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Abstract. We study in this paper combinatorial problems concerning graphs generated by
measure preserving actions of countable groups on standard measure spaces. In particular
we study chromatic and independence numbers, in both the measure-theoretic and the Borel
context, and relate the behavior of these parameters to properties of the acting group such
as amenability, Kazhdan’s property (T), and freeness. We also prove a Borel analog of the
classical Brooks’ Theorem in finite combinatorics for actions of groups with finitely many
ends.
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0. Introduction

We study in this paper some combinatorial invariants associated with ergodic actions
of infinite, countable (discrete) groups.

Let .X;�/ be a standard probability space and � an infinite, countable group with
a set of generators 1 … S � � . Given a free, measure-preserving action a of � on
.X;�/, we consider the graphG.S; a/ D .X;E.S; a//, whose vertices are the points
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in X and where x ¤ y 2 X are adjacent if there is a generator s 2 S taking one
to the other. It is clear that the connected components of this graph are isomorphic
to the Cayley graph Cay.�; S/ and thus parameters such as the chromatic number
of G.S; a/ are identical to those of Cay.�; S/. This however requires selecting an
element from each connected component and thus essentially depends upon a use of
the Axiom of Choice. However, the situation is vastly different when one considers
instead measurable colorings and the associated measurable chromatic numbers.

Let us introduce first the combinatorial invariants we will be interested in.
Consider a locally countable Borel graph G D .X;E/ on a standard probability

space .X;�/. We denote by E� the associated Borel equivalence relation whose
classes are the connected components ofG. Given a property of equivalence relations
P , we say thatG has property P ifE� has property P . This explains what it means to
say thatG is (�-)measure preserving, ergodic, hyperfinite, smooth, etc. In particular,
the graphs G.S; a/ discussed before are measure preserving, and they are ergodic iff
the action a is ergodic.

Given such a graph G D .X;E/ its (�-)measurable chromatic number, ��.G/,
is the smallest cardinality of a standard Borel space Y for which there is a (�-)meas-
urable coloring c W X ! Y (i.e., xEy ) c.x/ ¤ c.y/). Clearly ��.G/ 2
f1; 2; 3; : : : ;@0; 2

@0g. It is well known (see, e.g., [26]) that there are acyclic such
graphs G, for which of course the usual chromatic number �.G/ is equal to 2, with
��.G/ D 2@0 .

In addition, we consider the approximate (�-)measurable chromatic number,
�

ap
� .G/, which is defined as the smallest cardinality of a standard Borel space Y such

that for each " > 0, there is a Borel set A � X with �.X nA/ < " and a measurable
coloring c W A ! Y of the induced subgraph GjA. Clearly �ap

� .G/ � ��.G/.
Finally, the (�-)independence number of G, i�.G/, is the supremum of the mea-

sures of independent Borel sets (A � X is independent if no two elements of A are
adjacent in G). Clearly i�.G/ 2 Œ0; 1�. It is easy to check that �ap

� .G/ � 1
i�.G/

,
so graphs with small independence number have large (approximate) measurable
chromatic number.

We discuss in §2 various examples of measure-preserving, ergodic graphsG with
small chromatic number �.G/ (e.g., acyclic) but for which �ap

� .G/ or ��.G/ take
various finite or infinite values, and others in which i�.G/ takes any value in Œ0; 1/
(the value 1 can be easily seen to be impossible to realize in such a graph).

However for graphs of bounded degree, there are further restrictions (see 2.19,
2.20), which are analogs of the classical Brooks’Theorem in finite graph theory (see,
e.g., Diestel [10]), which asserts that for finite graphs G the chromatic number is
bounded by the maximum degree d of the graph, unless d D 2 and G contains an
odd cycle or d � 3 and G contains a complete graph of size d C 1.

Theorem 0.1. Let .X;�/ be a standard probability space and G D .X;E/ a Borel
graph with degree bounded by d � 2. Then
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(i) ��.G/ � d C 1 and thus i�.G/ � 1=.d C 1/ ( [26]);
(ii) if d D 2 and G has no odd cycles (i.e., G is bipartite) or else d � 3 and G has

no cliques (i.e., complete subgraphs) of size d C 1, then �ap
� .G/ � d and thus

i�.G/ � 1=d .

In §3, we consider the case of hyperfinite graphs. Denote below by ��.G/ the
smallest chromatic number of an induced subgraphGjA, where A is anE�-invariant
Borel set of measure 1. In particular, ��.G/ � �.G/. Using some techniques of
Miller [39], we show (see 3.1, 3.8):

Theorem 0.2. Let .X;�/ be a standard probability space andG a locally countable,
acyclic, (�-)hyperfinite graph. Then �ap

� .G/ � 2 and thus i�.G/ � 1=2. If moreover
G is locally finite, (�-)hyperfinite, but not necessarily acyclic, then �ap

� .G/ � ��.G/
and thus i�.G/ � 1=��.G/, and if G is also measure preserving, then �ap

� .G/ D
��.G/.

In §4 we consider the graphs associated with group actions, as discussed in the
beginning of this introduction. Let ��.S; a/, �

ap
� .S; a/, i�.S; a/ be the parameters

associated with G.S; a/. It is easy to see that i�.S; a/ � 1=2.
Let a � b be the relation of weak containment among measure preserving actions

of � on .X;�/; see [23]. We have a � b iff a is in the closure, in the weak topology,
of the conjugacy class of b. We now have the following monotonicity properties
(see 4.2, 4.3).

Theorem 0.3. Let � be a countable group and S a finite set of generators. Then

a � b H) i�.S; a/ � i�.S; b/; �
ap
� .S; a/ � �ap

� .S; b/:

It follows that i�.S; a/, �
ap
� .S; a/ are invariants of weak equivalence, a � b,

where a � b () a � b and b � a.
Note that Cay.�; S/ is bipartite iff there is no odd length word in S [ S�1 equal

to the identity in � . We show in 4.5 that (for any �; S ) if Cay.�; S/ is not bipartite,
then i�.S; a/ < 1=2 and �ap

� .S; a/ � 3. In fact in this case i�.S; a/ � 1=2�1=.2g/,
where g is the odd girth (= length of shortest odd cycle) in Cay.�; S/. From this
and 0.1 it follows that for � D .Z=2Z/ � .Z=3Z/ D hs; t j s2 D 1; t3 D 1i and
S D fs; tg, we have i�.S; a/ D 1=3 for every free, measure-preserving action a
of � .

It is known, see, e.g., [23], 13.2, that any two free, measure-preserving, ergodic
actions of an amenable group � are weakly equivalent, thus for any finite generating
set S � � , we have that

i�.�; S/ D i�.S; a/; �ap
� .�; S/ D �ap

� .S; a/

are independent of the action a. We can identify i�.�; S/, �
ap
� .�; S/ in terms of

Cay.�; S/. For a finite graph G D .X;E/, we define the independence ratio i.G/
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to be i�.G/, where � is the normalized counting measure on X (so i.G/ D ˛.G/
jX j ,

where ˛.G/ is the maximum cardinality of an independent subset of X ). For .�; S/
as above and finite F � � , let i.F; S/ be the independence ratio of the induced
subgraph Cay.�; S/jF . Let .Fn/ be a Følner sequence for � , i.e., Fn � � are finite,
non-empty, and j�Fn4Fnj

jFnj ! 0 for all � 2 � . Using a result that can be proved easily
using the quasi-tiling machinery of Ornstein–Weiss [43] (see Gromov [14], 1.3, and
Lindenstrauss–Weiss [31], Appendix), one can show that for any Følner sequence
.Fn/,

lim
n!1 i.Fn; S/ D i.�; S/

exists (and is of course independent of .Fn/). We call this the independence number
of Cay.�; S/. We now have (see 4.7, 4.10)

Theorem 0.4. Let � be a countable, amenable group and S a finite set of generators.
Then:

(i) �ap
� .�; S/ D �.Cay.�; S//,

(ii) i�.�; S/ D i.�; S/.

For non-amenable � , i�.S; a/ and �ap
� .S; a/ are not necessarily constant. In fact

for any� and finite set of generatorsS with Cay.�; S/ bipartite, we have the following
characterization of amenability (see 4.13, 4.14).

Theorem 0.5. Let � be a countable group and S � � a finite set of generators with
Cay.�; S/ bipartite. Then the following are equivalent:

(i) � is amenable.

(ii) i�.S; a/ is constant for any free, measure-preserving action a of � .

(iii) i�.S; a/ D 1=2, for any free, measure-preserving action a of � .

(iv) �ap
� .S; a/ is constant for any free, measure-preserving action a of � .

(v) �ap
� .S; a/ D 2, for every free, measure-preserving action a of � .

Subsequently an alternative proof of this result was given in Abért–Elek [1].
We also have an analogous characterization of groups that have property (T) and

the Haagerup Approximation Property HAP (see 4.15).

Theorem 0.6. Let � be an infinite, countable group and S � � a finite set of
generators such that Cay.�; S/ is bipartite. Then the following are equivalent:

(i) � has property (T).
(ii) i�.S; a/ < 1=2, for every free, measure-preserving, weakly mixing action a

of � .

(iii) �ap
� .S; a/ � 3, for every free, measure-preserving, weakly mixing action a

of � .
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Also the following are equivalent:

(i*) � does not have the HAP.

(ii*) i�.S; a/ < 1=2, for every free, measure-preserving, mixing action a of � .

(iii*) �ap
� .S; a/ � 3, for every free, measure-preserving, mixing action a of � .

We next consider the shift action s� of the free group � D Fm, with m free
generators S D fa1; : : : ; amg, on 2� with the product measure. Using a result
of Kesten [28] for the norm of averaging operators, we show the following result
(see 4.17).

Theorem 0.7. Let � D Fm be the free group with a free set of generators S and let
s� be its shift action on 2� . Then

1

2m
� i�.S; s�/ �

p
2m � 1

mC p
2m � 1;

and

2m � �ap
� .S; s�/ � mC p

2m � 1p
2m � 1 :

This has the following consequence (see 2.5), answering a question in [39].

Corollary 0.8. For each 2 � n < @0, there is an acyclic, bounded degree, measure-
preserving, ergodic Borel graph G with ��.G/ D n.

Without the requirements of having bounded degree or preserving measure, such
examples were first found by Laczkovich (see [26], Appendix).

The exact values of i�.S; s�/, �
ap
� .S; s�/ in 0.7 are unknown. It should be noted

that there is no known example of .�; S/, with � amenable and S finite, for which
��.S; s�/ > �.Cay.�; S// C 1. For instance, Gao–Jackson–Miller (unpublished)
and recentlyAdam Timar (private communication) have shown that for� D Zm, with
S the usual set of generators (for which of course�.Cay.�; S// D 2), ��.S; s�/ D 3.

We also present in §4 other examples of free, measure-preserving, ergodic actions
of Fm that satisfy the bounds in 0.7.

Finally in §4 we discuss, for any .�; S/, canonical finite graphs that “approxi-
mate” the infinite graph G.S; s�/ associated with the shift of � on 2� . Labeled and
“weighted” versions of these graphs were also used in Bowen [6]. Applying this to
� D Fm and a free set of generators S produces a natural explicit family of finite
graphs Gn;m;k (n;m; k � 1) which simultaneously have arbitrarily large odd girth
godd.G/ and arbitrarily small independence ratio i.G/, thus arbitrarily large chro-
matic numbers. Such explicit families appear to be of interest in finite graph theory.
More precisely, we have (see 4.22):
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Theorem 0.9. There is an explicit family of finite graphsGm;k;n (m; k; n � 1) and a
map m; k 7! N.m; k/ such that for any m; k, if n > N.m; k/, then

godd.Gm;k;n/ > k;

i.Gm;k;n/ � 2
p
2m � 1

mC p
2m � 1;

and thus

�.Gm;k;n/ � mC p
2m � 1

2
p
2m � 1 :

In §5 we return to Brooks’ Theorem and study Borel analogs of it, especially in
the context of graphs generated by group actions.

Let � be an infinite countable group and 1 … S a finite set of generators for � . Let
d D jS˙1j, where S˙1 D S[S�1, be the degree of the Cayley graph of � , S . LetA
be a free Borel action of � on a standard Borel space X (we do not assume here that
a measure is necessarily present on X ). We can define as before the graph G.S;A/
associated with this action and the set of generators S . We denote be �B.S; A/ the
Borel chromatic number of this graph, i.e., the smallest cardinality of a standard Borel
space Y for which there is a Borel coloring c W X ! Y for G.S;A/. It follows from
results of [26] that �B.S; A/ � d C 1. We examine under what circumstances this
can be improved to �B.S; A/ � d as in Brooks’ Theorem. We show the following
(see 5.12)

Theorem 0.10. Suppose that � is a finitely generated infinite group isomorphic
neither to Z nor to .Z=2Z/� .Z=2Z/. Suppose further that � has finitely many ends.
Let S be a finite set of generators for � and put d D jS˙1j. Then for any free Borel
action A of � on a standard Borel space X , we have �B.S; A/ � d .

The requirement that� is not isomorphic to Z or to .Z=2Z/�.Z=2Z/ is necessary
as the free part of the shift action of these groups � on 2� has Borel chromatic
number equal to 3 (with respect to the usual set of generators). Groups that satisfy
the hypotheses of the preceding theorem include: groups with property (T), direct
products of two infinite groups, amenable groups, and, more generally, groups of
cost 1, etc. In particular, if � is a 2-generated such group, then for any free Borel
action of � that admits an invariant Borel probability measure with respect to which
it is weakly mixing, the corresponding Borel chromatic number is either 3 or 4. This
extends a result of Gao–Jackson [12] and Miller, who proved this for the free part of
the shift action of Z2 on 2Z2

(see §4).
In the last section §6 we discuss a matching problem in the Borel and measurable

contexts related to earlier work of Laczkovich [30] and Kłopotowski–Nadkarni–
Sarbadhikari–Srivastava [29].
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Addendum. After the first version of this paper has been completed, we received a
preliminary draft of a paper by Lyons and Nazarov [35], with subject matter closely
related to this paper. In particular, it contains a version of Proposition 4.16 below.
Also, its main result, which is that the graph associated with the shift action of a
non-amenable group � , and a finite set of generators S � � , on Œ0; 1�� admits a
measurable matching, provides the solution to a problem that we discussed in §6 of
the original version. Moreover, Lyons (private communication) mentioned that they
have also considered the finite graphs approximating the graphs G.S; s�/, discussed
in §4, although these do not appear in [35]. Finally in [35] the authors mention that
earlier results of Frieze–Luczak on random graphs imply that for large values of m,
i�.S; s�/ � log 2m

m
and thus �ap

� .S; s�/ � m
log 2m

.
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1. Preliminaries

(A) A graph is a pair G D .X;E/, where X is a set whose elements we call vertices
ofG andE � X2 satisfies: .x; x/ … E (i.e., there are no loops) and .x; y/ 2 E ()
.y; x/ 2 E (i.e., the graph is symmetric). We often write xEy to denote .x; y/ 2 E,
and we identify E with the set of unordered pairs ffx; yg W xEyg, which we call the
edges of G. If xEy we say that x, y are adjacent.

Occasionally we will also consider graphs with (possible) loops, those in which
.x; x/ 2 E is allowed, for some x 2 X , and directed graphs, those in whichE � X2

is not necessarily symmetric.
A path in G is a sequence x0; x1; : : : ; xn, n � 1, of distinct vertices such that

xiExiC1, 0 � i < n. The length of such a path is the number of edges it uses, so the
length of x0; x1; : : : ; xn is n. Such a path is a cycle if n � 2 and, moreover, xnEx0;
its length is nC 1.

We denote by E� the smallest equivalence relation containing E. Its equivalence
classes are the connected components ofG, and thus two vertices x, y are connected
exactly when x D y or there is a path x D x0; x1; : : : ; xn D y. If x, y are connected,
we set �G.x; y/ equal to the length of the shortest path from x to y, and call it the
(G)-distance from x to y. The graph is connected if it has a unique connected
component.
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A graph is acyclic if it contains no cycles; we sometimes call such graphs forests
and their connected components trees. One easily sees that if x, y are distinct vertices
of a tree, then there is a unique path from x to y.

The girth of G, in symbols g.G/, is the length of the smallest cycle in G. By
convention, we set g.G/ D 1 when G is a forest. The odd girth of G, godd.G/, is
the length of the smallest odd cycle in G. Again godd.G/ D 1 if there are no odd
cycles.

The degree of a vertex x, denoted dG.x/ or just d.x/, if there is no danger
of confusion, is the cardinality of the set Ex D fy 2 X W xEyg. We also let
�.G/ D supfdG.x/ W x 2 Xg. If �.G/ � @0, we say that G is locally countable,
and if dG.x/ < @0 for all x, we say that G is locally finite. If �.G/ < @0, we say
that G has bounded degree.

ForA � X we define the induced subgraph onA, writtenGjA, to be .A;E\A2/.
We say that A � X is independent for G if GjA is trivial, i.e., no two vertices in A
are adjacent.

A graph G D .X;E/ is bipartite if there is a partition X D X1 t X2, with each
Xi .i D 1; 2/ independent. It is well known that a graph is bipartite if it has no odd
length cycles. Any acyclic graph is therefore bipartite.

The chromatic number of a graphG, in symbols �.G/, is the smallest cardinality
of a set Y for which there is a map c W X ! Y (a vertex coloring) such that xEy )
c.x/ ¤ c.y/. Thus the graph is bipartite iff �.G/ � 2.

(B) Let now X be a standard Borel space. By a measure on X we mean a finite
Borel measure. If � is a measure on X with 0 < �.X/ < 1 we call the pair .X;�/
a standard measure space. If �.X/ D 1, we call .X;�/ a standard probability space
and � a probability measure. Unless otherwise indicated or clear from context (e.g.,
when X is finite), measures will be assumed to be non-atomic.

(C) When G D .X;E/ is a graph and X a standard Borel space, we say that
G is Borel if E � X2 is Borel. In this situation we have that E� is an analytic
equivalence relation, but if we assume in addition that G is locally countable, then
E� is a countable (i.e., having all its classes countable) Borel equivalence relation.
We will be primarily interested in locally countable Borel graphs, and will thus borrow
from the theory of countable Borel equivalence relations. For more details see, e.g.,
[25].

A countable Borel equivalence relation R on a standard measure space .X;�/
is measure preserving, abbreviated m.p., if whenever f W X ! X is a Borel au-
tomorphism with graph contained in R, f�� D � (where, as usual, f��.A/ D
�.f �1.A//). For A � X , we define the R-saturation of A, written ŒA�R, to be the
set fx 2 X W 9y 2 A .xRy/g. We say that R is ergodic (relative to �) if for all Borel
A � X , ŒA�R is either �-null or �-conull. When R can be written as an increasing
union of finite (i.e., having all its classes finite) Borel equivalence relations on X we
call it hyperfinite, and when R admits a Borel transversal (i.e., a set meeting each
R-class in exactly one point), we say it is smooth. Similarly, we call R �-hyperfinite
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(resp., �-smooth) if its restriction to a conull R-invariant Borel set is hyperfinite
(resp., smooth). We say G D .X;E/ is m.p. if E� is; likewise we say that G is
ergodic, hyperfinite, or smooth, if E� is.

2. Chromatic and independence numbers

(A) A coloring of a locally countable Borel graph G D .X;E/ on a standard Borel
space X is a map c W X ! Y , where Y is a standard Borel space, such that

xEy H) c.x/ ¤ c.y/;

i.e., 8y 2 Y .c�1.fyg/ is independent/. The chromatic number of G, in symbols

�.G/;

is the smallest cardinality of a space Y as above for which there is a coloring c W X !
Y . Clearly �.G/ 2 f1; 2; : : : ; n; : : : ;@0g (and �.G/ � 2 unless E D ;).

(B) If the coloring c as in (A) is Borel as a map from X into Y , we call c a Borel
coloring. We define the Borel chromatic number of G, in symbols

�B.G/;

to be the smallest cardinality of a standard Borel space Y for which there is a Borel
coloring c W X ! Y . Clearly �B.G/ 2 f1; 2; 3; : : : ; n; : : : ;@0; 2

@0g and

�.G/ � �B.G/:

Example 2.1. In [26] and Miller [39], various examples of non-smoothG D .X;E/

are discussed, all of which are acyclic (so �.G/ D 2), but �B.G/ ranges over all
values in f2; 3; : : : ;@0; 2

@0g. It follows that for any m; n 2 f2; 3; : : : ;@0; 2
@0g with

m � n and m < 2@0 , there is such a G with �.G/ D m and �B.G/ D n (just add a
single connected component of chromatic numberm to a graphG that has �.G/ D 2

and �B.G/ D n).

(C) Suppose now that .X;�/ is a standard measure space (perhaps with atoms) and
G D .X;E/ is a locally countable Borel graph on X . We define the (�-)measurable
chromatic number of G, in symbols

��.G/;

as the smallest cardinality of a standard Borel space Y for which there is a (�-)meas-
urable coloring c W X ! Y . Again,

�.G/ � ��.G/ � �B.G/:
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Example 2.2. a) There is an acyclic, locally countable Borel graph G on a standard
measure space .X;�/ with G m.p., ergodic and

2 D �.G/ < ��.G/ D �B.G/ D 2@0 :

To see this, take a compact, metrizable groupX that contains a dense subset fangn2N

which generates freely a free subgroup (e.g., X D SO3.R/) and let � be the Haar
measure on X . Consider the graph G D .X;E/, where xEy () 9n .x D a˙1

n y/.
ThenG is acyclic and m.p., ergodic. So �.G/ D 2 but if c W X ! N is a measurable
coloring, then for some n, Y D c�1.fng/ has positive measure, so Y Y �1 contains
an open neighborhood of 1. Then there are x; y 2 Y , k 2 N with xy�1 D ak , thus
xEy, a contradiction.

b) Another family of examples that have the above properties are the following:
Take an infinite countable group � and an infinite set of generators S . Let a be a free,
mixing, measure preserving action of � on .X;�/ and let G.S; a/ be the associated
graph. Then, by the mixing property, if A � X has positive measure, then for some
s 2 S , s 	 A \ A has also positive measure, thus A is not independent and therefore
��.G.S; a// D 2@0 . If we take � to be the free subgroup on infinitely many (free)
generators S , then G.S; a/ is also acyclic.

Example 2.3. There is an acyclic, locally countable Borel graph G on a standard
measure space .X;�/ with G m.p., ergodic and

2 D �.G/ < 3 D ��.G/ < �B.G/ D 2@0 :

Take, for instance, the graph G0 on X D 2N defined in [26], where it is shown
that G0 is acyclic (thus �.G0/ D 2), but �B.G0/ D 2@0 . Miller [39] showed that
��.G0/ D 3, where � is the usual product measure on 2N , for which G0 is m.p.,
ergodic.

Example 2.4. It is easy to construct an example of a locally countable Borel graph
G on a standard measure space .X;�/ with G m.p., ergodic, for which �.G/ D
��.G/ D �B.G/ D 2. Take a countable, measure-preserving, ergodic equivalence
relationR on .X;�/ and letX D AtB be a Borel partition ofX withA, B meeting
each R-class. Let E be the bipartite graph with edges between all pairs of R-related
points, one in A and the other in B . Clearly �.G/ D ��.G/ D �B.G/ D 2 and G
generates R.

Example 2.5. We will see in Section 4 examples of acyclic, bounded degree Borel
graphs G D .X;E/ on standard .X;�/ which are m.p., ergodic, and ��.G/ is finite
but arbitrarily large (although of course �.G/ D 2). From this it follows that for
each 2 � n < @0, there is an acyclic, bounded degree G D .X;E/ on a standard
measure space .X;�/ with G m.p., ergodic such that ��.G/ D n. To go from such
a G that has ��.G/ D k C 1 > 3 to a xG; N� that has � N�. xG/ D k, take a partition
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A0 t 	 	 	 t Ak D X given by a measurable coloring of G, and assume without loss
of generality that �.A0/ < 1. Let X 0 D A1 t 	 	 	 t Ak , G0 D GjX 0 D .X 0; E 0/ be
the induced subgraph on X 0 and let �0 D �jX 0. Clearly G0 is acyclic, ��0.G0/ D k,
and G0 is m.p. (for �0). Consider then the ergodic decomposition associated with
.E 0/� (onX 0). If all the pieces of this decomposition have (for the induced subgraph
G0) measurable chromatic number � k � 1 then, by measurable selection, we can
find a �0-conull set on which G0 admits a k � 1 measurable coloring, and since G0
has chromatic number � 2, it follows that ��.G

0/ � k � 1, a contradiction. So
there is a piece of the ergodic decomposition . xX; N�/, so that if xG D G0j xX is the
induced subgraph, then xG is acyclic, � N�. xG/ D k, and xG is m.p., ergodic. Finally, N�
is non-atomic, else xX would have to be finite, and so xG would have chromatic (and
so N�-measurable chromatic) number at most 2 < k, a contradiction.

An analogous argument produces, for each 2 � n < @0, an acyclic, bounded
degree Borel graph G with �B.G/ D n, answering a question in [39].

Example 2.6. There is an example of a locally countable Borel graphG on a standard
measure space .X;�/ with G invariant, ergodic for which �.G/ � 3 and ��.G/ D
@0. To see this, take, for each n, as in Example 2.5, an acyclic, locally countable Borel
graph Gn D .Xn; En/ on a standard probability space .Xn; �n/ with Gn invariant,
ergodic, and ��n

.Gn/ > n. Fix a standard probability space .X;�/ and a Borel
partition X D F1

nD1An with �.An/ D 1=2n. Fix a Borel bijection 'n W Xn ! An

sending �n to �An
D �jAn

�.An/
and let G0

n D .An; E
0
n/ be the image of Gn under

this bijection. Find, for each n, two disjoint Borel sets Cn;Dn � An of positive
measure which are independent for G0

n, and such that there are measure-preserving
Borel isomorphisms !n W Cn ! CnC1, for n � 1, n odd, and  n W Dn ! DnC1

for n � 2, n even. Let G D .X;E/ be the graph on X whose edges are those
in

S
nE

0
n together with the graphs of !n,  n, and their inverses. Then G is m.p.,

ergodic and ��.G/ D @0. Finally, �.G/ � 3. Indeed, fix the same colors a, b
witnessing the 2-colorability of each G0

n. Then change the color of each element ofS
n; odd Cn [ S

n; even Dn to some third color c. This gives a 3-coloring of G.

We do not know an example ofG,X ,� as above for whichG is acyclic (or even has
�.G/ D 2) but ��.G/ D @0. (Addendum. Recently Conley–Miller [8] constructed
an example of an acyclic such G with �B.G/ D ��.G/ D @0.) More generally,
we do not know what are the possible values of k; l;m 2 f2; 3; : : : ;@0; 2

@0g with
k � l � m such that there is a locally countable Borel graphG on a standard measure
space .X;�/ which is m.p., ergodic, and

�.G/ D k; ��.G/ D l; �B.G/ D m:

Remark 2.7. One can also define the (�-)almost everywhere measurable chromatic
number of G, in symbols �ae

� .G/, as the smallest cardinality of a standard Borel
space Y for which there is a Borel set A � X with �.A/ D 1 and a Borel coloring
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c W A ! Y of the induced subgraphGjA D .A;E \A2/. Clearly, �ae
� .G/ � ��.G/.

However, if �ae
� .G/ � �.G/, which will be the case for most graphs that we will be

interested in, then �ae
� .G/ D ��.G/.

(D) Finally, when .X;�/ is a standard measure space andG is a locally countable
Borel graph on X , we define the approximate (�-)measurable chromatic number of
G, in symbols

�ap
� .G/;

to be the smallest cardinality of a standard Borel space Y such that for every " > 0

there is a Borel set A � X with �.X nA/ < " and a measurable coloring c W A ! Y

of the induced subgraph GjA. Again,

�ap
� .G/ � ��.G/;

but clearly �.G/ � �
ap
� .G/may fail, since �.G/ can be altered arbitrarily on a single

connected component without affecting �ap
� .G/. On the other hand, let

��.G/

be the minimum of all �.GjA/, where A is an E�-invariant Borel set of measure 1.
Clearly ��.G/ � �.G/. Then it is easy to see that if G is m.p., then

��.G/ � �ap
� .G/:

This is clear if �ap
� .G/ � @0, so assume that �ap

� .G/ D k < @0. Let Yn be a Borel set
of measure at least 1 � 2�n such that GjYn is k-colorable. Let Zn D T

m�n Ym, so
that Zn � ZnC1 and �.Zn/ � 1� P

m�n 2
�m ! 1, as n ! 1. Then Z D S

nZn

has measure 1, thus contains an E�-invariant Borel set W � Z of measure 1. To
show that GjW is k-colorable, it suffices to show that GjF is k-colorable for every
finite F � W , but this is clear since there must exist some n such that F � Zn.

Example 2.8. There is an acyclic, bounded degree Borel graph G D .X;E/ on a
standard measure space .X;�/ which is m.p., ergodic, and �ap

� .G/ < ��.G/. For
instance, consider the shift S on 2Z and let X � 2Z be its aperiodic part. Let �
be the restriction of the usual product measure to X (note that �.X/ D 1). Let for
x; y 2 X , xEy () x D S˙1.y/. Then by Rokhlin’s Lemma (see, e.g., [25], 7,
7.5), �ap

� .G/ D 2. On the other hand, ��.G/ D 3. Otherwise, there is a measurable
partition X D AtB into independent sets. Then S.A/ D B and S.B/ D A, and so
�.A/ D �.B/ D 1=2 and both A, B are S2-invariant, which is impossible as S2 is
ergodic.

We have seen in Example 2.2 examples of acyclic, locally countable, Borel G
on standard .X;�/ which are m.p., ergodic and have no independent sets of positive
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measure, thus �ap
� .G/ D 2@0 . It is also easy to see that there is no such G, X , �

with �ap
� .G/ D 1 (i.e., there cannot exist independent Borel sets whose measure is

arbitrarily close to 1). Indeed, if G D .X;E/ is such that G is m.p., ergodic, then by
the uniformization theorem for Borel sets with countable sections, there is a measure-
preserving Borel bijection ' W A ! B between Borel sets of positive measure such
that .x; '.x// 2 E, for all x 2 A. If �.A/ D �.B/ D ı and " < ı=2, there can be
no independent Borel set of measure bigger than 1 � ".
Example 2.9. There is an example of G,X ,� as in Example 2.6 with �.G/ � 3 and
�

ap
� .G/ D @0. The graphs G D .X;E/ on .X;�/ from Section 4 (mentioned previ-

ously in Example 2.5) which have arbitrarily large finite �� actually have arbitrary
large finite �ap

� . Then, as in Example 2.6, this gives examples of G with �.G/ � 3

and �ap
� .G/ D @0.

Again, we do not know examples of such G with �.G/ D 2 and �ap
� .G/ D @0.

(Addendum. Such an example, which is actually acyclic, was constructed in Conley–
Miller [8].) Also, we do not know if there are such examples for which �ap

� .G/ takes
an arbitrary value 3 � k < @0.

The more general problem is again whether there is any other relationship be-
tween �.G/, ��.G/, ��.G/, �

ap
� .G/, beyond the obvious �.G/ � ��.G/, ��.G/ �

�
ap
� .G/ � ��.G/ for locally countable (or locally finite) Borel graphsG on standard

measure spaces .X;�/ which are m.p., ergodic.

(E) Let finally G be a locally countable Borel graph on a standard probability
space .X;�/. We define the independence number of G, in symbols

i�.G/;

by
i�.G/ D supf�.Y / W Y � X is an independent Borel setg:

Clearly, we can replace “Borel” by “(�-)measurable” in this definition. (If � is not a
probability measure we replace �.Y / by �.Y /=�.X/ in the definition above.)

Obviously, 0 � i�.G/ � 1 and i�.G/ D 0 means that there is no positive
measure independent set. We have seen in 2.2 examples of such graphs (they clearly
have ��.G/ D 2@0). IfG D .X;E/ is a locally countable Borel graph on a standard
probability space .X;�/withG m.p., ergodic, then we have seen in (D) that i�.G/ <
1 (otherwise �ap

� .G/ D 1).

Example 2.10. For each 0 < a < 1 there is an acyclic, locally countable Borel graph
G on a standard probability space .X;�/ which is m.p., ergodic and i�.G/ D a with
the supremum being attained.

To see this, first fix an acyclic G1 D .X1; E1/ on .X1; �1/ with G1 invariant,
ergodic, �1.X1/ D 1 � a, and i�1

.G1/ D 0. Also fix k > a
1�a

. Let X2 be an
uncountable standard Borel space disjoint fromX1 and partition it into k uncountable
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Borel sets: X2 D A1 t	 	 	tAk . Fix a Borel subset Y1 ofX1, meeting eachE�
1 -class,

such that �1.Y1/ D a
k
< 1 � a. For each 1 � i � k, let fi W Y1 ! Ai be a Borel

bijection. Use fi to copy the measure �1jY1 to Ai , say 	i , and let �2 D Pn
iD1 	i .

Then �2.X2/ D k 	 a
k

D a. Let X D X1 t X2, � D �1 C �2. Define the graph
G D .X;E/ as follows: the edges of G are those in E1 together with the graph of
each fi and its inverse. Clearly it is acyclic and it is easy to see thatG is m.p., ergodic.
Finally, X2 is independent for G and if A � X is independent Borel, then clearly
�.A \X1/ D 0, so �.A/ � �.X2/ D a. So i�.G/ D a and the sup is attained.

Remark 2.11. WhenX is a finite set and� is normalized counting measure, i�.G/ D
i.G/ is usually called the independence ratio and ˛.G/ D .the maximum cardinality
of an independent subset of X/ is called the independence number (thus i.G/ D
˛.G/
jX j ). We will not use ˛.G/ in this paper, so this should not cause any confusion.

We now have the following simple inequality:

Proposition 2.12. LetG be a locally countable Borel graph on a standard probability
space .X;�/ (perhaps with atoms). Then

�ap
� .G/ � 1

i�.G/
:

Proof. This is clear if i�.G/ D 0. If �ap
� .G/ D k 2 N, fix " > 0 and independent,

pairwise disjoint Borel sets A1; : : : ; Ak with �
� Sk

iD1Ai

�
> 1 � ". Then

k 	 i�.G/ � �
� k[

iD1

Ai

�
> 1 � ";

so k > 1�"
i�.G/

, and we are done.

(F) We will often be interested in locally finite graphs and, in particular, those of
bounded degree, where recall that G has bounded degree if

�.G/ D supfdG.x/ W x 2 Xg < @0:

Proposition 2.13 ([26], 4.5, 4.6). If G is a locally finite Borel graph, then �B.G/ �
@0. If G is of bounded degree, then �B.G/ � �.G/C 1.

Corollary 2.14. Let .X;�/ be a standard probability space and G D .X;E/ a
locally finite Borel graph. Then i�.G/ > 0.

Example 2.15. For each 0 < a < 1, there is a bounded degree G D .X;E/ on a
standard probability space .X;�/ which is m.p., ergodic, such that i�.G/ D a and
the supremum is attained.
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To see this, let S be the shift on 2Z and let X1 
 2Z be its aperiodic part. Let
�1 be the restriction to X1 of the product measure on 2Z. Let E1 be the union
of the graph of S jX1 and its inverse. This is invariant, ergodic on .X1; �1/. Let
n > 3 be such that a 2 �

1
n
; n�1

n

�
, so that a D 1

n
˛ C n�1

n
ˇ for some ˛; ˇ � 0,

˛ C ˇ D 1. Let A t B D X1 be a Borel partition with �1.A/ D ˛, �1.B/ D ˇ.
Let X D X1 � f1; : : : ; ng and give X the product measure � D �1 � 	, where 	 is
the normalized counting measure on f1; : : : ; ng. Let G D .X;E/ be the following
graph on X :

E D f..x; 1/; .y; 1// W xE1yg
[ f..x; i/; .x; j // W x 2 A; 1 � i ¤ j � ng
[ f..x; 1/; .x; j // W x 2 B; 2 � j � ng
[ f..x; j /; .x; 1// W x 2 B; 2 � j � ng:

Clearly, d.G/ � nC 1. It is easy to see that .x; i/E�.y; j / () xE�
1y, and thus G

is m.p., ergodic. We claim that i�.G/ D a and the supremum is attained. First note
that if Y � X is independent, then for each x 2 A there is at most one 1 � i � n

with .x; i/ 2 Y and for each x 2 B there are at most n � 1 many 1 � j � n

with .x; j / 2 Y . Thus �.Y / � 1
n
�.A/ C n�1

n
�.B/ D a. On the other hand,

Y D f.x; 2/ W x 2 Ag [ f.x; j / W x 2 B and j 2 f2; : : : ; ngg is independent and
�.Y / D 1

n
�.A/C n�1

n
�.B/ D a, so i�.G/ D a and the supremum is attained.

We do not know however if examples as in 2.15 with arbitrary i�.G/ D a 2 .0; 1/
can be found which are acyclic, even if we replace “bounded degree” by “locally
finite.” The referee pointed out that for any given integer d > 2, there is an upper
bound f .d/ D d

dC1
< 1 for the independence number i�.G/ of every m.p., ergodic

G with�.G/ � d . This is because ifA is independent andB is its complement, then
the measure of A is bounded by the integral of d.x/ over B . We will see in Section 3
that actually for d D 2, f .2/ D 1=2 works. Note that in the examples of 2.15, to
achieve i�.G/ D a < 1, we needed a graph G of degree nC 1, where n � 1

1�a
.

We now prove a strengthening of 2.13 with applications in computing bounds for
approximate chromatic numbers (and thus independence numbers). Recall that we
say a graph is aperiodic if all of its connected components are infinite.

Proposition 2.16. Suppose that G is an aperiodic Borel graph on X with degree
bounded by d . Then there is a decreasing sequence A1 � A2 � 	 	 	 of subsets of
X with

T
nAn D ; and Borel .d C 1/-colorings cn W X ! f0; 1; : : : ; dg of G with

c�1
n .0/ � An.

Proof. Recall that a complete section or marker set for an equivalence relation is one
meeting each equivalence class (see, e.g., [25], 6.7). We now say that a subsetA ofX
is a strong marker set for G if it meets every connected component, is independent,
and there is some natural number k such that every point of X is connected to a
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point in A via a path in G of length less than k. The next lemma is a variation of
Lemma 3.14 in [20].

Lemma 2.17. Suppose that G is a locally finite, aperiodic Borel graph on X . Then
there is a decreasing sequence of Borel strong marker sets A1 � A2 � 	 	 	 withT

nAn D ;.

Proof. We let B1 be a maximal independent Borel set (see [26], 4.2, 4.5). We then
let B2 be a maximal Borel subset of B1 subject to the constraint that no two points
of B2 are within distance two in the graph metric of G (the existence of such B2

follows from the fact that the distance two graph is locally finite). We continue in
this fashion, lettingBnC1 be a maximal Borel subset ofBn with no two points within
distance nC 1.

We claim that every point of X is within distance n2 of Bn. This is a simple
induction. If every point x is within distance n2 ofBn, then, by maximality ofBnC1,
every point of Bn is within distance n C 1 of BnC1 and thus x is within distance
n2 C nC 1 < .nC 1/2 of Bn.

It may not be the case that
T

nBn D ;, but this intersection meets each connected
component ofG it at most one point. SinceG is aperiodic, each setAn D BnnT

nBn

is still a strong marker set. The sequence .An/ is as desired.

Lemma 2.18. Suppose that G is a Borel graph on X and that A � X is a Borel set
such that every point in X n A has degree less than d . Then any Borel d -coloring
c W A ! d of GjA may be extended to a Borel d -coloring c0 W X ! d of G.

Proof. PartitionX nA D B1 tB2 t 	 	 	 tBd intoG-independent Borel sets. Extend
c to c1 W A[B1 ! d by following a greedy algorithm, i.e., for each x 2 B1 set c1.x/

to be the least color not used by a neighbor of x. Similarly extend toB2; : : : ; Bd .

To finish the proof of the proposition, we take the vanishing sequence of strong
markers A1 � A2 � 	 	 	 granted by Lemma 2.17 as the sequence in the statement of
the lemma, and describe how to Borel .d C 1/-color G with one color contained in
An. Fix k such that every point of X is within distance k of An, and partition X into
X0 D An tX1 t 	 	 	 tXk , where Xi D fx 2 X W �G.x; An/ D ig.

NowGjXk has degree bounded by d �1 (since everything is connected to at least
one point inXk�1), and thus admits a Borel d -coloring. In the graphGj.Xk [Xk�1/,
points inXk�1 have degree bounded by d �1 and so Lemma 2.18 allows us to extend
the d -coloring on Xk to one on Xk [ Xk�1. Continuing in this fashion, we obtain
a Borel coloring of X n An with d colors. Using the remaining color on An itself
completes the proof.

And now, for the promised application, an analogue of Brooks’ Theorem. Recall
that the clique number of a graph, clq.G/, is the largest cardinality of a complete
(induced) subgraph of G.
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Theorem 2.19. Let .X;�/ be a standard probability space, G D .X;E/ a Borel
graph on X with degree bounded by d , where d � 3. Suppose furthermore that
clq.G/ � d . Then �ap

� .G/ � d and thus i�.G/ � 1=d .

Proof. Brooks’ Theorem allows us to d -color the finite components of G in a Borel
fashion: indeed, whenever G D .X;E/ is a Borel graph with finite connected com-
ponents, then �.G/ D �B.G/. To see this, simply choose a Borel transversal T of
E�. Since each x 2 T sees only finitely many ways (but at least one) of coloring
its connected component using the colors f1; 2; : : : ; �.G/g, the required coloring is
granted by the uniformization theorem for Borel sets with countable sections.

So, it remains to handle the infinite connected components of G. Fix " > 0.
Since the sequence A1 � A2 � 	 	 	 granted by Proposition 2.16 vanishes, we may
fix n such that �.An/ < ". But then 2.16 provides us with the required d -coloring
of X n An.

The analogy extends also to the case d D 2:

Theorem 2.20. Let .X;�/ be a standard probability space, G D .X;E/ a bipartite
Borel graph onX with degree bounded by 2. Then�ap

� .G/ � 2 and thus i�.G/ � 1=2.

Proof. Fix " > 0. Then by the marker lemma (see, e.g., [25], 6.7) there is a Borel
set A with �.A/ < " meeting every infinite E�-class. The connected components
of Gj.X n A/ are either finite or infinite with a single endpoint of degree one. This
easily implies that there is a Borel 2-coloring of Gj.X n A/.

In some cases, the conclusion of Theorem 2.19 can be slightly improved.

Proposition 2.21. Let .X;�/bea standard probability space,G D .X;E/abipartite
Borel graph on X with degree bounded by d , where d � 3. Then there is an
independent Borel set of measure � 1=d .

Proof. Let A be a maximal independent Borel set. If �.A/ � 1=d we are done.
Else, 1 � �.A/ > 1 � 1=d and so we can choose " > 0 small enough so that
.1 � �.A//

�
1

d�1
� "

� � 1
d

. Since Gj.X n A/ has degree bounded by d � 1 � 2,
by 2.19 or 2.20 there is an independent subset of X n A with measure at least

�.X n A/
�

1

d � 1 � "
	
;

so of measure at least 1=d .

Proposition 2.22. Let .X;�/ be a standard probability space, G D .X;E/ a Borel
graph onX with degree bounded by d , where d � 4. Suppose further that clq.G/ �
d � 1. Then there is an independent Borel set of measure � 1=d .
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Proof. Essentially the same argument as 2.21, noting that the assumption of small
clique number allows us to always apply 2.19 in finding the large independent subset
of X n A.

3. Hyperfinite graphs

(A) Recall that a countable Borel equivalence relationR on a standard Borel spaceX
is called hyperfinite if it can be written as an increasing union

S1
nD1 Fn, with eachFn

a finite Borel equivalence relation. If insteadR is on a standard measure space .X;�/,
we say that R is �-hyperfinite if there is a conull Borel set A � X such that RjA is
hyperfinite. By Connes–Feldman–Weiss (see, e.g., [25], 10.1), measure-preserving
actions of amenable groups give rise to �-hyperfinite orbit equivalence relations. We
will examine such actions in Section 4.

(B) We say that a locally countable Borel graph G D .X;E/ on a standard
measure space .X;�/ is�-hyperfinite if the equivalence relationE� is�-hyperfinite.
In Miller [39] it is shown that if G is �-hyperfinite and acyclic, then ��.G/ � 3. A
slight modification of these techniques allows us to compute �ap

� .G/ for such graphs.
We say that a locally countable Borel graphG D .X;E/ is smooth ifE� admits a

Borel selector. Such a graphG is directable if there exists a Borel function f W X !
X such that xEy () y D f .x/ or x D f .y/. Finally, such a graph is essentially
linear if there is a Borel set B � X such that every connected component of G
contains exactly one connected component ofGjB and, moreover,GjB is an acyclic
graph which is regular of degree two (i.e., it is a forest of lines).

Theorem 3.1. Let G be a locally countable, acyclic, �-hyperfinite Borel graph on a
standard probability space .X;�/. Then �ap

� .G/ � 2, and thus i�.G/ � 1=2.

Proof. Following [39], 3.1, and [20], 3.19, we may find pairwise disjoint,E�-invari-
ant Borel sets X0, X1, X2 such that �.X0 [X1 [X2/ D 1, GjX0 is smooth, GjX1

is directable, and GjX2 is essentially linear. We handle these three parts separately.
Fix a Borel transversal A of E�jX0, and color each point x 2 X0 by the parity of

�G.x; A/. Thus, �B.GjX0/ � 2, and consequently �ap
� .GjX0/ � 2.

We next handleX2. Fix " > 0 and a Borel set B witnessing the essential linearity
of GjX2. By Theorem 2.20, we may find a Borel partition B D B0 tB1 tB2, with
�.B2/ < " and B0, B1 forming a 2-coloring of Gj.B n B2/ (if �.B/ D 0 we may
take B2 D B). We may extend this to a 2-coloring of Gj.X2 n B2/ in the obvious
way: for each x 2 X2 set b.x/ to be the closest element of B to x, then color x
by the parity of �G.x; b.x// if b.x/ 2 B0 and by the parity of �G.x; b.x// C 1 if
b.x/ 2 B1 [ B2. Thus, �ap

� .GjX2/ � 2.
Finally, we handle X1. Fix " > 0 and a Borel function f W X1 ! X1 witnessing

thatGjX1 is directable. Define a partial order onX1 by x � y () 9n.y D f n.x//.
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The following generalization of the marker lemma ensures that we may find small
sets cofinal in this partial order. For a relation R on X , we say that A � X is
an R-complete section if A meets every vertical section of R, i.e., for all x in X ,
9y 2 A .xRy/.

Lemma 3.2 (Miller). Suppose thatX is a Polish space andR is a transitive, reflexive
Borel binary relation on X whose vertical sections are all countably infinite. Then
there are Borel R-complete sections A0 � A1 � 	 	 	 such that

T
n2N An D ;.

Using the above lemma, we may find a Borel set C � X1 with �.C/ < " so that
for all x 2 X1 there exists y 2 C with x � y. We may then color each x 2 X1 n C
by the parity of the least n such that f n.x/ 2 C , so �ap

� .GjX1/ � 2.

Proof of Lemma 3.2. Fix an enumeration B0; B1; : : : of a countable family of Borel
subsets of X which separates points, and for each s 2 2<N , define Bs � X by

Bs D
� \

s.i/D0

X n Bi

�
\

� \
s.i/D1

Bi

�
:

For each n 2 N, define Sn W X ! P .2n/ by

Sn.x/ D fs 2 2n W 8y 2 Rx .jBs \Ry j D @0/g:

Sublemma 3.3. Suppose that x; y 2 X , n 2 N, s 2 2n, and i 2 f0; 1g. Then:

(1) .x; y/ 2 R H) Sn.x/ � Sn.y/;
(2) si 2 SnC1.x/ H) s 2 Sn.x/.

Proof. The first claim is a consequence of the transitivity of R, and the second is a
trivial consequence of the definition of Sn.

For each s 2 2n, define Cs � X by

Cs D fx 2 X W 8y 2 Rx .s D min
lex
Sn.y//g;

and for each n 2 N, define Dn � X by

Dn D
[

s22n

Bs \ Cs:

We will show that the sets D0;D1; : : : are nearly as desired.

Sublemma 3.4. 8n 2 N .DnC1 � Dn/.
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Proof. Fixn 2 N and suppose thatx 2 DnC1. Then there exists s 2 2n and i 2 f0; 1g
such that x 2 Bsi \ Csi . In particular, it follows that x 2 Bs , so to see that x 2 Dn,
it is enough to show that x 2 Cs . Suppose, towards a contradiction, that there exists
y 2 Rx such that s ¤ t , where t D minlex Sn.y/. As x 2 Csi , it follows that
si 2 SnC1.x/. As (1) ensures that Sn.x/ � Sn.y/ and (2) ensures that s 2 Sn.x/,
it follows that s 2 Sn.y/, thus t <lex s. As t0 <lex si and si D minlex SnC1.y/,
it follows that t0 … SnC1.y/, so there exists z 2 Ry such that jBt0 \ Rzj < @0.
Similarly, since t1 <lex si and si D minlex SnC1.z/, it follows that t1 … SnC1.z/, so
there exists w 2 Rz such that jBt1 \Rw j < @0. As the transitivity of R ensures that
Rw � Rz , this implies that jBt \ Rw j < @0. As the transitivity of R implies also
that .y; w/ 2 R, this contradicts our assumption that t 2 Sn.y/.

While each Dn is an R-complete section, we will show something stronger:

Sublemma 3.5. 8x 2 X 8n 2 N .jDn \Rxj D @0/.

Proof. Fix an enumeration hsi ii<2n of f0; 1gn. For eachx 2 X , setx0 D x, and given
xi , let xiC1 be any element ofRxi

such that minlex Sn.xiC1/ ¤ minlex Sn.xi /, if such
an element exists. Otherwise, set xiC1 D xi . Let y D x2n and s D minlex Sn.y/,
and observe that 8z 2 Ry .s D minlex Sn.z//, thus y 2 Cs . As s 2 Sn.y/, it follows
that jBs \ Ry j D @0, and since y 2 Cs , it follows that Bs \ Ry D Bs \ Cs \ Ry ,
thus jBs \ Cs \Ry j D @0. As Bs \ Cs � Dn and the transitivity of R ensures that
Ry � Rx , it follows that jDn \Rxj D @0.

Unfortunately, it need not be the case that the set D D T
n2N Dn is empty.

However, this is not so far from the truth:

Sublemma 3.6. 8x; y 2 D .x ¤ y H) .x; y/ … R/.

Proof. Suppose, towards a contradiction, that there are distinct points x; y 2 D such
that .x; y/ 2 R. Fix n 2 N and s 2 2n such that x 2 Bs and y … Bs . As x 2 Dn, it
follows that minlex Sn.x/ D minlex Sn.y/ D s, so y … Dn, thus y … D, the desired
contradiction.

Now define An D Dn nD. Sublemma 3.4 implies that these sets are decreasing,
and they clearly have empty intersection, so it only remains to check that eachAn is an
R-complete section. Towards this end, fix x 2 X , and observe that two applications
of Sublemma 3.5 ensure that there are distinct points y 2 Dn \Rx and z 2 Dn \Ry .
Sublemma 3.6 then ensures that y … An ) y 2 D ) z … D ) z 2 An, and the
transitivity of R then implies that An \Rx ¤ ;.

It is natural to ask whether the assumption of acyclicity in Theorem 3.1 can be
weakened to �.G/ � 2. This is not the case:
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Example 3.7. There is a Borel graphG on a standard probability space .X;�/which
is locally countable, �-hyperfinite, and satisfies both �.G/ D 2 and i�.G/ D 0. To
see this, set X D 2N , � the usual product measure, and xEy () x and y differ
on exactly one coordinate. Then E� D E0, the equivalence relation of eventual
agreement, which is hyperfinite. Certainly, �.G/ D 2 asG contains no cycles of odd
length. It remains only to see that i�.G/ D 0.

Suppose thatY � X is a set of positive measure. Then, by Lebesgue density, there
is a finite binary string s such that �.Y \Ns/

�.Ns/
> 1=2, where Ns D fx 2 X W s v xg.

This implies that the set fx 2 X W s0x 2 Y and s1x 2 Y g has positive measure, so
Y cannot be independent for G.

(C) We now turn our attention to locally finite �-hyperfinite graphs. In this
context, counterexamples such as 3.7 do not arise:

Theorem 3.8. Let G be a locally finite, �-hyperfinite Borel graph on a standard
probability space .X;�/. Then �ap

� .G/ � ��.G/, and thus i�.G/ � 1=��.G/. If
moreover G is m.p., then �ap

� .G/ D ��.G/.

Proof. For the first part, discarding a null set if necessary, we may assume that G
is hyperfinite and ��.G/ D �.G/. Fix " > 0 and finite Borel equivalence relations
F1 � F2 � 	 	 	 � Fn � 	 	 	 witnessing the hyperfiniteness of G. For each n, define
the set

Xn D fx 2 X W 8y 2 X .xEy H) xFny/g:
Then, since G is locally finite, X D S

nXn. Choose n such that �.Xn/ > 1 � ",
and define G0 D GjXn D .Xn; E

0/. Since E 0 � Fn, we have .E 0/� � Fn, and thus
the connected components of G0 are finite. Consequently �B.G

0/ � �.G0/ � �.G/,
and therefore �ap

� .G/ � �.G/.
In the m.p. case, we always have ��.G/ � �

ap
� .G/, thus we have equality.

4. Graphs associated with group actions

(A) Consider a countable group � , which we will assume to be infinite, unless other-
wise indicated. Let A W � �X ! X be a free Borel action of � on a standard Borel
space. (Free means that A.�; x/ ¤ x, 8� ¤ 1, 8x 2 X .) We put �A.x/ D A.�; x/

and often write � 	 x for A.�; x/ if there is no danger of confusion.
If S � � is a set of generators for � , where we always assume, unless otherwise

indicated, that 1 … S , we define the associated graph

G.S;A/ D .X;E.S;A//

by
.x; y/ 2 E.S;A/ () 9s 2 S .y D s˙1 	 x/:
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Clearly this is a locally countable Borel graph onX whose connected components are
the �-orbits of the action A. Denote by �.S;A/, resp., �B.S; A/ the associated with
G.S;A/ chromatic, resp., Borel chromatic numbers. Let also Cay.�; S/ be the (left)
Cayley graph of � with respect to S , where � , ı are connected by an edge iff there is
s 2 S with ı D s˙1� . If x 2 X then the map � 2 � 7! � 	 x gives an isomorphism
between Cay.�; S/ and the connected component of x in G.S;A/. Thus

�.S;A/ D �.Cay.�; S//:

Let now .X;�/ be a standard probability space and let a be a free, measure-preserving
action of � on .X;�/. This is an equivalence class of Borel actions of � on X that
preserve the measure�, where two actionsA.�; x/,B.�; x/ are identified ifA.�; x/ D
B.�; x/, a.e., 8� , and free means that 8� ¤ 1 .a.�; x/ ¤ x, a.e.). We again denote,
for each set S of generators of � , by G.S; a/ D .X;E.S; a// the associated graph
on X and by ��.S; a/, ��.S; a/, �

ap
� .S; a/, i�.S; a/ the corresponding numbers. It

should be noted that G.S; a/ is only defined almost everywhere in the sense that if
A, B are representatives for a, then there is a conull set Y which is invariant under
both A and B on which A and B agree, thus Y is a set of connected components of
both G.S;A/, G.S;B/ and G.S;A/jY D G.S;B/jY . It follows that the numbers
��, ��, �ap

� , i� are well defined, i.e., depend only upon a (and S ). Moreover,
again, ��.S; a/ D �.Cay.�; S// � �

ap
� .S; a/. Finally, we usually write Ea for

E�.S; a/, the equivalence relation induced by the action a. Clearly, G.S; a/ is
measure preserving and it is ergodic iff a is ergodic.

We first note the following obvious inequality

i�.S; a/ � 1=2:

This is because if A � X is independent and s 2 S , then A \ sa.A/ D ; and
�.A/ D �.sa.A//.

Moreover, if for every �0 � � of index at most 2, the action aj�0 2 A.�0; X; �/

is ergodic (e.g., if a is weakly mixing), then there can be no independent Borel set
A of measure exactly 1=2 (so if i�.S; a/ D 1=2, the supremum is not attained).
Otherwise s 	 A D X n A for every s 2 S˙1 and so A is �0-invariant, where
�0 D ft1t2 : : : t2n W n � 0; ti 2 S˙1g and S˙1 D fs˙1 W s 2 Sg. Since Œ� W �0� � 2,
this gives a contradiction to our assumption. In particular, for such a, ��.S; a/ � 3.

Finally we note that by 2.2, (b) if S is an infinite set of generators and a 2
FR.�;X;�/ is mixing, then i�.S; a/ D 0.

We denote by FR.�;X;�/ the space of free, measure-preserving actions of � on
.X;�/ and we equip it with the weak topology in which FR.�;X;�/ is a Polish space
(see [23], 10).

Theorem 4.1. Let � be a countable group and S � � a finite set of generators. Then
the map

a 7! i�.S; a/

is lower semicontinuous in FR.�;X;�/.
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Proof. Note that for r 2 R,

r < i�.S; a/ () 9 Borel A 9" > 0�
�.A/ > r C " and 8t 2 S˙1

�
�.A \ ta.A// < "

n

��
;

where jS˙1j D n. The direction from left to right is clear, because we can take A to
be an independent Borel set of measure r C " for some " > 0. Conversely, let A; "
satisfy the right-hand side. Then

B D A n
[

t2S˙1

ta.A/

is independent and �.B/ � �.A/ � n 	 "
n
> r , so i�.S; a/ > r .

Since the map a 7! �.A \ �a.A// from FR.�;X;�/ to R is continuous in the
weak topology, for each � 2 � , fa 2 FR.�;X;�/ W r < i�.S; a/g is open and the
proof is complete.

Recall that a 2 FR.�;X;�/ is weakly contained in b 2 FR.�;X;�/, in symbols
a � b, if a is in the closure of the conjugacy class of b (see [23], 10, 10.1). So we
have

Corollary 4.2. Let � be a countable group and S � � a finite set of generators.
Then

a � b H) i�.S; a/ � i�.S; b/:

In particular, i�.S; a/ is an invariant of weak equivalence, defined by a � b ()
a � b and b � a.

Corollary 4.2 (and thus 4.1) may fail if S is infinite. Take for example the free
group � with a (free) infinite generating set S . Then every action of � is weakly
contained in a mixing action (this is a very special case of the result in [16]), so
by 2.2 (b) if 4.2 was true in this case, then we would have i�.S; a/ D 0, for any free
action a. But this contradicts, for example, 4.6 below. A similar remark applies to 4.3
and 4.13.

Concerning �ap
� we have the following result.

Theorem 4.3. Let � be a countable group and S � � a finite set of generators. Then
for any a; b 2 FR.�;X;�/,

a � b H) �ap
� .S; a/ � �ap

� .S; b/:

Proof. Assume that a � b, and let k D �
ap
� .S; a/ and n D jS˙1j. Fix " > 0.

Then consider pairwise disjoint, independent Borel subsets A1; : : : ; Ak of X with
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�.A1 [ 	 	 	 [Ak/ > 1� "
kC1

. Since a � b, there are Borel, pairwise disjoint subsets
B1; : : : ; Bk of X with �.B1 [ 	 	 	 [ Bk/ > 1 � "

kC1
and

j�.sa.Ai / \ Ai / � �.sb.Bi / \ Bi /j < "

n.k C 1/

for all s 2 S˙1, thus �.sb.Bi / \ Bi / <
"

n.kC1/
for all s 2 S˙1. If xBi D Bi nS

s2S˙1 s
b.Bi /, then xBi , 1 � i � k, are Borel, pairwise disjoint, independent (for

the action b) sets, and�. xBi / � �.Bi /� "
kC1

, so�. xB1 [	 	 	[ xBk/ > 1�", therefore
k � �

ap
� .S; b/.

It follows that a 7! �
ap
� .S; a/ is also an invariant of weak equivalence. Next recall

the following simple fact.

Proposition 4.4. Let � be a countable group and S � � a set of generators. Then
the following are equivalent:

(i) �.Cay.�; S// D 2 (i.e., Cay.�; S/ is bipartite).
(ii) There is a homomorphism ' W � ! Z=2Z that sends S to 1.

(iii) fs1 : : : s2n W n � 0; si 2 S˙1g has index 2 in � .

(iv) For any s1; : : : ; s2nC1 2 S˙1, n � 0, we have s1 : : : s2nC1 ¤ 1.

Moreover, a group � admits a set of generators S � � with Cay.�; S/ bipartite iff
Z=2Z is a factor of � .

We now have:

Proposition 4.5. Let � be a countable group and S � � a set of generators. Let
g D godd.Cay.�; S// be the odd girth of the Cayley graph Cay.�; S/. Then for any
a 2 FR.�;X;�/, we have

i�.S; a/ � 1=2 � 1=.2g/:
Also if �0 D fs1 : : : s2n W n � 0; si 2 S˙1g and aj�0 2 FR.�0; X; �/ is strongly
ergodic, then i�.S; a/ < 1=2.

Proof. We can assume that g < 1, i.e., that the Cayley graph is not bipartite. Let
A � X be an independent Borel set and let�.A/ D 1=2�". Then for any s; t 2 S˙1,
it is easy to see that�.A4st 	A/ � 4". So, by induction, if � D s1 : : : s2n, where si 2
S˙1, then �.� 	 A4A/ � 4n". If g D 2nC 1, then for some s; s1; : : : ; s2n 2 S˙1,
we have that s D s1 : : : s2n, so �.s 	 A4A/ � 4n", thus " � 1=.4nC 2/ D 1=.2g/,
therefore �.A/ � 1=2 � 1=.2g/.

In the case aj�0 is strongly ergodic but i�.S; a/ D 1=2, there are independent
Borel sets An with �.An/ ! 1=2. Then for any finite F � �0, " > 0, and all large
enough n, we have �.� 	 An 4 An/ < ", 8� 2 F , i.e., aj�0 has non-trivial almost
invariant sets, contradicting strong ergodicity.
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Thus in the context of 4.5, if Cay.�; S/ is not bipartite (so that g < 1) or if
aj�0 is strongly ergodic, we have that i�.S; a/ < 1=2 and �ap

� .S; a/ � 3. Also recall
that if aj�0 is ergodic, e.g., if a is weak mixing, then ��.S; a/ � 3 (otherwise there
would be an independent set of measure 1/2).

Applying 4.5 to � D .Z=2Z/ � .Z=3Z/ D hs; t j s2 D 1; t3 D 1i, with
S D fs; tg, we have g D 3, and thus i�.S; a/ � 1=3, for any a 2 FR.�;X;�/. But
by 2.19, since d D 3, i�.S; a/ � 1=3. So i�.S; a/ D 1=3 for any a 2 FR.�;X;�/.
This also shows that the upper bound in 4.5 cannot, in general, be improved. We
will see at the end of Section 6, using also a result of Lyons–Nazarov [35], that for
� D .Z=3Z/ � .Z=3Z/ D hs; t j s3 D 1; t3 D 1i and S D fs; tg, we also have
i�.S; a/ D 1=3 for any a 2 FR.�;X;�/ and the sup is attained. Also �ap

� .S; a/ D 3.

Theorem 4.6. Let � be a countable group and S � � a set of generators. Then the
following are equivalent:

(i) Cay.�; S/ is bipartite.

(ii) There is an action a 2 FR.�;X;�/ with i�.S; a/ D 1=2.

(iii) There is an ergodic action a 2 FR.�;X;�/ with i�.S; a/ D 1=2.

(iv) There is an action a 2 FR.�;X;�/ with �ap
� .S; a/ D 2.

(v) There is an ergodic action a 2 FR.�;X;�/ with �ap
� .S; a/ D 2.

(vi) There is an action a 2 FR.�;X;�/ with ��.S; a/ D 2.

(vii) There is an ergodic action a 2 FR.�;X;�/ with ��.S; a/ D 2.

Proof. (ii))(i) follows from 4.5. Clearly (vii) ) (v) ) (iii), (vii) ) (vi), (v) )
(iv), (iii) ) (ii) and (iv) ) (ii).

Conversely, assume (i) in order to prove (vii). Let ' W � ! Z=2Z be a homomor-
phism that sends S to 1. Let a0 2 FR.�;X;�/ be weakly mixing, and let a1 be the
action of � on Z=2Z D f0; 1g given by � 	 i D '.�/C i . If 	.f0g/ D 	.f1g/ D 1=2,
then the action of � on Z=2Z is measure preserving and ergodic.

Let now a 2 FR.�;X � f0; 1g; � � 	/ be the product action a0 � a1, i.e.,

� 	 .x; i/ D .� 	 x; '.�/C i/:

Clearly, X � f0g, X � f1g gives a measurable 2-coloring of the graph G.S; a/, so
��.S; a/ D 2. Finally, since a0 is free and weakly mixing, the action a is free and
ergodic.

(B) Consider now the case of .�; S/, where S is a finite set of generators of �
and � is amenable. Then if a; b 2 FR.�;X;�/ are ergodic, by [23], 13.2, a � b and
so i�.S; a/ D i�.S; b/. Thus i�.S; a/ is constant for all free, ergodic a. Using the
ergodic decomposition, this is true for all a 2 FR.�;X;�/. We denote by

i�.�; S/

this constant value.
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Similarly,�ap
� .S; a/ is constant for alla 2 FR.�;X;�/ and we denote this constant

value by
�ap

� .�; S/:

We now have:

Theorem 4.7. Let � be a countable, amenable group and S � � a finite set of
generators. Then

�ap
� .�; S/ D �.Cay.�; S//:

Proof. This follows from Theorem 3.8.

Theorem 4.8. Let � be a countable, amenable group and S � � a finite set of
generators. Then:

(i) If Cay.�; S/ is bipartite, then i�.�; S/ D 1=2.

(ii) If Cay.�; S/ is not bipartite, then i�.�; S/ � 1=2 � 1=.2g/ < 1=2, where g is
the odd girth of Cay.�; S/.

Proof. (i) follows from 3.8, and (ii) from 4.5.

We can now identify i�.�; S/ in terms of Cay.�; S/. Recall that a Følner se-
quence in � is a sequence .Fn/ of finite, non-empty subsets of � such that 8� 2 � ,
j�Fn4Fnj

jFnj ! 0. We will use the following result that is a consequence of the quasi-
tiling machinery in Ornstein–Weiss [43] and is explicitly stated in Gromov [14],
1.3, and Lindenstrauss–Weiss [31], Appendix (see also Abért, Jaikin-Zapirain and
Nikolov [2], Lemma 18).

Theorem 4.9 (Ornstein–Weiss [43], Gromov [14], Lindenstrauss–Weiss [31]). Let
� be an amenable group and .Fn/ a Følner sequence in � . Let h be a positive
real-valued function defined on all finite subsets of � such that h is subadditive (i.e.,
h.A [ B/ � h.A/ C h.B/) and right-invariant (h.A�/ D h.A/;8� 2 �). Then
limn!1 h.Fn/

jFnj exists (and is of course independent of .Fn/).

For each finite F � � denote by i.F; S/ the independence ratio of the induced
subgraph Cay.�; S/jF . Then it is easy to check that h.F / D i.F; S/jF j (i.e., h.F /
is the maximal cardinality of an independent subset of Cay.�; S/jF ) is subadditive
and right-invariant, thus for each Følner sequence .Fn/ the limit

lim
n!1 i.Fn; S/ D i.�; S/

exists and is independent of .Fn/. We call it the independence number of Cay.�; S/.
We now have:
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Theorem 4.10. Let � be a countable, amenable group and S � � a finite set of
generators. Then

i�.�; S/ D i.�; S/:

Proof. We will use the following two results, the first of which is a consequence of
the quasi-tiling machinery of Ornstein–Weiss [43] (see specifically II.§2, Theorem 5
and its subsequent remark, and also the proof of I.§2, Theorem 6) and the second is a
very weak consequence of the mean ergodic theorem for Følner sequences (see, e.g.,
Nevo [41], 6.7).

Lemma 4.11. (i) Let � be a countable, amenable group and 1 2 F0 � F1 � 	 	 	
an increasing Følner sequence. Let a 2 FR.�;X;�/ and " > 0. Then we can find
n1 < 	 	 	 < nk , so that letting Ti D Fni

, 1 � i � k, we have the following:
For each 1 � i � k, there is li � 1, sets Tij � Ti , and Borel sets Bij � X ,

1 � j � li , such that

(a) the sets TijBij ; 1 � j � li , are pairwise disjoint;

(b) the sets tBij ; t 2 Tij , are pairwise disjoint;

(c) the sets
S

j �li
TijBij ; 1 � i � k, are pairwise disjoint;

(d) �
� S

i�k

S
j �li

TijBij

�
> 1 � ";

(e) jTij j
jTi j > 1 � "; 1 � i � k; 1 � j � li .

(ii) Let� be a countable, amenable group and a 2 FR.�;X;�/ an ergodic action.
Let .Fn/ be a Følner sequence for � , let " > 0 and let A � X be a Borel set. Then
for some n 2 N and x 2 X we have

ˇ̌̌
ˇ jff 2 Fn W f 	 x 2 Agj

jFnj � �.A/
ˇ̌̌
ˇ < ":

It is clearly enough to show that for any ergodic a 2 FR.�;X;�/, i�.S; a/ D
i.�; S/. Fix a Følner sequence 1 2 F0 � F1 � 	 	 	 , in order to show that
limn!1 i.Fn; S/ D i�.S; a/. We proceed in two steps.

(A) limn!1 i.Fn; S/ � i�.S; a/.
Put ˛ D limn!1 i.Fn; S/. We may of course assume that ˛ > 0. Fix ˛ > " > 0.

By (i) of the lemma, applied to an appropriate subsequence of .Fn/ and "0 << ", we
can find n1 < 	 	 	 < nk such that letting Ti D Fni

; 1 � i � k and letting Tij , Bij be
as in the lemma we have the following:

(i) There are independent sets Aij � Tij with
ˇ̌̌ jAij j

jTij j � ˛
ˇ̌̌
< " and Aij � ft 2 Tij W

8s 2 S˙1 .st 2 Tij /g.
(ii) The family of sets fTij bg, where b 2 Bij ; 1 � i � k; 1 � j � li , is pairwise

disjoint and �
� S

i�k

S
j �li

TijBij

�
> 1 � ".
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Let then A D S
i�k

S
j �li

AijBij . Then A is independent and

�.A/ D
X
i�k

X
j �li

jAij j�.Bij /

�
X
i�k

X
j �li

.˛ � "/jTij j�.Bij /

D .˛ � "/
X
i�k

X
j �li

jTij j�.Bij /

> .˛ � "/.1 � "/;
so i�.S; a/ > .˛ � "/.1 � "/ and thus, letting " ! 0, i�.S; a/ � ˛.

(B) limn!1 i.Fn; S/ � i�.S; a/.
Let A � X be an independent Borel set. Fix " > 0 and, by (ii) of the lemma

applied to tail ends of .Fn/, we can find x1; x2; : : : 2 X and n1 < n2 < 	 	 	 such that
ˇ̌̌
ˇ jff 2 Fni

W f 	 xi 2 Agj
jFni

j � �.A/
ˇ̌̌
ˇ < ":

Let Ai D ff 2 Fni
W f 	 xi 2 Ag. Then Ai is independent in Cay.�; S/jFni

, so
jAi j

jFni
j � i.Fni

; S/, thus �.A/ < jAi j
jFni

j C " � i.Fni
; S/C ". Letting i ! 1, " ! 0,

we have �.A/ � limi!1 i.Fni
; S/ D limn!1 i.Fn; S/.

Remark 4.12. By a similar argument, one can see that if � is a countable, amenable
group and m is a finitely additive, shift-invariant probability measure on � , then

supfm.A/ W A � � is independent in Cay.�; S/g D i.S; a/:

In particular, this supremum is independent of the choice of m.

(C) When � is not amenable, i�.S; a/ and �ap
� .S; a/ might not be constant. For

example, we have:

Proposition 4.13. Let � be a countable group and S � � a finite set of generators
with Cay.�; S/ bipartite. Then the following are equivalent:

(i) � is amenable.

(ii) i�.S; a/ is constant, for all a 2 FR.�;X;�/.
(iii) �ap

� .S; a/ is constant, for all a 2 FR.�;X;�/.

Proof. We have seen that (i) ) (ii), (iii). Assume now that � is not amenable.
Then for the shift action s� of � on 2� , with the usual product measure, and �0

as in Proposition 4.5, aj�0 is strongly ergodic, so i�.S; s�/ < 1=2 and thus also
�

ap
� .S; s�/ � 3. On the other hand, by 4.6 there is a 2 FR.�;X;�/ with i�.S; a/ D
1=2 and �ap

� .S; a/ D 2, giving the failure of (ii) and (iii).
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On the other hand, Abért and Weiss [3] showed that among all a 2 FR.�;X;�/,
there is a minimum one in the sense of weak containment, namely the shift action s�
of � on 2� (with the usual product measure), and earlier Hjorth (unpublished) and
(independently) Glasner–Thouvenot–Weiss [13] showed that there is a maximum one,
denoted by a�;1 (see also [23], 10.7). Similarly there is a free, ergodic action which
is maximum in the sense of weak containment among all the free, ergodic actions,
denoted by aerg

�;1 (see [23], 13.1). Then for any free, ergodic action a,

s� � a � a
erg
�;1:

Hence for any finite generating set S � � , we have for any ergodic a 2 FR.�;X;�/,

i�.S; s�/ � i�.S; a/ � i�.S; a
erg
�;1/;

and
�ap

� .S; s�/ � �ap
� .S; a/ � �ap

� .S; a
erg
�;1/:

Thus, by the ergodic decomposition, for any free action a,

i�.S; s�/ � i�.S; a/ � i�.S; a
erg
�;1/;

and, using also the proof of 4.3,

�ap
� .S; s�/ � �ap

� .S; a/ � �ap
� .S; a

erg
�;1/:

Note also that if for 0 � ˛; ˇ � 1 with ˛ C ˇ D 1, we consider the convex
combination ˛a C ˇb, for any free actions a, b (see [23], 10 (F)), then trivially
i�.S; ˛aCˇb/ D ˛i�.S; a/Cˇi�.S; b/, therefore fi�.S; a/ W a 2 FR.�;X;�/g D
Œi�.S; s�/; i�.S; a

erg
�;1/�. For example, if Cay.�; S/ is bipartite and� is not amenable,

then this last interval is not trivial, so i�.S; a/ takes continuum many values on
FR.�;X;�/ and thus, in particular, there are continuum many weak equivalence
classes of free actions. Note also that for all these actions c D ˛a C ˇb, ˛; ˇ ¤ 0,
the corresponding Koopman representations 
c (see §4, (D) below) are all isomorphic
(to 
a ˚ 
b). It is not clear however what is the range of i�.S; a/ on the space of
ergodic, free actions.

We next show that for .�; S/ with Cay.�; S/ bipartite, one can characterize
whether � is amenable, has property (T) or the HAP in terms of the independence
and approximate chromatic numbers of its actions. We start with the following char-
acterization of amenability.

Theorem 4.14. Let � be a countable group and S � � a finite set of generators such
that Cay.�; S/ is bipartite. Then the following are equivalent:

(i) � is amenable.

(ii) i�.S; a/ D 1=2, for any a 2 FR.�;X;�/.
(iii) �ap

� .S; a/ D 2, for any a 2 FR.�;X;�/.
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(iv) i�.S; s�/ D 1=2.

(v) �ap
� .S; s�/ D 2.

In particular, if � is a finitely generated group having Z=2Z as a factor, then the
following are equivalent:

(a) � is amenable.

(b) There is a finite generating set S � � such that i�.S; s�/ D 1=2.

(c) As in (b) with �ap
� .S; s�/ D 2.

Proof. This follows from 4.13 and its proof.

We next consider property (T) and the HAP.

Theorem 4.15. Let � be an infinite, countable group and S � � a finite set of
generators such that Cay.�; S/ is bipartite. Then the following are equivalent:

(i) � has property (T).
(ii) i�.S; a/ < 1=2, for every weakly mixing a 2 FR.�;X;�/.

(iii) �ap
� .S; a/ � 3, for every weakly mixing a 2 FR.�;X;�/.

Also the following are equivalent:

(i*) � does not have the HAP.

(ii*) i�.S; a/ < 1=2, for every mixing a 2 FR.�;X;�/.
(iii*) �ap

� .S; a/ � 3, for every mixing a 2 FR.�;X;�/.

Proof. Suppose first that � has property (T). If �0 D fs1s2 : : : s2n W n � 0; si 2
S˙1g, then �0 has index 2 in � and thus �0 itself has property (T). Moreover, if
a 2 FR.�;X;�/ is weakly mixing, then aj�0 2 FR.�0; X; �/ is ergodic, so strongly
ergodic (see, e.g., [23], 11.2), thus i�.S; a/ < 1=2 by Proposition 4.5. So (i) ) (ii)
) (iii).

Assume now that � does not have property (T). By 4.6 there is b 2 FR.�;X;�/
with i�.S; b/ D 1=2 and�ap

� .S; b/ D 2. By a result of Kerr–Pichot [27] (see also [23],
12.9), there is a weakly mixing a 2 FR.�;X;�/ with b � a, so i�.S; b/ � i�.S; a/,
thus i�.S; a/ D 1=2, and �ap

� .S; b/ � �
ap
� .S; a/, therefore �ap

� .S; a/ D 2.
If now � does not have the HAP and a 2 FR.�;X;�/ is mixing, then �0 as above

does not have the HAP, and aj�0 2 FR.�0; X; �/ is mixing, so (see, e.g., [23], 11.1)
it is strongly ergodic, thus i�.S; a/ < 1=2 as before. So (i*) ) (ii*) ) (iii*).

Conversely, if � has the HAP, then we can repeat the argument above (for the
case that � does not have property (T)) using the result of Hjorth [16] (see also [23],
12.11) to replace in this argument weakly mixing by mixing.

(D) For any unitary representation � W � ! U.H/ of a countable group � on a
Hilbert space H , and a finite set of generators S � � , one defines the averaging
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operator TS;� by

TS;�.f / D 1

jS˙1j
X

s2S˙1

�.s/.f /:

Clearly TS;� is a self-adjoint operator and kTs;�k � 1. It is easy to check that if � ,
� are unitary representations and � is weakly contained in � (see, e.g, Bekka–de la
Harpe–Valette [5], Appendix F), which is denoted by � � �, then kTs;�k � kTs;�k,
i.e.,

� � � H) kTs;�k � kTs;�k:

When � is amenable, Kesten [28] showed that kTS;��
k D 1, where �� is the (left)

regular representation of � .

For each a 2 FR.�;X;�/, consider the corresponding Koopman unitary repre-
sentation 
a on L2.X;�/ and its restriction 
a

0 on L2
0.X;�/ D ff 2 L2.X;�/ WR

f d� D 0g D C? (where C is identified with the subspace of constant functions
in L2.X;�/). Then for a finite generating set S � � , let

TS;a D TS;�a
0
:

There is a well-known connection between norms of averaging operators and
independence ratios in the case of finite graphs, due to Hoffman [18] (see, e.g.,
Davidoff–Sarnak–Valette [9], 1.5.3), and a version of this carries over to our context.

Proposition 4.16. Let � be a countable group and S � � a finite set of generators.
Let a 2 FR.�;X;�/ and let TS;a the corresponding averaging operator. If 	 D
kTS;ak, then

i�.S; a/ � 	

1C 	
;

and thus

�ap
� .S; a/ � 1C 	

	
:

Proof. Let A � X be independent and let T D TS;a, f D �A � �.A/. Then
f 2 L2

0.X;�/ and

kf k2 D �.A/.1 � �.A//:
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Also,

hT .f /; f i D
Z
T .f /.x/f .x/ d�.x/

D 1

jS˙1j
X

s2S˙1

Z
f .s 	 x/f .x/ d�.x/

D 1

jS˙1j
X

s2S˙1

Z
.�s�1�A.x/ � �.A//.�A.x/ � �.A// d�.x/

D 1

jS˙1j
X

s2S˙1

Z
.��.A/.�A.x/C �s�1�A.x//C �.A/2/ d�.x/

D 1

jS˙1j
X

s2S˙1

.�2�.A/2 C �.A/2/

D ��.A/2:
Since j hT .f /; f i j � kT k 	 kf k2, letting ˛ D �.A/, we have

˛2 � 	 	 ˛.1 � ˛/;
so

˛ � 	

1C 	
:

Since for a; b 2 FR.�;X;�/,

a � b H) 
a
0 � 
b

0

(see [23], 10.5), it follows that

a � b H) kTs;ak � kTs;bk
(in fact it is not hard to see that a 7! kTs;ak is lower semicontinuous), thus, since
s� � a, 8a 2 FR.�;X;�/, kTS;s�

k is minimum among all such kTs;ak. Now it is
well known (see, e.g., [5], E.4.5) that 
s�

0 � �� , thus kTS;s�
k D kTS;��

k.
Suppose now that S D f�1; : : : ; �mg. Kesten [28] has shown that

kTS;��
k �

p
2m � 1
m

and if S is a free set of generators, so that � D Fm, then

kTS;��
k D

p
2m � 1
m

:
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Also, if S D f�1; : : : ; �m; ı1; : : : ; ıng, where �1; : : : ; �m are free and ı1; : : : ; ın

are free satisfying ı2
i D 1, i D 1; : : : ; n, so that Cay.�; S/ is still acyclic and

� D Fm � Z=2Z � 	 	 	 � Z=2Z (n times), then again

kTS;��
k D 2

p
.2mC n/ � 1
2mC n

:

We then have:

Theorem 4.17. Let � D Fm be the free group with a free set S ofm generators, and
s� its shift action on 2� , with the product measure �. Then

1

2m
� i�.S; s�/ �

p
2m � 1

mC p
2m � 1

and

2m � �ap
� .S; s�/ � mC p

2m � 1p
2m � 1 :

Moreover,
2mC 1 � �B.S; s�/

(where we view in the last inequality s� as the shift action restricted to its free part).

Proof. The first part follows from Theorem 2.19, Propositions 2.13, 4.16, and the
preceding paragraphs. The last part follows from [24], 4.6.

This, in particular, gives examples of m.p., ergodic Borel graphs of bounded degree
which are acyclic but the approximate chromatic numbers and thus the measurable
and Borel chromatic numbers are finite but tend towards 1.

An analogous result to Theorem 4.17 holds when � D Fm � Z=2Z � 	 	 	 � Z=2Z
(n times).

It is mentioned in Lyons–Nazarov [35] that from results of Bollobás and Frieze–
Luczak concerning random regular graphs, it follows that, for large enoughm, one has
for � D Fm, and S a free set of generators, i�.S; s�/ � log 2m

m
and so �ap

� .S; s�/ �
m

log 2m
. For references, see Section 5 of [35].

We do not know what are the exact values of i�.S; s�/, �
ap
� .S; s�/ for � D Fm

and S a free set of generators (similarly for �B.S; s�/, ��.S; s�/).
Concerning Borel chromatic numbers of shifts, denote below by s� the restriction

of the shift action of� on 2� to its free part, and recall that for a generating set S � � ,
�B.S; s�/denotes the Borel chromatic number associated with s� . If� D Zm, withS
the usual set ofm generators, then Gao–Jackson [12] showed that �B.S; s�/ 2 f3; 4g,
while of course�.G.S; s�// D �.Cay.�; S// D 2. For a generalization of them D 2

case, see 5.15 below. Gao–Jackson–Miller (unpublished) and recently Adam Timar
(private communication) have shown that in this setting ��.S; s�/ D 3.
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Is it true that there is a function f W N ! N such that if� is amenable andS is any
finite generating set, then �B.S; s�/ � f .�.Cay.�; S///? (Note that, by 4.7, this is
true for �ap

� with f D id.) We do not know a counterexample even for f .n/ D nC1.
On the other hand, if � is finitely generated with F2 � � and Z=2Z is a factor of

� , then for each " > 0, there is a finite generating set S � � with �.Cay.�; S// D 2,
but i�.S; s�/ < " and so �B.S; s�/ � ��.S; s�/ � �

ap
� .S; s�/ > 1=". Indeed,

choose m large enough so that
p

2m�1

mCp
2m�1

< " and let ' W � ! Z=2Z be a surjective

homomorphism. Then �0 D ker.'/ contains a free subgroup � D ha1; : : : ; ami
with m free generators. Let S0  fa1; : : : ; amg be a finite set of generators for �0

and let a … �0. Put S D fag [ aS0. Clearly S generates � and there are no odd
cycles in Cay.�; S/, so �.Cay.�; S// D 2. However, if A is an independent set in
the graph associated with s� , then it is independent for the graph associated with the
action s� j� and the set of generators S	 D fa1; : : : ; amg. One can again see that



s� j	
0 � �	, so

i�.S; s�/ � i�.S	; s� j�/ �
p
2m � 1

mC p
2m � 1 < ":

We should finally mention that although we have examples where

�ap
� .S; a/ < ��.S; a/

(see 2.8 or take any weakly mixing action a, for which therefore ��.S; a/ � 3, with
�

ap
� .S; a/ D 2), we do not know any examples for which �ap

� .S; a/C 1 < ��.S; a/.
R. Lyons (private communication) also asked if there are examples of strongly ergodic
(also known as E0-ergodic) actions a with �ap

� .S; a/ < ��.S; a/.

Remark 4.18. Let Sm D f�1; : : : ; �mg be a free set of generators for Fm, m � 1.
Denote by im D i�.Sm; sFm

/ the independence number of the shift action of Fm,
i.e., the minimum independence number of a free, measure-preserving action of Fm.
Here and below we abuse notation by using the same subscript � for the associated
measure of any action discussed below. From the preceding theorem we have that
im ! 0 as m ! 1. Let us also note the following:

(i) 8m .imC1 � im/.
To see this, consider the shift action sFmC1

and its restriction a D sFmC1
jFm,

where we view Fm as the subgroup generated by �1; : : : ; �m. Clearly if A � 2FmC1

is independent for sFmC1
, it is also independent for a, thus

imC1 � i�.Sm; a/:

Moreover a Š .sFm
/N , where .sFm

/N is the product of countably many copies of
sFm

, i.e., it is the action of Fm on .2Fm/N , given by

� 	 .pn/ D .� 	 pn/; 8� 2 Fm:
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Now .sFm
/N Š s�

Fm
, where s�

Fm
is the shift action of Fm on .2N/Fm . The isomorphism

is given by the map

.p0; p1; : : :/ 2 .2Fm/N 7! p 2 .2N/Fm ;

where p.�/ D .p0.�/; p1.�/; : : :/, 8� 2 Fm. (Here all these product spaces have
the product measures arising from the .1=2; 1=2/-measure on 2 D f0; 1g.) Now
Bowen [7] has shown that sFm

� s�
Fm

, thus

imC1 � i�.Sm; a/ D i�.Sm; s
�
Fm
/ D i�.Sm; sFm

/ D im:

It follows that for infinitely many m, imC1 < im. For such m � 2, one can see
that there are at least three distinct values of i�.SmC1; a/, as a varies over ergodic
actions in FR.FmC1; X; �/. This is a small initial step towards trying to understand
the possible values of the independence number of free, ergodic actions of a free
group (see the penultimate paragraph preceding 4.14). Recalling that the maximum
value of i�.SmC1; a/, for ergodic a 2 FR.FmC1; X; �/, is equal to 1=2, this will
follow from the following fact:

(ii) Let m � 2. Then there is a free, ergodic action b of FmC1 such that

im � i�.SmC1; b/ < 1=2:

To see this, let ' W FmC1 ! Fm be the homomorphism defined by '.�i / D �i , if
i � m, '.�mC1/ D �m. Let d D sFm

and let c be the lift of d to FmC1 via ':

�c.x/ D '.�/d .x/:

Clearly cjFm D d and i�.SmC1; c/ D i�.Sm; d /. Put

b D c � sFmC1
:

Then b 2 FR.FmC1; X; �/ and b is ergodic. We will show that b is strongly ergodic
thus, by 4.5, i�.SmC1; b/ < 1=2. But also

i�.SmC1; b/ � i�.SmC1; c/ D i�.Sm; d / D im:

If b is not strongly ergodic, towards a contradiction, there exist almost invari-
ant sets for bj�0, where �0 � FmC1 is the group of words of even length in
f�1; : : : ; �mC1g, and thus there exist almost invariant sets for bj� 0

0, where � 0
0 � Fm

is the analogous group of words of even length in f�1; : : : ; �mg. But

bjFm D .c � sFmC1
/jFm

D .cjFm/ � .sFmC1
jFm/

Š d � .sFm
/N

� sFm
� sFm

� sFm
;

so bj� 0
0 � sFm

j� 0
0, which is strongly ergodic (see, e.g., [17], A4.1), a contradiction.
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(E) We will next see some connections with finite graphs.
Let � be a countable group and fix a sequence F1 � F2 � 	 	 	 � � of finite,

non-empty subsets of � with
S

n Fn D � . Consider the space 2� with the product
topology. If p 2 2Fn , let

Np D ff 2 2� W f jFn D pg:
Then fNpgn�1;p22Fn is a clopen basis for the topology of 2� . Let now S � � be
a set of generators for � . Consider the finite graph with loops GS;n D .2Fn ; ES;n/,
where

pES;nq () 9s 2 S .s˙1 	 Np \ Nq ¤ ;/:
Here � 	 f (� 2 � , f 2 2� ) refers to the shift action of � on 2� . Thus, there is
a loop from p to p iff 9s 2 S .s 	 Np \ Np ¤ ;/. We may view each GS;n as a
finite approximation of the graph associated with the shift action of � . Below recall
that for a finite graph with loops G D .X;E/ its independence ratio i.G/ is defined
as the ratio of the largest size of an independent set divided by jX j. When we have
a graph with loops we define an independent set to be one for which there are no
edges between two (not necessarily distinct) elements of A (thus, A cannot contain
any vertex incident with a loop).

Theorem 4.19. For the graphs GS;n as above, i.GS;n/ � i.GS;nC1/, 8n � 1, and

lim
n!1 i.GS;n/ D i�.S; s�/;

where � is the usual product measure on 2� .

Proof. LetA � 2Fn be an independent set forGS;n, i.e., forp; q 2 A (not necessarily
distinct), s 	 Np \ Nq D ;, 8s 2 S˙1. This is the same thing as saying that

s 	
� [

p2A

Np

�
\

[
p2A

Np D ;; 8s 2 S˙1:

Let A0 � 2FnC1 be defined by

q 2 A0 () qjFn 2 A:
Then jAj

j2Fn j D jA0j
j2FnC1 j and for p 2 A, Np D S

q2A0;qjFnDp Nq , so
S

p2A Np DS
p2A

S
q2A0;qjFnDp Nq D S

q2A0 Nq , so s 	 � S
q2A0 Nq

� \ S
q2A0 Nq D ;, 8s 2

S˙1, i.e., A0 is independent for GS;nC1. Thus i.GS;n/ � i.GS;nC1/.
Also if A is independent for GS;n and yA D S

p2A Np , then yA is independent for

G.S; s�/ and jAj
j2Fn j D �. yA/, thus i.GS;n/ � i�.S; s�/.

Assume now that ˛ < i�.S; s�/ and let B � 2� be an independent Borel set for
G.S; s�/ with �.B/ > ˛. Let " > 0 and let K � 2� be compact with K � B ,
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�.B n K/ < ". Then K is also independent, so s 	 K \ K D ;, 8s 2 S˙1. Since
the shift action is continuous, there is an open set U � K with �.U nK/ < " such
that s 	U \U D ;, 8s 2 S˙1, i.e., U is also independent. By compactness, let now
n be large enough and A � 2Fn be such that K � yA � U (where, as before, yA DS

p2A Np). ThusA is independent inGS;n and so ˛� " � �. yA/ D jAj
j2Fn j � i.GS;n/.

Letting " ! 0 we have that
˛ � lim

n!1 i.GS;n/;

so
lim

n!1 i.GS;n/ D i�.S; s�/:

For the next result, ifG D .X;E/ is a graph with loops, by a cycle we understand
a sequence of distinct elements x1; : : : ; xn of X and distinct edges e1; : : : ; em such
that each ei is either an edge connecting some xj ; xj C1, 1 � k < n, or xn; x0, or else
a loop incident with some xj , and moreover there is an edge ei from each xj to xj C1,
1 � j < n, and from xn to x0. The length of this cycle is the number m of edges.
For example

�
�

�

�

x1

x2

x3

x4

e1 e2

e3

e4

e5

e6

is a cycle of length 6.

Theorem 4.20. If Cay.�; S/ is bipartite, then if

XS;k;n D fp 2 2Fn W p belongs to an odd cycle of length � k in GS;ng;

we have jXS;k;nj
j2Fn j ! 0.

Proof. If yXS;k;n D SfNp W p 2 XS;k;ng, we will show that

�. yXS;k;n/ D jXS;k;nj
j2Fn j ! 0:
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Let X � 2� be the free part of the shift action of � on 2� , so that �.X/ D 1. It is
enough to show that \

n�1

[
m�n

yXS;k;m � 2� nX:

(Then limn!1 �
� S

m�n
yXS;k;m

� D 0, so limn!1 �. yXS;k;n/ D 0.)

Fix x 2 T
n

S
m�n

yXS;k;m. Then x 2 yXS;k;ni
, where 1 < n1 < n2 < 	 	 	 , so

x 2 Npi
, where pi 2 XS;k;ni

. Then pi belongs to some odd cycle of length � k, so,
by going to a subsequence of .ni /, we may assume that every pi belongs to a .2lC1/

cycle for some l with 2l C 1 � k. Then there are p0
i D pi ; p

1
i ; : : : ; p

2l
i in XS;k;ni

and s0
i ; s

1
i ; : : : ; s

2l
i in S˙1 with

s0
i 	 Np0

i
\ Np1

i
¤ ;;

s1
i 	 Np1

i
\ Np2

i
¤ ;;
:::

s2l�1
i 	 Np2l�1

i
\ Np2l

i
¤ ;;

s2l
i 	 Np2l

i
\ Np0

i
¤ ;:

By again passing to a subsequence of .ni /, we may assume that s0
i D s0, s1

i D s1,
…, s2l

i D s2l do not depend upon i . Thus

s0 	 Np0
i

\ Np1
i

¤ ;;
:::

s2l 	 Np2l
i

\ Np0
i

¤ ;:

By once again going to a subsequence of .ni /, we may assume that there are x0 D
x; x1; : : : ; x2l 2 2� such that xkji D pk

i ji for all k � 2l and all i . Thus for each i ,

s0 	 Nx0ji \ Nx1ji ¤ ;;
:::

s2l 	 Nx2l ji \ Nx0ji ¤ ;;
therefore by the continuity of the shift action again,

s0 	 x0 D x1; s1 	 x1 D x2; : : : ; s2l 	 x2l D x0;

i.e., s2ls2l�1 : : : s1s0 	 x D x. Since s2ls2l�1 : : : s1s0 ¤ 1, we have x 2 2� n X .
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Remark 4.21. One can actually calculate quantitative upper bound estimates for
jXS;k;nj

j2Fn j in the preceding theorem.

Let
GS;k;n D GS;nj.2Fn nXS;k;n/

be the induced graph on 2Fn nXS;k;n. Then for n large enough (depending uponS; k),
2Fn n XS;k;n ¤ ; and GS;k;n is an ordinary graph, i.e., has no loops. Moreover, the
odd girth of GS;k;n is bigger than k, i.e.,

godd.GS;k;n/ > k:

Furthermore, if ıS;k;n D jXS;k;nj
j2Fn j ,

i.GS;k;n/ � 1

1 � ıS;k;n

i.GS;n/ � 1

1 � ıS;k;n

i�.S; s�/:

Let now � D Fm with free generating set Sm D fa1; : : : ; amg, and let

Gm;k;n D GSm;k;n; ım;k;n D ıSm;k;n:

Then

i.Gm;k;n/ � 1

1 � ım;k;n

	
p
2m � 1

mC p
2m � 1;

and ım;k;n ! 0 as n ! 1. Thus we have a new family of explicitly given (fi-
nite) graphs with large odd girth and small independence ratio, thus large chromatic
number. For example,

Theorem 4.22. Given m; k, for all large enough n (depending upon m, k),

godd.Gm;k;n/ > k;

i.Gm;k;n/ � 2
p
2m � 1

mC p
2m � 1;

and thus

�.Gm;k;n/ � mC p
2m � 1

2
p
2m � 1 :

(F) There are many other actions of Fm that exhibit phenomena similar to those
discussed in §4, (D), (E) before.

(a) An action a 2 A.�;X;�/ is called tempered if 
a
0 � �� (see Kechris [22]). It

is clear that for such a free action a, we have that kTS;��
k D kTS;ak, for any finite set

of generators S � � and thus for � D Fm we have estimates for i�.S; a/; �
ap
� .S; a/
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as in Theorem 4.17. Several examples of tempered actions of Fm are discussed in
Kechris [22].

(b) It is shown in Lubotzky–Phillips–Sarnak [32] that there are free actions a of
Fm, where m D pC1

2
with p prime, by rotations on the sphere S2, for which the

norm kTS;ak is given by the Kesten formula, i.e., is equal to 2
p

p

pC1
.

(c) Finally consider a countable, residually finite group � and a sequence �0 D
� � �1 � 	 	 	 of decreasing normal subgroups which have finite index and

T
n �n D

f1g. Then the action of� on the coset treeT .�; .�n// gives rise to an action of� on the
boundary@T .�; .�n//of this tree. We can view@T .�; .�n// as a compact, metrizable,
0-dimensional group in which � is naturally embedded as a dense subgroup (for
details, see Kechris [24], Section 2) and this action is simply the translation action
of � on @T .�; .�n//, so it is free and ergodic. Denote this action by a�;.�n/. Let S
be a finite set of generators for � and let TS;a�;.�n/

D TS;.�n/ be the corresponding
averaging operator. Let also HS;n be the Cayley graph of �=�n, with respect to the
generators which are the images of those in S under the canonical map of � onto
�=�n. When the graphsHS;n are not bipartite, it is known (see Lubotzky–Zuk [34],
2.6, where however the assumption that HS;n are not bipartite is inadvertently left
out) that the chain .�n/ has property ( ) iff kTS;.�n/k < 1. Thus in this case the
independence number of a�;.�n/ is less than 1=2. When someHS;n is bipartite, then
the independence number of a�;.�n/ is 1=2. It is not clear, e.g., in the case � D Fm,
what are the independence numbers of a�;.�n/, when .�n/ does not have property
( ). Could they all be equal to 1=2?

For certain free groups Fm, one can actually construct .�n/ as above for which
the norm of the corresponding averaging operator is given by the Kesten formula (see
Margulis [36], Lubotzky–Phillips–Sarnak [33], Morgenstern [40]). Note that for the
actions a�;.�n/ the graphsHS;n are analogs of the finite graphs GS;n discussed in §4
(E) above. In the case of the constructions of the three papers mentioned above, these
are Ramanujan graphs.

(G) Suppose S is a finite set of generators for a group � , m is a probability
measure on � supported by S˙1 with m.�/ D m.��1/, and � W � ! U.H/ is a
unitary representation. Then we can define again an averaging operator by

TS;m;�.f / D
X

s2S˙1

m.s/�.s/.f /

and for a 2 FR.�;X;�/ let

TS;m;a D TS;m;�a
0
:

If 	 D kTS;m;ak, then the argument in 4.16 goes through and shows that i�.S; a/ �



1C

.

Now it is easy to check that .TS;m;a/
n D TSn;m�n;a, where m�n is the n-fold

convolution of m, defined by

m�n.�/ D
X

fm.�1/ : : : m.�n/ W �1 : : : �n D �g:
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It follows that if kTS;m;ak < 1, then

kTSn;m�n;ak � kTS;m;akn ! 0

as n ! 1. It then follows that (exponentially) i�.Sn; a/ ! 0 as n ! 1.
Take for example � D F2 with S D fa; bg a free set of generators. Consider

the graphs associated with (the free part of) the shift action s� on 2� with respect
to the set of generators S2nC1 (n � 1). Then (using as m the normalized counting
measure on S˙1, for which TS;m;s�

D TS;s�
) we see that i�.S2nC1; s�/ ! 0 as

n ! 1. Moreover, there are no odd cycles in these graphs. We can then repeat
the arguments in 4.19 and 4.20 to find another infinite family of finite graphs G0

n;p;k

(n; p; k � 1) such that for each n; k and p sufficiently large (depending upon n and
k), we have godd.G

0
n;p;k

/ > k and i.G0
n;p;k

/ < ın, for some fixed constant ı < 1

(here ı D kTS;s�
k2).

5. On Brooks’Theorem

Recall that for a graphG D .X;E/, we let�.G/ denote supfdG.x/ W x 2 Xg, where
dG.x/ D jfy 2 X W xEygj. A point x 2 X is monovalent in G if dG.x/ D 1.
In [26] it is shown that if �.G/ is finite then �B.G/ � �.G/C 1. For finite graphs
G, Brooks’ Theorem states that actually �.G/ � �.G/, unless G is an odd cycle or
a complete graph. In this section we study Borel analogs of this bound.

Recall thatE� is the equivalence relation generated byE, whose classes are called
the connected components of G, and that G is connected if E� has only one class.
We abbreviate Œx�E� by Œx�G . For a cardinal 
, we sayG is 
-connected ifGj.X nA/
is connected for all A � X with jAj < 
.

Also recall that we may view a graphG as inducing a metric �G (informally called
the G-distance) on each connected component of G by setting �G.x0; x1/ equal to
one less than the length of the shortest path from x0 to x1, where a path is a sequence
of vertices, each G-related to the next.

A graphG onX is vertex transitive if its automorphism group acts transitively on
X . We sayG isweakly3-connected if there existx0; x1 2 X such that�G.x0; x1/ D 2

and Gj.X n fx0; x1g/ is connected. In the case that G is vertex transitive and not a
complete graph, this is stronger than 2-connectivity and weaker than 3-connectivity.

Theorem 5.1. Suppose that G D .X;E/ is a vertex-transitive Borel graph on a
standard Borel space X whose connected components are each weakly 3-connected.
Suppose further that �.G/ is finite. Then �B.G/ � �.G/.

Proof. The argument is an amalgamation of the classical proof of Brooks’ Theorem
and the techniques involved in its analogue for approximate chromatic number (see
Theorem 2.19). In addition to Lemma 2.18, we also require a technical lemma
allowing us to find a nice subtree of G.
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Lemma 5.2. There is a Borel set R � X and an acyclic Borel graph T � G, with
vertex set X , such that

(1) no two distinct points of R are within G-distance 3,

(2) each connected component of T is finite,

(3) each connected component of T contains exactly one point of R,

(4) each point in R has two nonadjacent neighbors which are monovalent in T .

Granting this, we may prove the theorem. Fix R and T as in Lemma 5.2. We
think ofR as a set of roots for the treed components of T . LetX0 be the (Borel) set of
neighbors of points inR granted by item 4 of the lemma. Let thenX1 � X n.X0 [R/
be those points monovalent in T j.X n X0/ and generally let Xi � X n .X0 [ 	 	 	 [
Xi�1 [R/ be those points monovalent in T j.X n .X0 [ 	 	 	 [Xi�1//. Item 2 of the
lemma ensures that X D R t F

i2N Xi .
As X0 is a G-independent set (by item 1), we may initially color every point in

X0 with color 0. Since every element of X1 is adjacent to something closer (with
respect to �T ) to R, each point in X1 has degree less than �.G/ in the restriction
Gj.X0 [ X1/. Lemma 2.18 then allows us to extend our coloring to a Borel �.G/-
coloring of X0 [ X1. Proceeding in this fashion, we extend our coloring in turn to
each Xi until we have a Borel �.G/-coloring of X nR.

To complete the coloring, we simply need to choose colors for points in R. But
each such point sees at most�.G/ neighbors, and at least two of the neighbors receive
color 0, so we may assign it the least color unused by its neighbors.

Proof of Lemma 5.2. For convenience, fix some x 2 X . Since G is weakly 3-con-
nected, we may find nonadjacent neighbors y0, y1 of x such thatGj.Œx�G n fy0; y1g/
is connected. Fix r � 2 sufficiently large so that Gj.Br.x/ n fy0; y1g/ is connected,
where Br.x/ denotes the �G-ball of radius r about x. We may then fix a spanning
tree H of Gj.Br.x/ n fy0; y1g/ and subsequently extend it to a spanning tree H 0 of
GjBr.x/ by connecting y0 and y1 to x (leaving them monovalent).

Now, let R be a Borel maximal G2r -independent subset of X , where G2r is the
graph relating two distinct points x0, x1 if �G.x0; x1/ � 2r . That is, no two distinct
points of R are within G-distance 2r , but every element of X is within G-distance
2r of something in R. Since for every x0; x1 2 R, Br.x0/ \ Br.x1/ D ;, we may
“copy” in a Borel wayH 0 onto each element ofR to obtain an acyclic graph T 0 � G

connecting every element of Br.R/ D fx W �G.x;R/ � rg to its nearest element
of R.

We may extend this to an acyclic graph connecting every element of BrC1.R/ D
fx W �G.x;R/ � r C 1g to exactly one element of R by connecting each element
of BrC1.R/ n Br.R/ to one of its neighbors in Br.R/. Continuing, we may extend
step by step until we have an acyclic graph T connecting every element of B2r.R/

to exactly one element of R. Since B2r.R/ D X , we are done once we know each
connected component of T is finite. But since Œx�T � B2r.x/ for all x 2 R, each
connected component of T must have cardinality at most �.G/2r .
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We spend the remainder of the section discussing graphs for which the hypotheses
of Theorem 5.1 are met. Towards this end, we must recall some notions arising
naturally in the study of connectivity of infinite graphs [21]. Given a graph G D
.X;E/ and a subset F � X , we let @F denote the (external) boundary of F , defined
as fx 2 X nF W 9y 2 F .xEy/g. In the notation of the proof of Theorem 5.1 we then
have @F D B1.F /nF . We denote by F e the exterior of F , defined asX n .F [@F /.
Equivalently, F e D X n B1.F /.

Our first goal is a self-contained proof of the following:

Proposition 5.3 ([21]). Suppose that G D .X;E/ is an infinite, connected, vertex-
transitive graph with finite �.G/ � 3 and that F is a nonempty, finite subset of X .
Then j@F j � 3.

Proof. We let 
f denote the smallest possible cardinality of a boundary of a finite
nonempty set of vertices of G. That is,


f D minfj@F j W F � X finite and nonemptyg:
A fragment is a finite set F with j@F j D 
f . Since F � .F e/e � F [ @F and also
@..F e/e/ � @F , we have that .F e/e D F whenever F is a fragment.

Suppose now that F1 and F2 are two fragments. We have

j@.F1 \ F2/j C j@.F1 [ F2/j
D j@.F1 \ F2/ \ @.F1 [ F2/j C j@.F1 \ F2/ [ @.F1 [ F2/j
� j@F1 \ @F2j C j@F1 [ @F2j
D j@F1j C j@F2j
D 2
f :

In particular, if F1 \ F2 is nonempty, it must be a fragment. We may therefore
unambiguously define an atom as a minimal under inclusion fragment, noting that
distinct atoms are disjoint. By transitivity, it follows that the atoms ofG partitionX .

It is therefore enough to show that j@F j � 3 for some atom F . Suppose that
F1 and F2 are distinct atoms with adjacent vertices x1Ex2 such that x1 2 F1 and
x2 2 F2. By reasoning as above, we see

j@.F1 \ F e
2 /j C j@.F e

1 \ F2/j
D j@.F1 \ F e

2 / \ @.F e
1 \ F2/j C j@.F1 \ F e

2 / [ @.F e
1 \ F2/j

� j@F1 \ @F2j C j@F1 [ @F2j
D j@F1j C j@F2j
D 2
f :

That is, if both F1 \ F e
2 and F e

1 \ F2 were nonempty, then they would both be
fragments. In particular, F1 \ F e

2 D F1, i.e., F1 � F e
2 , contradicting the fact that
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F1 \@F2 ¤ ;. Without loss of generality, we may assumeF e
1 \F2 is empty, and thus

F2 � @F1. Certainly @F1 cannot equal F2 or (by transitivity) every atom would have
a single atom as its boundary, forcing the graph to be finite (the union of at most two
atoms). Thus j@F1j � jF2j C 1, which gives the desired bound as long as jF2j > 1.
But, of course, if jF2j D 1, then j@F2j D �.G/ � 3 as required.

Remark 5.4. A more detailed investigation into the nature of fragments gives much
more information about the connectivity of infinite graphs; see [21] for more details.

We will also need to borrow from the study of ends of a graph (see, e.g., [37],
11.4). Recall that we say a connected, locally finite graph G.X;E/ has at most n
ends (n � 0) if for all finite F � X the induced subgraph Gj.X n F / has at most
n infinite connected components. Then G has n ends if n is least such that G has
at most n ends. If no such n exists, we say G has infinitely many ends. We may
view the number of ends of G as the limit of the number of infinite components of
Gj.X n Fi /, where F0 � F1 � 	 	 	 is an exhaustive sequence of finite subsets of X .

Recall that an connected, infinite, vertex-transitive graph has either one, two, or
infinitely many ends (see [15], F64, p. 497). In this situation, knowing the number
of ends of a graph can give information about its connectivity.

Proposition 5.5. Suppose thatG D .X;E/ is an infinite, connected, vertex-transitive
graph with finite �.G/ and assume that G has one end. Then G is 3-connected.

Proof. Note that since G has one end, �.G/ � 3. Fix F � X with jF j � 2. By
Proposition 5.3, Gj.X n F / has no finite connected components. Since G has one
end, it follows that Gj.X n F / is connected.

On the other hand, knowledge of a graph’s connectivity can translate into knowl-
edge of its ends.

Proposition 5.6. Suppose thatG D .X;E/ is an infinite, connected, vertex-transitive
graph with �.G/ � 3 which is not 2-connected. Then G has infinitely many ends.

Proof. By transitivity, we have thatGj.X nfxg/ is disconnected for every x 2 X . Fix
x0; x1 with�G.x0; x1/ � 2. Deletingx0 results in at least two connected components,
and further deleting x1 splits its component into at least two subcomponents. Since
Proposition 5.3 ensures that none of the components of Gj.X n fx0; x1g/ is finite,
Gj.X n fx0; x1g/ has at least three infinite components. Thus, G has infinitely many
ends.

Recall that if � is a group with finite generating set S , the number of ends of
Cay.�; S/ is independent of the choice of S (see, e.g., [37], 11.4). We may thus say
� has n ends exactly when Cay.�; S/ has n ends (and similarly with infinitely many
ends).
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Proposition 5.7. Suppose that � is a group with finite generating set S . Suppose
further that � has two ends and is isomorphic neither to Z nor to .Z=2Z/� .Z=2Z/.
Then Cay.�; S/ is weakly 3-connected.

Proof. It is well known that � has a finite index subgroup isomorphic to Z (see,
e.g., [37], 11.4), a fact that we will use repeatedly below. In particular, this implies
that every subgroup of � isomorphic to Z is of finite index. Moreover, there is an
element z 2 � of infinite order such that either z 2 S or z is the product of two
elements of S (see [45], p. 25, or [19]). Fix such a z such that z2 … S .

Lemma 5.8. There is some fixed Nz such that any vertex of Cay.�; S/ is connected
to an element of hzi by a path of length at most Nz .

Proof. There must be a finite index subgroup �0 � hzi such that �0 is normal in � .
Let Nz D Œ� W �0�.

Now fix x 2 � . Working in the quotient group �=�0, there is a way of writ-
ing x�0 as a word of the form .s1�0/.s2�0/ : : : .sk�0/ with each si 2 S and
k � Nz . Now working in the Cayley graph Cay.�; S/, we see that the path
.x; s�1

1 x; s�1
2 s�1

1 x; : : : ; s�1
k
: : : s�1

1 x/ connects x to some element of �0, which is
necessarily in hzi.

Suppose first that z 2 S . The right cosets fhzi a W a 2 �g partition the vertices
of Cay.�; S/ into finitely many sets, the graph’s restriction to each resembling the
Cayley graph of the integers.

Claim 5.9. If F � � is finite such that Cay.�; S/j.� nF / has two infinite connected
components, then F meets every right coset of hzi.

Proof. By homogeneity, it is enough to prove that F meets hzi. Assume not, towards
a contradiction. If x has distance > Nz from F , then 5.8 gives a path from x to hzi
disjoint from F , so x is in the same component of Cay.�; S/j.� n F / as hzi, thus
Cay.�; S/j.� n F / has a unique infinite component, a contradiction.

Recall that by Proposition 5.3, the deletion of two vertices of Cay.�; S/ cannot
result in a finite connected component. If we set F0 D fz; z�1g, then F0 meets only
one right coset of hzi. Since� is not isomorphic to Z, we may conclude from the claim
that Cay.�; S/j.� n F0/ is connected, and thus Cay.�; S/ is weakly 3-connected.

It remains to handle the case that no element of S has infinite order. Recall then
that z is the product of two distinct elements of S , say z D st . We have a slightly
weaker analog of the previous claim.

Claim 5.10. IfF � � is finite such that Cay.�; S/j.� nF / has two infinite connected
components, then F [ sF meets every right coset of hsti.
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Proof. As before, each infinite connected component of Cay.�; S/j.� n F / meets
each right coset of hsti. Then for each right coset hsti a, we have b 2 hsti a and a
path of the form .b; tb; stb; tstb; : : : ; .st/kb/ in Cay.�; S/ such that b and .st/kb
are in distinct components of Cay.�; S/j.� n F /. This means that some vertex x in
the path must be an element of F .

If x is of the form .st/ib, then x 2 hsti a. On the other hand, if x is of the form
t .st/ib, then sx 2 hsti a. Thus, F [ sF meets hsti a.

We now set F0 D ft�1; sg, and will show that Cay.�; S/j.� n F0/ is connected.
Suppose towards a contradiction that it is not connected; then by Proposition 5.3 it
must have two infinite components. We see that F0 meets a single right coset of hsti,
namely hsti s. On the other hand, sF meets at most two other right cosets, hsti s2

and hsti st�1 D hsti t�2. By the last claim, the union of these cosets must be the
entire group (in particular � D hs; ti), and so the identity must fall into one. The
three equations

.st/n D s�1;

.st/n D s�2;

and

.st/n D t2

have solutions only when n D 0, otherwise the left-hand side has infinite order while
the right-hand side has finite order. We conclude that at least one of s and t has order 2.
Replacing st by t�1s�1 if necessary, we may assume without loss of generality that
t2 D 1.

Then � D hsti [ hsti s [ hsti s2, ensuring that s has order at most 3. If s has
order 2, then � D .Z=2Z/ � .Z=2Z/, which is precluded by our hypothesis. Thus
we may assume s has order 3.

Arguing as above, the right cosets hsti t , hsti st and hsti s2t are disjoint and
cover � . It is clear that hsti D hsti st and hsti t D hsti s, so hsti s2 D hsti s2t . The
equation

.st/ns2 D s2t:

has a solution only when n D 0, since s2ts�2 has finite order. Thus s2 D s2t and
consequently t is the identity, a contradiction.

We finally apply these results to build a class of graphs satisfying Brooks’Theorem
in the Borel context.

Theorem 5.11. Suppose thatG is a vertex-transitive Borel graph on a standard Borel
spaceX with�.G/ finite and whose connected components each have one end. Then
�B.G/ � �.G/.

Proof. By Proposition 5.5, each connected component ofG is 3-connected, and thus
weakly 3-connected. Therefore, the hypotheses of Theorem 5.1 are met.
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Theorem 5.12. Suppose that � is a countable infinite group isomorphic neither to
Z nor to .Z=2Z/� .Z=2Z/. Suppose further that � has finitely many ends. Let S be
a finite set of generators for � and put d D jS˙1j. Then for any free Borel action A
of � on a standard Borel space X , we have �B.S; A/ � d .

Proof. If � has one end, this is a consequence of Theorem 5.11. If � has two ends,
Proposition 5.7 ensures that G.S;A/ meets the hypotheses of Theorem 5.1.

Remark 5.13. The assumption that � is neither Z nor .Z=2Z/ � .Z=2Z/ is neces-
sary. If � is either of those groups equipped with its natural generating set S (with
jS˙1j D 2), then the free part of the shift action s� of � on 2� has Borel chromatic
number 3.

Example 5.14. Finitely generated groups that have only finitely many ends, and thus
Theorem 5.12 applies, include: Property (T) groups (see, e.g., [42]); groups of cost 1
(see Gaboriau [11]), and thus, in particular, amenable groups, direct products of two
infinite groups, etc.; and groups not containing F2 (by Stallings’ Theorem, see [44]).
For a finitely generated torsion-free group � , Stallings’ Theorem implies that � has
infinitely many ends iff � is a non-trivial free product. So in this case 5.12 holds for
any group that is not a non-trivial free product.

Example 5.15. Suppose now that � has a generating set S of cardinality 2 and
finitely many ends but is not isomorphic to Z or .Z=2Z/ � .Z=2Z/. Then for any
free Borel action A of � which admits an invariant Borel probability measure with
respect to which it is weakly mixing, we have �B.S; A/ 2 f3; 4g. In particular, this
holds for the free part of the shift action of � on 2� . This generalizes a theorem of
Gao–Jackson [12] and Miller, who proved this for � D Z2 (see §4, (D)).

Example 5.16. In Aldous–Lyons [4], 10.5, it is pointed out that for any sofic group
� and finite generating set S , there is a free, measure preserving action a of � with
��.S; a/ � d D jS˙1j.

It is still unknown whether the Brooks bound holds for groups with infinitely
many ends, even in the torsion-free context. In fact, the following question remains
unanswered.

Question 5.17. Does every graph corresponding to a free Borel action of Fn (n � 2),
with a free set of generators, admit a Borel coloring with 2n colors?

(Addendum. Andrew Marks has now given a negative answer to this question.)
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6. A matching problem

Consider a Borel bipartite graph G D .X;E/, i.e., X D X1 tX2 is a Borel partition
and if .x; y/ 2 E then one of x, y is in X1 and the other is in X2. If d.x/ D k < @0

for every x 2 X , then by a theorem of König (a special case of Hall’s Theorem), G
admits a matching, i.e., a bijection ' W X1 ! X2 such that .x; '.x// 2 E, 8x 2 X .
The question was raised (see, e.g., Miller [38]) whether there is a Borel version of
that theorem, more precisely, whether there is a Borel matching.

Laczkovich [30] provided the following counterexample for k D 2.
Fix an irrational 0 < ˛ < 1 and consider the set R consisting of the following

rectangle inscribed in the unit square, together with the indicated two corner points.

˛

˛

1 � ˛

1 � ˛

x

y2

y1

�

�

We take X1, X2 to be two disjoint copies of Œ0; 1� and for x 2 X1 its two neighbors
y1; y2 2 X2 are such that .x; yi / 2 R. The two neighbors of any y 2 X2 are defined
analogously. Clearly this is a Borel graph in which every vertex has degree 2, but
Laczkovich showed that it does not have a Borel matching.

In the paper Kłopotowski–Nadkarni–Sarbadhikari–Srivastava [29], the authors
argue that the graph shown below which consists of 4 “copies” of the preceding graph
(actually, the authors discard finitely many connected components rather than adding
dots at the corners, but it is clear that one graph admits a Borel matching if and only
if the other does), and in which every vertex has degree 4 provides a counterexample
for k D 4 (and similarly for all even k). They also raised the question of whether
there is a counterexample for k D 3.
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�

�

�

�
�

�

�

�

Lyons (private communication) showed that the above example actually does not
work, as it has a Borel matching. A simpler argument is as follows:

�

�

�
�

�

�

The boldface segments and dots provide the matching, where as usual an endpoint of
a segment is colored black if it is included, and is colored white if it is not included.

However, it turns out that there is a way to modify this construction to find coun-
terexamples for every even k. For example, for k D 4, the idea is to construct a
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“Sudoku” version which is illustrated in the following picture:

�

�

�

�
�

�

�

�
�

�

�

�

Let us give a detailed argument. Fix a Borel bipartite graph .X1 t X2; E/ with
degree k D 2 possessing no Borel matching. Define from this a new graph . xX1 t
xX2; xE/ as follows: xX1 D X1 � f1; 2; 3g, xX2 D X2 � f1; 2; 3g, and .x; i/ xE.y; j / (

) .i ¤ j and xEy/. This has degree k D 4 and it is enough to show that if
there is a Borel injection Nf W xX1 ! xX2 such that .x; i/ xE Nf .x; i/, then there is a
Borel injection f W X1 ! X2 with xEf .x/ (and similarly if we switch the roles of
xX1; xX2). Granting this, if there is a Borel matching for . xX1 t xX2; xE/, there are two

Borel injections, from X1 to X2 and vice versa, whose graphs are contained in E,
so, by a Schröder–Bernstein argument, there is a Borel matching for .X1 t X2; E/,
a contradiction.

So fix Nf as above, which we will use to define f . Given x 2 X , consider
Nf .x; 1/ D .u; a/, Nf .x; 2/ D .v; b/, and Nf .x; 3/ D .w; c/. Then xEu, xEv, and
xEw. Since .X1 tX2; E/ has degree 2, at least two of u; v; w are equal. So there is a
unique y 2 X2 such that for at least two distinct i; j � 3, we have Nf .x; i/ D .y; k/,
Nf .x; j / D .y; l/ (for some necessarily distinctk,l). Putf .x/ D y; we claim that this

works. To see this, take x ¤ x0. If f .x/ D f .x0/ D y, then let i ¤ j be such that
Nf .x; i/ D .y; k/, Nf .x; j / D .y; l/ and let i 0 ¤ j 0 be such that Nf .x0; i 0/ D .y; k0/,
Nf .x0; j 0/ D .y; l 0/. As before, k ¤ l and k0 ¤ l 0. It follows that one of k; l is equal

to one of k0; l 0, contradicting the injectivity of Nf .
The same proof works for degree k D 6 by dropping from the definition of xE the

condition i ¤ j (i.e., in the preceding picture inscribing the rectangle into all nine
of the small squares). In general, for degrees k D 4n and k D 4nC 2 (n � 1) one
uses the same argument with the .2nC 1/ � .2nC 1/ square.
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As far as we know, the case k D 3 is open. (Addendum. Andrew Marks has now
constructed examples for every k � 2.) We sketch below an alternative approach to
the k D 2 case which adapts naturally to the k D 3 case, relating the question of
whether a bipartite graph has no Borel matching to the calculation of the independence
number associated with the shift action of an appropriate group. This was actually
for us a motivation for looking at the independence number of such graphs.

Let m � 2 and A D f1; a; a2; : : : ; am�1g and B D f1; b; b2; : : : ; bm�1g be two
copies of the cyclic group of orderm. Let �m D A �B and consider the shift action
of �m on 2�m , and let Y � 2�m be its free part. Let X1 D Y=A, the set of A-orbits
under the shift action, and X2 D Y=B . Then X1 and X2 are standard Borel spaces
and let X D X1 tX2. Define the bipartite graph Gm D .X;E/ by

pEq () p \ q ¤ ;:
If p 2 X1, q 2 X2 and p\q ¤ ;, then for some y 2 p\q, p D A 	y and q D B 	y.
Since the action of � on Y is free, clearly p \ q D fyg. Thus there is a canonical
bijective correspondence between Y and E, namely

y 7! fA 	 y;B 	 yg
(we view E here as a set of unordered pairs). Clearly each vertex in Gm has degree
exactly m.

Suppose now that f W X1 ! X2 is a Borel matching for G. By the above iden-
tification, f can be viewed as a Borel subset M � Y and the condition of being a
matching corresponds exactly to the assertion that M meets every A-orbit in exactly
one point, and likewise meets every B-orbit. That is,M is a common transversal for
the A- and B-orbits.

The set S D .A [ B/ n f1g � �m is a set of generators for �m and the above
condition forM implies thatM is an independent Borel set for the graphG.S; s�m

/.
Moreover it is clear that for the product measure � on 2�m , �.M/ D 1=m. Thus, in
particular, if there is a Borel matching in Gm D .X;E/, then i�.S; s�m

/ � 1=m.
On the other hand, if i�.S; s�m

/ � 1=m and the supremum is attained, say by
an independent Borel set C , then C must meet almost every A-orbit and almost ever
B-orbit in exactly one point. It follows that the existence of an almost everywhere
Borel matching in Gm is equivalent to the statement that i�.S; s�m

/ D 1=m and the
supremum is attained.

If m D 2 this is impossible: since the action s�2
is weakly mixing, there can be

no independent set of measure 1=2. Thus there is no Borel matching in the graph
G2, providing an alternate proof of Laczkovich’s theorem. In fact, there is no almost
everywhere Borel matching in G2.

We do not know whether there is a Borel matching for G3. (Addendum. Andrew
Marks has shown that this has a negative answer if one replaces 2�3 by 3�3 .) In an
earlier version of this paper, we have asked whether there is even an almost everywhere
Borel matching inG3. However, Lyons and Nazarov [35] have now shown that this is
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indeed the case, or equivalently that i�.S; s�3
/ D 1=3 and the supremum is attained.

From this it follows that in fact i�.S; a/ D 1=3 for any a 2 FR.�3; X; �/. That
i�.S; a/ � 1=3 is clear since any independent set contains at most one element in
each A-orbit. Since s�3

� a we also have the reverse inequality. It also follows that
�

ap
� .S; a/ D 3. It is enough to prove it for a D s� . To see this let T be a set meeting

each triangle in exactly one point, a.e.. This is one color. Removing T we get an
acyclic degree 2 graph, so two colors are enough up to any ".
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