group of
H(Z). Since the complexes of groups G(Y,) and G(Y) are faithful, and the
actions of H, and H are faithful, Theorem 3.1 above implies that H(Z,) and
H(Z ) are faithful complexes of groups. Thus I', and I' may be identified with
subgroups of G = Aut(X). Now G(Y,) and G (Y ) are complexes of finite groups,
and the H,- and Ho-actions have finite vertex stabilisers. Hence by construction,
H(Z,) and H(Z ) are complexes of finite groups. Therefore I',, and I" are discrete
subgroups of G. Since the fundamental domain Z, is finite, it follows that each I,
is a uniform lattice. To show that I'" is a nonuniform lattice, we use the normalisation
of Haar measure i on G = Aut(X) defined in Section 2.1 above, with the G-set V/
the set of vertices of X of type 0. Since the local groups of H(Z ) at the vertices of
type @ in Z, are Hy, H;, ..., we have

1
| Hul

u(C\G) ="
n=1

This series converges (see equation (4) above for the order of H,, and note that
each g, > 2). We conclude that I" is a nonuniform lattice in G. Moreover, as the
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covolumes of the uniform lattices I',, are the partial sums of this series, we have
w(\G) — w(I'\G), as required. This completes the proof of the Main Theorem.

4.6. Proof of Corollary 1.2. The nonuniform lattice I" is the fundamental group of
the complex of groups H (Z ) induced by the action of Hy, on G(Yoo). By the short
exact sequence in Theorem 3.1 above, there is a surjective homomorphism I' — H .
Since H is not finitely generated (Lemma 4.6 above), we conclude that I" is not
finitely generated.

5. Examples

In this section we describe several infinite families of examples to which the Main
Theorem applies. By the dimension of the Davis complex X for a Coxeter system
(W, S), we mean the maximum cardinality of a spherical subset of S. We note that
there may be maximal spherical special subgroups Wz with |T'| strictly less than
dim(X).

5.1. Two-dimensional examples. If dim(X) = 2 then the nerve of the Coxeter
system (W, S) is a graph L with vertex set S and two vertices s and ¢ joined by an
edge if and only if my; is finite. Assume for simplicity that for some integer m > 2
all finite mg; = m. Then X is the barycentric subdivision of a polygonal complex
X, with all 2-cells of X regular Euclidean 2m-gons, and the link of every vertex of
X the graph L. Such an X is called a (2m, L)-complex. Condition (4) of the Main
Theorem can hold only if m is even, and so we also assume this. It is then not hard to
find graphs L so that, for some pair 51 and s, of non-adjacent vertices of L, and for
some nontrivial elements oy, @, € Aut(L), conditions (1), (2) and (3) of the Main
Theorem also hold. We present three infinite families of examples.

5.1.1. Buildings with complete bipartite links. Let L be the complete bipartite
graph K, o/, with ¢, g’ > 2. If ¢ > 3 then there are (nonadjacent) vertices s; and s,
of L, and nontrivial elements ¢«; and o, of Aut(L), so that the Main Theorem applies.

If m = 2 then X is the barycentric subdivision of the product of trees T, x Ty,
where T; is the g-regular tree. In particular, if m = m’ = 2 in Example 1 of
Section 2.2 above, then X is the barycentric subdivision of T3 x 7. If m > 4, then
by Theorem 12.6.1 of [11] the complex X may be metrised as a piecewise hyperbolic
CAT(—1) polygonal complex. With this metric, if p = 2m and ¢ = ¢’ then X is the
barycentric subdivision of Bourdon’s building 7, 4 (studied in, for example, [6] and
[7]), which is the unique 2-complex with all 2-cells regular right-angled hyperbolic
p-gons P, and the link of every vertex the complete bipartite graph K, ,. Bourdon’s
building is a right-angled hyperbolic building, of type (W', S’) where W' is the
Coxeter group generated by the set of reflections S’ in the sides of P.
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5.1.2. Fuchsianbuildings. A Fuchsianbuildingis a2-dimensional hyperbolic build-
ing. Bourdon’s building /, 4 is a (right-angled) Fuchsian building. For Fuchsian
buildings which are not right-angled see, for example, [5] and [13].

To show that the Main Theorem applies to certain Fuchsian buildings which are
not right-angled, let L be the finite building of rank 2 associated to a Chevalley group
G (see [25]). Then L is a bipartite graph, with vertex set say S = S; US>, and for
some k € {3,4,6,8}, L has girth 2k and diameter k. Figure 11 depicts the building
L for the group § = GL(3,F,) = GL(3,2), for which k = 3. The white vertices
of this building may be identified with the set of one-dimensional subspaces of the
vector space V' = [F, xIF, x[F,, and the black vertices with the set of two-dimensional
subspaces of V. Two vertices are joined by an edge if those two subspaces are incident.

Figure 11. The building L for § = GL(3,2).

The group § acts on L, preserving the type of vertices, with quotient an edge.
Suppose 51 € S1, and let s, € S5 be a vertex at distance k from s;. Since L is a
thick building, there is more than one such vertex s,. Fori = 1, 2, the stabiliser P;
of 5; in § acts transitively on the set of vertices of L at distance k from s;. Now, by
Theorem 6.18 of [25], P; has a Levi decomposition

Pi=Ui><lLi

where L; is the subgroup of P; fixing the vertex s3_;. Moreover, by Lemma 6.5 of
[25], U; fixes the star of s; in L. Hence we may find elements a3—; € U; for which
conditions (1) and (2) of the Main Theorem hold. Condition (3) of the Main Theorem
follows since L is bipartite and the action of § preserves the type of vertices. For
example, for L as in Figure 11, if 51 is the vertex {(1, 0, 0)}, we may choose s, to be
the vertex {(0, 1,0), (0,0, 1), (0, 1, 1)}, and then choose

0 0 111
ap=|1 10 and ap =10 1 O
0 1 0 0 1
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Suppose now that L as above is the nerve of a Coxeter system (W, S). By
Theorem 12.6.1 of [11], since L has girth > 6, the corresponding Davis complex
3 may also be metrised as a piecewise hyperbolic CAT(—1) polygonal complex.
With this metrisation, X is then the barycentric subdivision of a Fuchsian building,
with the link of every vertex L and all 2-cells regular hyperbolic 2m-gons (of vertex
angle %). We call such a building a (2m, L)-building. In general, there may be
uncountably many isomorphism classes of (2m, L)-buildings (see for instance [13]).
In fact, the Davis complex 3 is the barycentric subdivision of the unique locally
reflexive (2m, L)-building with trivial holonomy (see Haglund [15]).

5.1.3. Platonic polygonal complexes. A polygonal complex X is Platonic if Aut(X)
acts transitively on the set of flags (vertex, edge, face) in X. Any Platonic polygo-
nal complex is a (k, L)-complex, with k& > 3 and L a graph such that Aut(L) acts
transitively on the set of oriented edges in L. In [27], Swiatkowski studied CAT(0)
Platonic polygonal complexes X, where L is a trivalent graph. Such complexes are
not in general buildings.

A graph L is said to be n-arc regular, for some n > 1, if Aut(L) acts simply
transitively on the set of edge paths of length n in L. For example, the Petersen
graph in Figure 1 above is 3-arc regular. Any finite, connected, trivalent graph L,
with Aut(L) transitive on the set of oriented edges of L, is n-arc regular for some
n € {1,2,3,4,5} (Tutte [31]). Swiqtkowski [27] showed that if n € {3, 4, 5}, then
for all k > 4 there is a unique (k, L)-complex X, with X Platonic. Thus if k = 2m
is even, the barycentric subdivision of X is the Davis complex X for (W, S), where
(W, S) has nerve L and all finite mg; = m.

Now suppose that L is a finite, connected, trivalent, n-arc regular graph with
n € {3,4,5}. Choose vertices s and s, of L at distance two in L if n = 3,4, and at
distance three in L if n = 5. Then by Propositions 3-5 of Djokovi¢-Miller [12], for
i = 1,2 there are involutions «; € Aut(L) such that «; fixes the star of s3_; in L,
and «; (s;) # §; is not adjacent to s;. Thus if m is even, the Main Theorem applies to
G = Aut(X).

5.2. Higher-dimensional examples. We now discuss examples in dimension > 2
to which the Main Theorem applies. The construction of the building 3 below was
suggested by an anonymous referee (our own examples were just for W right-angled).

We first discuss when condition (4) in the Main Theorem can hold. Suppose Wr
is a spherical special subgroup of W, with k = |T'| > 2. If Wr is irreducible, then
from the classification of spherical Coxeter groups (see, for example, [11]), it is not
hard to verify that Wr is halvable along s € T if and only if Wr is of type By, with
s € T the unique generator so that mg; € {2,4} for all t € T — {s}; in this case
halfs (Wr) is of type Dy. If Wr is reducible, then as long as s is contained in a direct
factor Wrs, T' € T, such that either Wrs = (s) =~ C,, Wy~ is an even dihedral group,
or Wrs is of type B; with j < k and s the particular generator described above, then
Wr will be halvable along s.
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Now let L be a thick spherical building of rank k& > 2. A reducible example is L
the join of k sets of points, with each set having cardinality at least 3. An irreducible
example is L the building for a Chevalley group § of rank k over a finite field, such
as GL(k + 1,2).

Define a Coxeter group W with nerve L as follows. Fix A a chamber of L. Then
A is a simplex on k vertices. Let p: L — A be the projection onto this chamber.
Label the edges of A by the myg, for a finite Coxeter group V' on k generators such
that V' is a product of cyclic groups of order 2, even dihedral groups and copies of
Bj, j < k. For example, when V is right-angled all m,; = 2. Pull the edge labels of
A back via p to obtain a labelling of the edges of L. This defines a Coxeter group W
with nerve L, so that each maximal spherical special subgroup of W is isomorphic
to V.

The Davis complex X for W is tiled by copies of the barycentric subdivision of
the Coxeter polytope P associated to V. For example, when V is right-angled, P
is a k-cube. The link of each vertex of P is L. Applying the metric criterion of
Charney—Lytchak [10], it follows that X is the barycentric subdivision of a building.
Note that dim(X) = k > 2.

Choose vertices s; and s, in L which are opposite (see [25]). By the same
arguments as in Section 5.1.2 above, there are (type-preserving) elements o1, oy €
Aut(L) so that conditions (1)—(3) of the Main Theorem hold. A careful choice of V,
such that s; and s, if contained in some copy of B; are both the required generators,
then guarantees that condition (4) of the Main Theorem holds. Hence the Main
Theorem applies to many examples of buildings of dimension > 2.

We do not know of any hyperbolic buildings of dimension > 2 to which the Main
Theorem applies. For the 3-dimensional constructions of Haglund—Paulin in [20],
certain of the mg; must be equal to 3, so condition (4) of the Main Theorem will not
hold.

A slight modification of the above construction, for example by adding a vertex
s to L with mg;, = oo forall t € S — {s}, produces nerves which are not buildings,
hence examples of ¥ of dimension > 2 which are not buildings.
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