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1. Introduction

Let M be a connected, complete, finite volume Riemannian n-manifold of sectional
curvature satisfying ~ � sec.M/ � �1 for some constant ~, and let S � M

be a subset whose preimage to the universal cover of M is the union of a locally
finite family D of hyperplanes, where a hyperplane is a complete totally geodesic
submanifold of codimension two.

In this paper we study the fundamental group of M nS , which clearly surjects onto
�1.M/ as S has codimension two. One may think of �1.M n S/ as an “overlattice”,
i.e. a group that comes with a natural surjection onto a lattice (cf. [29], page 192).
This paper explores to what extent �1.M n S/ inherits some rigidity properties of
lattices, and our approach is to find conditions on M; S implying that �1.M n S/

is non-elementary relatively hyperbolic. In recent years many powerful techniques
have been developed to better understand relatively hyperbolic groups, and this paper
allows to apply the techniques to studying certain M n S ’s.

Set m D �
n
2

�
. Following Allcock [2] we call D normal if hyperplanes in D are

either disjoint or orthogonal, and if for any point p lying on hyperplanes h1; : : : ; hk in
D there is a linear isomorphism of the tangent space at p onto Rn�2m �Cm that maps
the tangent space to each hi to the product of Rn�2m with a coordinate hyperplane
in Cm. We call S normal if D is normal. Many examples of normal S � M are
known when M is real hyperbolic or complex hyperbolic.
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Gromov stated in [28], Section 4.4A, and Allcock proved in [2] that if S is normal
in M , then the metric completion of the universal Riemannian cover of M n S is
CAT.�1/, and Allcock furthermore used this to show that the manifold M n S is
aspherical (i.e. its universal cover is contractible); thus most if not all topological
information about M n S is encoded in its fundamental group.

We work with the combinatorial definition of a relatively hyperbolic group due to
Bowditch [15], Definition 2, and call a subgroup of relatively hyperbolic group non-
elementary unless it is finite, virtually-Z, or lies in a peripheral subgroup. Building
on ideas of Bowditch [15], we prove:

Theorem 1.1. Suppose that M contains a closed, locally convex subset V such that
M nV is nonempty and precompact in M, and S lies in the interior of V . If S is normal
in M, then �1.M n S/ is non-elementary relatively hyperbolic, where peripheral
subgroups are the fundamental groups of components of V n S ; furthermore, each
component of V n S is aspherical, and its inclusion into M n S is �1-injective.

To apply this theorem one needs to find V , and e.g. if M is compact, then a natural
candidate for V would be (a sufficiently small "-neighborhood of) the smallest locally
convex subset of M that contains S ; if this "-neighborhood is a proper subset of M ,
then Theorem 1.1 applies. The same is true for non-compact M except that we also
need to require that V contains all cusps.

The simplest picture emerges when S is a compact smooth submanifold of M .
Then S is normal, and we can take V to be the union of a small "-tubular neighborhood
of S and sufficiently small disjoint cusp neighborhoods of M , which implies the
following.

Corollary 1.2. If S is a compact smooth submanifold of M , then the group �1.M nS/

is non-elementary relatively hyperbolic, where the peripheral subgroups are either
the fundamental groups of circle bundle over components of S, or the fundamental
groups of compact infranilmanifolds which are cusp cross-sections of M .

Special cases of Corollary 1.2 were previously proved in [9] (when M is real
hyperbolic) and [8] (when M and S are complex hyperbolic). The methods used in
[8], [9] involve delicate warped product computations that are entirely different from
the approach adopted in the present article.

Corollary 1.3. If n � 3 and S is a compact smooth submanifold of M , then

� �1.M n S/ has solvable word and conjugacy problems, has finite asymptotic
dimension and rapid decay property, is co-Hopf and residually hyperbolic, has
finite outer automorphism group;

� if �1.M n S/ splits nontrivially as an amalgamated product or HNN-extension
over a subgroup K, then K contains a non-abelian free subgroup;
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� if M is compact, then �1.M n S/ is biautomatic and satisfies Strong Tits Alter-
native.

As in Theorem 1.2 of [9], one also gets a Mostow type rigidity theorem, namely if
Si is compact and normal in Mi for i D 1; 2, and if each Mi is locally symmetric of
dimension > 2, then any homotopy equivalence M1 n S1 ! M2 n S2 is homotopic
to the restriction of an isometry M1 ! M2 that takes S1 to S2. This is only new
in the “exceptional” case when one of the .Si ; Mi /’s is locally modelled on a totally
real plane in the complex hyperbolic plane.

Most results on structure and properties of relatively hyperbolic groups are relative
in nature, i.e., properties of the peripheral subgroups are inherited by the ambient
relatively hyperbolic group. In general, the peripheral subgroups in Theorem 1.1 are
similar to the group �1.M n S/ and little is known about them. The reason relative
hyperbolicity gives so much information for compact embedded S is that it is possible
to choose V such that the topology of V n S is easy to understand.

The main result of this paper ensures the existence of V with an easy to understand
V n S , provided S is normal and “sparse”. To make this precise it helps to introduce
the following notations. Recall that if M is non-compact, then each end of M has an
arbitrary small, closed, connected neighborhood which is called a cusp; its preimage
to the universal cover of M is the union of a family of disjoint horoballs. Fix a
collection of disjoint cusps of M , one for each end, and let Q be their union, and let
H be the corresponding family of pairwise disjoint horoballs. We assume that either
S and Q are disjoint, or S intersects @Q orthogonally, which can be always arranged
by choosing Q sufficiently small, as noted in the beginning of Section 3.

We say that fS; Qg is r-sparse if for any disjoint sets A; B 2 D [ H that contain
points a 2 A and b 2 B with dist.a; b/ < r , one has a; b 2 C for some C 2 H .
Since A \ B D ¿, and since all horoballs in H are disjoint it then follows that A; B

are hyperplanes in D that are asymptotic to the center of the horoball C . In other
words, r-sparse means that the only way two disjoint convex sets in D [H can come
within distance r is inside a horoball from H . We say that fD ; Hg is r-sparse if
fS; Qg is r-sparse. Compactness of M n Int.Q/ implies that any fS; Qg is r-sparse
for each sufficiently small r .

All this holds verbatim when M is compact by letting Q D ¿. In this case
the definition of sparseness simplifies: fS; ¿g is r-sparse if and only if the distance
between any two disjoint hyperplanes in D is � r . We prove:

Theorem 1.4. There is a positive constant r.~; n/ such that if S is normal and fS; Qg
is r.~; n/-sparse, then M n S is diffeomorphic to the interior of a compact manifold
N such that

(1) each component of @N is aspherical;

(2) the inclusion @N ,! N is �1-injective;

(3) �1.N / is non-elementary relatively hyperbolic;
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(4) conjugacy classes of peripheral subgroups bijectively correspond to the funda-
mental groups of components of @N ;

(5) if n � 3 and �1.N / splits nontrivially as an amalgamated product or HNN-
extension over a subgroup K, then K contains a non-abelian free subgroup;

(6) if n � 3 and S is compact, then Out.�1.N // is finite;

(7) if n � 3, then �1.N / is co-Hopf;

(8) if n D 4, then Out.�1.N // is finite, and furthermore �1.N / has solvable word
and conjugacy problems, has finite asymptotic dimension, and is residually
hyperbolic.

Most likely, (6) still holds for non-compact S , but our proof does not apply. In (5)
we actually show that K must be non-elementary in the relatively hyperbolic group
structure given by (3)–(4). Part (8) hinges on various known results about 3-manifold
groups, appearing here as peripheral subgroups of �1.N /.

The manifold N is constructed in a canonical way, namely, shrinking along the
rays orthogonal to @Q gives a diffeomorphism of M n S onto M n .Q [ S/, and
the latter is the interior of a compact manifold N , obtained by removing from M the
interior of a regular neighborhood of Q [ S .

It is easy to construct examples to which Theorem 1.4 applies, e.g. if �1.M/ is
residually finite, then any �1.M/-invariant locally finite normal hyperplane arrange-
ment in the universal cover can be thinned out by passing to a finite index subgroup
and removing orbits of some hyperplanes/horoballs to ensure sparseness.

We do not know if Theorem 1.4 applies to any of the “natural” examples such as
arrangements coming from Lorentzian lattices in [2]. A basic difficulty is that the con-
stant r.~; n/ arising in the proof of Theorem 1.4 seems much larger than the sparseness
constants for the “natural” examples; we hope to address this in future work.

To prove Theorem 1.4 we find V as in Theorem 1.1 with V n .S [ Q/ homotopy
equivalent to the boundary of a regular neighborhood of Q [ S in M . This hinges
on the result of Bowditch [14] that in a negatively pinched Hadamard manifold, any
quasiconvex subset is within bounded distance to its convex hull; quasiconvexity
follows from sparseness. This result in [14] depends on a delicate construction in [5],
which both contribute to the size of r.~; n/.

A few properties of non-elementary relatively hyperbolic groups hold even if
nothing is known about peripheral subgroups, e.g. each subnormal subgroup of a non-
elementary relatively hyperbolic group is non-elementary (as follows from a standard
argument using its action on the ideal boundary). In particular, each subnormal
subgroup of a non-elementary relatively hyperbolic group contains a non-abelian
free subgroup [41] and has infinite dimensional second bounded cohomology [26].

In another direction it was proved in [9] that if a non-elementary relatively hy-
perbolic group is isomorphic to a lattice in a virtually connected Lie group, then the
lattice has real rank one. The latter cannot happen for �1.M n S/, as long as S is
normal and n > 3, due to the following.
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Theorem 1.5. If S is normal and n > 3, then �1.M n S/ has a nontrivial element
whose centralizer contains a non-abelian free subgroup, and in particular, �1.M nS/

is not isomorphic to a discrete isometry group of a Hadamard manifold of pinched
negative curvature.

Theorem 1.5 fails if n � 3 in which case M n S is often hyperbolizable. For
normal S and n > 3, it is likely that �1.M n S/ is never isomorphic to a lattice in
a virtually connected Lie group; this was proved in [3] in the case when M; S are
complex hyperbolic, and Theorem 1.5 proves it in case �1.M nS/ is non-elementary
relatively hyperbolic.

It is interesting that in some cases M n S admits a complete finite volume metric
of sec 2 Œ�1; 0/, see [1], [9], [8], yet the existence of such metric does not (seem to)
have significant group theoretic implications.

To prove finiteness of Out.�1.M nS// in Theorem 1.4(6) we use another property
of relatively hyperbolic groups that assumes nothing about peripheral subgroups, and
which is an application of recent work of Mineyev–Yaman [33]:

Proposition 1.6. Let L be a closed aspherical manifold such that �1.L/ is non-
elementary relatively hyperbolic, then the simplicial volume kLk is positive.

The proof of Theorem 1.1 is inspired by arguments of Bowditch [15], where it
is implicit that if M contains a closed, locally convex subset V such that M n V is
nonempty and precompact in M , then �1.M/ is hyperbolic relative to the fundamental
groups of components of V (see Remark 4.6). Combining this statement with a result
of Mineyev–Yaman [33] gives the following.

Theorem 1.7. Suppose that M contains a closed, locally convex subset V such that
M n V is nonempty and precompact in M . If S � Int.V /, then the simplicial volume
kM n Sk is nonzero.

Gromov introduced the notion of simplicial volume kU k of a manifold U in
his seminal work [27]. Simplicial volume takes values in Œ0; 1� and is a proper
homotopy invariant of the manifold U . Nonvanishing of kU k has various geometric
and topological consequences, e.g.,

� any complete Riemannian metric on U with Ric.U / � �.n � 1/ has the lower
volume bound kU k � cnVol.U /, see page 12 in [27];

� if U is the interior of a compact manifold, then kU k > 0 implies that U admits
no proper self-maps of degree > 1, see page 8 in [27].

These two facts hold even if kU k is infinite. It follows from [27], page 59, that
kM n Sk is finite provided M is compact and S is normal; this result is used in the
proof of Theorem 1.4(6). By contrast, if S is non-compact and n D 3, then kM nSk is
always infinite, because M n S is the interior of a compact manifold whose boundary
has nonzero simplicial volume.
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The structure of the paper is as follows. In Section 2 we give a general criterion
for relative hyperbolicity of a group acting on a CAT.�1/ space. Section 3 is a list
of notations and standing assumptions. In Section 4 we establish various preliminary
results culminating in Theorem 4.4, which is an orbifold version of Theorem 1.1. Note
that Corollary 1.2 is immediate from Theorems 1.1 and the structure of finite volume
manifolds of pinched negatively curvature. An orbifold version of Theorem 1.4 is
proved in Section 5, while Section 6 contains proofs of Corollary 1.3, Theorem 1.5,
Proposition 1.6, and Theorem 1.7. In theAppendix we collect some facts on CAT.�1/

spaces that we could not find in the literature.

Acknowledgments. Belegradek is grateful to Ian Agol, Daniel Allcock, Greg Ku-
perberg, and Henry Wilton for helpful communications.

2. A criterion for proving relative hyperbolicity

In [15] Bowditch showed that a group is relatively hyperbolic if and only if it acts on
fine, connected, hyperbolic graph with finite quotient and finite edge stabilizers. Here
a graph is given the path-metric in which each edge is isometric to the unit interval,
and if the path-metric is Gromov hyperbolic, the graph is called hyperbolic. A graph
is called fine if for each n each edge lies in only finitely many circuits of length < n,
where a circuit is an embedded closed path. A family of subsets in a metric space is
called r-separated if the distance between any two subsets in the family is � r where
r 2 R. We prove:

Theorem 2.1. Let X be a complete CAT.�1/ space, and let " > 0. Suppose that there
exists a subgroup H � Iso.X/ and a H -invariant family A D fAig of "-separated
closed convex subsets of X such that X nS

i Int.Ai / is locally compact, and H -action
on X n S

i Int.Ai / is properly discontinuous and cocompact. If Hi is the stabilizer
of Ai in H , then H is hyperbolic relative to fHig.

Remark 2.2. In this paper we apply Theorem 2.1 to spaces X that are not proper. If X

is proper, Theorem 2.1 is essentially due to Bowditch, e.g. it follows from 7.12–7.13
in [15] and (the elementary) Lemma A.3 below.

Proof. By Lemma A.1 below for every distinct Ai ; Aj there is a unique segment
Œaij ; aj i � that realizes the distance between Ai ; Aj where akl 2 Ak .

Given u > 0, let �u be the u-nerve of fAkg, i.e., the graph with vertex set A and
Ai ; Aj are joined by an edge if and only if d.aij ; aj i / � u. Since H acts cocompactly
on X n S

i Int.Ai /, the graph �u is connected, provided u is large enough. Fix such
u and give �u a path-metric with edges of length 1. By [15], Proposition 7.12, �u

is a hyperbolic metric space in this path-metric. It is easy to see that �u need not be
fine. Below we replace �u by a subgraph that is fine.
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Let � 0
u be the subgraph of �u with the same vertices in which Ai ; Aj are joined

by an edge if and only if Œaij ; aj i � \ Ak D ; for each k … fi; j g. The graph
� 0

u is H -invariant, and since H acts properly discontinuously and cocompactly on
X n S

i Int.Ai /, the quotient graph �u=H is finite, and hence so is � 0
u=H . Moreover,

uniqueness of Œaij ; aj i � implies that edge stabilizers are finite.

Lemma 2.3. If two vertices of �u are joined by an edge, then they are joined by a
path of length � u

"
that lies in � 0

u.

Proof. Indeed, suppose Ai , Aj are joined by an edge of �u, so that Œaij ; aj i � has length
� u. If Œaij ; aj i � passes through some Am, then dist.Ai ; Aj / � dist.Ai ; Am/ C
dist.Am; Aj /. Since the Ak’s are "-separated, dist.Ai ; Am/ and dist.Am; Aj / are
� u � ". Repeating the process for each pair, we note that after each step they
become closer by ", so the procedure terminates at a finite sequence Ai ; : : : ; Aj such
that the sum of lengths between adjacent sets is � u. Hence Ai , Aj are joined by a
path in � 0

u of length � u
"

.

Thus � 0
u is connected, and in the path-metric induced from �u the graph � 0

u is
quasi-isometric to �u, in particular, � 0

u is hyperbolic.
Towards proving that � 0

u is fine, recall that a family of subsets fQig in a metric
space is said to have bounded penetration if there is a function D.�/ such that for
each k ¤ j the intersection of the �-neighborhoods of Qk , Qj has diameter � D.�/.
By Lemma A.3 since the family fAkg is "-separated, it has bounded penetration.

Consider an arbitrary circuit in � 0
u of length n. Represent it by a piecewise

geodesic loop � in X written as ˛1 [ ˇ1 [ � � � [ ˛n [ ˇn where ˛i is a geodesic
segment in Ai with endpoints in @Ai and ˇi is the segment Œai ; aiC1� joining @Ai to
@AiC1. Since fAkg has bounded penetration, the length of � is bounded above by a
linear function of n as proved by Bowditch in a comment right before Lemma 7.13
in [15]. (For completeness we outline his argument. That A has bounded penetration
implies that � has bounded backtracking, i.e., any two geodesic segments that form
� only travel together for a bounded amount of time. This is trivially true for ˇi ’s
as they have length � u, and for ˛i ’s this follows from bounded penetration. Now a
linear bound on the length of � can be obtained from Proposition 5.7 of [15], which
is essentially Proposition 7.3.4 of [12] whose proof is fairly long. For the purposes
of this paper a linear bound is not important, indeed any bound would do, and an
easier argument in [15] (Corollary 7.2) gives a quadratic bound, i.e. the length of �

is bounded above by a quadratic function of n.)
Now we can finish the proof that � 0

u is fine. The subpath of � given as �1 WD
ˇ1 [ ˛2 [ � � � [ ˇn lies outside A1, so the orthogonal projection X ! A1 maps �1

to a path N�1 in @A1 joining the endpoints of ˛1 (where the boundary of a subset Z is
defined by @Z WD xZ � Int.Z/). Since the projection is distance-nonincreasing, the
distance between the endpoints of ˛1 in the path-metric on @A1 induced from X is
bounded by the same linear function of n. Applying this argument to each ˛i , we
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see that ˛i can be replaced by a path in @Ai with the same endpoints, giving the new
loop � 0 WD N�1 [ ˇ1 [ � � � [ N�n [ ˇn in X n S

i Int.Ai / whose length is bounded
by a quadratic function of n. The space X n S

i Int.Ai /, equipped with the path
metric induced from X , is proper by Hopf–Rinow because it is locally compact and
complete. In this metric the family f@Akg is locally finite because it is "-separated,
and hence only finitely many @Ak’s can be visited by � 0 as above provided it contains
ˇ1. Thus the number of circuits of length n in � 0

u that contain a given edge is finite,
so � 0

u is fine. This completes the proof of Theorem 2.1.

Remark 2.4. The proof of Theorem 2.1 goes through with minor modifications when
X is ı-hyperbolic provided the Ai ’s are r-separated with r � ı.

3. Notations and standing assumptions

In the introduction we focused on manifolds, yet all “natural” examples we know
are orbifolds, so we work equivariantly in the universal cover and allow lattices with
torsion; this necessitates a slight change in notations. Similarly, it would be easier to
deal with compact orbifolds but many “natural” examples are non-compact.

Let Y be a complete simply-connected Riemannian manifold of sectional curva-
tures within Œ~; �1�, for some constant ~ � �1, and let G be discrete isometry group
of Y such that the orbifold Y=G has finite volume.

Let D be a locally finite G-invariant family of hyperplanes in Y (recall that
hyperplanes are complete totally geodesic submanifolds of codimension two). Let
D denote the union of the hyperplanes in D .

Suppose that Y contains a closed, G-invariant, locally convex subset C with non-
empty C 1-smooth boundary @C such that D � Int.C /, and G acts cocompactly
on Y n Int.C /. Thus @C=G is a compact, and therefore, @C has a positive normal
injectivity radius.

Remark 3.1. All the assumptions on C are crucial except for “@C is C 1” which
simplifies some matters, and causes no loss of generality. Indeed, if C is as in
the previous paragraph except that @C is not C 1, then C is a (codimension zero)
topological submanifold with possibly non-smooth boundary ([19], Theorem 1.6).
Now according to Theorem 1.2 of [40] or Lemma 5 of [37] the distance function
to C is C 1 near @C . Since C is G-invariant and G acts cocompactly on @C , any
sufficiently small "-neighborhood of C has C 1-boundary, and since the curvature is
nonpositive, the "-neighborhood of C is locally convex, so by replacing C with its
"-neighborhood we may assume its boundary is C 1.

The orbifold Y=G is the union of a compact set, and finitely many cusps whose
preimage in Y is a G-invariant family H of disjoint closed horoballs, see [14], Propo-
sition 6.6.
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Suppose that every horoball in H is either disjoint from D, or intersects D or-
thogonally. (This can be always arranged by choosing horoballs in H sufficiently
small, for otherwise since horoballs fall into finitely many G-equivalence types, there
is a sequence of concentric horoballs Bi that Hausdorff converges to their common
center z, and a sequence of hyperplanes hi such that the intersection hi \ @Bi is
not orthogonal. Acting by StabG.z/, we may assume each hi intersects a compact
fundamental domain for the StabG.z/-action on @B0. By local finiteness of fhig, we
can find hi0 that intersects each Bi , hence z lies at infinity of hi0 implying that hi0 is
orthogonal to the boundary of any horoball concentric to B0, which contradicts the
assumption.)

Let Y0 WD Y n D, and let p0 W X0 ! Y0 be the universal Riemannian covering.
Let X be the metric completion of X0. Since p0 is a local isometry, it is distance non-
increasing, so it maps Cauchy sequences to Cauchy sequences, and hence extends
to a continuous map of metric completions p W X ! Y , which is also distance non-
increasing. Let � WD X n X0.

It is proved in [2] that if D is normal, then X is CAT.�1/, and the inclusion
X0 ! X is a weak homotopy equivalence, in particular, X0 is contractible.

Let � be the group of all p0-lifts of elements of G. There is a surjection � ! G

whose kernel is the group of automorphisms of p0. Since G acts isometrically on
Y0, the group � acts isometrically on X0, and hence on X , and p is equivariant with
respect to the surjection � ! G. The action of � on X0 is properly discontinuous,
so since X0 is simply-connected, � can be identified with the orbifold fundamental
group of X0=� D Y0=G. The sets � and p�1.C / are �-invariant, and � permutes
components of p�1.C /.

Some difficulties in studying this �-action on X and p�1.C / are due to the fact
that X is not locally-compact, some points have infinite stabilizers in � , and the set
of components of p�1.C / is not locally finite.

4. Preliminary results

We keep notations and assumptions of Section 3.

Lemma 4.1. (1) � D p�1.D/ � p�1.Int.C // D Int.p�1.C //.
(2) p�1.@C / is the boundary of p�1.C /.
(3) There is r0 > 0 such that r0-neighborhood of p�1.@C / is disjoint from �,

and different path-components of p�1.C / have disjoint r0-neighborhoods.
(4) Path-components of p�1.C / coincide with connected components, and in

particular are closed in X .
(5) If A is a component of p�1.C /, then A is the closure of A \ X0, and the

stabilizers of A and of A \ X0 in � are equal.
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Proof. (1) All the unions in

X0 [ p�1.D/ D p�1.Y0/ [ p�1.D/ D p�1.Y / � X0 [ �

are disjoint, so p�1.D/ � �. Conversely, � � p�1.D/ else there is x 2 � with
p.x/ 2 Y0, so x 2 X0 contradicting X0 \ � D ;, proving the first equality. As
D � Int.C /, we get p�1.D/ � p�1.Int.C //, and it is trivial that p�1.Int.C // �
Int.p�1.C //. The last inclusion is an equality for if x 2 Int.p�1.C //, then either
x 2 � � p�1.Int.C //, or x 2 X0, in which case a small neighborhood of x lies in
X0 \ p�1.C /, hence a small neighborhood of p.x/ lies in Y0 \ Int.C /, implying
x 2 p�1.Int.C //.

(2) Since C is closed, so is p�1.C /, hence the boundary of p�1.C / is equal to
p�1.C / n Int.p�1.C //; the claim now follows as all unions in

p�1.C / D p�1.@C / [ p�1.Int.C // D p�1.@C / [ Int.p�1.C //

are disjoint, where the second equality follows from (1).
(3) The claim follows from (2) and the fact that the submanifold p�1.@C / � X0

has positive normal injectivity radius.
(4) If a connected component contains more than one path-component, it cannot

be connected by (3), so components and path-components of p�1.C / coincide. Since
C is closed, so is p�1.C /. Components of a closed set are closed (as the closure of
a connected space is connected).

(5) The closure of A \ X0 lies in xA which equals A by (4). To see that any
a 2 A lies in the closure of A \ X0 it is enough to consider a 2 A \ �, which
is a limit of some sequence xi 2 X0, where xi 2 A for large i as (1) implies
A \ � � A \ Int.p�1.C // D Int.A/.

Element of � that stabilize A also stabilize A \ X0 because X0 is �-invariant,
and conversely, element of � that stabilize A \ X0, also stabilize its closure, which
is A.

Remark 4.2. In view of (4) we refer to path-components of p�1.C / as components.
Lemma 4.1 also implies that if A is a component of p�1.C /, then @A D A\p�1.@C /.

Lemma 4.3. Let A be a component of p�1.C /. If D is normal, then

(i) A is convex, and the orthogonal projection X ! A maps X n A onto @A.

(ii) A \ X0, p.A \ X0/, p.A/ are components of p�1.C / \ X0, C \ Y0, C ,
respectively. The map p W A \ X0 ! p.A \ X0/ is a universal covering, and
A \ X0 is contractible.

Proof. (i) Path-connected locally convex subsets of CAT.0/ spaces are convex ([16],
Proposition II.4.14), so convexity of A would follow from local convexity of p�1.C /.
Since p W X0 ! Y0 is locally isometric and C \ Y0 is locally convex, we know that
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p�1.C \Y0/ D p�1.C /\X0 is locally convex, so it remains to check local convexity
of p�1.C / at the points of p�1.C / \ � which by Lemma 4.1 equals

p�1.C / \ p�1.D/ D p�1.C \ D/ � p�1.Int.C // � Int.p�1.C //;

but in Int.p�1.C // locally convexity follows from local convexity of X .
By Lemma 4.1(4) the subset A is closed, so there is the orthogonal projection of

X onto A that associates to a point of X its (unique) nearest point in A. It follows
that the projection maps X n A to @A.

(ii) It can be deduced from the proof of Lemma 3.3 in [2] that A n � ! A is a
weak homotopy equivalence. Since by (i) A is convex, it is contractible, and hence
so is A n � D A \ X0. In fact, A \ X0 is a path-component of p�1.C / \ X0 because
any path in p�1.C / \ X0 that starts in A \ X0 must lie in A. Thus the subset A \ X0

is open and closed in p�1.C / \ X0. Since p0 is a local homeomorphism, the subset
p.A \ X0/ D p.A/ \ Y0 is open and closed in C \ Y0, and hence p.A \ X0/ is a
component of C \Y0. Thus p W A\X0 ! p.A\X0/ is a covering map of connected
manifolds, which is universal as A \ X0 is contractible.

Finally, we show that p.A/ is a component of C . Let Q be the component of C

that contains p.A/. Then Q \ Y0 is the component of C \ Y0 containing p.A/ \ Y0,
so p.A/ \ Y0 D Q \ Y0. Any y 2 Q \ D is the endpoint of a geodesic segment
in Q \ Y0. Lift the segment to the cover A \ X0. The lift is isometric, so along
the lifted segment one gets a Cauchy sequence converging to some x 2 �. Then
y D p.x/, and x 2 A because A is closed. Thus Q \ D � p.A/, which together
with Q \ Y0 D p.A/ \ Y0 implies Q � p.A/, as wanted.

To state the main result of this section we let �orb
1 denote the orbifold fundamental

group.

Theorem 4.4. With notations and assumptions of Section 3, if D is normal, then � is
non-elementary relatively hyperbolic. Under the identification � Š �orb

1 .X0=�/ Š
�orb

1 .Y0=G/ conjugacy classes of peripheral subgroups of � correspond to orb-
ifold fundamental groups of components of .C \ Y0/=G, considered as subgroups of
�orb

1 .Y0=G/.

Remark 4.5. It is implicit in the conclusion of the above theorems that when G

acts freely on Y0, the inclusion .C \ Y0/=G ,! Y0=G is �1-injective, and in fact
it induces an isomorphism on higher homotopy groups because .C \ Y0/=G, Y0=G

are aspherical.

Proof. We are to check that Theorem 2.1 applies to the family of components of
p�1.C /. As mentioned before, Allcock showed that X is CAT.�1/ when D is
normal. Components of p�1.C / are convex by Lemma 4.3 (i), and "-separated for
some small positive " because @C has positive normal injectivity radius and the tubular
"-neighborhood of @C lifts to a tubular "-neighborhood of p�1.@C /. Lemma 4.1 (1)
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implies that the complement of Int.p�1.C // in X is locally compact; moreover, �

acts on the complement properly discontinuously, and cocompactly: the former again
follows from � � Int.p�1.C // and the latter holds by identifying the quotient with
.Y n Int.C //=G, which is compact by assumption. Thus Theorem 2.1 implies that
� is hyperbolic relative to the family of stabilizers of components of p�1.C /, which
by Lemma 4.1 (5) and Lemma 4.3 (ii) is equal to the stabilizers of components of
p�1.C / \ X0.

That � acts properly discontinuously on X0 with quotient X0=� D Y0=G, and
that components of p�1.C /\X0 are "-separated easily implies that every component
of .C \ Y0/=G is the quotient of some component of p�1.C / \ X0 by its stabilizer
in � . (Indeed, fix a component E of .C \ Y0/=G, and pick a point in p�1.E/. That
point lies in some A\X0, which is path-connected so p.A\X0/ � E, and moreover
the inclusion is equality by "-separation. As the �-action permutes components of
p�1.C / \ X0, we can identify E with the quotient of A \ X0 by its stabilizer in � .)

By Lemma 4.3 (ii) components of p�1.C / \ X0 are simply-connected, so in
the above notation the stabilizer of A \ X0 in � can be identified with the orbifold
fundamental group of E.

To see that � is non-elementary first note that � is not virtually cyclic (� surjects
onto G, and G contains a non-abelian free subgroup, being a lattice in a negatively
pinched Hadamard manifold). If � is equal to the stabilizer of some A, then G

stabilizes p.A/, so p.A/ would have to contain the convex hull of the limit set of G,
which is Y , contradicting the assumption that C is a proper subset.

Remark 4.6. The above proof also implies that G is non-elementary hyperbolic
relative to stabilizers of components of C . This result is implicit in [15], and it holds
regardless of whether D is normal by applying Theorem 2.1 to Y .

5. Sparseness implies relative hyperbolicity

We keep notations and assumptions of Section 3 except those involving C . For each
set in D [ H we consider its open �-neighborhood, and let R� denote the union
of these neighborhoods. Set R0 WD T

�>0 R�, i.e., R0 is the union of all the sets
in D [ H . We suspect that R� is an open regular neighborhood of R0, provided
� < r

2
, and this should be provable with stratified Morse theory, but for our purposes

Proposition 5.1 below suffices.

Proposition 5.1. If D is normal, and fD ; Hg is r-sparse, then for any �, " with
0 < " < � < r

2
, the inclusion R" \ Y0 ,! R� \ Y0 is a homotopy equivalence.

Proof. By Whitehead’s theorem it suffices to prove that the inclusion induces iso-
morphism on all homotopy groups. Surjectivity and injectivity will follow once we
show that every compact set K (such as image of sphere or disk) in R� \ Y0 can be
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pushed into R" \ Y0 by a map that is homotopic to the identity of R� \ Y0 and has
the property that each point of K \ R" \ Y0 stays in R" \ Y0 during this homotopy.

Note that r-sparseness imply that two arbitrary sets in D [ H intersect if their
�-neighborhoods intersect, and normality implies that any two distinct sets in D [H

are disjoint or orthogonal, so that if h; h0 2 D [ H intersect, then the orthogonal
projection Y ! N".h/ takes h0 to N".h/\h0, and also maps N�.h0/ into itself because
the projection is distance non-increasing.

These properties ensure that for any subset U of N�.h/ \ Y0, there exists a
homotopy fU;t W R� \ Y0 ! R� \ Y0 such that

� fU;0 D id and fU;1 maps U into N".h/,
� tracks of fU;t lie on segments orthogonal to h,
� fU;t D id except possibly on tracks that pass near U ,
� if h 2 D [ H , then fU;t maps h and N".h/ into themselves.

Now cover K by finitely many precompact open sets U1; : : : ; Uk such that Ui lies
in N�.hi / \ Y0 where the hi ’s are (not necessarily distinct) sets in D [ H . Then
fU1;t pushes U1 into N".h1/ \ Y0. Set U 0

i WD Ui , and let U 1
i be the union of tracks

of fU 0
1

;t passing through U 0
i ; note that U 1

i is precompact and fU 1
2

;t pushes U 1
2 	 U2

into N".h2/ \ Y0. Let U 2
i be the union of tracks of fU 1

2
;t passing through U 1

i ; again

U 2
i is precompact, and fU 2

3
;t pushes U 2

3 	 U3 into N".h3/ \ Y0. Continuing in

this fashion, we get homotopies fU i�1
i

;t pushing U i�1
i 	 Ui into N".hi / \ Y0. The

composition of these homotopies pushes K into R" \ Y0.

Theorem 5.2. There exists a constant r > 0, depending only on n and ~, such
that if D is normal and fD ; Hg is r-sparse, then � is non-elementary relatively
hyperbolic. There is a positive constant " 
 r such that under the identification
� Š �orb

1 .X0=�/ Š �orb
1 .Y0=G/ conjugacy classes of peripheral subgroups of �

correspond to orbifold fundamental groups of components of .R" \ Y0/=G, consid-
ered as subgroups of �orb

1 .Y0=G/.

Proof. To prove relative hyperbolicity the strategy is to find C as in Section 3 and
then apply Theorem 4.4.

Since fD ; Hg is r-sparse, and sets in D [ H are either disjoint or orthogo-
nal, any two points in the same component of R0 lie on a piecewise geodesic with
sidelengths � r and angles at vertices � �=2. Suppose r > r1; then this piece-
wise geodesic is a .�1; "1/-quasi-geodesic, where r1, �1, "1 are the constants from
by Proposition A.4 corresponding to 	1 D �=2. Any subpath of a .�1; "1/-quasi-
geodesic, is a .�1; "1/-quasi-geodesic; thus any two points of R0 can be joined by
a .�1; "1/-quasi-geodesic. By stability of quasi-geodesics [16], Theorem III.H.1.7,
there is a constant r2 such that any .�1; "1/-quasi-geodesic in a CAT.�1/ space is r2-
Hausdorff close to a geodesic with the same endpoints; thus each component of R0 is
r2-quasiconvex. Bowditch ([14], Proposition 2.5.4) proved that each r2-quasiconvex
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subset of a Hadamard manifold with ~ � sec � �1 must be L D L.r2; ~/-Hausdorff
close to its convex hull.

For our purposes it is better to work with closed "-neighborhoods of convex hulls,
denoted hull", and to simplify notations we increase L, replacing it with L C ", to
ensure that any r2-quasiconvex subset E is L-Hausdorff close to hull".E/.

In addition to r > r1, suppose r > 2L; then distinct components of R0 have dis-
joint hull"’s because of r-sparseness. Let C be the union of hull"’s of the components
of R0. Thus C is a G-invariant, closed, locally convex subset of Y , and furthermore,
each component of C is L-Hausdorff close to the corresponding component of R0.
As C contains the "-neighborhood of D, we have D � Int.C /, and G acts cocom-
pactly on Y n Int.C / because C contains every horoball in H . If " is sufficiently
small, Remark 3.1 implies that @C is C 1-smooth provided it is non-empty.

Lemma 5.3. There is ˛n 2 .0; �
2

/ depending only on n D dim.Y / such that if
2L < r sin ˛n, then C is a proper subset of Y so that @C is non-empty.

Proof. If G acts freely, the result is immediate for homological reasons without
assuming 2L < r sin ˛n. Indeed, the assumption r > 2L allows to apply Proposi-
tion 5.1, which yields a deformation retraction of RL=G onto its proper subset. Now
C � RL so if C D Y , the deformation retraction pushes the fundamental class of
Y=G to a proper subset, which is impossible. This idea becomes harder to implement
in the orbifold case, so we settle for an ad hoc argument below.

First we use r-sparseness to find y 2 Y such that the open ball B.y; r
2
/ is disjoint

from horoballs in H , and only intersects those hyperplanes in D that pass through y.
Consider the hyperplanes h1; : : : ; hk with nonempty intersection h0, where we

assume k is the largest possible. If y 2 h0, and if h 2 D intersects B.y; r
2
/, then

h must intersect h0. (Indeed, h intersect each hi as the distance between h, hi is
< r , and since D is normal, the orthogonal projection of hi onto h is h \ hi , so
the projection of h0 lies in each h \ hi , and hence lies in h \ h0, which is therefore
nonempty). Maximality of k forces h D hi for some i , so h1; : : : ; hk are the only
hyperplanes in D that intersect B.y; r

2
/. Similarly, a horoball in H that intersects

B.y; r
2
/ must intersect h0, so if h0 is disjoint from horoballs in H , then any y 2 h0

has the desired property. Note that h0 is a complete totally geodesic submanifold of
Y , and our underlying assumptions on D , H imply that if h0 does intersect some
B 2 H , then h0 is asymptotic to the center of B . If h0 intersects some B 2 H , then
we pick y 2 h0 to be a point with d.y; B/ D r

2
. Then the ball B.y; r

2
/ is disjoint

from any horoball in H because distinct horoballs in H are r-separated.
A linear algebra argument shows that in the definition of a normal family of

hyperplanes one can choose the linear isomorphism to be isometric with respect to the
(Riemannian) inner product on the tangent space at p and the Euclidean inner product
on Rn D Rn�2m �Cm. So there is ˛n 2 .0; �

2
/ depending only on n D dim.Y /, and

a vector v 2 TyY that forms angle � ˛n with any hyperplane in D through y. Issue a
geodesic in the direction of v, and denote by yv the point where it hits @B.y; r

2
/. Let
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zv be a point on a hyperplane in D through y that is closest to yv . In the comparison
triangle x�. Ny; Nyv; Nzv/ in R2 the angles at Ny, Nzv are � ˛n, � �

2
respectively, so the sine

law yields d.yv; zv/ D d. Nyv; Nzv/ � r
2

sin ˛n. To finish the proof of the lemma we
show that yv … C . Indeed, if yv were in C , then yv would lie in the L-neighborhood
of some set in D [H . By the above, this set would be a hyperplane through y, hence
L � d.yv; zv/ � r

2
sin ˛n, contradicting the assumption L < r

2
sin ˛n.

Continuing the proof of Theorem 5.2, we invoke Theorem 4.4 to conclude that �

is non-elementary relatively hyperbolic.
It remains to identify orbifold fundamental groups of corresponding components

of .R"\Y0/=G and .C \Y0/=G. The construction of C implies R0 � R" � C � RL.
By Proposition 5.1 the inclusion R" \ Y0 ! RL \ Y0 is a homotopy equivalence that
factors through C \Y0. So the inclusion C \Y0 ! RL\Y0 is surjective on homotopy
groups, and moreover is injective on homotopy groups for if f W Sk ! C \ Y0 is
null-homotopic in RL \ Y0, then this homotopy can be pushed to C by composing it
with the orthogonal projection of Y onto the component of C that contains f .Sk/.
Thus the inclusion R" \ Y0 ! C \ Y0 is a homotopy equivalence.

Fix an arbitrary component K of C , and set K" WD K \ R" and K0 WD K \ R0.
Note that StabG.K \ Y0/ D StabG.K" \ Y0/, i.e. K \ Y0 and K" \ Y0 have equal
stabilizers in G. Indeed, K is StabG.K \ Y0/-invariant, and therefore so is K0,
which implies that StabG.K \ Y0/ preserves K", and hence K" \ Y0. On the other
hand, StabG.K" \ Y0/ preserves K", and hence K0, which means that it preserves
K D hull".K0/, and hence K \ Y0.

Since the inclusion R" \ Y0 ! C \ Y0 is a homotopy equivalence, so is the
inclusion K" \ Y0 ,! K \ Y0, hence it lifts to a homotopy equivalence of universal
covers BK" \ Y0 ,! BK \ Y0. In particular, the preimage of K" \ Y0 under the uni-
versal cover BK \ Y0 ! K \ Y0 is connected, and we identify it with BK" \ Y0. Also
Lemma 4.3 allows us identify the universal cover BK \ Y0 ! K \Y0 with the restric-
tion of p to a component of p�1.C / \ X0. With these identifications it follows that
Stab�.BK \ Y0/ D Stab�. BK" \ Y0/, which is exactly what we claimed (translating
to orbifold terminology).

Addendum 5.4. Under the assumptions of Theorem 5.2, if G acts freely on Y , then
each component of .C \ Y0/=G is aspherical, and both inclusions

.R" n R0/=G ,! .R" \ Y0/=G ,! .C \ Y0/=G

are homotopy equivalences.

Proof. Contracting along radial geodesics in each horoball in H is a G-equivariant
deformation retraction R� \ Y0 ! R� n R0, which descends to a homotopy equiva-
lence .R" nR0/=G ,! .R" \Y0/=G. Checking that the other inclusion is a homotopy
equivalence is best done one component at a time, so let K denote a component of
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C and use associated notations from the proof of Theorem 5.2. By Lemma 4.3 (ii)
BK \ Y0 is contractible, so K" \ Y0, K \ Y0 are aspherical. The last paragraph in the
proof of Theorem 5.2 implies that the inclusion

.K" \ Y0/=StabG.K \ Y0/ ,! .K \ Y0/=StabG.K \ Y0/

induces a �1-isomorphism of aspherical manifolds, and hence a homotopy equiva-
lence.

Proof of Theorem 1.4. To simplify notations set Z WD R0=G; this was also denoted
Q [ S in the introduction. Fix a smooth closed regular neighborhood T of Z in-
side .C \ Y0/=G, and show that the inclusion @T ,! .C \ Y0/=G is a homotopy
equivalence. To this end pick " small enough such that R"=G lies inside T , and let
T" denote a regular neighborhood of Z inside R"=G. Then we have inclusions

T" n Z ,!
i

.R" n R0/=G ,!
j

T n Z ,!
k

.C \ Y0/=G:

Standard properties of regular neighborhoods (see e.g. [17]) imply that j B i is a
homotopy equivalence, as T nZ is the union along @T" of T nInt.T"/ and T"nZ, which
are diffeomorphic to @T" � Œ0; 1� and @T" � Œ0; 1/, respectively. Addendum 5.4 says
that k Bj is a homotopy equivalence. This easily implies that j induces isomorphism
on homotopy groups, hence i , j , k are also homotopy equivalences. Finally, @T ,!
T n Z Š @T � Œ0; 1/ is a homotopy equivalence, and hence so is the inclusion @T ,!
.C \ Y0/=G, thus components of @T are aspherical and �1-injectively embedded,
proving (1)–(2). The assertions (3)–(4) are immediate from Theorem 5.2.

Parts (5) and (7) follow from Theorem 1.3 of [7] saying that for any compact
aspherical manifold N that satisfies (1)–(4), the group �1.N / is co-Hopf, and �1.N /

does not split as an amalgamated product or HNN-extension over subgroups that are
elementary in the relatively hyperbolic group structure given by (3)–(4).

To prove (6) recall that Druţu and Sapir ([23], Theorem 1.12) showed that if none
of the peripheral subgroups of a relatively hyperbolic group H is isomorphic to a
non-elementary relatively hyperbolic group, and if H does not split over an elemen-
tary subgroup, then Out.H/ is finite. By the previous paragraph �1.N / does not split
over elementary subgroups. Components of @N are closed aspherical manifolds, so
by Proposition 1.6 if any of them has non-elementary relatively hyperbolic funda-
mental group, then that component has positive simplicial volume, which we assume
arguing by contradiction. Since S is compact, the assumptions in Section 3 imply
that S and Q are disjoint, so components of @N are either components of @Q, or
the boundary components of a small regular neighborhood of S . Components of @Q

are infranilmanifolds, so they have zero simplicial volume. Thus the boundary of a
regular neighborhood of S has positive simplicial volume. Let DM be the manifold
obtained by doubling M n Int.Q/ along the boundary, which is @Q; we think of
S as sitting in one half of the double. Then DM n S must have infinite simplicial
volume [27], page 17 (cf. [27], pages 56–57), as the interior of a compact manifold
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whose boundary has positive simplicial volume. This gives a contradiction as DM nS

has finite simplicial volume by [27], page 59, with details given in Lemma 5.6 below.
Thus we have proved (6).

For part (8) recall that each peripheral subgroup of �1.N / is the fundamental group
of a closed aspherical 3-manifold, which are geometrizable due to work of Thurston,
Perelman and others. (To our knowledge the Ricci flow proof of the geometrization
conjecture has been fully written only for orientable manifolds, but non-orientable
aspherical 3-manifolds are Haken [31], so Thurston’s proof applies in this case. Ac-
tually, our argument below can be phrased to depend only on the geometrization of
orientable manifolds but we felt it would only confuse the matters.)

Hempel [30] proved that geometrizable 3-manifold groups are residually finite,
and in particular, they have solvable word problem. Preaux [38], [39] showed that fun-
damental groups of 3-manifold with geometrizable orientation covers have solvable
conjugacy problem. According to Farb [25] and Bumagin [18], a relatively hyper-
bolic group inherits solvability of word and conjugacy problems from its peripheral
subgroups, hence these problems are solvable for �1.N /. As in the proof of Theo-
rem 1.1 (5) of [9], the result of Osin [35] and residual finiteness of the peripheral
subgroups implies that �1.N / is (fully) residually hyperbolic.

By the proof of (6), finiteness of Out.�1.N // would follow if we find a rela-
tively hyperbolic group structure on �1.N / such that every peripheral subgroup is
elementary in the relatively hyperbolic group structure given by (3)–(4), and also is
not isomorphic to a non-elementary relatively hyperbolic group.

According to Corollary 1.14 of [22], if H is hyperbolic relative to fPig and if
each Pi is hyperbolic relative to fP j

i g, where we allow Pi to equal P
j
i , then H is

hyperbolic relative to the fP j
i g’s. This process can be iterated, and in general need not

terminate, but as we note below it does terminate if we start with the fundamental group
of a closed aspherical 3-manifold, which would complete the proof that Out.�1.N //

is finite. Fix a closed aspherical 3-manifold M . By the geometrization theorem,
M is hyperbolic, Sol, Seifert fibered, or has a nontrivial JSJ decomposition along
incompressible tori and Klein bottles whose pieces are either hyperbolic or Seifert
fibered. Recall that the simplicial volume kMk is nonzero if and only if M is either
hyperbolic or has a hyperbolic piece in the JSJ decomposition. If kMk D 0, then
Proposition 1.6 implies that �1.M/ is not non-elementary relatively hyperbolic, so the
process terminates with �1.M/. If M is hyperbolic, the process terminates with the
trivial subgroup. It remains to consider the case when there is a hyperbolic piece H in
the JSJ decomposition. Then �1.M/ is hyperbolic relative to fundamental groups of
the components of M nH , as follows e.g. from Dahmani’s combination theorem [21]
and the fact that �1.H / is hyperbolic relative to fundamental groups of tori and
Klein bottles that lie on @H . So passing to the peripheral subgroups corresponding
to the components of M n H , and continuing in this fashion, after finitely many
steps we end up with components that are either aspherical graph manifolds with
incompressible boundary, or surfaces of zero Euler characteristic appearing on the
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boundary of hyperbolic pieces. In either case the process terminates; indeed, by
Lemma 5.5 below, or alternatively by Theorem 11.1 of [6], the fundamental group of
an aspherical graph manifold with incompressible boundary is not non-elementary
relatively hyperbolic, and the same holds for surfaces of zero Euler characteristic
because any non-elementary relatively hyperbolic group contains Z � Z, so it is not
virtually-Z2.

Osin [34] proved that a relatively hyperbolic group has finite asymptotic dimen-
sion if so do all the peripheral subgroups. Bell–Dranishnikov[10], [11] showed that
the class of finitely generated groups of finite asymptotic dimension is closed under
extensions, amalgamated products, and HNN-extensions. By the previous paragraph,
one can build �1.N / in finitely many steps starting from the trivial group and using
extensions, amalgamated products, HNN-extensions, and passing to peripheral sub-
groups, so that �1.N / has finite asymptotic dimension. This completes the proof of
(8), and hence of Theorem 1.4.

Lemma 5.5. If M is a compact aspherical graph manifold such that @M is in-
compressible and has zero Euler characteristic, then �1.M/ is not isomorphic to a
non-elementary relatively hyperbolic group.

Proof. Arguing by contradiction suppose that �1.M/ is non-elementary relatively
hyperbolic. Then the fundamental group of each component of @M must lie in a
peripheral subgroup, like all virtually-Z2 subgroups do. Let DM denote the double
of M along @M . By Dahmani’s combination theorem [21] the relatively hyperbolic
group structure on �1.M/ defines a non-elementary relatively hyperbolic structure
on �1.DM/. Then Proposition 1.6 implies kDMk > 0, which is false as graph
manifolds have zero simplicial volume.

Lemma 5.6. If S is normal and compact, then kDM n Sk is finite.

Proof. A proof of finiteness of kDM n Sk is sketched in [27], pages 58–59; we fill
the details with the help of [32], Theorem 5.3. To state Gromov’s result we need two
definitions. A subset of a space is called amenable if for any choice of the basepoint
the �1-homomorphism induced by inclusion has amenable image. A sequence of
subsets Ui of a space X is called amenable at infinity if there is an exhaustion of X

by a sequence of compact sets Ki such that Ki � KiC1, Ui � X n Ki , and Ui is
amenable in X n Ki for large i .

A special case of Gromov’s Finiteness Theorem ([27], bottom of page 58) says
the following: an n-dimensional manifold V has finite simplicial volume if V admits
a locally finite cover by precompact open sets Ui that are amenable at infinity, and
such that the cover fUig has multiplicity � n over a subset that has precompact
complement in V .

We extend the metric on M nQ arbitrarily to a metric on DM . Since S is compact
and normal in DM , we can cover S by finitely many small metric balls with centers
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in S such that for each such ball B we have �1.B n S/ is free abelian. Since S is
.n � 2/-dimensional, this cover has a finite refinement fBj g of multiplicity � n � 1,
and we index this cover by a finite set J . Choose the balls sufficiently small so
that the original cover lies in some (closed) regular neighborhood T0 of S in DM .
Also choose a sequence of regular neighborhoods Tk of S all covered by fBj g withT

k Tk D S and Tk 	 TkC1.
Fix a proper function f W T0 n S ! R. As in the proof of Theorem 5.3 of [32]

for each j 2 J we find a cover Uj of R by bounded open intervals of multiplicity 2

such that Ui [ Uj has multiplicity 3 if i ¤ j ; this uses finiteness of J . Consider the
cover of T0 n S by sets Bj \ f �1.U / with U 2 Uj . Each Bj \ f �1.U / is relatively
compact because sets in Uj are bounded and f is proper. Thus we have covered
T1 nS by relatively compact open subsets Bj \f �1.U /. By an elementary argument
in the proof of Theorem 5.3 of [32] this cover has multiplicity � n. It remains to
show this cover is amenable at infinity, i.e., if Bj [ f �1.U / lies in some Tk , then it
is amenable there. Since Tk ,! T0 is a homotopy equivalence, it is enough to show
that Bj [ f �1.U / is amenable in T0, which follows as the inclusion factors through
the abelian group �1.Bj n S/.

Remark 5.7. An alternative way to prove that the boundary of a regular neighborhood
of S has zero simplicial volume would be to show that it admits an F -structure, and
then apply the result of Paternain–Petean [36] that any manifold with an F -structure
has zero simplicial volume. The existence of an F -structure, or even the existence
of local torus actions that commute on overlaps, should follow from normality of S ,
but we do not attempt proving it here, as we do not see any applications.

6. Other applications

In this section we prove Corollary 1.3, Proposition 1.6, Theorem 1.5, and Theorem 1.7.

Proof of Corollary 1.3. The peripheral subgroups in this case are either virtually
nilpotent, or have a normal infinite cyclic subgroups with hyperbolic quotient. That
�1.M n S/ are residually hyperbolic is provided exactly as in the proof of Corol-
lary 1.4 (4) of [8]. That �1.M n S/ is co-Hopf and has finite outer automorphism
group follows from Theorem 1.3 of [7], which also implies that �1.M n S/ does not
split nontrivially over elementary subgroups. By [41] every non-elementary subgroup
contains a non-abelian free subgroup. All the other asserted properties are proved
exactly as in the proof of Theorem 1.1 of [9].

Proof of Proposition 1.6. We can assume that M is orientable as relative hyperbol-
icity is inherited by finite index subgroups. Let X be an Eilenberg–MacLane space
for �1.L/ in which peripheral subgroups are realized by �1-injective inclusions of
aspherical subspaces Ai , one for each conjugacy class of peripheral subgroups. Let
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A D S
i Ai . Peripheral subgroups of a non-elementary relatively hyperbolic group

have infinite index, hence each Ai is homotopy equivalent to an open n-manifold;
hence Hn.Ai / D 0, which implies Hn.A/ D 0. By the homology long exact se-
quence of the pair, the map Hn.X/ ! Hn.X; A/ is injective, i.e., the fundamental
class ŒL� is mapped to a nonzero element. By the main result of Mineyev–Yaman [33]
that element has positive simplicial norm, and since simplicial norm is non-increasing
under continuous maps we conclude kLk > 0.

Theorem 1.5 is the manifold version of Theorem 6.1 below, for which we adopt
notations and assumptions of Section 3 except those involving C .

Theorem 6.1. Suppose that n > 3 and D is normal.

(a) If h 2 D , then h=StabG.h/ has finite volume.

(b) There is a nontrivial element of � whose centralizer contains a non-abelian free
subgroup. In particular, � is not isomorphic to a discrete group of isometries
of a negatively pinched Hadamard manifold.

Proof. (a) Note that h is a negatively pinched manifold of dimension � 2. By
Section 3, we can always arrange that if B 2 H , then either h and B are disjoint,
or h is asymptotic to the center of B . In the latter case h \ B is a horoball in h.
The set Hh of horoballs in H that intersect h is StabG.h/-invariant. Let Y c , hc

be the complements in Y , h of interiors of the horoballs in H , Hh, respectively.
Since Y c=G is compact, local finiteness of D implies that hc=StabG.h/ is a compact
subset of Y c=G. (Otherwise, there is a sequence of points in hc , whose projections in
hc=StabG.h/ converge to a point outside hc=StabG.h/, and hence the points have lifts
lying on G-images of h and converging to a point of Y , contradicting local finiteness).
Thus for each B 2 Hh, the subgroup of StabG.h/ that preserves the horoball h \ B

acts cocompactly in @B \ h, so h=StabG.h/ has finite volume.
(b) First suppose that there are h; h1 2 D that intersect. Since h=StabG.h/ has

finite volume, there is g 2 StabG.h/ that moves h \ h1 to some disjoint hyperplane
in h, e.g., let g be a hyperbolic element whose attracting limit point is not at infinity
of h \ h1, so that powers of g bring h \ h1 within an arbitrary small neighborhood of
the attracting point. Since h1 is orthogonal to h, so is h2 WD g.h1/, and then h1, h2

must be disjoint. Since D is normal, �1.Y n fh; h1; h2g/ is the amalgamated product
of �1.Y n fh; h1g/ Š Z2 and �1.Y n fh; h2g/ Š Z2 along �1.Y n fhg/ Š Z. The
obvious surjection �1.Y n D/ ! �1.Y n fh; h1; h2g/ splits. (Indeed, take a smooth
path in h that joins h to h1 and intersects no other hyperplane in D . The path has a
small neighborhood V that intersects no hyperplane in D n fh; h1; h2g, and has the
property that the inclusion-induced map �1.V nfh; h1; h2g/ ! �1.Y nfh; h1; h2g/ is
an isomorphism, hence the inclusion-induced map �1.V nfh; h1; h2g/ ! �1.Y nD/

gives rise to a splitting.)) Since �1.Y nD/ is a subgroup of � , so is �1.Y nfh; h1; h2g/,
which by the above is isomorphic to Z � .Z � Z/, and hence the centralizer of an
element of � contains Z � Z.
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It remains to study the case when no two hyperplanes in D intersect. Fix any
h 2 D . Then StabG.h/ acts on Y n h, hence an index two subgroup of StabG.h/

acts trivially on �1.Y n h/ Š Z. By (a), h=StabG.h/ has finite volume, so some
g1; g2 2 StabG.h/ generate a free subgroup. Consider � 2 �1.Y nD/ � � generated
by a loop around h. The loop is preserved by gi up to free homotopy, hence there is
a lift �i 2 � of gi that commutes with � . Since g1, g2 generate a free subgroup, so
do �1, �2, as promised.

Finally, in a discrete group of isometries of a negatively pinched Hadamard mani-
fold the centralizer C.g/ of any infinite order element g is virtually nilpotent. (Indeed,
C.g/ preserves the limit set of g, which consists of one or two points. In the former
case, C.g/ is virtually nilpotent by [13], and in the latter case C.g/ is virtually-
Z because it acts properly discontinuously on the geodesic line joining the limit
points).

Remark 6.2. Part (a) supplies an elementary proof for a claim made in [3] and proved
later in [4].

The proposition below is immediate from the main result of [33].

Proposition6.3. Forn > 1, letN bea compact asphericaln-manifoldwith boundary.
Then kN; @N k > 0 if N contains a codimension zero compact submanifold U with
@N � Int.U / and such that

• every component Ui of U is aspherical and �1-incompressible in N ,
• �1.N / is non-elementary hyperbolic relative to f�1.Ui /g.

Proof. Suppose first that N is orientable. The submanifold L WD N n Int.U / is
compact, so the fundamental class of ŒL; @L� generates Hn.L; @L/ Š Z which equals
Hn.N; U / by excision. But in Hn.N; U / the classes ŒN; @N �, ŒL; @L� are equal, so
ŒN; @N � is nonzero in Hn.N; U /. By [33] nonzero classes in Hk.N; U /, k > 1,
have positive simplicial norm; this applies to ŒN; @N � 2 Hk.N; U /. Since simplicial
norm is nonincreasing under continuous maps, ŒN; @N � has positive simplicial norm
in Hn.N; @N /, as claimed. The case when N is non-orientable follows by working
in the oriented 2-fold covers because codimension zero embeddings of manifold are
orientation-true, and relative hyperbolicity is inherited by finite index subgroups.

Proof of Theorem 1.7. Fix Q � Int.V / as in the introduction, and pick closed regular
neighborhoods T1, T2 of S [ Q in M so small that

T1 � Int.T2/ � Int.V /:

Proposition 6.3 applies to N WD M n Int.T1/ and U WD V n Int.T2/, therefore
kN; @N k > 0. It is immediate from the definitions that kInt.N /k � kN; dN k,
see [27], pages 17, 58, and the claimed result follows as Int.N / is diffeomorphic to
M n S .
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A. Some facts about CAT.�1/ spaces

The results in this appendix are well known but we could not find references.

LemmaA.1. If A, B are closed convex subsets of a complete CAT.�1/ space X such
that D WD dist.A; B/ > 0, then there is a unique geodesic segment with endpoints in
A, B of length D.

Proof. Let b W X ! B denote the orthogonal projection. To prove existence, take
xi 2 A with dist.xi ; B/ 2 ŒD; D C 1

i
/, look at the triangles �.xi ; xj ; b.xi //,

�.xj ; b.xj /; b.xi //, and lay the corresponding comparison triangles �. Nxi ; Nxj ; b.xi //,
�.b.xj /; Nxj ; b.xi // in the hyperbolic plane H2 next to each other along the side
Œ Nxj ; b.xi /�. The distance between the sides Œ Nxi ; Nxj �, Œb.xi /; b.xj /� is � D for if they
could be joined by a segment of length < D, then the parts of the segment lying on dif-
ferent sides of Œ Nxj ; b.xi /� would define, by comparison, an even shorter path concate-
nated from two geodesic segments and joining Œxi ; xj � � A with Œb.xi /; b.xj /� � B .
Therefore Œ Nxi ; Nxj � lies outside the D-neighborhood of Œb.xi /; b.xj /�, and also inside
the D C 1

i
-neighborhood of Œb.xi /; b.xj /� because the neighborhood is convex and

contains the endpoints of Œ Nxi ; Nxj �.
We now prove that fxig is a Cauchy sequence. Arguing by contradiction assume

that d.xi ; xj.i// is bounded away from zero for some subsequence j D j.i/. Apply-
ing isometries of H2 we may assume that b.xi / is independent of i , so as i ! 1 the
segments Œb.xi /; b.xj.i//� subconverge to a segment S (possibly of zero or infinite
length), and hence Œ Nxi ; Nxj.i/� subconverge to a geodesic segment on the boundary of
the D-neighborhood of S , which by elementary hyperbolic geometry contains no
positive length geodesic segments. Thus the limit of Œ Nxi ; Nxj.i/� on the boundary of
the D-neighborhood of S is a point, and hence d.xi ; xj.i// D d. Nxi ; Nxj.i// ! 0.

Since X is complete and A is closed, fxig has a limit x 2 A, and Œx; b.x/� is
a segment of length D joining A; B . Uniqueness also follows for if Œx; b.x/� and
Œy; b.y/� are length D segments joining A and B , then Œ Nx; Ny� lies on the boundary of
the D-neighborhood of Œb.x/; b.y/�, forcing Nx D Ny and hence x D y.

Remark A.2. Existence of a shortest geodesic joining A, B fails if D D 0 (for
asymptotic geodesics in H2), or if D > 0 but X D R2 (for the subsets y � ex and
y � �1).

We refer to Section 2 for the definition of r-separation and bounded penetration.

Lemma A.3. Any family of r-separated convex subspaces of a CAT.�1/ space has
bounded penetration.

Proof. Otherwise there is D such that for each i there are r-separated convex subsets
Ci , Bi in the family and points ci ; c0

i 2 Ci , bi ; b0
i 2 Bi such that d.ci ; bi /Cd.c0

i ; b0
i / <



Hyperplane arrangements and relative hyperbolicity 35

D, while d.ci ; c0
i / > i , d.bi ; b0

i / > i . By comparison with the hyperbolic plane there
is "i ! 0 such that the midpoint of Œci ; c0

i � � Ci is "i -close to a point of Œci ; b0
i � which

in turn is "i -close to a point of Œbi ; b0
i � � B , and we get a contradiction for i with

2"i < r .

The following generalizes Lemma 11.3.4 of [24] on piecewise geodesics in the
real hyperbolic space.

Proposition A.4. For each angle 	1 > 0 there are constants r1, �1, "1 such that any
piecewise geodesic in a CAT.�1/ space whose geodesic pieces have length � r1 and
such that successive pieces meet at an angle � 	1 is a .�1; "1/-quasi-geodesic.

Proof. We are to apply Theorem 3.1.4 of [20] that for any constants ı, �0, 
0 there
are constants �1, 
1, r1 such any r1-local .�0; 
0/-quasi-geodesic in a ı-hyperbolic
space is a global .�1; "1/-quasi-geodesic.

Fix ı such that any CAT.�1/ space ı-hyperbolic [16], Proposition III.H.1.2. Let
c1, c2 be two geodesic rays in the hyperbolic plane emanating from a common point
p at angle 	 . By an elementary computation f .	; t/ WD d.c1.t/; c2.t// is increasing
in 	 for each fixed t > 0, so let � D �.	1/ be the unique solution of f .	1; �/ D 2ı.
Then let �0 WD 1 and "0 WD 2ı C 2�, and let �1, "1, r1 be the constants given by the
above-mentioned Theorem 3.1.4 in [20].

Given a piecewise geodesic c whose pieces have length � r1 and meet at angles
� 	1, it remains to verify that c is an r1-local .1; "0/-quasi-geodesic, i.e., for any
points p, q on the quasi-geodesic with d.p; q/ � r1 we need to check that the
distance between p, q along c is � d.p; q/ C "0 D d.p; q/ C 2ı C 2�. It is enough
to consider p, q lying on consecutive geodesic pieces of c; suppose they form the
angle 	 at their common vertex u.

If either p or q, say q, is within distance � of u, then

d.p; q/ � d.p; u/ � d.u; q/ � d.p; u/ C d.u; q/ � 2�;

as desired, so assume that both d.p; u/ and d.q; u/ are � �. Consider the geodesic
triangle � D �.p; q; u/ and a comparison triangle x� D x�. Np; Nq; Nu/ in the hyperbolic
plane. Take a 2 Œp; u� and b 2 Œq; u� with d.a; u/ D d.b; u/ D �, and let Na and Nu
be comparison points in x�. Let N	 D † Nu. Np; Nq/. Since N	 � 	 � 	1, we must have
d. Na; Nb/ D f . N	; �/ � 2ı. By the ı-thinness of x�, there exist Nv and xw on Œ Np; Nq� such
that d. Na; Nv/ and d. Nb; xw/ are both at most ı and such that xw lies between Nv and Nq.
Let v and w be the points on Œp; q� corresponding to Nv and xw. Then d.a; v/ and
d.b; w/ are at most ı and w lies between v and q. As d.p; v/ � d.p; a/ � ı and
d.q; w/ � d.q; b/ � ı we get

d.p; q/ � d.p; v/Cd.w; q/ � d.p; a/Cd.q; b/�2ı D d.p; u/Cd.u; q/�2ı�2�;

as claimed.
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[22] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups. Topology 44
(2005), 959–1058. Zbl 1101.20025 MR 2153979
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