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An upper bound for injectivity radii in convex cores

Brian H. Bowditch

Abstract. Let N be a complete hyperbolic 3-manifold with finitely generated fundamental
group, and let H be its convex core. We show that there is an upper bound on the radius of an
embedded hyperbolic ball inH , which depends only on the topology ofN . As a consequence,
we deduce that limit sets of strongly convergent kleinian groups converge.
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Introduction

Let N be a complete hyperbolic 3-manifold with finitely generated fundamental
group. By tameness [Bo], [A], [CalG], it is known that N is homeomorphic to the
interior of a compact manifold, M . Let H be the convex core of N . (This is the
minimal submanifold with locally convex boundary whose inclusion into N is a
homotopy equivalence.)

The main result will be:

Theorem 0.1. There is some r � 0, depending only on the topology ofM , such that
any embedded hyperbolic ball inH has radius at most r .

The question has been considered by a number of authors. The statement is
proven in [Can] for product manifolds, and in [F1], [F2] for books of I -bundles
and acylindrical manifolds, and in [E] in the general incompressible case. A proof
in the general (tame) case (different from that presented here) was worked out by
Kleineidam and Souto, though never written down in detail.

Theorem 0.1 is related to a question of McMullen (posed before the Tameness
Theorem was proven in general) in the problem list [Bi]. That question asks whether
one can find a radius bound that depends only on the minimal number of generators
of �1.M/. McMullen’s question is already interesting, and remains open, when M
is closed. Our result applies to general M , though we make no attempt to relate the
bound to any specific algebraic properties of �1.M/.
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In fact we prove a variation (Theorem 1.1) which is easily seen to imply Theo-
rem 0.1. This says that any curve in H either lies in a small compressing disc in
H , or else lies in an essential curve in H of bounded length. Indeed, by Ahlfors’s
Finiteness Theorem, the boundary @H , ofH is an intrinsically hyperbolic surface of
bounded area, and so it’s not hard to see that Theorem 0.1 also implies Theorem 1.1.
In other words, they are essentially equivalent.

We also note that there are only finitely many possibilities for the topology of M
once its homotopy class is determined. (This is a consequence of the characteristic
submanifold construction [J], see [S].) Thus, in Theorem 0.1, one can take r to be a
function of the fundamental group.

It was pointed out to me by Al Marden that Theorem 1.1 can be used to prove the
convergence of limit sets of a sequence of finitely generated kleinian groups which
converge both algebraically and geometrically. This is given here as Theorem 8.1.
The argument is fairly straightforward, given a result of McMullen in [M].

We will prove Theorem 1.1 in a series of more general situations. In Sections 3, 4
and 5, we deal with the convex co-compact case. Here, H is respectively a product,
compression body, or general compact manifold. In Section 6, we consider the case of
a tame manifold without cusps. We will finally deal with the general case in Section 7.
Our proof will involve constructing sequences of homotopies and compressions of
singular hyperbolic surfaces. Related constructions can be found, for example in
[BrS] and [BrMNS].

I thank the referees for their helpful comments on this paper.

1. Convex hulls

In this Section we make a few relatively simple observations and give a reformulation
of the main result, namely Theorem 1.1. We use H3 to denote hyperbolic 3-space, d
for its metric, B.Q; r/ for the r-neighbourhood of Q � H3.

Let G be a non-cyclic infinite torsion-free group acting properly discontinuously
on H3. We write zH for the convex hull of the limit set, and H D zH=G � N D
H3=G for the convex core of N , which we assume to be compact. It follows by
Ahlfors’s Finiteness Theorem that in the induced path-metric, @H , is a finite disjoint
union of complete hyperbolic surfaces. In the above, we should insert a clause about
the “fuchsian” case, where H is a totally geodesic surface with totally geodesic
boundary. It is then most natural to view @H as the double ofH . Our statements are
easily reinterpreted (though essentially elementary) in that case.

Given t > 0, let H3�t .G/ D fx 2 H3 j .9g 2 G n f1g/.d.x; gx/ � t /g, and set
N�t D H3�t .G/=G � N . In other words, N�t is the set of points of N contained
in an essential curve of length at most t . If � > 0 is less than the Margulis constant,
then each component of H3��.G/ has the form H3��.Z/ where Z � G is a maximal
abelian subgroup. The quotient H3��.Z/=Z � N is a Margulis region. This is either
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a cusp (rank 1 or rank 2) or a Margulis tube. In the last case, we will denote it by
N��.˛/, where ˛ is a primitive homotopy class of closed curves in N .

We can assume that � is also less than the 2-dimensional Margulis constant. If
� 2 .0; �� we set .@H/�� to be the “�-thin” part of @H . Each component, A, of
.@H/�� is an annulus with boundary curves ˛1, ˛2, say, each of length between
� and 2� (provided � is sufficiently small). Note that if ˛ is essential in N , then
A � N��.˛/ � N�� .

Suppose that ˛ is trivial in N . Then each ˛i bounds an embedded disc Di � H

of diameter at most �. We can assumeD1 andD2 to be disjoint, so thatA[D1 [D2

is a 2-sphere, and so it bounds a ball,W � H , withW \ @H D A. We refer toW as
a �-handle in H . Note that if ı is any path from D1 to D2 in W then W � B.ı; �/.

We write W.�/ for the union of all �-handles in H (which we can assume to be
disjoint). Note that, up to bounded Hausdorff distance,W.�/ can be described as the
set of points ofH contained in some compressing disc of circumference and diameter
at most �. (This ties in with the informal description given in the Introduction.)

We will write �.M/ for the minimal number of 3-simplices in a triangulation
of M . This measures the topological compexity of M . As a “triangulation” we can
allow the image of anyG-invariant triangulation of zH as a simplicial complex, so that
in H we can allow non-embedded simplices, but this makes no essential difference
to the argument.

Note that �.M/ also bounds the complexity of @H (for example, as measured as
the sum of the genera of its components).

The main result of this paper is:

Theorem 1.1. .8� 2 N/.8� > 0/.9t � 0/ ifM can be triangulated with at most �
3-simplices (i.e. �.M/ � � ), thenH � N�t [W.�/, whereW.�/ is the union of all
the �-handles inH .

We can refine Theorem 1.1 slightly. If we alter the conclusion toH � B.N�t ; r/[
W.�/, then we can choose t to depend only on � and the complexity of @H , though r
may also depend on �.M/. We will see that the proof automatically gives this. Note
that B.N�t ; r/ � N�.tC2r/, and so this implies Theorem 1.1 as stated.

As observed in the introduction, there are only finitely many homeomorphism
types for a compact 3-manifold M with given fundamental group. We only really
need this when every 2-sphere in M bounds a ball. In the boundary-incompressible
case this is a consequence of Corollary 29.3 of [J]. More generally, we can cut
along a collection of compressing discs into boundary-incompressible pieces. Their
fundamental groups are determined as the maximal one-ended subgroups of the orig-
inal �1.M/. Thus, there are only finitely many possibilities for the pieces, and for
regluing them to reconstruct M . (See [S] for details.) As a consequence of this
observation, the complexity, �.M/, featuring in Theorem 1.1 could, in fact, be taken
to be a function of �1.M/.



112 B. H. Bowditch

2. Some definitions and facts

We begin by recalling or reformulating a few well known facts and constructions used
in the proof. We assume here there are no parabolics. We describe how the relevant
statements can be modified in Section 7.

Definition. By a singular (hyperbolic) surface in N , we mean a 1-lipschitz map,
� W † ! N , where † is a closed surface with a hyperbolic structure.

(We could allow uniformly lipschitz maps, or cone singularities with angles at
least 2� without essential change.)

We say that a free homotopy class of closed curves in † is compressing if it is
non-trivial in † but its image in N is trivial. Suppose we fix some � > 0. Then
each component of the �-thin part of † is either compressing, or maps into the thin
part,N�� , ofN . Also each component of the complement of the �-thin part of† has
bounded diameter, depending only on � and the genus of †.

Definition. By a multisurface we mean a (possibly empty) disjoint union of closed
surfaces.

We can generalise the above to singular mutlisurfaces. Note that the inclusion of
@H into N is a singular multisurface (in fact a non-singular one).

Definition. A multicurve in a multisurface, †, is a disjoint union of homotopically
distinct non-trivial closed curves. It is complete if each component of the complement
is a three-holed sphere (or “3HS”).

In other words, it gives a pants decomposition of each component of †. If
� W † ! N is any homotopy class of maps, we say that � is totally incompress-
ible if each component of �.�/ is non-trivial in N .

Definition. By a realisation of � in N we mean a singular hyperbolic multisurface,
� W † ! N , such that �j� maps each component of � locally isometrically to the
corresponding closed geodesic in N .

Lemma 2.1. Any totally incompressible multicurve, � � †, admits a realisation.
If � is a complete multicurve, then any two such realisations are connected by a
homotopy in N whose image lies in a bounded neighbourhood of the image of either
of the realisations.

Proof. These are fairly standard, see for example [Bo].

Definition. We will define the “complexity” of a (multi)surface to be minus the Euler
characteristic.
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We also recall Bers’s Lemma [Be]:

Lemma2.2. Givenanyhyperbolic structure ona closed surface†, there is a complete
geodesic multicurve total length is bounded above in terms of the compexity of †.

Clearly this also applies to multisurfaces.
We can assume that such a multicurve contains all closed geodesics in† of length

at most �.
We also note the following:

Lemma 2.3. Suppose that � W † ! N is a singular hyperbolic multisurface, and
that � � † is a totally incompressible complete multicurve of in †. Then we can
homotope � to a realisation of � in N by a homotopy lying in B.�.†/ [ N��; r/,
where r depends only on � and the complexity of †, and the length of � .

Proof. First homotope each component of�.�/ to the corresponding closed geodesic.
This can be done in a bounded neighbourhood of this curve union the corresponding
Margulis tubes. We can then homotope so that each curve maps locally injectively.
Now extend over each 3HS.

When we apply this, the length of � will be bounded in terms of the complexity
of †, so r will depend only on � and this complexity.

We recall the notion of an “elementary move” on complete multicurves (corre-
sponding an edge in the pants graph). We say that � and ı are connected by an
elementary move if there are components ˛ � � and ˇ � ı such that � n ˛ D ı n ˇ
and such that ˛ [ ˇ has a regular neighbourhood that is either a four-holed sphere
(4HS) or a one-holed torus (1HT). In these terms, the fact that the pants graph is
connnected [HT] can be expressed as:

Lemma 2.4. If � and � 0 are complete multicurves, then there is a sequence � D
�0; �1; : : : ; �n D � 0 of complete multicurves such that each �iC1 is obtained from �i

by an elementary move.

We can elaborate on the second part of Lemma 2.1:

Lemma 2.5. Suppose that � and ı are complete multicurves related by an elementary
move, and suppose that �,  are realisations of � and ı respectively. Then there is
a homotopy from � to  in N lying in a bounded neighbourhood of �.†/ [N�� .

Proof. We’ve just got to worry about 1HT’s and 4HS’s. These are easily dealt with
by cutting into simplices with all vertices in the curves.

Finally we note that we can extend a singular surface to a union of long thin handles
about short compressing curves. We state this as follows. (It is a generalistion of the
construction of �-handles.) The proof is elementary.
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Lemma 2.6. Suppose that � W † ! N is a singular hyperbolic multisurface, and
that ˛ � † is a compressing curve of length less than �. LetB be a 2-handle (3-ball)
attached to † so that @B meets † in the component of the �-thin part of † with
core curve ˛. Then we can extend � to a map � W † [ B ! N , so that �.B/ lies
in a bounded neighbourhood �.†/ and the intrinsic diameter of each component of
@B n† is bounded.

Here the bounds depend only on �. (We could take � itself.)
We will now move on to give proofs of Theorem 1.1 in increasing generality. First

we will assume that the manifold N is convex cocompact, that is, the convex core,
H , is compact.

This will be based on a simple homological principle. We will take Z2-coefficients.
If @H bounds a singular 3-chain in N , then H is precisely the set of points to which
the 3-chain maps with degree 1. We can construct such a 3-chain for example as a
continuous map, � W H ! N , with �j@H just inclusion of @H in N .

3. The convex cocompact product case

We consider first the case where H Š † � Œ�1; 1�, where † is a closed surface. We
write†˙ D †� f˙1g, so that @H D †� [†C. This case follows from well known
constructions related to interpolating pleated surfaces. It was originally described in
[Can]. We describe one such construction which we adapt later. (In this case, we can
measure the complexity of M in terms of genus.†/.)

Let �˙ be a complete multicurve in †˙ of length bounded in terms of genus.†/
(Lemma 2.2). Here all curves are incompressible. Let�˙ W † ! N be a realisation of
�˙. By Lemmas 2.1 and 2.3, we can find a homotopy from†˙ ,! N to�˙ W † ! N

which lies in a bounded neighbourhood of†˙[N�� . Now let�� D �0; �1; : : : ; �n D
�C be a sequence of complete multicurves as given by Lemma 2.4. Let �i W † !
N be a realisation of �i . By Lemma 2.5, there is a homotopy from �i to �iC1

lying in a bounded neighbourhood of �i .†/ [ N�� . (Note that we don’t need a
bound on the length of the geodesic realisation of �i for this.) Assembling all the
homotopies gives us a homotopy from †� to †C lying in a bounded neighbourhood
of @H [ S

i �i .†/ � N . We can view this as a map � W H ! N , with �j@H just
inclusion @H ,! N . Also, for each i , �i .†/ � N�t0 where t0 depends only on
genus.†/. (Since, for each i , each point of † in the intrinsic hyperbolic metric lies
in a curve of bounded length.) Thus, H � �.H/ � N�t , where t depends only on
genus.†/ as claimed.
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4. The convex cocompact compression body case

We next move on the case where H is a compact compression body, which we can
assume not to be a product in the above sense. This has outer and inner boundaries
@CH and @�H respectively. Thus, @CH is a compressible surface, and @�H is a
(possibly empty) incompressible multisurface. (Here, the complexity of M can be
measured in terms of genus.@CH/.)

Our aim again will be to construct a map � W H ! N , with �j@H just inclusion,
@H ,! N , using a series of singular hyperbolic multisurfaces, �i W †i ! N , for
i D 0; 1; : : : ; n. This time, we will set �0 and �n to be respectively the inclusions
of @CH and @�H into N . Each �iC1 will be obtained from �i either by a compres-
sion, as defined below, or by a homotopy. For topological reasons, there can only be
boundedly many compressions (in terms of genus.@CH/). Each of these compres-
sions and homotopies will lie in a bounded neighbourhood of �i .†i /[N�� . (Here,
the bound depends on genus.@CH/ and �.) The strategy will be to perform compres-
sions along “short” compressing curves whenever we have the opportunity. In this
way, by going back a bounded number of times, we see that each �i is obtained from
some �j where j � i by a series of consecutive such compressions and where either
j D 0, or where�j �1 has no short compressing discs. In the former case, we note that
�0.†0/ D @CH � N�t0 [W.�/, where t depends only on genus.@CH/ and � . In
the latter case, we note that the intrinsically �-thin part of†j �1 maps intoN�� (since
there are no short compressions) and so �j �1.†j �1/ � N�t0 , with t0 depending only
on genus.@CH/. Assembling� out of these maps, we getH � �.H/ � N�t [W.�/,
where t depends only on genus.@CH/ and � as required.

We begin by describing the notion of compression in topological terms. By a
compression of a multisurface, †, we mean a disjoint union of compression bodies,
C , such that † is the union of their outer boundaries. We assume that there are no
sphere or torus inner boundary components. We also assume that C is not a product,
and so the inner boundary has strictly lower complexity than the outer boundary. Note
that we can connect a sequence of such compressions into a single compression.

Suppose � W † ! N is any map, and ˇ � † is a totally compressing multicurve
(i.e. each component is compressing). We can construct a compression as follows.
First glue a disc to each component of ˇ and then thicken up the resulting 2-complex
into a compression body. This admits a natural map intoN up to homotopy. We now
cap off each spherical inner boundary component with a 3-ball. We also cap off each
toroidal inner boundary component with a solid torus, in such a way that the map of
the torus into N extends over the solid torus. (This is always possible since there are
no rank-2 free abelian subgroups of �1.N /.) This gives another compression body,
C , with inner boundary, †0, say. We can extend � over C and so in particular get a
map of †0 into N .

Definition. We say that such a manifold,C , together with the map,�, is a compression
†, in N , which compresses the multicurve, ˇ.
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Here is another way of describing a compression in N , which is topologically
equivalent, and which is how we will carry it out geometrically.

Suppose that � � † is a complete multicurve. Let ˇ � � be the union of all
compressing curves in � . Let P be the set of components of † n � . We write
P D P0 t P1 t P3 where Pi has exactly i boundary components in ˇ. (We count
as 2 any pair of boundary components that get identified to the same curve of � .)
We first construct a multisurface †1 by cutting † along ˇ and gluing in a disc to
each boundary component arising. Thus, each P 2 P3 gives rise to a 2-sphere
component of †1. Each element of P1 turns into an annulus in †1. There may be
torus components of †1 each of which consists of a closed circuit of such annuli.
The remaining “hyperbolic” components of †1 all have genus at least 2. Now the
union of all closed annuli arising from P1 will give us, in addition to tori, a number
(possibly 0) of closed annuli in the hyperbolic components. For each such annulus,A,
we perform another surgery by cutting along the boundary components and regluing
in pairs, so as to give a torus (arising from A) and a disjoint surface homeomorphic
to the original. We thus arrive at another multisurface, †2. We finally throw away
all the sphere and torus components of †2 to give us a multisurface, †0. Each of the
above multisurfaces comes with a natural homotopy class of map to N . Also, the
multicurve � in † gives rise to a complete multicurve � 0 in †0. (In constructing � 0,
we throw away the components of ˇ, and identify certain pairs of curves in � n ˇ.)
It’s not hard to see that†t†2 bounds a compression body in a natural way. To get to
†0 it remains to cap off the 2-spheres with 3-balls, and tori with solid tori. (Note that
if F is a torus component of †2, then the image of �1.F / in �1.N / is non-trivial by
construction, and hence contained in a unique maximal cyclic subgroup. There is thus
a canonical way to glue in the solid torus so as to kill the kernel.) By construction,
we get a compression of † to †0 in N , in the same sense as described earlier. Note
also by construction, each curve of � 0 is non-compressing on †0.

Before applying the above we need a couple of geometrical observations. The
proofs are straightforward.

Lemma 4.1. (1) Any map � W F ! N of a 2-sphere, F , into N extends to a map
� W B ! N of the 3-ball, with the diameter of �.B/ bounded above by the intrinsic
diameter of F in the induced metric.

(2) Any map � W F ! N of a torus F , into N extends to a map of a solid torus,
D, into N such that �.D/ lies in a bounded neighbourhood of �.F / [N�� , where
the bound depends on the intrinsic diameter of F and �.

Will be using two geometrically distinct forms of compression, which we will
term “short” and “long”.

Short compression. Suppose that � W † ! N is a singular multisurface (that is
1-lipschitz with respect to some hyperbolic structure on †). Suppose that � � † is
an intrinsically geodesic complete multicurve of bounded length (Lemma 2.2). It is
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assumed to contain all closed geodesics of length at most �. Let ˇ � � be the union
of all compressing curves in � . We say that † “admits a short compression” if there
is some such � for which ˇ is non-empty. In this case, let � 0 � †0 be as described
above, and let �0 W †0 ! N be a realisation of � 0. (Recall that no component of � 0
is compressing.) We can now interpolate between � and �0 by a compression whose
image lies in a bounded neighbourhood of�.†/[N�� as follows. If˛ is a component
of ˇ, then we span �.˛/ by a disc of bounded diameter if its length is greater than
�, or we attach a handle as given by Lemma 2.6, if its length is greater than �. If ı
is a component of � n ˇ giving rise to a component of � 0, then homotope �.ı/ to its
geodesic realisation in N by a homotopy lying in a bounded neighbourhood of N�� .
To extend to a compression it remains to cap off a collection of 2-spheres and tori, all
of which have bounded intrinsic diameter. This can be achieved using Lemma 4.1.

Long compression. Suppose that � W † ! N is a realisation of a complete multic-
urve � � †. Suppose that ı is another multicurve obtained from � by an elementary
move, as defined in Section 2. In other words, we have components, ˛ of � and ˇ
of ı, lying in the same component, F , of † n .� n ˛/ D † n .ı n ˇ/, and such that
˛ and ˇ have minimal intersection in F . Suppose that ˇ is compressible. Then F
must be a 4HS. (If it were a 1HT, @F � � would also be compressing, contradicting
the existence of a realisation of � in N .)

We now perform a compression of ˇ. This involves removingF and reconnecting
the boundary curves in pairs.

More precisely, suppose that ˇ cuts F into 3HS’s, E1 and E2, with @Ei D
ˇ [ 	i [ 	0

i , and that ˛ cuts F into the 3HS’s, E;E 0, with @E D ˛ [ 	1 [ 	2 and
@E 0 D ˛ [ 	0

1 [ 	0
2. Note that 	i and 	0

i are homotopic, after compression of ˇ,
and so have the same geodesic realisations, �.	i / and �.	0

i /, in N . We can therefore
throw away F and glue together each 	i and 	0

i to give a new multisurface, †0, and
a realisation, �0 W †0 ! N , of a complete multicurve � 0 in †0. (We need to consider
the possibility that 	i D 	0

i , in which case we just discard this curve. If this holds
for both i D 1; 2, then we end up discarding the entire genus 2 component of †
containing ˛.) Note that �0.†0/ � �.†/, and that �0.†0/ is obtained from �.†/

by a compression of ˇ. Topologically, this entails thickening up F on the inside,
and gluing in a 2-handle so as to give a genus 2 handlebody, with F in its boundary.
Now, F D E [ E 0, and �.@E/ D �.@E 0/ D �.˛/ [ �.	i / [ �.	0

i /. To map in the
handlebody, we can use a homotopy between �.E/ and �.E 0/ fixing �.@E/. As in
Lemma 2.5, such a homotopy can be carried out within a bounded neighbourhood of
�.F /.

Note that this construction does not require any bound on the lengths of the
realisation of � . We refer to the procedure as a “long compression”.

Construction of singular multisurfaces. We now set about constructing the se-
quence of singular multisurfaces described at the beginning of this section.
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We start with†0 D @CH and let �0 W †0 ! N be inclusion. We construct a map
�1 W †1 ! N as follows. If �0 admits a short compression then we carry it out to
obtain a map �1 W †1 ! N , which realises some multicurve, �1 � †1. If �0 admits
no such compression, then we choose a multicurve, �0, in †0 of bounded length. In
this case, we set †1 D †0 and �1 D �0, and we let �1 W †1 ! N be a singular
surface realising �1 (cf. the product case, Section 3).

We now proceed inductively. Suppose we have �p W †p ! N , realising �p with
p � 1. If �p.†p/ admits a short compression, then we carry it out to give a new map
�pC1 W †pC1 ! N realising a complete multicurve �pC1. (Note that the multicurve
we use for the short compression depends only on the metric on †p , and need bear
no relation to �p .)

Suppose that �p.†p/ does not admit a short compression, but that �p.†p/ is
not incompressible. Let ˇ � †p be any compressing curve. Let S � †p be the
component containing ˇ. We extend ˇ arbitrarily to a complete multicurve, and
connect this to �p \ S by a path �p \ S D ı0; ı1; : : : ; ıq � ˇ in the pants graph
(Lemma 2.4). We extend each ıj to a complete muticurve in †p , also denoted ıj by
setting ıj n S D �p n S for all j 2 0; 1; : : : ; q. (In other words, we leave the other
components of †p alone.) We can assume that ıj is totally incompressible for all
j < q (otherwise we just stop there, and reset q D j ).

We now construct maps �pCi W †pCi ! N , with†pCi D †p realising �pCi D ıi

until we either arrive at a surface admitting a short compression, or arrive at �pCq�1 D
ıq�1. In the former case, we carry out the short compression, and start again with
a new multisurface of lower complexity playing the role of †p above. If there if
there is never any short compression in this sequence, then we finally carry out a long
compression to �pCq�1.†pCq�1/, compressing the curve ˇ � �pCq and start again
from the new multisurface.

After a bounded number of compressions, we eventually arrive at some map
�m W †m ! N , with �m.†m/ incompressible in N . (Possibly †m D ;.)

Now �m.†m/ is homotopic to @�H . We now proceed as in the product case
(for each component of †m) so as to construct maps �mCi W †mCi ! N , with
†mCi D †m for all i , terminating with a map �n W †n ! N , which is just the
inclusion of @�H into N .

Assembling all the �i , we get a map � W H ! N , with �j@H just inclusion, as
discussed at the beginning of this section.

This proves Theorem 1.1, in the case where H is a compact compression body.

5. General cocompact case

We explain how to reduce the general cocompact case to the previous cases dealt
with. A similar principle is used in [E].

Let N be a complete hyperbolic manifold with compact convex core, H . The
inclusion H ,! N ,! M is homotopic to a homeomorphism. Indeed, M n H Š
@M � Œ0;1/.
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Let S be a boundary component of H Š M . Let NS be the cover of N corre-
sponding to S ,! N . We lift S to an injective map S ! NS . This is a boundary
component of the convex core, HS � NS .

NowNS is also convex cocompact. This is a standard argument due to Thurston.
(By Ahlfors’s Finiteness Theorem, @HS is compact. SinceH is compact, every point
must lie a bounded distance from its boundary, and so the same is true of HS . Thus,
HS is compact.) Since S ,! HS is surjective on fundamental groups, HS is a
compression body.

Suppose we are given a triangulation of S . Then we can construct a piecewise
straight map,  S , of S into NS , homotopic to inclusion. By “piecewise straight” we
mean that each simplex gets mapped to a totally geodesic simplex in N . We can do
this by mapping in vertices, edges and triangles in turn. In fact, by choosing this so as
to minimise the total length of the 1-skeleton, we will have S .S/ � HS . (Otherwise
there will be a vertex x in S , whose link gets mapped strictly into a hemisphere in the
unit tangent space in NS . This would allow us to shorten the 1-skeleton by pushing
the vertex in the direction of the centre of the hemisphere.) We refer to piecewise
straight maps of this sort as “balanced”.

Let WS .�/ be the union of all �-handles in HS , and .NS /�t be the set of points
contained in an essential loop of length at most t inNS . By the earlier cases (Sections 3
and 4), we haveHS � .NS /�tS [WS .�/, where tS depends only on the genus of S .
In particular, we get a Z2-homology chain bounded by  S .S/[ S in NS and whose
image lies in .NS /�tS [ WS .�/. Mapping down to N , we get a map  W S ! N

with  .S/[S bounding a homology chain lying inN�tS [W.�/. Let PS be the set
of point to which this maps with degree 1.

We now take a triangulation ofM Š H with at most � 3-simplices. This induces a
triangulation on @H . We perform the above construction for each component of @H ,
to give a piecewise straight map  W @H ! N (mapping in the remaining vertices,
edges, triangles and simplices in turn). We extend this to a piecewise straight map
 W H ! N . Let Q � N be the set of points to which it maps with degree 1 (in
Z2). The volume of Q is bounded above by � times the volume of the regular ideal
3-simplex. This places a bound, say r , depending only on � , on the radius of the
largest hyperbolic ball we can embed in Q.

Now the homology 3-chains with boundaries  .S/ [ S combine to give us a 3-
chain with boundary �.@H/[@H . Combining this with .H/we get a 3-chain with
boundary @H . This maps with degree 1 to H , and so we see that H D Q [ S

S PS

as S ranges over the boundary components. It follows thatH � N�t [W.�/, where
t D 2r C maxS tS . This proves Theorem 1.1 in the general convex cocompact case.
(Note that this includes the cocompact case, where M D H is a closed manifold,
and @H D ;.)
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6. Geometrically tame without parabolics

Let N be a complete hyperbolic 3-manifold with without parabolics. By tameness
[Bo], [A], [CalG],N is homeomorphic to the interior of a compact manifold,M . We
can embed M into N so that N n intM Š @M � Œ0;1/. Let S be a component of
@M , so that ES � S � Œ0;1/ is an end ofN . This end is either geometrically finite,
in which case we can assume that S is a boundary component of @H , or else simply
degenerate, in which case, we can assume that ES � H .

Our aim in this case will be to construct a homology 3-chain whose boundary
consists of @H together with compact subsets lying arbitrarily far out each of the
degenerate ends. This chain will map with degree 1 to an arbitrarily large compact
subset of H .

Suppose that E is simply degenerate. In this case, there is a sequence, !n W S !
ES , of singular hyperbolic surfaces, each homotopic in ES to the inclusion of
S D @ES , and tending out the end. Indeed we can take !n to be the realisation
of some complete multicurve, �n, in S . Suppose ˇ is any curve S such that !n.ˇ/

is compressing in N . There is a compressing disc in N whose diameter is bounded
above by length.!n.ˇ//. This disc must meet H . It follows that the length of the
shortest compressing curve in !n.S/ (if there is any) must tend to 1 as n ! 1. In
particular, we can assume that none of the surfaces !n.S/ admits any short compres-
sion (in the sense described in Section 4).

Now suppose that x 2 H is any point in the convex core. For each simply
degenerate end, ES , we choose a singular !S W S ! ES with x lying in the same
component of ES n !S .S/ as S D @ES . (Set !S D !n for large enough n.) This
realises a complete multicurve �S . Note in particular, that !S .S/ homologically
separates x from the end. If ES is geometrically finite, we set !S to be the inclusion
S ,! N . Combining these gives us a map ! W @M ! N . We aim to extend this to a
homology 3-chain with boundary !.@M/. This maps with degree 1 to x. For this, we
use a piecewise straight map,  W M ! N , with  j@M balanced, constructed as in
Section 5. We need to find a chain with boundary  .S/[!.S/ for each component,
S , of @M . We follow the procedure of previous sections.

Suppose, for example, thatES is a simply degenerate end. As in Section 5, we lift
toNS , which is the interior of a compact product manifold or compression body,MS ,
with outer boundary @CMS Š S . The outer end is simply degenerate and isometric to
ES . We can lift !S W S ! ES to a map toNS , also realising the complete multicurve
�S . Since !S .S/ has no short compression, we can immediately set about searching
for a long compression similarly as in Section 4, using Lemma 2.4, starting with �S .
Moreover, if !S .S/ is sufficiently far out the end, then !S .S/ lies in the convex core,
HS , of NS . The lift,  S .S/, of  .S/ to NS also lies in HS (since it is a balanced
piecewise straight map). We can therefore find a homology chain with boundary
 S .S/[ !S .S/ in NS . As in Section 4, this lies in .NS /�tS where tS depends only
on genus.S/. If ES is geometrically finite, we similarly obtain a homology chain
lying in .NS /�tS [W.�/.
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Mapping down toM , we end up constructing a Z2-homology3-chain, with bound-
ary !.@M/, and supported on N�t [W.�/, where t depends only on � and � . This
chain also maps to x with degree 1, and so x 2 N�t [ W.�/. Since x 2 H was
arbitrary, we deduce that H � N�t [W.�/, as required.

7. The general case

To deal with the general case, where we allow for cusps, a few modifications are
necessary. We need to adapt the definition of “singular surface” to allow for nodal
surfaces. We need to consider Z ˚ Z-cusps. Also, the Z-cusps may cut a topological
end ofM into pieces, some of which may be geometrically finite while others simply
degenerate.

LetN be a complete hyperbolic 3-manifold with �1.N / finitely generated. Again
by tameness, we can embedM intoN , so thatN nintM Š @M �Œ0;1/. The Z˚Z-
cusps are in bijective correspondence to the toroidal components of @M , and each
can be assumed to be the boundary of the corresponding �-Margulis cusp. Let @0M

be the union of all the components of genus at least 2. Tameness also tells us that
there is a multicurve, � � @0M , with the Z-cusps in bijective correspondence with
the components of � .

More precisely, if ˛ � @0M is a component of � , then there is an �-Margulis
cusp, N��.˛/, homotopic to ˛ in N . We can assume that @M meets N��.˛/ in an
annulus A.˛/ with core curve ˛.

We write N nc�� � N for the complement of the interiors of all the �-Margulis
cusps.

Definition. We refer to N nc�� as the non-cuspidal part of N .

We write F for the set of components of @0M n S
˛�� intA.˛/ (which we can

identify with the “non-cuspidal” part of @N nc��). Each component of N nc�� n intM
has the form EF Š F � Œ0;1/, where F is identified with F � f0g — the relative
boundary of EF in N nc�� . These are the non-cuspidal “geometric” ends of N . Each
is either geometrically finite or simply degenerate, and we partition F D FF t FD

accordingly. If F 2 FD then EF � H .
By Ahlfors’s Finiteness Theorem, @H is an intrinsically hyperbolic multisurface

of finite area. Moreover, each cusp of @H maps into a Z-cusp of N . Choosing �
sufficiently small in relation to the topological type of @H (which is bounded in terms
of the complexity of M ) we can assume that @H meets the Z-cusp in a horodisc of
@H which is totally geodesic in N . (It is possible that @H might meet other cusps in
a compact subset, but that does not matter in what follows.)

We will need to generalise the notion of a singular hyperbolic surface in N , to
allow for curves to be sent off to infinity in parabolic cusps.
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Let † be a multisurface. By a nodal structure in †, we mean a (possibly empty)
multicurve, 
, together with a complete finite-area hyperbolic structure on † n Z,
where Z is a closed regular neighbourhood of 
. We also note that Bers’s Lemma
also applies to finite area surfaces, and therefore also to nodal structures. In other
words, we can extend 
 to a complete multicurve in† so that the length of each other
component is bounded above in terms of genus.†/.

To define a singular nodal surface, we embed N as a submanifold of a manifold
N [ @cN with boundary @cN , where each component of @cN corresponds to a cusp.
Formally, we can view@cN as a disjoint copy of@N nc�� , and topologiseN[@cN in such
a way thatN [ @cN n intN nc�� is a product, @N nc�� � Œ0;1� with @N nc�� � @N nc�� � f0g
and with @cN � @N nc�� � f1g, and such that each fxg � Œ0;1/ is a geodesic ray.
Note that the ends of N [ @cN are in bijective correspondence with the ends of N nc��

Definition. A (singular) nodal surface is a map � W † ! N [ @cN such that Z D
��1.@cN/ is a regular neighbourhood of a multicurve in †, and such that �j.† nZ/
is 1-lipschitz with respect to a nodal structure corresponding to the multicurve.

Only �j.† n Z/ is relevant to geometric arguments. We need � defined on Z to
enable us to define homotopy and homology classes.

The observations of Section 2 go through with little change, with “singular hy-
perbolic surface” replaced by “nodal surface”.

To explain how the proof is modified, we work backwards through the paper.
In Section 6, we need to take account to the possibility that an end of N may

have both geometrically finite and simply degenerate parts. Suppose that F 2 FD ,
i.e. EF is simply degenerate. In this case we have a sequence, .!n/n of 1-lipschitz
maps into M where the domain of each is a finite area surface homeomorphic to
int F . The image of !n meets N nc�� in a compact subset of EF . This homologically
separates F from the end of EF . Moreover, these compact subsets tend out the end
as n ! 1. On the other hand, if F 2 FF , we can set each !n to be equal to
the inclusion of the corresponding component of @H into N . Piecing together these
maps with annuli in @cN , we get a nodal surface !n W @0M ! N [ @cN , based
on the multicurve � determined by the Z-cusps. We extend this topologically to a
map !n W @M ! N [ @cN , taking each (toroidal) component of @M n @0M to a
component of @cN .

Let Qn � N be the set of points Z2-homologically separated from infinity by
!n.@0M/, in other words, the set of points of N to which !n W @M ! N [ @cN

maps with degree 1. By construction, N nc�� \H � S
nQ

n.
Let S be a component of @0M . Let NS be the corresponding cover. We define

@cNS similarly as for @cN . There is a natural map NS [ @cNS ! N [ @cN which
bijective on each component of @cNS . As before, by tameness, NS is the interior
of a compact manifold, which must be a compression body (or product) with outer
boundary corresponding to S . This time there might be toroidal inner boundary
components corresponding to Z ˚ Z-cusps. Let HS be the convex core of NS . If
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we assume the compression body case (which will be explained below) then HS �
.NS /�tS [WS .�/, where tS depends only on the genus of S .

As before, we can construct a balanced piecewise straight map,  S W S ! NS [
@cNS , which in this case may be a nodal surface. We will have S .S/[N � HS . Let
!n

S W S ! NS [ @cNS be the lift of !njS . We can assume that !n
S .S/\NS � HS [

.NS /�� . Now !n
S is homotopic to  S . Let P n

S � NS be the set of points to which
the homotopy maps with degree 1. Thus, P n

S � HS [ .NS /�� � .NS /�tS [WS .�/.
Mapping down toN , we get maps S W S ! N , homotopic to !njS . Combining

the maps  S for each such component S , we get a map  W @0M ! N . We extend
this to a piecewise straight map  W M ! N [ @cN , sending each toroidal boundary
component to a component of @cN . This map is homotopic to !n. As before, we set
Q to be the set of points of N to which  maps with degree 1. Thus the volume of
Q is bounded above in terms of �.M/.

Let P n � N be the set of points homologically between  .@M/ and !n.@M/.
Thus Rn D Q [P n. Also, P n � N�tS [W.�/. It follows that Rn � N�t [W.�/,
where t is the maximum of t0 and tS as S ranges over the components of @0M . Now
N nN nc�� � N�� � N�t assuming t � �. Since H \N nc�� � S

nR
n, it follows that

H � N�t [W.�/ as required.
To complete the proof, we need to explain how the product and compression body

cases are adapted from Sections 3 and 4 respectively.
First suppose that M Š † � Œ�1; 1� and write @0M D @CM t @CM , where

@˙M � † � f˙1g. Let � � @M be the multicurve corresponding to the set of
Z-cusps of N . (There are no Z ˚ Z-cusps in this case.) We construct a sequence
of maps !n W @M ! N [ @cN as in the general case above. Thus, !n is a nodal
surface based on � , and each complementary surface F is sent either to a component
of @H (when F 2 FF ), or to a singular hyperbolic surface !n.F /, realising a
complete multicurve �n

F in a simply degenerate geometric end (when F 2 FD). If
F 2 FF , we let �n

F D �F be a complete multicurve in F as given by Bers’s Lemma.
We set �n D � [ S

F 2F �n
F . Then �n � � is a complete multicurve in @M . Let

�n˙ D �n \@˙M . By Lemma 2.4, we can connect �n� to �nC by a path in the pants
graph. Realising these by singular surfaces as in Section 2, we construct a homotopy
from !nj@�M to !nj@CM . We can view this as a map  n W M ! N [ @cN , with
 nj@M D !nj@M , and with  n.M/ � N�t where t depends only on genus.†/.
(As before, W.�/ D ; in this case.) Now H � S

n  
n.M/, and so H � N�t as

required.
Finally, we consider the case whereM is a compression body. Let @CM � @0M

be the outer boundary component, and let @�M be the inner boundary. This time,
@�M may contain tori, namely the components of @�M n @0M .

As before, we construct a sequence of nodal surfaces, !n W @CM ! N [ @cN .
We can assume that there is no short compression in the simply degenerate parts. We
follow the argument of Section 4 to construct a compression to a nodal multisurface
homotopic to the inner boundary, and thence (via the product case) to another nodal
multisurface, !n W @�M ! N [ @cN , where !nj@�M \ @0M maps each comple-
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mentary surface, F , either to a component of @H or to a singular surface, !n.F /,
in a simply degenerate part, and where !n.F / \ N nc�� goes out the corresponding
end as n ! 1. Also !nj@�M n @0M maps each component homeomorphically
to a toroidal component of @cN . Once we have done this, we can conclude that
H � N�t [W.�/, where t depends only on � and genus.@CM/.

There are a couple of complications we have to consider in the previous paragraph.
Certain curves in our sequence of multicurves may get mapped into @cN rather than
to a closed geodesic. In this case, we just use a nodal surface to realise it. Also, after
performing a compression, we may end up with an essential torus inner boundary
component. These all correspond to Z ˚ Z-cusps, and can be homotoped to the
corresponding torus component of @cN by a homotopy in a bounded neighbourhood
of N�� .

8. Convergence of limit sets

The following is a consequence of Theorem 1.1, together with a result of McMullen
[M]. I thank Al Marden for pointing this out to me. Special cases of the result were
known before – where McMullen’s hypotheses had been verified (cf. [E]).

Theorem 8.1. Suppose that .Gn/n2N is a sequence of isomorphic finitely generated
groups acting properly discontinuously on H3. Suppose that .Gn/ is algebraically
convergent and that .Gn/ also converges geometrically to a groupG acting properly
discontinuously on H3. Then the limit sets ƒGn converge to the limit set ƒG in the
Hausdorff topology in @H3.

The definitions of algebraic and geometric convergence can be found in [M], for
example. Briefly, algebraic convergence means that there are representations, �n

and �, of a fixed finitely generated group � into the isometry group of H3, with
Gn D �n.�/, so that �n.g/ converges to �.g/ for all g 2 � . All we will need from
this is that, given any x 2 H3, there is some k � 0 such that for all n 2 N, there is a
finite generating set Sn of Gn such that d.x; gx/ � k for all g 2 Sn. A sequence of
groups .Gn/ converges geometrically to a group G if every element of G is the limit
of a sequence of elements, hn of Gn, and moreover, if h is any limit of a convergent
sequence, hni

2 Gni
in any subsequence .Gni

/ of .Gn/ then h 2 G. (If .Gn/n also
converges algebraically, as above, then one can see easily that �.�/ � G, though
these groups are not necessarily equal.)

Proof. By Selberg’s lemma, after passing to a finite index subgroup, we can assume
that the groups, Gn are all torsion free. We write Hn for the convex core of Nn D
H3=Gn. There are only finitely many possibilities for the homeomorphism type
of Nn, so the topological complexity featuring in the statement of Theorem 1.1 is
bounded. By Proposition 2.4 of [M], it is enough to show that there is some t � 0
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such that for all n each point of Hn lies in some essential loop of length at most t .
(Only the geometric convergence is needed to apply [M].) Thus, by Theorem 1.1 of
this paper, it is enough to show that there is some � > 0 such that for all n there are
no �-handles in Hn.

For this, we use algebraic convergence. Translating the earlier observation toNn,
this means there is some point xn 2 Nn and a finite collection of loops based at xn

of bounded length which generate Gn � �1.Nn/ � �1.Hn/. There is no loss in
taking xn and all the loops to lie in Hn. In this case, each compressing disc of Hn

must intersect at least one such loop essentially. This places a bound on the lengths
�-handles, so if we take � small enough, we can assume there are none, and the result
follows.
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