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Groups not presentable by products
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Abstract. In this paper we study obstructions to presentability by products for finitely generated
groups. Along the way we develop both the concept of acentral subgroups, and the relations
between presentability by products on the one hand, and certain geometric and measure or
orbit equivalence invariants of groups on the other. This leads to many new examples of
groups not presentable by products, including all groups with infinitely many ends, the (outer)
automorphism groups of free groups, Thompson’s groups, and even some elementary amenable
groups.
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1. Introduction

In our previous paper [28] we introduced a class of infinite groups, called groups not
presentable by products. Our motivation was that certain closed manifolds whose
fundamental groups belong to this class turned out to have special properties; in
particular some such manifolds are not dominated by non-trivial product manifolds.
The purpose of the present paper is to discuss groups not presentable by products
more systematically, and, in particular, to provide further examples of such groups,
going far beyond the examples given in [28]. First, we recall the definition.

Definition 1.1 ([28]). An infinite group � is not presentable by a product if, for every
homomorphism ' W �1 � �2 ! � onto a subgroup of finite index, one of the factors
�i has finite image '.�i / � � .

For the fundamental groups of closed Riemannian manifolds of strictly nega-
tive sectional curvature this property holds, essentially by the proof of Preissmann’s
theorem. Generalizing this observation, we previously proved:
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Theorem 1.2 ([28], Theorem 1.5). The following groups are not presentable by
products:

(H) hyperbolic groups that are not virtually cyclic,

(N-P) fundamental groups of closed Riemannian manifolds of non-positive sec-
tional curvature of rank one and of dimension � 2,

(MCG) mapping class groups of closed oriented surfaces of genus � 1.

As a consequence of the discussion in this paper, we extend Theorem 1.2 in several
directions.

After the preliminary Section 2, this paper consists of two main parts. In the
first part, comprising Sections 3–6, we develop criteria to show that groups are not
presentable by products. Although numerous examples are interspersed in this first
part, we then devote the second part of the paper, comprising Sections 7, 8 and 9, to
systematically testing the criteria from the first part on certain interesting classes of
groups, leading to further examples.

In Section 3 we discuss groups with acentral subgroups, a notion tailored to the
analysis of centralisers à la Preissmann. This discussion subsumes most of the ad
hoc arguments that went into the proof of Theorem 1.2, but it also applies to other
interesting examples, such as free products and certain elementary amenable groups
obtained as semidirect products.

In Section 4 we develop obstructions to presentability by products coming from
L2-Betti numbers, from cost in the sense of Levitt and Gaboriau, and from the rank
gradient in the sense of Lackenby.

In Section 5 we consider the Powers property introduced by de la Harpe, and in
Section 6 the second bounded cohomology with coefficients in the regular representa-
tion, as pioneered by Burger, Monod and Shalom. These considerations show that the
hyperbolicity in statement (H) of Theorem 1.2 can be replaced by a “cohomological
negative curvature” assumption. Needless to say, these “negative curvature” obstruc-
tions do not apply to amenable groups, although some of them are not presentable by
products and are amenable (sic!) to a direct analysis of centralisers à la Preissmann.

In Section 7 we test our criteria on Richard Thompson’s groups, which are not
elementary amenable, but could still be amenable. In Section 8 we discuss the au-
tomorphism groups of free groups, proving the natural generalization to this class
of the statement about mapping class groups in Theorem 1.2. Finally in Section 9
we discuss groups with infinitely many ends, in particular free products and their
applications to connected sum decompositions of manifolds dominated by products.

The final Section 10 contains some further extensions of our results, and a dis-
cussion of the context in geometric and measurable group theory. The Appendix
summarizes the applicability of different criteria to various classes of groups.

Acknowledgement. This paper was begun in 2008 as we were trying to understand
some comments that N. Monod kindly made on [28]. More recently, he has again
offered some crucial insights. We are very grateful to N. Monod for his generous
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contributions to this work. In particular, most of the results and proofs in Sections 4.1,
4.2, 6 and 10.1 were suggested by him.

2. Preliminaries

Throughout this paper we only consider finitely generated groups. This restriction
is necessary for some of the results we use, but represents no significant loss of
generality. In particular, it is always satisfied when considering fundamental groups
of compact manifolds, as in the context of the domination relation for manifolds [28].

We recall a few of the elementary properties of groups not presentable by products
developed in [28]. We do not give any proofs in this section as all the results that
need proof were proved in Section 3.1 of loc. cit.

Consider a homomorphism ' W �1��2 ! � of groups. Without loss of generality
we can replace each �i by its image in � under the restriction of ', so that we may
assume the factors �i to be subgroups of � and ' to be multiplication in � .

Lemma 2.1. If a group is not presentable by a product, then every finite index sub-
group has finite centre.

The following is a kind of converse to this observation:

Proposition 2.2. If every subgroup of finite index in a group � has trivial centre,
then � is irreducible if and only if it is not presentable by a product.

The proof of this proposition is based on the following lemma.

Lemma 2.3. Let �1, �2 � � be commuting subgroups of a group � with the property
that �1 [ �2 generates � . Then the multiplication homomorphism ' W �1 � �2 ! �

is well defined and surjective and the following statements hold:

(1) the intersection �1 \ �2 � � is a subgroup of the centre of � , and

(2) the kernel of ' is isomorphic to the Abelian group �1 \ �2.

This gives the following exact sequences:

1 ! �1 \ �2 ! � ! �=.�1 \ �2/ ! 1; (1)

1 ! �1 \ �2 ! �1 � �2 ! � ! 1: (2)

Sometimes it is convenient to replace a given group by a subgroup of finite index.
This transition does not affect presentability by products by the following straight-
forward observation:

Lemma 2.4. Let � be a group. A finite index subgroup of � is presentable by a
product if and only if � is.
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3. Acentral subgroups and acentral extensions

In this section we define groups with acentral subgroups and acentral extensions and
prove that they are not presentable by products. We shall give various examples, in-
cluding in particular elementary amenable groups that are not presentable by products
because they are extensions of this type.

Definition 3.1. Let � be a group. A subgroup A of � is called acentral if for
every g 2 A n f1g � � the centraliser C�.g/ is contained in A.

An extension 1 ! N ! � ! Q ! 1 of groups is acentral if the normal
subgroup N is acentral.

Our interest in these notions stems from the following result.

Proposition 3.2. Groups containing infinite acentral subgroups of infinite index are
not presentable by products.

Proof. The proof, in the same spirit as the ad hoc arguments of [28], consists of
a careful analysis of the commutation relations in a group � containing an infinite
acentral subgroup A of infinite index.

Assume for a contradiction that � is presentable by a product. Then there are
commuting infinite subgroups �1 and �2 such that the multiplication homomor-
phism ' W �1 � �2 ! � is well defined and has finite index image in � .

As a first step we show that �i \A D 1. If �1\A contained a non-trivial element g,
then – because A is acentral and the �i commute – we would obtain �2 � C�.g/ � A.
Applying acentrality again, we then deduce that also �1 � A. But then im ' � A,
contradicting the fact that im ' has finite index in � and A has infinite index in � .
Therefore, indeed �1 \ A D 1 and �2 \ A D 1.

As a second step we show that even .im '/ \ A D 1. Assume for a contradiction
that .im '/ \ A ¤ 1 and let g 2 .im '/ \ A n f1g. Because �1 and �2 commute
and because �1 [ �2 generates im ', we find elements g1 2 �1 and g2 2 �2 such
that g D g1 � g2; notice that g1 2 C�.g/. Therefore, acentrality implies that g1 2 A,
and hence – by the first step – we have g1 D 1. Applying the first step to �2, we
obtain also g2 D 1, which contradicts g ¤ 1. So .im '/ \ A D 1.

As the third and last step we show that any subgroup � 0 of � with � 0 \ A D 1

cannot have finite index in � . Since A is infinite, if � 0 had only finitely many cosets
in � , then by the pigeonhole principle there would be a coset, say g� 0, containing
infinitely many elements of A. In particular g� 0 \ A would contain two elements
a1 ¤ a2. But then it would follow that 1 ¤ a�1

2 � a1 2 � 0 \ A, which would be a
contradiction.

Combining the second and third steps we reach the conclusion that im ' cannot
have finite index in � . Thus, � is not presentable by a product after all.
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Corollary 3.3. Let 1 ! N ! � ! Q ! 1 be an acentral extension of groups with
N and Q infinite. Then � is not presentable by a product.

Before proceeding, we would like to point out that many instances of the ad hoc
arguments of [28] can be subsumed under the result of Proposition 3.2. For example,
in the mapping class groups of surfaces of genus � 3 there are pseudo-Anosov
elements g with the property that the cyclic subgroup generated by g is acentral.
Thus the case (MCG) in Theorem 1.2 follows from Proposition 3.2. Note that it is
crucial here that we consider acentral subgroups that are not necessarily normal. This
is also true in the next example.

Example 3.4. Let � D �1 � �2 be a non-trivial free product, and g 2 � an element
that is not contained in a conjugate of one of the free factors, e.g., g D g1g2g�1

1 g�1
2

with gi 2 �i n feg. Then the centraliser C�.g/ is an infinite acentral subgroup of �;
see [32], Problem 28 on p. 196. As soon as one of the �i has order > 2, the index of
C�.g/ in � is also infinite, so that � is not presentable by a product.

Corollary 3.5. Let � denote the semi-direct product group N Ì˛Q, where N is a non-
trivial Abelian group, Q is an infinite group and the action on N given by ˛ W Q !
Aut.N / is free outside 0 2 N . Then the extension 0 ! N ! � ! Q ! 1 is
acentral and N is infinite. In particular, � is not presentable by a product.

Proof. In view of Corollary 3.3, it suffices to prove that N is infinite and acentral.
Infiniteness is clear since the infinite group Q acts freely on the (non-empty) set
N n f0g.

Let g 2 N n f0g and let g0 2 C�.g/; we write g D .n; 1/ and g0 D .n0; q0/
with n, n0 2 N and q0 2 Q. By definition of the semi-direct product, we obtain

g � g0 D .n C n0; q0/;
g0 � g D .n0 C ˛.q0/.n/; q0/;

and hence n C n0 D n0 C ˛.q0/.n/; because N is Abelian, we use “+” for the group
structure in N . In particular, n D ˛.q0/.n/. As ˛ acts freely on N outside 0 and
n ¤ 0, this implies q0 D 1, i.e., g0 2 N Ì˛ 1 D N . Thus N is indeed acentral.

This corollary provides us with explicit examples of elementary amenable groups
that are not presentable by products, by taking semi-direct products of infinite ame-
nable groups Q with suitable actions onAbelian groups N . Note that the obstructions
to presentability by products developed below coming from rank gradient, cost and
L2-Betti numbers (Section 4), from the Powers property (Section 5), or from bounded
cohomology (Section 6), vanish for amenable groups.

Example 3.6. Let ˛ W Z ! SL.2; Z/ be given by the matrix

A D
�

2 1

1 1

�
:
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Then the action of Z on Z2 given by A is free outside 0 and Corollary 3.5 shows that
the corresponding semi-direct product � D Z2 Ì˛ Z is not presentable by a product.
On the other hand, � is solvable and thus amenable.

In this example � is the fundamental group of a T 2-bundle M over S1 whose
monodromy is the Anosov diffeomorphism given by A acting linearly on R2=Z2.
This torus bundle carries the solvable Thurston geometry Sol3, and � is a lattice
in Sol3. For all such lattices we have:

Corollary 3.7. Let � be any cocompact lattice in Sol3. Then � is not presentable by
a product.

Proof. Any such lattice has a finite index subgroup that is the fundamental group of
the mapping torus of a hyperbolic torus diffeomorphism; see [42], Theorem 5.3 (i).
The discussion in Example 3.6 applies to this finite index subgroup.

The previous example can be generalized to higher dimensions.

Example 3.8. Let n 2 N�2 and let ˛ W Z ! GL.n; Z/ be given by a matrix A 2
GL.n; Z/ such that no non-trivial power of A has eigenvalue 1. Then the action of Z
on Zn given by A is free outside 0 and Corollary 3.5 shows that the corresponding
semi-direct product Zn Ì˛ Z is not presentable by a product. Again the group is
solvable and thus amenable.

4. L2-Betti numbers, cost, and rank gradient

In this section we discuss obstructions to presentability by products coming from
L2-Betti numbers, from cost, and from the rank gradient.

4.1. L2-Betti numbers. Like the ordinary Betti numbers, L2-Betti numbers of
groups can be defined as dimensions of certain homology modules, namely as the
von Neumann dimensions of homology with coefficients in the group von Neumann
algebra. For a thorough treatment of L2-invariants we refer the reader to Lück’s
book [30].

The first L2-Betti number is an obstruction for groups to be presentable by prod-
ucts:

Proposition 4.1. If the group � is presentable by a product then b
.2/
1 .�/ D 0.

Proof. Assuming that � is presentable by a product we find two infinite commut-
ing subgroups �1 and �2 of � with the property that the multiplication homomor-
phism ' W �1 � �2 ! � is surjective onto a finite index subgroup � 0 ´ im ' in � .
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As L2-Betti numbers are multiplicative with respect to finite index subgroups (see
Theorem 6.54 (6) in [30]), we have

b
.2/
1 .�/ D 1

Œ� W � 0�
� b

.2/
1 .� 0/:

In particular, it suffices to prove that b
.2/
1 .� 0/ D 0.

We now divide the discussion into two cases:

(1) The group �1 \�2 is infinite. Since �1 \�2 is Abelian, it is amenable. Thus, by
the exact sequence (1), the group � 0 has an infinite amenable normal subgroup,
which implies that b

.2/
1 .� 0/ D 0; see [30], Theorem 7.2 (1) and (2).

(2) The group �1 \ �2 is finite. In this case the exact sequence (2) implies that

b
.2/
1 .� 0/ D j�1 \ �2j � b

.2/
1 .�1 � �2/I

compare [30], Exercise 7.7 and p. 534 f. Moreover, b
.2/
1 .�1 � �2/ can be com-

puted by the Künneth formula [30], Theorem 6.54 (5), (8),

b
.2/
1 .�1 � �2/ D b

.2/
0 .�1/ � b

.2/
1 .�2/ C b

.2/
1 .�1/ � b

.2/
0 .�2/

D 1

j�1j � b
.2/
1 .�2/ C b

.2/
1 .�1/ � 1

j�2j
D 0;

where the last equality holds because the groups �1 and �2 are infinite. Thus,
it follows that b

.2/
1 .� 0/ D 0.

Hence, we obtain b
.2/
1 .�/ D 1=Œ� W � 0� � b

.2/
1 .� 0/ D 0, as desired.

Remark 4.2. The vanishing result in Proposition 4.1 does not extend to the higher
L2-Betti numbers. However, the proof of case (1) does extend. Therefore, we do get
restrictions on the higher L2-Betti numbers of groups that are presentable by products.
For example, if � is presentable by a product and b

.2/
2 .�/ ¤ 0, then � is a quotient

of a direct product �1 � �2 by a finite central subgroup, and both b
.2/
1 .�1/ ¤ 0 and

b
.2/
1 .�2/ ¤ 0. This follows from the Künneth formula as in case (2) of the proof

above.

4.2. Expensive groups. The concept of cost was introduced by Levitt and developed
extensively by Gaboriau [15]. It is a dynamical/ergodic invariant of discrete groups.
We shall use the lecture notes of Kechris and Miller [25] as our reference for this
concept and for the properties we need.

The cost C.�/ of a countable group � is either infinite or a non-negative real
number. For finite groups one has C.�/ D 1 � 1=j�j, and for infinite groups one
has C.�/ � 1.
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Definition 4.3 ([25]). An infinite countable group � is cheap if C.�/ D 1; it is
expensive if C.�/ > 1.

If � 0 � � is a subgroup of finite index, then C.� 0/ � 1 D Œ� W � 0� � .C.�/ � 1/

[15], Théorème VI.1, [25], Theorem 34.1. Therefore, the property of being cheap, or
expensive, is invariant under passage to finite index sub- or supergroups. Similarly,
if � 0 is a finite normal subgroup of � , then �=� 0 is cheap if and only if � is cheap
[15], Théorème VI.19.

Proposition 4.4. Expensive groups are not presentable by products.

Proof. Suppose that � is expensive and presentable by a product. Then, as the
property of being expensive is invariant under passage to finite index subgroups,
Lemma 2.4 allows us to assume that we have commuting subgroups �1; �2 � � such
that the multiplication ' W �1 � �2 ! � is surjective. If �1 \ �2 is infinite, then �

has infinite centre, and so � is cheap [15], VI.26 (a), [25], Corollary 35.3. If �1 \ �2

is finite, then in view of the exact sequence (2) and the fact that the property of being
cheap is invariant under passage to quotients by finite normal subgroups, it suffices
to check that �1 � �2 is cheap. This last assertion is known to be true as soon as both
�i are infinite [15], Proposition VI.23, [25], Theorem 33.3.

4.3. Rank gradient. The rank gradient was introduced by Lackenby [29], and has
recently been further developed by Abért and Nikolov [1].

For any finitely generated group � , let d.�/ be the minimal number of generators.
Then the rank gradient is defined to be

RG.�/ D inf
�0��

d.� 0/ � 1

Œ� W � 0�
;

with the infimum taken over all finite index subgroups � 0 � � . (This is sometimes
called the absolute rank gradient. Often only normal subgroups are considered,
but this makes no difference.) Of course, if � has few subgroups of finite index,
this definition may not be very meaningful. In the extreme case when � has no
subgroups of finite index at all, one clearly has RG.�/ D d.�/ � 1. This explains
why results about the rank gradient often involve assumptions that ensure the existence
of sufficiently many finite index subgroups.

The basic properties of the rank gradient immediately give the following:

Proposition 4.5. If a residually finite group � is presentable by a product, then
RG.�/ D 0.

Proof. Suppose � is presentable by a product. Then there are infinite commuting
subgroups �1; �2 � � such that the multiplication map ' W �1 ��2 ! � is surjective
onto a finite index subgroup � 0 � � . It suffices to prove RG.� 0/ D 0.
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If �1 \ �2 is infinite, then � 0 has infinite centre, and so its rank gradient vanishes
[1], Theorem 3.

If �1 \ �2 is finite, we argue as follows. By assumption, both �i are infinite. As
they are subgroups of a residually finite group, they are themselves residually finite.
As the two groups commute, they are both normal in � 0, and we have the two exact
sequences

1 ! �1 ! � 0 ! �2=.�1 \ �2/ ! 1;

1 ! �2 ! � 0 ! �1=.�1 \ �2/ ! 1I
the epimorphisms are given by composing the isomorphism � 0 Š �1 ��2=.�1 \�2/

with the homomorphisms induced by the projection from �1 � �2 onto its factors.
The lower sequence shows that �1=.�1 \�2/ is finitely generated, and since �1 \�2

is finite, we conclude that �1 is itself finitely generated (recall that � (and hence � 0) is
finitely generated by our standing convention). Now we can apply a result ofAbért and
Nikolov (Proposition 13 in [1]) to the first extension above to conclude the vanishing
of RG.� 0/. The subgroup �1 is finitely generated, and the quotient �2=.�1 \ �2/

has subgroups of arbitrarily large index since �2 is infinite and residually finite, and
�1 \ �2 is finite. This completes the proof.

Example 4.6. Let � be a finitely generated infinite simple group. By classical work
of Higman and Thompson, such groups exist, and may even be chosen to be finitely
presentable. Then � � � is presentable by a product and has positive rank gradient
since it has no proper subgroups of finite index.

Note that � itself is not presentable by a product since it has no non-trivial normal
subgroups.

4.4. The relation between the first L2-Betti number, cost, and the rank gradient.
There is a remarkable connection between cost and the first L2-Betti number, which
shows that the obstruction to presentability by a product coming from the first L2-Betti
number is a special case of the obstruction provided by the cost.

Theorem 4.7 (Gaboriau [16], Corollaire 3.23). Every infinite group � satisfies
C.�/ � 1 � b

.2/
1 .�/. In particular, groups with positive first L2-Betti numbers

are expensive.

It is unknown whether this inequality is ever strict. For residually finite groups
one also has:

Theorem 4.8 (Abért and Nikolov [1], Theorem 1). If � is residually finite, then
RG.�/ � C.�/ � 1, with equality if � has fixed price.

We refer the reader to the papers byAbért and Nikolov [1] and by Osin [40] for fur-
ther discussions of these results and their relations to open problems and conjectures
in group theory and in three-dimensional topology.
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For residually finite groups, the positivity of the rank gradient is the strongest one
of the three obstructions to presentability by products discussed in this section. A
large class of non-examples for this obstruction comes from the following observation,
generalising a vanishing result for L2-Betti numbers [30], Theorem 1.39.

Lemma 4.9 (Lackenby [29], p. 365–366). The rank gradient vanishes for fundamen-
tal groups of mapping tori.

Example 4.10. By Thurston’s theorem, the mapping torus of a pseudo-Anosov dif-
feomorphism of a surface of genus � 2 is a hyperbolic three-manifold. Its funda-
mental group is residually finite, therefore the vanishing of its rank gradient given by
Lemma 4.9 implies that this hyperbolic group is cheap.

Another non-example is the following:

Proposition 4.11. Mapping class groups of surfaces of genus � 3 have vanishing
rank gradient.

Since mapping class groups are residually finite by a result of Grossman [18], this
Proposition implies, via Theorem 4.8, that mapping class groups are cheap. This last
assertion was previously known by a recent result due to Kida [26].

Proof. Let �g be the mapping class group of a closed oriented surface of genus g � 3.
We can apply a result of Abért and Nikolov (Proposition 13 of [1]) to the extension

1 ! �g ! �g ! Sp.2gI Z/ ! 1

to conclude RG.�g/ D 0. Here �g is the Torelli group, which is finitely generated
for genus � 3 by a result of Johnson [24]. Clearly the symplectic group has the
required property to admit finite quotients of arbitrarily large order.

5. The Powers property

For a countable group � , let C �
red.�/ denote its reduced C �-algebra. One says that

the group is C �-simple if C �
red.�/ has no proper two-sided ideals. It is a now classical

result of Powers that the free group on two generators is C �-simple. De la Harpe
[22] extracted from Powers’s proof a combinatorial property of groups that ensures
C �-simplicity. He calls this property the Powers property, and calls groups that have
the property Powers groups. We refer to his recent survey [23] for the definitions and
an extensive bibliography of results on the class P of Powers groups.

Basic results about Powers groups mentioned in [23] imply the following.

Proposition 5.1. A group with the Powers property is not presentable by products.
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Proof. First of all, if � is a Powers group, so is every finite index subgroup [22],
Proposition 1 (c). Therefore, if we have subgroups �1, �2 � � for which the multi-
plication is surjective onto a finite index subgroup, we just pass to this subgroup. Now
a C �-simple group does not contain any amenable normal subgroup, in particular it
has trivial centre. Therefore, by the discussion in Section 2, we conclude that �1 ��2

is a Powers group. But this contradicts a result of Promislow [41]; compare also [23],
Proposition 14 (i).

This result is true for Powers groups only. The less restrictive property of C �-
simplicity is preserved under taking direct products, and so cannot be an obstruction
against presentability by products. The same remark applies to the “weak Powers
property” discussed in [23].

The fact that C �-simple groups, and therefore Powers groups, have trivial centre,
implies that many standard examples cannot be Powers groups.

Example 5.2. The centre of SL.2; Z/ has order 2. Therefore, this is not a Powers
group. It follows that hyperbolic groups, or groups with infinitely many ends, are not
always Powers groups.

Example 5.3. The mapping class group of a closed genus 2 surface also has centre of
order 2, generated by the hyperelliptic involution. It follows that this mapping class
group is not a Powers groups. Similarly, in higher genus the hyperelliptic mapping
class group is not a Powers group.

Nevertheless, the class P of Powers groups contains, among others, the following
groups:

(1) torsion-free hyperbolic groups that are not virtually cyclic (de la Harpe [22],
[23]),

(2) free products �1 � �2 with j�i j > i (de la Harpe [22], Proposition 8),
(3) mapping class groups of surfaces of genus at least 3 (Bridson–de la Harpe [10],

Theorem 2.2).

6. Bounded cohomology

Monod and Shalom [37], [38] introduced and studied the following class of groups;
compare also the paper by Mineyev, Monod and Shalom [34]. (A detailed treatment
of bounded cohomology H �

b
of groups is given in Monod’s book [35]).

Definition 6.1 ([38]). A countable group � is in Creg if H 2
b

.�I `2.�// ¤ 0.

The class Creg contains, among others, the following groups:



192 D. Kotschick and C. Löh

(1) hyperbolic groups that are not virtually cyclic (Mineyev–Monod–Shalom [34],
Theorem 3; see also [37], [19]),

(2) groups with infinitely many ends (Monod–Shalom [37], Corollary 7.9),
(3) mapping class groups of surfaces of genus at least 2 (Hamenstädt [19], Theo-

rem 4.5).

The results of Hamenstädt [19] hold more generally for all groups acting by isome-
tries on a Gromov-hyperbolic space, as long as the action satisfies a so-called weak
acylindricity property.

Proposition 6.2. Groups in the class Creg are not presentable by products.

Proof. This is implicit in the work of Monod and Shalom [38], Section 7.
Assume for a contradiction that � is a group in Creg that is presentable by a product.

If a group is in Creg, then so are all its finite index subgroups � [38], Lemma 7.5.
Therefore, by Lemma 2.4, we may assume that � contains commuting subgroups �1

and �2 such that the multiplication homomorphism �1 � �2 ! � is surjective.
Now if �1 \ �2 is infinite, then � contains an infinite amenable normal subgroup
by the exact sequence (1), which contradicts the assumption that � is in Creg [38],
Proposition 7.10 (ii). If �1 \ �2 is finite, then the exact sequence (2) and Lemma 7.3
in [38] imply that �1 � �2 is in Creg. If both �i are infinite, this is impossible [38],
Proposition 7.10 (iii).

Proposition 6.2 can be generalized in two different directions. On the one hand,
one can consider the class C of groups for which H 2

b
.�I �/ ¤ 0 for some mixing

unitary representation � of � , which is not necessarily the regular representation
`2.�/. The class C was also introduced by Monod and Shalom [38], and their results
used above for Creg apply more generally to C . It is at present unknown whether
the inclusion Creg � C is strict. On the other hand, Thom [43] has introduced the
following variant of Creg.

Definition 6.3 ([43]). A countable group � is in Dreg if dimL� QH 1.�I `2.�// ¤ 0,
where QH 1 denotes the first quasi-cohomology and L� is the group von Neumann
algebra of � .

It is as yet unknown whether Creg and Dreg agree. As far as presentability by
products goes, both are equally good:

Proposition 6.4. Groups in Dreg are not presentable by products.

Proof. A standard exact sequence argument shows that if � is in Dreg then b
.2/
1 .�/ ¤

0 or � is in Creg [43], Lemma 2.8. In the first case the conclusion follows from
Proposition 4.1, in the second case it follows from Proposition 6.2.
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7. Thompson’s groups

Richard Thompson’s groups F , T and V are interesting test cases for many issues in
group theory. We refer to the survey by Cannon et. al. [11] for their basic properties.

The groups T and V are simple, and are therefore trivially not presentable by
products. For F we have:

Proposition 7.1. The Thompson group F is not presentable by products.

Proof. Suppose �1, �2 � F are commuting infinite subgroups such that the multi-
plication map �1 � �2 ! F is surjective onto a finite index subgroup � � F . There
is a normal finite index subgroup x� � F contained in � . Since x� is normal in F ,
it contains the commutator subgroup ŒF; F � by [11], Theorem 4.3. Since ŒF; F � is
normal in F , it is also normal in � . The quotient �=ŒF; F � is Abelian.

Since �i and ŒF; F � are both normal in � , their intersection x�i D �i \ ŒF; F � is
normal in ŒF; F �. However, ŒF; F � is a simple group [11], Theorem 4.5. Thus x�i is
trivial or all of ŒF; F �. If x�i is trivial, then the composition

�i ,! � ! �=ŒF; F �

is injective, and so �i must be Abelian. But then �i is an infinite central subgroup of
� . This contradicts the fact that every finite index subgroup of F must have trivial
centre. For F itself this is proved in [11], p. 229, and that proof applies to all finite
index subgroups.

The only possibility left is that both x�i equal ŒF; F �. But then ŒF; F � is contained
in �1 \�2, and so must beAbelian by the discussion in Section 2. This contradicts the
fact that ŒF; F � is an infinite simple group by [11], Theorem 4.5. This contradiction
proves that F can not be presentable by a product.

This proposition can not be proved using the rank gradient, cost or the first L2-Betti
number, since F contains copies of itself with positive index > 1, which immediately
implies the vanishing of its rank gradient, and the vanishing of C.F / � 1 and of
b

.2/
1 .F /. In spite of various recent claims, at the time of writing it seems to be still

unknown whether F is amenable. If this were true, it would imply that the bounded
cohomology of F is trivial, and that F is not C �-simple, in particular F would not be a
Powers group. Note however that F is not elementary amenable [11], Theorem 4.10,
and so this is certainly a very different example from the elementary amenable groups
discussed in Example 3.6 and Corollary 3.7.

8. Automorphism groups of free and free Abelian groups

In this section we test the obstructions against presentability by products in the ex-
amples of automorphism groups of free Abelian as well as non-Abelian free groups.
In both cases we prove that the groups in question are not presentable by products.
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8.1. Automorphism groups of free Abelian groups. The questions of presentabil-
ity by products for GL.n; Z/ and for SL.n; Z/ are equivalent, since the latter is a
finite index subgroup in the former. These groups are residually finite with vanishing
rank gradient [29], as shown by the consideration of congruence subgroups. Thus the
obstructions of Section 4 do not apply. Moreover, for n 2 N�3, the groups GL.n; Z/

and SL.n; Z/ are not in the class Creg [37], Theorem 1.4. These groups are not C �-
simple, since they have non-trivial centres. However, it is known that PSL.n; Z/ is
C �-simple by a result of Bekka, Cowling and de la Harpe [5]. Whether PSL.n; Z/

is a Powers group for n � 3 is unknown; compare [10], [23]. Thus none of the
high-tech obstructions can be used to prove that for any n � 2 the groups SL.n; Z/

are not presentable by products. Nevertheless, this is true, as it is a special case of
the following:

Proposition 8.1. Suppose G is a connected semisimple Lie group with finite centre
and rank � 2. If � � G is an irreducible lattice, then � is not presentable by
products.

Proof. Assume for a contradiction that �1, �2 � � are infinite commuting subgroups
such that the multiplication map �1��2 ! � is surjective onto a finite index subgroup
x� � � . Then x� is also an irreducible lattice. Since the �i are infinite normal
subgroups in x� , the Margulis normal subgroup theorem (see [33], Chapter IV, [44],
Chapter 8) implies that they have finite index in x� . Thus their intersection, which
is a central subgroup, also has finite index, and so � is virtually Abelian. This is
absurd.

Of course, for the case of GL.n; Z/ there is also an elementary argument. One can
find two elements in GL.n; Z/ that are diagonalizable over C and (whose non-trivial
powers) have no non-trivial common proper invariant subspace in Cn. Hence, the
elements of a finite index subgroup of GL.n; Z/ can not have a common invariant sub-
space in Cn. Assume that GL.n; Z/ were presentable by a product of subgroups �1

and �2. Using the fact that �1 and �2 commute, one could find a non-zero sub-
space E � Cn on which all elements of one of the factors, say �2, act as multiples of
the identity, and such that this subspace would also be �1-invariant. Thus E would be
.�1 [ �2/-invariant. It would follow by what we said at the beginning that E D Cn,
contradicting the assumption that �2 is infinite.

8.2. Automorphism groups of non-Abelian free groups. Let Fn be a free group on
n>1 generators, Aut.Fn/ its automorphism group, and Out.Fn/DAut.Fn/=Inn.Fn/

its group of outer automorphisms. We use the following terminology:

Definition 8.2. An element in Out.Fn/ is called reducible if it leaves invariant the
conjugacy class of a free factor in Fn, and it is called irreducible otherwise.

An element g 2 Out.Fn/ is called fully irreducible if gk is irreducible for all
k ¤ 0.
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Fully irreducible elements are sometimes called irreducible with irreducible pow-
ers (iwip), cf. [31]. In Out.Fn/ these elements play a rôle analogous to that of
pseudo-Anosov elements in mapping class groups.

We now prove:

Proposition 8.3. If n 2 N>1, then the groups Aut.Fn/ and Out.Fn/ are not pre-
sentable by products.

Proof. We begin with the case of Out.Fn/. For n D 2 this reduces to GL.2; Z/, so
there is nothing to prove. For n � 3 we may appeal to Proposition 5.1, since Out.Fn/

is a Powers group by a result of Bridson and de la Harpe [10], Theorem 2.6.
Instead of using the Powers property, we can give a direct proof by contradiction.

It follows from a result of Baumslag and Taylor [4], Proposition 1, that Out.Fn/ is
virtually torsion-free. Thus, by the discussion in Section 2, we may assume that we
have a torsion-free finite index subgroup � � Out.Fn/ together with two non-trivial
commuting subgroups �1; �2 � � such that the multiplication homomorphism �1 �
�2 ! � is surjective.

Since � has finite index in Out.Fn/, there exists a fully irreducible element g 2 � .
By a result of Lustig [31] the centraliser C�.g/ of g is virtually cyclic. Related
statements appear in the work of Bestvina, Feighn and Handel on the Tits alternative
for Out.Fn/; see e.g. Theorem 2.14 of [8].

We can write g D g1 � g2 with certain g1 2 �1 and g2 2 �2. As g is non-trivial,
we may assume that so is g1; note that g1 2 C�.g/. Moreover, there exists an
element g0

2 2 �2 n f1g with g0
2 2 C�.g/. If g2 ¤ 1 then we can take g0

2 D g2, and
if g2 D 1 we may choose any non-trivial element of �2 for g0

2. As both g1 and g0
2

have infinite order and are contained in the virtually cyclic group C�.g/, they have
common non-trivial powers. This shows that �1 \ �2 is infinite, and so the centre of
� is infinite by Lemma 2.3.

This is a contradiction, since � must in fact have trivial centre; compare [8]. (One
way to see this is to check that � contains two fully irreducible elements with distinct
stable and unstable laminations.) This completes the direct proof that Out.Fn/ is not
presentable by products.

Next consider the extension

1 ! Fn ! Aut.Fn/
��! Out.Fn/ ! 1: (3)

We may pull back this extension to a torsion-free finite index subgroup of Out.Fn/,
so that the assumption on the quotient in [28], Proposition 3.9, is satisfied by what
we just proved. Now [28], Proposition 3.9, tells us that Aut.Fn/ is not presentable
by a product since the extension (3) does not split when restricted to any finite index
subgroups. This completes the proof of Proposition 8.3.

Remark 8.4. The direct argument for Out.Fn/ could be rephrased to argue that the
infinite cyclic subgroups generated by certain fully irreducible elements are acentral.
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Remark 8.5. After we proved directly that Out.Fn/ is not presentable by products,
we tried to find out whether Out.Fn/ is (known to be) in Creg. In reply to our question,
Bestvina and Fujiwara told us that a proof of this statement will be contained in a
forthcoming paper [7]. Since then, Hamenstädt [21] has given such a proof.

The rank gradient, the cost, or the first L2-Betti number cannot be used to prove
Proposition 8.3 in view of our next result:

Proposition 8.6. Let n 2 N�3. The groups Aut.Fn/ and Out.Fn/ are cheap. Their
first L2-Betti numbers and their rank gradients vanish.

Proof. The groups in question are residually finite. For Aut.Fn/ this is a classical
result of Baumslag, whereas for Out.Fn/ it was proved by Grossman [18]. Thus,
by the discussion in Section 4.4, we only have to prove the vanishing of the rank
gradient. For this we use again the result of Abért and Nikolov ([1], Proposition 13)
about extensions. For Aut.Fn/ we apply the result to the extension (3). The group
on the left is finitely generated and the group on the right admits finite quotients of
arbitrarily large order.

Similarly for Out.Fn/ we consider the extension

1 ! IAn ! Out.Fn/ ! GL.nI Z/ ! 1:

The groups on the left and on the right are infinite, and the kernel IAn is finitely
generated by a classical result of Magnus. Again the group on the right has finite
quotients of arbitrarily large order.

Remark 8.7. The argument for Aut.Fn/ also works for n D 2. The argument
for Out.Fn/ however breaks down for n D 2 since IA2 is trivial. In this case
Out.F2/ D GL.2I Z/ has positive rank gradient as it is virtually free [29].

9. Ends, free products, and connected sums

In this section we consider free products of groups, and, more generally, groups with
infinitely many ends.

Proposition 9.1. Groups with infinitely many ends are not presentable by products.

Proof. It is well known that groups with infinitely many ends have positive first L2-
Betti number; see for example [3], Chapter 4, or [6], Corollary 1. Therefore the result
follows from Proposition 4.1.

Alternatively we could use the fact that groups with infinitely many ends are in Creg,
as proved by Monod and Shalom [37], Corollary 7.9, and appeal to Proposition 6.2.
Notice however, that in contrast to the result about the first L2-Betti number, the proof
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of Monod and Shalom uses Stallings’s structure theorem for groups with infinitely
many ends.

Finally, a completely elementary argument is possible as well. Freudenthal and
Hopf proved that a group with infinitely many ends cannot be a direct product of
infinite groups. The argument given by Freudenthal [13], 7.10, in fact proves the
more general statement of this theorem. For the convenience of the reader we repeat
this argument briefly.

Let � be a group with infinitely many ends, and �1, �2 commuting infinite sub-
groups for which the multiplication map ' W �1 � �2 ! � is surjective onto a finite
index subgroup. Since the number of ends is unchanged by passage to a finite index
subgroup, we may assume that ' is surjective. The assumption that � has more than
one end implies that there is an element g 2 � of infinite order for which gn and g�n

belong to two different ends e and e0 as n ! 1; see [13], 7.6.
Under the action of � on its space of ends, the infinite cyclic subgroup T generated

by g fixes e and e0. Write g D g1g2 with gi 2 �i . The gi commute with T , and
so both gi also fix e and e0. Since g has infinite order, we may assume that so does
g1. Then g1 generates an infinite cyclic subgroup T 0 of �1 that fixes e and e0. As �2

commutes with T 0, it contains a subgroup � 0
2 of index at most 2 that also fixes e and

e0 [13], 7.7. As �1 commutes with � 0
2, it contains a subgroup � 0

1 of index at most 2

which also fixes e and e0 [13], 7.7. Thus � has a subgroup of index at most 4 which
fixes e and e0. This contradicts the assumption that � has infinitely many ends.

Corollary 9.2. Let �1 and �2 be two non-trivial groups. Then the free product �1 �
�2 is presentable by a product if and only if �1 Š Z=2 Š �2.

Proof. On the one hand, Z=2 � Z=2 is virtually infinite cyclic, and therefore pre-
sentable by a product. On the other hand, if one of the groups has order at least 3,
then their free product has infinitely many ends whence Proposition 9.1 applies. Al-
ternatively we can use Example 3.4 to see that there are infinite acentral subgroups of
infinite index and apply Proposition 3.2, or we can use Proposition 5.1 in conjunction
with the fact that these free products are Powers groups; see Bridson and de la Harpe
[10], Theorem 2.2.

Remark 9.3. Lackenby [29], Proposition 3.2, proved that the rank gradient of a free
product �1 � �2 of non-trivial groups is positive if at least one of the free factors
has order > 2. Therefore, for residually finite groups Corollary 9.2 also follows from
Proposition 4.5.

We can use the last corollary to put restrictions on the connected sum decompo-
sitions of manifolds dominated by products. Suppose N D N1 # N2 is a connected
sum of two closed oriented n-manifolds, and P D X1 �X2 is a non-trivial product of
closed oriented manifolds with P � N . Then, collapsing one or the other summand
of N to a point, we see that P � N1 and P � N2. Thus, for N to be dominated
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by a product it is necessary that its connected summands Ni are also dominated by
products. However, this necessary condition is not sufficient.

Theorem 9.4. If N is a closed, oriented, connected rationally essential manifold
that is dominated by a non-trivial product P � N and that admits a connected sum
decomposition N D N1 # N2, then one of the summands is simply connected, and
the fundamental group of the other summand is presentable by a product.

Proof. Clearly we may assume that N has dimension � 3. Then its fundamental
group is the free product of the fundamental groups of the Ni , and, since N is assumed
rationally essential, at least one of these free factors must be infinite. If the other free
factor is non-trivial, Corollary 9.2 tells us that �1.N / is not presentable by a product,
which contradicts [28], Theorem 1.4. Thus one of the Ni is simply connected, the
other one is rationally essential, and its fundamental group is presentable by a product
by [28], Theorem 1.4.

Example 9.5. In every dimension n � 2, the n-torus T n is a product, but T n # T n

is not dominated by a product.

Remark 9.6. Notice however, that not all non-trivial connected sums are not dom-
inated by a product; for instance, CP 2 # CP 2 is dominated by a product [28],
Proposition 7.1.

10. Final remarks

10.1. Extension to subnormal subgroups. In this paper we have proved that var-
ious groups are not presentable by products. By definition, this notion refers to all
subgroups of finite index, in particular the finite index normal subgroups. It turns out
that in many cases one can treat all infinite normal subgroups of our groups, regardless
of whether they have finite index, or not. This leads to the following result:

Theorem 10.1. Let � be a group from the following list of examples:

(H) hyperbolic groups that are not virtually cyclic,

(N-P) fundamental groups of closed Riemannian manifolds of non-positive sec-
tional curvature of rank one and of dimension � 2,

(LAT) irreducible lattices in connected semisimple Lie groups with finite centre
and rank � 2,

(MCG) mapping class groups of closed oriented surfaces of genus � 1,

(OUT) outer automorphism groups of free groups of rank � 2,

(END) groups with infinitely many ends.

Then no infinite subnormal subgroup of � is presentable by a product.
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Recall that a subgroup �0 � � is subnormal if there is a descending sequence of
subgroups �0 � �1 � � � � � �k � �kC1 D � such that �i is normal in �iC1 for all
i 2 f0; : : : ; kg.

In order to give a quick and uniform proof for almost all the different cases
we use the fact that all the groups in the theorem, except the lattices in (LAT), are
in Creg; compare the survey table in the Appendix. It was proved by Monod and
Shalom [38], Proposition 7.4, that if � is in Creg, then so is every infinite normal
subgroup. Theorem 10.1 then follows from Proposition 6.2 by induction on the
length of the chain of subnormal subgroups. In the case of the lattices in (LAT), the
Margulis normal subgroup theorem ([33], Chapter IV, [44], Chapter 8) implies that
every infinite subnormal subgroup has finite index. The conclusion then follows from
Proposition 8.1.

The case (N-P) in the theorem can be generalized further by considering CAT.0/-
groups in the sense of [9]. Let � be any discrete group that admits a proper, minimal,
isometric action without fixed points at infinity on a proper, irreducible CAT.0/-
space X with finite-dimensional boundary. If X is not the real line, then no infinite
subnormal subgroup of � is presentable by products. This is implicit in a result of
Caprace and Monod (Theorem 1.10 of [12]).

To put this extension into context, recall that an action of a group on a CAT.0/-
space is minimal if this space does not contain a non-empty invariant closed convex
(proper) subspace. As in the Riemannian case, a CAT.0/-space is irreducible if it
does not admit a non-trivial isometric splitting as a direct product. If a discrete group
acts cocompactly via isometries on a proper CAT.0/-space X , then the boundary
of X is automatically finite-dimensional [27], Theorem C. Moreover, if a discrete
group acts properly discontinuously, minimally, and cocompactly via isometries on
a CAT.0/-space without Euclidean factors, then this action does not have any fixed
points at infinity [2], Corollary 2.7.

10.2. Relations with geometric and with measurable group theory. The property
of being or not being presentable by a product is not always shared by groups that
are equivalent under one of the usual equivalence relations considered in geometric
group theory.

Theorem 10.2. The property of being presentable by products is not invariant under
quasi-isometries, under measure equivalence, or under orbit equivalence.

Proof. The isometry group of the polydisk H2 �H2 contains both reducible and irre-
ducible cocompact lattices. The reducible ones are trivially presentable by products,
whereas the irreducible ones are not presentable by products [28], Corollary 4.2.
However, all these lattices are quasi-isometric to each other by the Milnor–Švarc
lemma. This shows that presentability by products is not a quasi-isometry invariant
property.
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All infinite amenable groups admit orbit equivalent measure preserving free ac-
tions on standard Borel probability spaces [39]. Obviously, there are many amenable
groups that are presentable by a product, for instance free Abelian groups of non-zero
rank. However, there are also amenable groups that are not presentable by prod-
ucts; see Example 3.6. Thus, presentability by products is not invariant under orbit
equivalence.

The examples mentioned in the previous paragraph also show that presentabil-
ity by products is not invariant under measure equivalences (the class of groups
that are measure equivalent to Z equals the class of all infinite countable amenable
groups [14]).

In spite of Theorem 10.2, many of the obstructions against presentability by prod-
ucts that we have discussed in this paper have strong invariance properties under these
equivalence relations. For example, the non-vanishing of the first L2-Betti number is
a quasi-isometry invariant [17], p. 19, p. 224, [6], p. 314. Moreover, Gaboriau proved
that the vanishing of the first L2-Betti number is an orbit equivalence invariant [16],
Théorème 3.12, and a measure equivalence invariant [16], Théorème 6.3. Next, being
expensive is an orbit equivalence invariant and a measure equivalence invariant for
groups with fixed price as the cost of a group is defined in terms of its orbit rela-
tions [15], Propositions VI.5, VI.6. Finally, the non-vanishing of the second bounded
cohomology with coefficients in the regular representation is a measure equivalence
invariant [38], Corollary 7.6. Whether it is invariant under quasi-isometries seems to
be unknown; see Problem J in Monod’s 2006 ICM talk [36].

Appendix: Overview of results

Table 1 surveys the applicability of different criteria to proving that certain classes
of groups are not presentable by products. The first column lists certain test classes
of groups; of the other columns each corresponds to a way of concluding that groups
are not presentable by products. The “ad hoc” column refers to the direct, low-tech,
hands-on argument relying on information about the sizes of centralisers, including
in particular the arguments about acentral extensions of Section 3. The other columns
each use some high-brow theory.

The first test class of groups are the non-elementary hyperbolic groups, denoted
(H) in [28]. Non-elementary is the same thing as not virtually cyclic.

The second class are the mapping class groups of closed oriented surfaces of genus
at least 3. We omit genus 1 and 2 because they have special features that do not occur
in high genus, e.g., they have non-trivial centres.

The third class are the outer automorphism groups of free groups Out.Fn/, where
we assume that n � 3. For n D 2 one has Out.F2/ D GL.2I Z/.

The case of a free product �1 ��2 with j�i j > i is contained in the more general
situation of a group with infinitely many ends considered separately here. However,
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Table 1. Overview of results

properties of � ad hoc b
.2/

1 .�/ > 0 C.�/ > 1 � 2 P � 2 Creg

hyperbolic (non-el.) [28], Prop. 3.6 — — 1 — 8 [34], Thm. 3

MCG in genus � 3 [28], Prop. 3.8 — — 2 [10], Thm. 2.2 [19], Thm. 4.5

Out.Fn/ for n � 3 Prop. 8.3 — — 3 [10], Thm. 2.6 [21], Cor.

je.�/j D 1 Prop. 9.1 X 0 X — 8 [37], Cor. 7.9

�1 � �2, j�i j > i Example 3.4 X 0 X [22], Prop. 8 [37], Cor. 7.9

(N-P), rank 1 [28], Prop. 3.7 — — 1 ? [20], Thm. 2

(N-P), irred., rk � 2 [28], Thm. 4.1 — — 4 ? — 5

GL.n; Z/, n � 3 Prop. 8.1 — — 4 — 11 — 5

Thompson F Prop. 7.1 — — 10 ? ?

� � Sol3 a lattice Cor. 3.7 — — 6 — 9 — 7

0 well known
1 See Example 4.10.
2 See Proposition 4.11.
3 See Proposition 8.6.
4 Lattices in higher rank Lie groups are cheap [15], Corollary VI.30.
5 Lattices in almost simple higher rank Lie groups are not in Creg [37], Theorem 1.4.
6 See Lemma 4.9 or [25], Proposition 35.1 (i).
7 The bounded cohomology of amenable groups vanishes.
8 See Example 5.2.
9 A non-trivial amenable group cannot be C �-simple; cf. [23].

10 F contains itself with finite index > 1.
11 GL.n; Z/ has non-trivial center, and so cannot be C �-simple.

not all criteria that apply to free products generalize to groups with infinitely many
ends.

By (N-P) we mean the class of fundamental groups of closed oriented manifolds
of non-positive curvature, as considered in [28]. The results about this class can be
extended to groups admitting suitable actions on CAT(0)-spaces; see Section 10.1.

For the Thompson group F amenability seems to be an open question, but it
is certainly not elementary amenable. The final example concerns the fundamental
groups of 3-manifolds carrying the Thurston geometry Sol3. These are elementary
amenable, and they show that none of the high-tech obstructions against presentability
by products apply to arbitrary acentral extensions.
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Where a criterion does work for a class of groups, the corresponding entry in the
table gives the earliest reference for a complete proof known to us. A horizontal line
indicates that the criterion is not applicable; this is explained in the footnotes.

The checkmarks in the cost column come from Theorem 4.7. If a group can be
shown not be presentable by products using the first L2-Betti number, then one can
also use the cost for this purpose. Conversely, if a group is cheap, then its first L2-
Betti number vanishes, and this explains the horizontal lines without footnotes in the
L2-Betti number column.
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