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Abstract. We prove that commensurizers of two-ended subgroups with at least three coends in
one-ended, finitely presented groups are invariant under quasi-isometries. We discuss a variety
of applications of this result.

Mathematics Subject Classification (2010). 20E07, 20F65, 54B15.

Keywords. Geometric group theory, quasi-isometry, JSJ decomposition.

Contents

I Introduction . . . . .. .. ... ... ... 205
2 Basic definitions and facts about quasi-lines in finitely presented groups . . . . . . 208
3 The quasi-isometry invariance of two-ended subgroups with at least three coends . . 221
4 The quasi-isometry invariance of commensurizer subgroups . . . . . . . . ... .. 227
5 Commensurizers of type Fy . . . . . . . oL 230
6 The quasi-isometry invariance of the vertices of commensurizer type of the

Scott—Swarup JSJ decomposition . . . . . . ..o 235
7 On the quasi-isometry invariance of the topological JSJ decomposition . . . . . . . 240
8 Applicationtothe groups QI(G) . . . . . . . . . ... 243
A AppendiX ... .. e 245
References . . . . . . . . . . . . L 259

1. Introduction

Any finitely generated group can be endowed with a metric, via the Cayley graph of
the group with respect to any finite generating set. The metrics we get on the group
from two different finite generating sets may differ greatly, but they will induce the
same ‘“coarse geometry” on the group, in the sense that there will be a quasi-isometry
taking the group endowed with one metric to the group endowed with the other.
The discovery and investigation of algebraic properties of groups that are invariant
under quasi-isometries is an active area of geometric group theory. One can consider

*This research was partially supported by NSF grant DMS-0602191.



206 D. M. Vavrichek

such quasi-isometric invariants to be “detectable” from the coarse geometry of a
group. Many important properties of groups have been shown to be detectable from
the coarse geometry of a group, for instance the properties of being finitely presented,
being of type F; (see, for instance, [11]), admitting splittings over finite subgroups
([33], [34]), and containing a nilpotent subgroup of finite index ([7]), to name just a
few. However, there are few results that provide answers to the question that we are
interested in here: can one detect from the coarse geometry of a group the existence
and location within the group of certain types of subgroups?

In this paper, we show that we can answer this in the affirmative in the case of
certain commensurizer subgroups of one-ended, finitely presented groups. Corollar-
ies touching on JSJ decompositions, the structure of 3—manifolds and the structure
of certain groups of quasi-isometries follow from this theorem and its proof.

We recall the definition of a commensurizer:

Definition 1.1. Let G be a group with a subgroup H. Then the commensurizer of
H in G, denoted Commg (H), is the subgroup consisting of all g € G such that
H N gHg™!is of finite index in A andin gHg™!.

Our main result is the following. We use dya,s to denote Hausdorff distance.

Theorem 4.4. Let f: G — G’ be a (A, K)-quasi isometry between finitely pre-
sented, one-ended groups, and suppose that H is a two-ended subgroup of G with n
coendsin G, forn € {3,4,5,...}U{oo}. Thenthereis atwo-ended subgroup H' of G’
such that H' has n coends in G’ and there exists some constant y = y(G, H, A, K)
such that

dyaus (f (Commg (H)), CommG/(H/)) <)

To prove this theorem, we make use of “quasi-lines”, which were defined by
Papasoglu in [21], and were used to prove the main results in that work. We make
use of some of his results, and develop his theory further.

As for corollaries, first we have the following.

Corollary 5.2. Let f,G,G', H and H' be as in Theorem 4.4. Then Commg (H) is
of type Fy, if and only if Commg/ (H') is of type F,.

This result follows from Theorem 4.4 as well as the theorem below, which we
show by introducing a theory of “coarse isometries” (a more general notion than that
of quasi-isometries), and applying M. Kapovich’s arguments from [11] that show that
being of type F}, is a quasi-isometry invariant.

Theorem 5.1. Let f: G — G’ be a quasi-isometry between finitely generated
groups, and suppose that C is a subgroup of G, C' is a subgroup of G’, and that
Auaus(f(C), C") < 00. Then C is of type Fy, if and only if C' is of type Fy, forn > 1.
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For the next consequence of Theorem 4.4, we recall that a JSJ decomposition
of a group is a graph of groups decomposition that encapsulates the structure of the
different splittings the group admits over two-ended subgroups, in the same way
that a JSJ decomposition of a 3-manifold encapsulates the structure of the essential
embeddings of annuli and tori into the manifold. Many different versions of these
decompositions of groups have been defined (see [16], [30], [22], [1], [2], [4], [5], [6]).
Scott and Swarup defined a version in [27], which exists for all one-ended, finitely
presented groups.

Papasoglu’s work in [21] proves the invariance under quasi-isometries of many
of the vertex groups of the Scott—Swarup JSJ decomposition. Theorem 4.4 implies
the invariance of some of the remaining vertex groups:

Corollary 6.11. Ler f: G — G’ be a quasi-isometry between the Cayley graphs of
one-ended, finitely presented groups G and G’, and suppose that C is a vertex group
of commensurizer type of the Scott—Swarup JSJ decomposition of G. Then there is a
vertex group, C', of commensurizer type of the Scott—-Swarup JSJ decomposition of
G’, which is such that

dHaus(f(C)v Cl) < 0.

In the case when G and G’ are 3-manifold groups, the Scott-Swarup JSJ decom-
positions are closely related to the JSJ decompositions of the associated 3-manifolds.
In particular, Corollary 6.11 implies the following.

Corollary 7.1. Let M and M' be connected orientable Haken 3-manifolds with in-
compressible boundary, and with f: 71 (M) — 71(M’) a quasi-isometry. Suppose
that N is a nonexceptional Seifert fibered component of the characteristic submani-
fold of M that meets the boundary of M.

Then there is a nonexceptional Seifert fibered component, N’, of the characteristic
submanifold of M’ that meets the boundary of M'. Moreover, if C denotes the
subgroup of w1 (M) induced by the inclusion of N into M and C' denotes the subgroup
of m1(M") induced by the inclusion of N' into M’, then

dHaus(f(C), C/) < Q.

In [15], M. Kapovich and Leeb prove a result that implies Corollary 7.1, using
different methods. See also [14] for a related result.

Two more corollaries to Theorem 4.4 are results about groups of quasi-isometries
of groups. Under a suitable notion of equivalence, the quasi-isometries from a group
G to itself form a group, which is denoted QI(G). These groups are often quite
complicated, and tend to be difficult to study.

The following two results are implied immediately from the proof of Theorem 4.4.

Corollary 8.1. Suppose that G is a one-ended, finitely presented group such that
G = Commg (H) for a two-ended subgroup H of G that has at least three coends
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in G. Consider G/H, with the metric described in Section 8.
Then there is a canonical map QI(G) — QI(G/H).

Corollary 8.3. Let G be a one-ended finitely presented group and let further N =
{3,4,5,...} U{oc}. Foranyn € N, let K, be a maximal collection of two-ended
subgroups of G with n coends that have mutually infinite Hausdorff distance, and let
(K jeJ, be the partition of K, into sets of subgroups of quasi-isometric commen-
surizers.

Then there is a canonical map

QI(G) — {nneN nHeK,, QUMpu, Ms(m)) = 0 € [[,en l_[jeJn Sym(K,{)},

where, for any two-ended subgroup H of G, My denotes the set Commg (H) /H,
with a metric given in Section 8, and Sym(Kj) denotes the symmetric group on the
set Kj).

These results are discussed in the last section. We note that Corollary 8.1 is closely
related to work of Souche and Wiest [32].

Finally, let F,, denote the free group on n generators with n > 1, and it is known
to follow from the work of Whyte [37], Mosher—Sageev—Whyte [19] and Kapovich—
Kleiner—Leeb [13] that a finitely generated group is quasi-isometric to F, x Z if
and only if it is virtually F, x Z. The following special case of that result is a
straight-forward consequence of Theorem 4.4.

Theorem ([37], [19], [13]). Let F,, be the free group on n generators for any n > 1.
Then F, % Z. is quasi-isometric to F,, X Z if and only if it is virtually F,, x Z.

Acknowledgements. Much of the following work was done as part of the author’s
dissertation. The author gratefully thanks her advisor, Peter Scott, for his help and
guidance. The author also thanks Panos Papasoglu for several helpful discussions,
and Mario Bonk, for his help with the proof of Theorem 5.1 in the case that n = 1.
In addition, thanks to Matt Brin and Ross Geoghegan for their encouragement and
advice.

2. Basic definitions and facts about quasi-lines in finitely presented groups

In this section, we will introduce “quasi-lines”, which were defined by Papasoglu
in [21], and were main objects of study in that work. We will prove some basic
properties of quasi-lines, including justifying why we may think of two-ended sub-
groups of finitely generated groups as quasi-lines inside the ambient groups. We will
then prove several results about complementary components of certain quasi-lines
— in particular, that quasi-lines satisfy conditions ess(ng) and iness(m1) for some
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number mq and function m in the settings that we are interested in. Some of these
results were used implicitly in [21].

We remark that a couple of the following lemmas are analogous to results used
by M. Kapovich and Kleiner in [12].

We will first set some basic notation and conventions. Let X be any metric space
andletx € X,Y C Xand0 < r < oco. ThenY shall denote the closure of Y in X. We
set balls to be open and neighborhoods closed, i.e.let B, (x) = {z € X : d(z,x) <r}
and N,(Y)={ze X :d(z,Y) <r}.

Let Y’ be another subset of X, and we shall denote by dya,s(Y, Y') the Hausdorff
distance between Y and Y'. Le.,

ditas(Y,Y') = inf{r > 0:Y C N,(Y")and Y' C N,(Y)}.

If X' is another metric space, thenamap f: X — X’isa (A, K) quasi-isometry
if A > 1and K > 0 are such that, for any x1, x, € X,

(1. 2) — K = de (/). f(2) = Ady(er,x2) + K,

and X’ = Ng(f(X)). We say that f is a quasi-isometry if f is a (A, K) quasi-
isometry for some A and K, and in this case we say that X and X’ are quasi-isometric.
A map g: X' — X is a quasi-inverse to f if both sup,cx d(x,g o f(x)) and
sup,exs d(x’, f o g(x)) are finite.
Suppose further that X is a locally finite CW complex. Then the number of ends
of X is
e(X) = sup |[{infinite components of X — K}/,

where the supremum is taken over all finite subcomplexes K of X. Thus e(X ) can take
on any value in Z > U{oo}. The number of ends of a metric space is a quasi-isometric
invariant: if X and X’ are quasi-isometric, then e(X) = e(X’).

Convention 2.1. We shall assume throughout this paper that all finitely generated
groups that we deal with come equipped with a chosen finite generating set, and that
all finitely presented groups come equipped with a chosen finite collection of defining
relations.

If G is a finitely generated group, then we shall denote by C!(G) the Cayley graph
for G with respect to the associated finite generating set. If G is a finitely presented
group, then we shall denote by C2(G) the Cayley complex for G with respect to the
chosen finite generating set and relations. We recall that C2(G) is a simply connected,
2-dimensional CW complex with 1-skeleton equal to C'(G), and that G is identified
with the vertex sets of C!(G) and C?(G). The group G acts cocompactly and by
cellular isometries on C'(G), and on C?(G) if it exists. Furthermore, this action is
faithful, and transitive on vertices. We will take these actions of G to be on the left.
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Recall that the Cayley graphs (and Cayley complexes, if they exist) of a group G
with respect to different finite generating sets (finite presentations, respectively) are
all quasi-isometric. Thus there is a well-defined notion of the number of ends of a
finitely generated group: if G is finitely generated, then the number of ends of G,
e(G), is defined to equal e(C!(G)). Itis a fact that the number of ends of any finitely
generated group can be one of only 0, 1, 2 or co. We have that e(G) = 0 if and only if
G is finite, e(G) = 2 if and only if G contains a finite index infinite cyclic subgroup,
and, by the work of Stallings, e(G) = oo if and only if G splits over a finite subgroup
and does not have a finite index infinite cyclic subgroup. See [29] for more details.

We will always take CW complexes to be metrized to have edges of length one,
and to have the interiors of 2-cells be isometric to regular polygons.

Let X be a CW complex and consider R as a graph by taking the integer points
to be the vertices. Thenlet/: R — X be continuous, injective and cellular, hence
parametrized by arc length, i.e. with length(I([s,?])) = dr(s,?), for all s, € R.
Suppose further that / is a uniformly proper map, so for every M > 0, there exists
an N > 0 such that if A C X with diam(A4) < M, then diam(/~'(A4)) < N. Then
we shall say that / is a line, and we shall sometimes use / to denote the image of /.

To a line /, we associate the distortion function D;(¢): Rs9 — Rs¢, where

D;(t) = sup{diam(/~!(A)) : diam(4) < t}.

As [ is parameterized by arc length, we note that D;(¢) > ¢ for all ¢ € R.

Let L be a closed, path connected subspace of X containing a line /, with N > 0
such that any point in L can be joined to / by a path in L of length less than or
equal to N. If ¢: R5>9 — R is a proper, increasing function and, for all # > 0,
Dy(t) < ¢(t), then we will say that L is a (¢, N) quasi-line, or simply, a quasi-line.
We shall refer to ¢ and N as parameters for L, and [ as the line associated to L.

We note that the assumption that ¢ be proper and increasing is not a strong one,
for any line / has D; bounded by some increasing function, and, as D;(¢) > ¢ for all
t, any such function must be proper.

Observe that if L is a (¢, N) quasi-line and R > 0, then Ngr(L)isa (¢, N + R)
quasi-line, and we may take the line associated to L to also be associated to Ng(L).

The following lemma shows that the restriction that a line be embedded is not an
important one.

Lemma 2.2. Let I’ be a uniformly proper cellular map from R into a CW complex X
(taking R to be a simplicial complex with vertex set Z,). Then thereisalinel: R — X
with Im(l) C Im(!"), and such that dya,s(Im(1), Im(1")) is finite, and bounded above
by a function of Dj.

Proof. TIf I’ is an embedding, then it suffices to take [ = [’. So suppose that [’ is not
an embedding.
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As [’ is uniformly proper, there is some maximal n = n(l’) € R such that the
preimage of some point in Im(/") has diameter n. Because !’ is cellular, note that
n € Z. We shall induct on n. Note that n > 0, as I’ is not an embedding.

Let S denote a maximal disjoint set of closed intervals of size n in R such that
the endpoints of each interval are sent to the same point of X by /’. Note that we can
take S to be such that the endpoints of each interval in S are mapped by !’ to vertices
of X.

Let t: R — R denote the quotient map attained by identifying each component
of S C R to a point, and define a right inverse to ¢, ¢/, to take each such point to
an endpoint of its full preimage. Since the endpoints of each component of S are
identified by [’, there is a well-defined, continuous map /; : R — X defined by
[1(t) = I’ o t(¢). Intuitively, /1 is the map we get by removing a disjoint collection
of maximal loops from /’.

Clearly [ is cellular, thus is parameterized by arc length, and we note that /; is
uniformly proper, for if A is any subset of X, then diam(/; ! (A)) < diam((/")"!(A)).
Furthermore, we have that diya,s(Im(l1), Im({)) < %n(l .

It remains to show that n(/;) < n(I’). To see this, let us suppose that there are
to,t; € Rsuchthat|fo—t1| > n(l"), and /1 (o) = [1(¢1). Suppose that g is the image
of a collapsed segment under ¢. Then there exist two points s, s’ € R that are the
endpoints of this segment, with ¢(s) = ¢(s") = to,1'(s) = I'(s"),and |s — 5’| = n(l’).
If #; is the image under ¢ of only a point, then let s; denote that point. If #; is the
image of a segment under the map ¢, then let s; denote an endpoint of that segment.
Then l’(s1) = I'(s) = I’(s), and either |s; —s| > |s —s'| or [s; — 8’| > |s —s'|. But
|s — 5’| = n(l’), so this contradicts the definition of the function 7.

Thus we may suppose that ¢y and #; are images under ¢ of single points, say s¢
and s respectively. If ¢ collapses no segments in the interval [sg, s1] then we reach
another contradiction, for [sg, s1] must be an interval of size n(l”), whose endpoints
are mapped to the same vertex of X by [/, and that is disjoint from §. This contradicts
the maximality of S.

Finally, suppose that ¢ collapses a segment [s, s'] in [so, s1]. Then |s —s'| = n(l’),
so |so — s1]| > n(l"). The endpoints so and s; must share the same image under /’,
and again this contradicts the definition of the function #.

Thus n(l1) < n(l’). If /1 is not an embedding, then we can repeat this process on
[1, getting amap /> : R — X such that n(/) < n(/1), and so on.

Eventually we must get a map /; such that n(/x) = 0, and hence I = [ is the
desired line. O

In our argument to prove Theorem 4.4, we will be concerned with two-ended
subgroups, their cosets, and images of these under quasi-isometries. The following
lemmas indicate why quasi-lines will be relevant to our discussion, and in particular
why we may think of all of these sets as quasi-lines in the Cayley graphs of the
ambient groups.

We recall that G is identified with the vertex set of C!(G).
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Lemma 2.3. Let G be afinitely generated group, and H C G a two-ended subgroup.
If R > 0 is large enough so that Nr(H) C CY(G) is connected, then Ng(H) is a
quasi-line.

Proof. Let H be a two-ended subgroup of G, let (h) =~ Z be a finite index subgroup
of H,andlet R > 0be such that Ng(H) C C!(G)is connected. Let p be a simplicial
path in Ng(H) from the identity to 4. Let /’: R — Ng(H) C C!(G) be the natural
map onto | J, 7 h" - p that is parameterized by arc length.

Note that there is some N > 0 depending on (4) and R such that each point of
NRg(H) can be connected to Im({’) by a path in Ng(H) of length less than or equal
to N. If we can show that I’ is uniformly proper, then it will follow from Lemma 2.2
that Nr(H) is a quasi-line.

Fix any M > 0, and recall that p is a finite path and that H acts freely on
CY(G). It follows that, for any point py € p, the image under (I’)~! of the vertices
contained in By (po) is finite, and hence diam((I") ™' (Bas(po))) < oo. Let Dy =
max{diam((/")~' (B (po)))}, where the maximum is taken over all vertices pg of p.

Now suppose that A C C!(G) has diameter less than (M — N ) and meets Ng(H ).

Then for any a € (A N Ng(H)), certainly A C Bp—pn(a), and hence there is
some p; € I’ of distance no more than N from a, and A C Bp(p1). Thus there
exists some n € Z such that i A C Bps (h" p1) and k" p; is a vertex of p. Therefore
we have that

diam((")™"(4)) = diam((/") "' (A" A)) < diam((/")"' (Bu (h" p1))) < D,

and it follows that [’ is uniformly proper, with D;,(M — N) bounded by D for each
M > 0. O

Lemma 24. Let f: CY(G) — CYG’) be a (A, K) quasi-isometry and let L C
CY(G) be a (¢, N) quasi-line. Then there is some R = R(A, K, ¢, N) > 0 such that
Nr(f(L)) is a quasi-line.

Proof. Let [ be the line associated to L and let 7 denote nearest point projection of
C!(G') ontoiits vertex set. Let!’ denote o f ol|z, and note that [’ is uniformly proper.
Aslisaline, foreachi € Z,d(I(i),l(i +1)) = 1. Hence d(f ol(i), fol(i +1)) <
(A+K)sod(l'(i),I'(i +1)) < (A+ K+ 1).

Lety: Z — R be such that, foralli € Z, (i +1)—v (@) =d'(),I'( + 1)),
so V¥ increases distances by no more than a factor of (A + K + 1). Let!”: Im(y) —
CY(G") be such that I’ = " o v, and it follows that /" is uniformly proper.

Next, we extend the definition of /” to all of R by mapping each [y (i), ¥ (i + 1)]
isometrically to a geodesic segment from /’(i) to I’(i + 1). Thus [” is a unit speed,
cellular map of R into C1(G’). As any point in [”(R) is of distance no more than
%(A + K + 1) from a point of /" (Im(y)) and " |y is uniformly proper, it follows
that /”: R — @!(G’) is uniformly proper.
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Thus, by Lemma 2.2, there is a line [:R — C1(G’) such that Im(i) C Im(1")
and dyays (Im(i ),Im({”)) is bounded by a constant depending only on A, K, ¢ and
N. There is some R > 0 depending on the same constants such that Ng( f (L)) is
connected and contains Im(i ), and thus is a quasi-line. O

Remark 2.5. In our argument to prove Theorem 4.4, we shall work with a quasi-
isometry f: C1(G) — C!(G’), and a two-ended subgroup H of G. We will discuss
a neighborhood of H that is a quasi-line in C!(G), as well as translates of this
quasi-line under the action of G. We will also discuss quasi-lines in C'(G’) that are
neighborhoods of the images under f of these translates, given by Lemma 2.4.

As a group acts on its Cayley graph by isometries, all of the translates of the quasi-
line containing H will be quasi-lines, and will share the same parameters. Since these
are all isometric, the quasi-lines in C'(G’) that we will consider can also be taken
have the same parameters as one another.

We note next that quasi-lines are two-ended:

Lemma 2.6. Let L be a quasi-line contained in a locally finite CW complex X. Then
e(L) =2

Proof. Let ¢ and N be parameters for L, and let [ C L be the line associated to L.
Then every point in L can be connected by a path of length less than or equal to N
to/,and e(l) = 2, so e(L) < 2. As the line / is an injective and cellular map into
the 1-skeleton of X, and X is locally finite, we must have that e(L) > 1.

To see that e(L) = 2, first note that if @, b € R are such that |a — b| > ¢(2N),
then d(I/(a), (b)) > 2N. Thus if we fix such a and b, say with a < b, then, for any
g € l((—o0,a]) and ¢’ € I([b,0)), d(q,q’) > 2N. Let K be the set of all points
p € L such that there is a path of length less than or equal to N contained in L
that connects p to [((a, b)). Since X is locally finite, K is compact. Thus L — K
contains two infinite components — one intersecting /((—oo, a]) and one intersecting

1([b, 00)). O

The following definitions will be important, particularly to the remainder of this
section.

Definition 2.7. If L is a quasi-line in a metric space X, then a connected component
C of X — L is said to be essential if C U L has one end. Otherwise, C is said to be
inessential.

If C is not contained in Ng(L), for any R > 0, then we shall say that C is nearly
essential.

Definition 2.8. If there is some mo > 0 such that, for each p € L, each essential
component of the complement of L intersects a vertex of By, (p), then we say that
L satisfies ess(myg).
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Definition 2.9. If m;: R>o — R is such that, for each R > 0, each inessential
component of the complement of Nz (L) is contained in the m; (R)-neighborhood of
NRg(L), then we say that L satisfies iness(m1).

We will see shortly that all the quasi-lines in which we are interested (see Re-
mark 2.5) will satisfy iness(m1) for some m ;. It follows that the components of the
complements of these quasi-lines are essential if and only if they are nearly essential.

Definition 2.10. L is said to be n-parting if the complement of L has at least n
essential components.

Note that, if L is n-parting and R > 0, then Ng(L) is also n-parting.

Next, we shall show that any quasi-line in a one-ended finitely presented group has
only finitely many essential components in its complement, and moreover satisfies
ess(myg) for some my.

Definition 2.11. Let L and C denote subsets of a metric space X, let n > 0, and let
x,y € C N L. Then we shall say that x and y are connected by an (L, n)-chain in
C N L if there are points x = zg, z1,..., 2 = y in C N L such that, for each i, there
is a path in L connecting z; to z; 1 of length less than or equal to n.

We will begin by working in C?(G).

Lemma 2.12. Let G be a finitely presented group, let L be a (¢, N) quasi-line in
CYG), and let 0 < € <K 1. Then let L' be an open set in C*(G) such that L C L',
each point in L' can be connected to L by a path in C*(G) of length less than €, and
each point in L' N €' (G) can be connected to L by a path in CY(G) of length less
than €. Suppose in addition that both L' and L' N C'(G) deformation retract onto L.

Then there is some ng = no(G, ¢, N, €) such that, if C' denotes any component
of C*(G)—L',andx,y € C'N L, then x and y are connected by an (L', no)-chain
{zi}in C' N L. Moreover, the path in L’ connecting any z; and z;j 1 can be taken
to be in L, outside of an initial segment containing z; and a final segment containing
Zj+1, each of length less than or equal to €.

To prove this lemma, we first need the following.

Lemma 2.13. Let G, C%(G), L, L', and € be as in Lemma 2.12.

Let (C?)" denote the union of C*(G) together with a disk added at each closed
edge path of L' of length less than or equal to ¢(2(N + €) + 1) + 2(N + ¢€) + 1,
and let L" denote the union of L’ with these disks. Then L” is simply connected.

Proof. Let [ be the line associated to L, so that [ € L C L’, and note that L'isa
(¢, N +¢) quasi-line. Recall that the edges of @?(G) are of length one, and metrically,
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the 2-cells of C2(G) are regular polygons. Let the disks added to create (C?)” and
L" be regular polygons as well. o

Let y: S' — L” be any closed curve in L”. In the following we shall replace
y with homotopic curves (which we shall also call y), and we shall assume at each
stage that y is parameterized by arc length. Thus we shall consider copies of S! with
different metrics as appropriate below. L
_ Note first that y can be homotoped in L” to a cellular path that is contained in
L' N[C2(G)D = L' n ((€2)")M, Let y now denote the resulting curve under this
homotopy.

Fix a finite collection P of points in Im(y) — / such that the (1/2)-neighborhood
of P contains Im(y) — . At each point pg in P, consider a spike from pg to [ in L’
of length no more than (N + ¢). We shall homotope y to traverse the appropriate
spike each time it meets a point of P. We have thereby constructed a homotopy of y
to a curve that is contained in / except for finitely many segments in L’ N [€2(G)])
of length bounded by 2(N + €) + 1

Let X denote the components of the complement of y~!(/) in S, so each com-
ponent of X has length no more than 2(N + €) + 1. We will prove, by induction on
| 3], that y must be null-homotopic in L".

Note that, after adding the spikes, y must meet [, so X must consist of at least
one segment. If | X| = 1, then we shall let o denote the element in X, and let p and ¢
denote the endpoints of 0. Then the distance between y(p) and y(g) in L' N ((C%)"”)()
must be bounded by 2(N + €) + 1, so y(p) and y(gq) are connected in / by a path of
length no more than ¢ (2(N +€) 4 1). It follows that this path in / together with y (o)
make up a circuit in L’ of length no more than ¢(2(N + €) + 1) + 2(N +€) + 1,
and thus must bound a disk in L” -

Thus y may be homotoped in L” so that y(c) is taken to this pathin /,i.e. y may
be homotoped within L” to lie entirely inside of /. But / is an embedding of R, so y
is null-homotopic in L"”.

Next, assume that [X| = i > 1. By choosing any element o of X, the same
argument as was given above shows that we can homotope y within L” so that o is
replaced by a path in /. Thus we have homotoped y so that now |X| =i — 1. By

repeating this process, we reduce to the case of |[X| = 1 above, and hence y must
have originally been null-homotopic in L”. It follows that L” is simply connected,
as desired. O

Proof of Lemma 2.12. Again let [ be the line associated to L, and let (€2)” and L”
be as in Lemma 2.13. _ _

Recall that L” differs from L’ only by disks with boundary in L’, and that these
disks are not contained in C2(G). It follows that the intersection of L’ with the
closures of the components of €*(G) — L' is the same as the intersection of L”
with the closures of the components of (€?)” — L”. Thus, if we can prove that the
conclusion of Lemma 2.12 holds for L” in (€2)”, then the lemma will follow for L’
in C2(G).
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Let {Cy} denote the components of the complement of IZ As L” is simply
connected, we can apply Van Kampen’s theorem to {Cy U L"} to see that each
Cy U L" is simply connected. Since L” and each Cq _are connected, we have that
C, N L" is connected. Thus for any fixed x, y € Cy N L", there exists a path p from
x to y contained in C, N L. _

Without loss of generality, we can assume that the frontier of L” (which equals
the frontier of L”) meets any edge of €' (G) = (€2)) = ((€2)")® in only finitely
many points. The group G has one end and C?(G) is simply connected, thus each
edge of C2(G) is contained in a 2-cell. The same is true for (€2)”, thus we can take
p to be transverse to (€)M with |{p N ((€%)")DY] finite and p still contained in
Cq NL". Let zg, 21, ..., zx denote the elements of p N ((€2)”)D), numbered in the
order in which they are traversed by p, traveling from x to y, with zg = x,zx = y.

Recall that G is finitely presented, so the 2-cells of €?(G) are of bounded perime-
ter. Also the additional 2-cells added to create (C2)” have diameter bounded by a
function of ¢, N and ¢, so there is a bound ng = no(G, ¢, N, €) on the perimeters of
the 2-cells of (€2)”. Any component of p — (€2)(") must be contained in such a cell,
thus its interior can be replaced by a segment in (€2)(!) with length less than ng.

Recall that p was originally contained in the frontier of L', L' C N¢(L) with
€ < 1,and both L' and L' N (?I(G) deformation retract onto L. Hence we can
replace each segment of p — (€2)()) with a segment in (€2)() of length less than
no that is contained in L except for initial and terminal segments of length bounded
by €. .

Thus the z;’s form an (L”, ng)-chain from x to y as desired. O

We can now prove that quasi-lines in finitely presented groups satisfy ess(ry).

Lemma 2.14. Let G be a one-ended finitely presented group, with L a (¢, N) quasi-
line in CY(G). Then CY(G) — L contains only finitely many essential components.
Moreover, there is some mg = mo(G, ¢, N) such that L satisfies ess(my).

Proof. We shall prove that L satisfies ess(mg), for some mo > 0. Since C1(G) is
locally finite, it will follow that the complement of L contains finitely many essential
components.

Let C be acomponent of the complement of L in @' (G). We shall use Lemma 2.12
to show that there is some n > 0 (not depending on our choice of C) such that any
x,y € (C N L) are connected by an (L, n)-chainin (C N L) C C1(G) C C(G).

Let L’ be as defined in Lemma 2.12, so, for some 0 < € < 1, L C L’ C N¢(L),
L' is open in €?(G), and both L’ and L’ N €!(G) deformation retract onto L. Recall
thatin Lemma 2.12, we proved a result similar to that desired now, butfor L’ C C2(G).

Fix any such x and y, and, as C is connected, there is a simple oriented edge
path p in C connecting them. Note that our assumptions on L’ imply that each edge
in p must meet one component of C2(G) — L’. Thus p is a union of edge paths
P1, P2, - -, Pk such that, for each i, the terminal vertex of p; is equal to the initial
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vertex of p;41, and each p; intersects L’ in components of length no more than
€ containing its initial and terminal vertices, with the rest of p; contained in some
component C’ of @?>(G) — L'. Let x; and y; denote the two points of (C’ N L’), so
each is within € of a different endpoint of p;. _

By Lemma 2.12, each pair x; and y; can be connected by an (L', n¢)-chain {Z]’.}

in C' N L’. Recall that, moreover, a path of length no more than ¢ between any two
consecutive points in the chain is in L, outside of initial and final segments of length
no more than ¢, and that L' N C! (G) deformation retracts onto L. Thus, each z]/- can

be connected by a path of length no more than € in L’ N €!(G) to a point zj € cCnL
such that {z; } forms an (L, ng + 2¢)-chain in C N L, connecting the endpoints of p;.
Concatenating these chains, we see that, forn = ng + 2¢, x and y can be connected
by an (L, n)-chain in C N L as desired.

>From now on, we shall work only in C'(G), not C2(G).

We shall now find an mo > 0 such that there is an (L, n)-chain in the frontier of
each essential component C of the complement of L that must intersect the m¢-ball
about any given point of L.

Fix any a € L and R > N,n. As C is essential, e(C U L) = 1, and, from
Lemma 2.6, recall that L must have two ends. It follows then that C must intersect
both unbounded components of L — Bg(a); let x be in the intersection of C N L
with one, and y in the intersection of C N L with the other. By the work above, there
exists an (L, n)-chain, {z;}, from x to y in C N L.

Recall that L is a (¢, N) quasi-line, and let / be the line associated to L. Then,
for each i, there is a path in L of length less than or equal to N connecting z; to some
w; €. Foreachi, d(z;,zit+1) < n, thus d(w;, wj4+1) <n + 2N, and thus the path
in [ between any two adjacent w;’s has length less than or equal to ¢(n + 2N).

Let ag € [ be of distance less than or equal to N froma € L. As R > 0, x and
y are such that there is some i with /~!(w;) < [7'(ag¢) < [~'(w;+1), and hence, for
some j, d(ag, w;) < %q&(n + 2N). Thus

1
d(a,zj) < d(a,ap) + d(ap, w;) + d(wj, z;) < §¢(n +2N) + 2N.

Since z; € C, and z; is of distance less than 1 from a vertex of C, it follows that,
for any mo > [%q&(n +2N) + 2N + 1], C intersects By, (a) in a vertex. Thus L
satisfies ess(my). O

We note that, in particular, the argument above proves the following:

Corollary 2.15. Let G be a one-ended finitely presented group, with L a (¢, N)
quasi-line in CY(G) and C a component of C1(G) — L, which need not be essential.
Let mg = mo(G, ¢, N) be as in Lemma 2.14.

If K C L is such that K separates L into two infinite components and C meets
both of those components, then By,,(x) meets C in a vertex, for each x € K.
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Remark 2.16. By Lemma 2.14, since all quasi-lines with which we are concerned
in any one Cayley graph will have the same parameters, they will all satisfy ess(m¢)
for some fixed my.

In the remainder of this section, we will show that any quasi-line L that we are
concerned with satisfies iness(m21) for some m.

Lemma 2.17. Let G be a one-ended finitely generated group, and let H be a two-
ended subgroup of G. Then any neighborhood of H that is a quasi-line satisfies
iness(my), for some my depending only on H and the size of the neighborhood.

Proof. Fix R > 0such that Ng(H) is connected, hence is a quasi-line. It will suffice
to find some number m1; (R) such that each inessential component of the complement
of Nr(H) is contained in the m (R)-neighborhood of Ng(H).

We will prove this by first showing that a component C of C'(G) — Ngr(H) is
essential if and only if C is nearly essential. As Nr(H ) has two ends, it follows that
C is nearly essential if C is essential. We now prove the converse.

Suppose that C is not essential. Then C U Ng(H) has more than one end, so
there is a compact K C (C U Nr(H)) such that (C U Ngr(H)) — K has more than
one infinite component.

Let m denote the number of infinite components of (C UNg (H))— K, and suppose
that m > 2. Since e(G) = 1, each of these components must meet Ng(H ), and as
e(Ngr(H)) = 2, the intersection of Ng(H ) with at least (m —2) of these components
must be finite. Let M be the union of K with these finite regions of Ng(H ), and thus
at least (1 —2) components of the complement of M in (C U Ng(H)) do not intersect
Ngr(H). Moreover, note that each such component, of which there is at least one,
must be a component of @'(G) — M. At least one other component of C!(G) — M
has infinite intersection with Ng(H ), and hence e(G) > 1, a contradiction.

Thus we must have that e(C U Ngr(H)) = 2. We shall show that we can find a
finite index subgroup of H that fixes C.

Note that since C is a component of the complement of Ng(H ), then, for any
g € H, gC is also a component of the complement of Ng(H ).

Let (i) be a finite index subgroup of H, and suppose that the (h)-orbit of C
contains infinitely many components of the complement of Ng(H).

Suppose, in addition, that C does not meet Ng(H) along its entire length, i.e.
that there is some compact region K’ C Ng(H) and an infinite component L 4 of
Ng(H)— K’ such that C does not meet L. As e(C1(G)) = 1, the intersection of C
with Ng (H) must be infinite, so Ng (H) — K’ must have another infinite component,
callit L_, and C must meet L_. Moreover, for any pointg € Ng(H ) and any r > 0,
C must meet L_ outside of B,(q).

Let ¢ and N be parameters for Ng(H) and let mog = mo(G, ¢, N) be as in
Lemma 2.14. Then, by Corollary 2.15, for any point p € L_ that is sufficiently far
from K’, C must meet B, (p) in a vertex. Fix such a point p.
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As we have assumed that (k) - C consists of infinitely many components, choose
{n;} such that {h"iC} are distinct. We can moreover choose the {n;} such that
L_ch®L_, foralli.

But then each 4" C must meet By, (p) in a vertex. C!(G) is finitely generated,
hence there are only finitely many vertices in B, (p), but the translates A" - C are
disjoint, thus we have reached a contradiction.

If instead, for any compact subset K’ of Ng(H ), C meets both infinite components
of Nr(H) — K’, then a similar argument, with L taking the role of L_, also gives a
contradiction. Thus the (/)-orbit of C must be a finite collection of components.

By passing to a finite index subgroup of (h) if necessary, we can assume that (/)
fixes C.

Recall that we showed above that (C U Ng(H)) has two ends. The subgroup (/)
acts on this union by isometries, so the quotient of (C U Nr(H)) by this action must
be compact. It follows that C is contained in a finite neighborhood of Nr(H ), hence
is not nearly essential.

Thus C is essential if and only C is nearly essential.

It remains to argue that each inessential component of the complement of Ng(H)
is contained in the m; (R)-neighborhood of Ng(H) for some m;(R). Note that any
inessential component of ! (G) — Ng(H) is not nearly essential, hence projects onto
a bounded component of H\C'(G) — H\Ng(H). As H\Ng(H) is compact and
H\C!(G) is locally finite, there are only finitely many components of H\C!(G) —
H\NRg(H), thus there is some m(R) > 0 such that each bounded component is
contained in the m (R)-neighborhood of H\Ng(H).

It follows that any inessential component of the complement of Ng(H) is con-
tained in the m; (R)-neighborhood of Nr(H), as desired. O

We show next that the property of satisfying iness(m;) for some function m; is
invariant under quasi-isometries.

Lemma 2.18. Let f: CY(G) — CY(G’) be a (A, K) quasi-isometry between the
Cayley graphs of one-ended, finitely presented groups G and G', and let L C C1(G)
be a quasi-line satisfying iness(my).

If R" > 0is such that L' = Ng/(f (L)) is a quasi-line in C1(G"), then L' must
satisfy iness(m' ), for some m'; depending on A, K, my, and R'.

Proof. Recalling Lemma 2.4, we fix R’ so that L’ = Ng/(f(L)) is a quasi-line. As
was the case previously, it suffices to prove that there is some number m (R’) > 0
(dependent on R’) such that the inessential components of the complement of L’ are
contained in the m’; (R")-neighborhood of L.

Again we will begin by showing that any component of €!(G’) — L’ is essential
if and only if it is nearly essential. Recall that we always have that essential implies
nearly essential.

Let f~! be a quasi-inverse to f, and note that, for any R > 0, each component
of @1(G’) — L’ gets mapped by f~! either into Ng(L) or into the union of Ng(L)
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with components of its complement. We claim that we may choose R large enough
that, if C’ is a component of C'(G’) — L’ such that f~!(C’) meets a component C
of C1(G) — Ng(L), then the image under ! of no other component of C'(G') — L’
will meet C.

To see this, let A’, K’,§ be such that f~! is a (A’, K') quasi-isometry, with
f7Y(L") € Ns(L). Let {C.} be the components of €' (G')— L', and let R; > A'K’.
Note that, if @ # B, and C, — Ng,(L’) and Cﬁ’; — NRg, (L") are nonempty, then any
points p, € C, — Ng, (L"), pp € C/g — Ng,(L’) are at least a distance of 2A’K’
apart.

Let R > (§ + A’Ry + K’), and note that f~1(Ng,(L")) C Ng(L). Recall
that ! is coarsely surjective, with Nx/(f~1(C1(G’))) = C!(G). Suppose that
there is some component of C'(G) — Ng(L) that is met by more than one image
f7Y(CL). Then there are two such, call them f~1(C.) and f_l(Cé), with some
Pa € Cy— Nr (L"), pg € Cy — Ng, (L"), such that d(f " (pa), f ' (pp)) < K.
But this means that ﬁd(pa, pg) — K' < K',ie. thatd(py. pg) < 2A’K’, which is
a contradiction.

Thus, with R chosen as above, we have that the images under f ! of different
components of the complement of L’ shall not meet the same component of the
complement of Ng(L).

Suppose now that C’ is a component of C1(G’) — L’ that is nearly essential. Let
Co be the union of the components of C'(G)— Ng (L) that are met by f~1(C’). Since
L satisfies iness(m ), Co must contain an essential component of the complement of
Ngr(L). Let C§ denote the essential components in the complement of Ng(L) that
are met by f~!(C’), and now we have that C¢ is nonempty.

Observe that (C’ U L’) is quasi-isometric to Co U f~1(L’), which is quasi-
isometric to (Cop U L). Certainly this is quasi-isometric to (Cop U Ng(L)), which in
turn must be quasi-isometric to (C5 U Ng(L)), since the components of Cy that are
inessential must be contained in the 1 (R)-neighborhood of Ng(L).

We claim that e(Cy U Ngr(L)) = 1. This is immediate if C§ contains only one
component, so assume that C§ = {C;} contains more than one, and suppose for a
contradiction that e(C§ U Ng(L)) > 1.

Then there is some finite subgraph K of (C§ U Ng(L)) whose complement has
more than one infinite component. For each i, C; is essential so (C; U Ngr(L)) — K
has exactly one infinite component which we shall call D;, and as C!'(G) is locally
finite, we note that Ng(L) — (D; N Ng(L)) must therefore be finite. On the other
hand, as G is finitely presented, so Ng (L) satisfies ess(mg) for some mg. Thus there
are only finitely many C;’s, so there must be indices i and j such that D; and D; are
disconnected in (C§ U Nr(L)) by K. As Ng(L) is finite outside of D; and is finite
outside of D, we have reached a contradiction.

Thus e(C§ U Nr(L)) = 1,s0e(C" U L') =1 and C' is essential.

Hence components of the complement of L’ are essential if and only if they are
nearly essential. It remains to conclude that L’ satisfies iness(m1).



The quasi-isometry invariance of commensurizer subgroups 221

As f~1is coarsely surjective, we have that a finite neighborhood of the image
under f~! of any component of the complement of L’ is equal to a subset of Ng(L),
together with a collection of components of the complement of Ng(L). As the
inessential components of the complement of Ng(L) are contained in the m(R)-
neighborhood of Ng(L), it follows that there is some m’ (R’) > 0 such that any com-
ponent C’ of the complement of L’ is either contained in the m’; (R")-neighborhood
of L’, or is contained in no finite neighborhood of L’. Thus, C’ must be contained in
Nm/l (r)(L') or else is nearly essential hence essential, as desired. O

Remark 2.19. Recall that we are concerned with quasi-lines as follows. If G is a one-
ended finitely presented group with two-ended subgroup H, then we will consider
quasi-lines in C'(G) of the form Ng(H) and their translates under the action of G.
We will also consider quasi-lines that are R’-neighborhoods of the images of these
under a quasi-isometry f: C1(G) — CL(G').

G acts on C!(G) by isometries, and hence it follows from Lemma 2.17 that any
collection of quasi-lines that are translates Ng(H) by elements of G will all satisfy
iness(m1) for the same function m;.

This together with Lemma 2.18 implies that the R’-neighborhoods of the images
of these quasi-lines will all satisfy iness(m’) for the same function m/.

Thus any collection of quasi-lines that we will consider in a given group will
satisfy iness(m1) for the same m.

3. The quasi-isometry invariance of two-ended subgroups
with at least three coends

In this section, we will prove that, up to finite Hausdorff distances, quasi-isometries
take two-ended subgroups with at least three coends to other two-ended subgroups
with at least three coends (Theorem 3.8). Coends will be defined below, and we will
see that two-ended subgroups having at least three coends will be exactly those whose
corresponding quasi-lines are 3-parting (Lemma 3.6).

The main ingredient in the proof of the quasi-isometry invariance of two-ended
subgroups with at least three coends is Proposition 3.5, which shows that any 3-
parting quasi-line satisfying iness(m1) is a finite Hausdorff distance from an infinite
cyclic subgroup. For this, we use the proof of a similar result from [21]. There,
Papasoglu shows that, given a 3-parting quasi-line in the Cayley graph of a one-ended,
finitely presented group, either the quasi-line is a finite distance from an infinite cyclic
subgroup, or a related limit of translates of quasi-lines is. We will see below that this
latter possibility can be eliminated.

We first note that quasi-lines satisfying iness(21) but that are not 3-parting need
not be a finite Hausdorff distance from a copy of Z. For example, consider the
nearest-point projection of a line /o in R? with irrational slope into the Cayley graph
of Z?2, where the vertices are taken to be the integer lattice points in R? and we take
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the standard generating set. Let L denote a connected neighborhood in €72 of the
projection of /p. Then L is a 2-parting quasi-line in C2 that satisfies iness(#;) for
some m;. However, the infinite cyclic subgroups of Z2 correspond to lines in R?
with rational slope, hence L is an infinite Hausdorff distance from any subgroup of Z2.

In order to prove Proposition 3.5, we will need to know that 3-parting quasi-lines
do not cross one another in an essential way. We shall say that a,b € C1(G) are
K-separated by a quasi-line L if Bg(a) and Bk (b) are in different components of
the complement of L. The following is Proposition 2.1 from [21]:

Theorem 3.1. [21] Let G be a one-ended, finitely presented group, and let L, L,
be (¢, N') quasi-lines in C1(G) that satisfy iness(m). Suppose that L is 3-parting.

Then there is some K = K(G,¢’, N',my) such that no two points a,b € L are
K-separated by L.

We include a proof of this theorem in the appendix, in order to clarify some points
from the proof given in [21].

To restate Theorem 3.1, if there is some a € L that is in an essential component
C of the complement of L, and is more than a distance of K from L, and b € L is
in a different essential component of the complement of L, then b is no more than
a distance of K from L.

It follows that L is contained in the K-neighborhood of L; U C. Let m¢ be such
that L and L satisfy ess(mg) (see Lemma 2.14), and let K’ = K + 2mg. Then it
follows that L is contained in the K’-neighborhood of C.

Thus we have the following corollary to Theorem 3.1:

Corollary 3.2. Let G, L and L1 be as in Theorem 3.1.
Then there is some K' = K'(G, ¢, N,my) such that L is contained in the K'-
neighborhood of an essential component of the complement of L.

The next observation will be needed in Lemma 3.4.

Lemma 3.3. Let L and L' be (¢, N) quasi-lines in a metric space X. Then for any x,
there is some x1 = x1(¢, N, X2) > xp such that if L € Ny, (L'), then L' € Ny, (L).

Proof. Given x5, let x; > %¢(2(X2 4+ N)) 4+ 2N + x5. Suppose for a contradiction
that L & N, (L’) andthat L” C Ny,(L). Let/ and I’ be the lines associated to L and
L’ respectively, and it follows that there is some ¢ € R such that the (x; — N)-ball
about /(7) does not meet [’.

As L’ C Nx,(L),hencel” C Nx,+n(1), it follows that there are t; < ¢ < 5 such
that [t —¢;| > ((x1—N)—(x2+ N)) foreachi and d(/(¢1),[(t2)) < 2(x2+ N). But
our assumption on x; implies that ¢(2(x2 + N)) < 2(x; —2N —x»), a contradiction.
Thus L & Ny, (L). O
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We shall need the following lemma, both to prove Proposition 3.5 and also to
prove another later result.

Lemma 3.4. Let G be a one-ended, finitely presented group, and let {L'} be a
collection of 3-parting (¢, N) quasi-lines in C1(G) satisfying iness(m1). Suppose
that N; L' contains a vertex.

Then there is some constant x1 = x1(G, ¢, N,my) such that if, for all i, j,
draus(LY, L) > x1, then {L'} is finite.

Proof. Letmg = mo(G, ¢, N)beasinLemma2.14, sothateach L’ satisfies ess(m).
Let K’ = K'(G,¢, N,m) be as in Corollary 3.2, so that, for each i, j, L’ is con-
tained in the K’-neighborhood of an essential component of the complement of L.
Furthermore, let my = mo(G,¢, N + K’), so that, for any i, Ng/(L") (which is
a (¢, N + K') quasi-line) satisfies ess(mg). Let x, > max{K’, my} and let x;
be from Lemma 3.3. Thus dya(L, L7) > x; implies that L' & Ny,(L7) and
LI ¢ Ney(L).

Let L denote {L}, and suppose that L is infinite. Then choose any element L
from Lg. As L satisfies ess(mg), the complement of L has only finitely many essen-
tial components, so there is some essential component By whose K’-neighborhood
contains infinitely many elements of L. Let L = {L € [Lo— L] : L C Nk/(Bo)}.
Choose L; from L1, and let B i be the essential component of the complement of L
whose K’-neighborhood contains L. Note that x, > K’ implies that B] is unique.

As L is infinite, there is some essential component of the complement of L
whose K’-neighborhood contains infinitely many elements of L. Let By denote this
component, and let £, denote {L € [L; — {Lo,L1}] : L C Ng/(B;1)}. Choose
L, from L5, and continue on in this manner. This produces an infinite sequence of
quasi-lines {L;} and subsets of €' (G), {B;} and { B}, such that, for each i, B; is an
essential component of the complement of L; such that L; C Ng/(B;) forall j > i,
and B is an essential component of the complement of L; such that L; C N+ (B/)
forall j < i (with perhaps B; = B;). Each L; is 3-parting, so we may set D; to be
an essential component of the complement of L; that is not equal to B; nor B;, for
eachi.

We shall see next that the D;’s are basically disjoint. Leti # j, and note that,
since L; is not contained in the x,-neighborhood of L;, there must be some point
p € L; such that By, (p) does not intersect L;. Thus By, (p) is contained in B;
or B.

Note that, for each i, D; — Ngs(L;) is a collection of essential and inessential
components of the complement of Ng/(L;). Since D; is an essential component of
the complement of L;, and L; satisfies iness(m1), it follows that D; — Ngs(L;) must
contain an essential component E; of the complement of Ng/(L;).

As x, > my, By,(p) must meet each essential component of the complement of
Nk (L;), so, in particular, By, (p) meets E;, hence By, (p) U E; is connected.

The quasi-line L; is disjoint from D; — Nk (L;), hence does not meet E;, or the
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union By, (p) U E;. It follows that this union is contained in B; or B, so is disjoint
from D;, and hence from £; C D;. Thus, the E;’s are disjoint.

Now we recall that N; L; contains a vertex, say y € C!(G), and hence By )
intersects each E;. Since these regions are disjoint, Bm6 (y) must contain a collection
of vertices in bijection with {L; }. But G is finitely generated, hence By, (y) has only
finitely many vertices, and we have reached a contradiction. O

Proposition 3.5. Let L be a 3-parting (¢, N) quasi-line in the Cayley graph of a
one-ended, finitely presented group G, and suppose that L satisfies iness(my) for
some my. Then there is some subgroup H = 7. of G such that dya.s(L, H) < oo.

Proof. Let L be as in the statement of the proposition, and let x; be as in Lemma 3.4,
defined with the parameters of L. In case 1 of section 6 of [21], Papasoglu makes the
following construction.

Fix some y € L, and choose a sequence {y;} C L such that d(y, y;) — oo. Let
gi be such that g; y; = y, and, by passing to a subsequence, we may assume that, for
alli > j,

&L N Bj(y) =gLnNB;(y).
If there is some i such that dy,us(g; L. gj L) is less than or equal to any fixed constant
for infinitely many g;, then it is shown in [21] that there is some g contained in the
subgroup generated by these g; such that (g) = Z, and g; L is a finite Hausdorff
distance from (g). Thus dHaus(L,gi_l(g)) < 00. Since dHaus(gi_l(g),gi_l(g)g,-) is
bounded by the word length of g;, it follows that L is a finite Hausdorff distance from
g ' (g)gi = L.

Therefore, by passing to a subsequence, we may assume that, for each i and j,
duaus(gi L, g; L) > x;. It follows that this infinite subsequence of {g; L} satisfies the
hypotheses of Lemma 3.4, which is a contradiction. O

Next, we will give the definition of coends. We will see that Theorem 3.8 follows
quickly from Proposition 3.5 and a few basic facts about coends.

Given a group G with a subgroup H and a subset Y, we say that Y is H -finite
if Y is contained in finitely many cosets Hg of H. In [18], Kropholler and Roller
defined

¢(G, H) = dimp,(PG/FuG)C,

where PG is the power set of all subsets of G, and ¥y G is the set of all H -finite
subsets of G. The quotient set P G/Fy G forms a vector space over [, the field
with two elements, under the operation of symmetric difference. Thus a subset X
of G represents an element of (G /%y G)Y if and only if the symmetric difference
X + Xg is H-finite forall g € G.

Following Bowditch [2], we shall call (G, H) the number of coends of H in G.
(Kropholler and Roller called é(G, H) the number of relative ends of H in G, and
we note that this is also sometimes referred to as the number of filtered ends of H
inG.)
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If X is a subset of G, then we can think of X as a subset of the vertex set of C1(G),
and thus §X, the coboundary of X, is the set of edges in C!(G) that have exactly
one vertex contained in X. It is a fact that X represents an element of (P G/Fy G)®
exactly when §X is H -finite. (See Cohen [3] for a proof of this in the case when H
is trivial.)

The following lemma shows that we can characterize the number of coends of a
two-ended subgroup in terms of essential components:

Lemma 3.6. Let G be a one-ended, finitely generated group with two-ended subgroup
H, andlet n < co. Then e(G, H) > n if and only if there is some R > 0 such that
Ngr(H) is a quasi-line in C'(G) that is n-parting.

Moreover, (G, H) = oo if and only if, for each n < oo there is some R = R(n)
such that Ng(H) is an n-separating quasi-line.

Proof. A subset X of G represents an element in the F»-vector space (P G/ F5 G)©
if and only if §X is an H -finite set of edges in ! (G). Note that this happens precisely
when 8X is contained in a finite neighborhood of H in C!(G).

Essential components of the complement of any quasi-line of the form Ngr(H)
naturally correspond to elements of (PG/FyG)C: let Y be an essential component
of the complement of Ngr(H), and let Y denote the vertex set of Y. Then for any
€ > 0, the boundary of Y is contained in Nr+ec(H),hence Y C Nr41(H), thus Y
represents an element of (P G/ %y G)C. Note that Y is not H -finite, so the element
it represents must be nontrivial in (PG/Fy G)C.

By Lemma 2.3, we can fix R > 0 such that Ngr(H) is a quasi-line. Suppose that
Ngr(H)isn-parting, andlet Y1, ..., Y, be essential components of the complement of
Ng(H). They are disjoint, hence represent independent elements of (P G/ 55 G)°,
and thus (G, H) > n.

Ife(G, H) > n for some n < 0o, then we can find representatives X1, ..., X, of
elements of a basis for (P G/ 5 G)©. Thus there is some R > 0 such that, in C1(G),
§X; C Ngr(H), for all i. Then note that each X; is equivalent in (P G/FyG)% to
a union of components of C'(G) — Nr(H). Recall from Lemma 2.17 that, for
some m; > 0, Ng(H) satisfies iness(m), hence each X; is equivalent to a union of
essential components of C'(G) — Ng(H ). Since the X;’s are independent, n of these
essential components must be disjoint, so the complement of Ng(H ) has at least n
distinct essential components, i.e. Ngr(H) is n-parting.

Now suppose that é(G, H) = oo, and fix any n < oo. Then in particular
é(G, H) = n so, by the previous paragraph, there is some R = R(n) such that
Ngr(H) is an n-parting quasi-line.

Lastly, suppose now that H is such that, for any n < oo there exists some
R(n) such that Ng(H) is an n-parting quasi-line, and let Y{*, Y, ..., Y, denote the
essential components of the complement of Ng(H).

Fix any sequence n1, 15,13, ... such that R(n;) < R(n;4+1) for all i. Then we
note that there are indices j; # k; such that 1 < j;, k; < n; and such that Y:’ C Yknl !
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for all i > [, and hence {szl" 372, are a disjoint collection of representatives of

elements of (P G/Fg (G))C. It follows that (G, H) = oo. O

Lemma 3.7. Let f: CY(G) — CYG’) be a (A, C) quasi-isometry between the
Cayley graphs of one-ended, finitely presented groups G and G', and let L be a
(¢, N) quasi-line in C1(G) satisfying iness(my).

Then there is some R' = R'(A,C,¢, N,my) > 0 such that, if L is n-parting,
then Ng/(f(L)) is also n-parting.

Proof. Lemma 2.4 shows that we can find some R” > 0 such that Ng~(f(L)) is
a quasi-line. Thus so is Ng; (f(L)) for any Ry = R”, and, by Lemma 2.18, we
also have that N R, (f(L)) satisfies iness(m) for some m} (depending on R;). For
any such R}, the image under f of any component of C!(G) — L will be contained
in the union of N R, (f(L)) and components of its complement. As in the proof
of Lemma 2.18, there is some R’ > R’ such that the images under f of distinct
components of C'(G) — L do not meet the same components of C! (G’) — Ng/( f(L)).
Let L' = Ngr/(f(L)).

As f is coarsely surjective and L' satisfies iness(m ), the image of any essential
component in the complement of L meets an essential component in the complement
of L’. As no two components of the complement of L meet the same components of
the complement of L', it follows that the complement of L’ contains at least as many
essential components as the complement of L. O

We now can prove the following:

Theorem 3.8. Let f: C1(G) — CY(G’) be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groups G and G', and assume that G contains
a 2-ended subgroup H that has n coends in G, forn € {3,4, ...} U{co}. Then there
is a two-ended subgroup H' of G’ that has n coends in G', and furthermore

dHaus(f(H), H/) < OQ.

Proof. Suppose first that n < co. By Lemmas 2.3 and 2.17, for any R such that
Ngr(H) is connected, we have that Nr(H) is a (¢, N) quasi-line that satisfies
iness(m1), where ¢, N, and m; all depend on R. As é(G,H) = n, it follows
from Lemma 3.6 that we can further choose R so that Ng(H) is n-parting. Let
L = Ng(H) for some such R.

Then, by Lemmas 2.4 and 2.18, and 3.7, there is some R’ such that Ng/( f(L))
is a quasi-line satisfying iness(m}), and Ng/(f(L)) is n-parting. Let L’ denote
Ngr/(f(L)) for some such R'.

Proposition 3.5 implies that there is some H’' =~ Z that is a finite Hausdorff
distance from L'. Let L” = Ng~(H’), with R” > 0 such that L” contains L’. Then
L" is n-parting, so, by Lemma 3.6, é(G’, H') > n.
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Ife(G’, H') > n, then Lemma 3.6 and Lemma 3.7, applied to a quasi-inverse of
[, implies that there is some quasi-line that is a finite Hausdorff distance from H and
is m-parting for some m > n. There is a neighborhood of H contains this quasi-line,
thus is m-parting, so by Lemma 3.6, é(G, H) > m, a contradiction.

Thus é(G’, H') = n, so H' is the desired subgroup.

Suppose then that (G, H) = oo. Then é(G, H) > m for any m < oo, and the
above argument shows that there is some R” > 0 such that Ng~(H’) is an m-parting
quasi-line. Thus Lemma 3.6 implies that &(G’, H') = oo. O

4. The quasi-isometry invariance of commensurizer subgroups

In this section, we will see that commensurizers of two-ended subgroups with at least
three coends are invariant under quasi-isometries.

More specifically, we saw in the last section that, if f: C}(G) — C!(G’) is a
quasi-isometry between the Cayley graphs of one-ended, finitely presented groups G
and G’, and H is a two-ended subgroup of G with at least three coends, then there is a
two-ended subgroup H’ with at least three coends, that is a finite Hausdorff distance
from f(H)in C!'(G’). We will now see that in fact Commg/(H') is a finite Hausdorff
distance from the image under f of Commg (H) in C'(G’) (Theorem 4.4).

We first observe the geometric structure of commensurizers:

Lemma 4.1. If G is a finitely generated group with subgroup H, then
Commg (H) = {g € G : duas(H, gH) < 00}.

Proof. Let I(g) be the minimal word length of representatives for g € G, with
respect to the given finite generating set for G. Then note that, for all x,g € G,
d(x,xg) = d(e,g) = I(g). Thus du.s(gH,gHg™") < I(g7), so it suffices to
show that g € Commg (H ) if and only if dya.(H, gHg ') < oo.

Let HE denote gHg ', If dyaus(H, H8) = M < o0, then, for any x € H, there
is some y € HE such that d(x,y) < M,ie. d(y~'x,e) = I(y~'x) < M. Let
L(M) =%k € G:l(k) < M}. It follows that

Hc | H% (D
keL(M)
and similarly that
H¢ c | ] Hk. )
keL(M)

Observe that in fact (1) and (2) are equivalent to having dy..s(H, H8) < M.
If H meets H&k, then there is some h; € H with H8k = H8h,. G is finitely
generated, so L(M) is finite, and it follows that (1) implies that there are finitely
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many elements /iy, ..., h, in H such that

H C Othi'

i=1

Thus H = \J/_;(H N H&)h;, i.e. (H N H¥) is of finite index in H. Similarly
(H N H¥) is of finite index in H¥, so H and H8 are commensurable, hence g €
Commg (H).

Conversely, if g € Commg (H ), then there are elements /iy, ..., h, in H such
that H = \J/_,(H N H#®)h;, and elements h),...,h), in H® such that H® =
U:'/:l (H N HE)h}. In particular, (1) and (2) hold if we take M to be the maximal
word length of the /;’s and (h})’s.

Thus dy.us(H, H8) < M, so we have shown the lemma. O

Remark 4.2. As we saw in the proof of Theorem 3.8, if H is a two-ended subgroup
of G with at least n coends, n < oo, then there is some R such that Ng(H) is an
n-parting (¢, N) quasi-line satisfying iness(m), for some ¢, N, and m;. Thus, by
Lemma 4.1 and since G acts on its Cayley graph by isometries on the left,

Ng(Commg(H) = | J Ne@eH)= | g Nr(H)
g€Commg (H) ge€Commg (H)

is a union of isometric copies of Ng(H ) that are pairwise of finite Hausdorff distance
from one another. Hence we may think of Commg (H) as a collection of “parallel”
n-parting (¢, N') quasi-lines that satisfy iness(my).

Consider the following.

Proposition 4.3. Let G be a one-ended, finitely presented group with a two-ended
subgroup H that has at least three coends, and let C = Commg(H) = []; giH.
Given quasi-line parameters ¢ and N, and a function m, there exists a constant x > (0
(which depends on H) suchthat, if L is a 3-parting (¢, N) quasi-line in C1(G) satisfy-
ing iness(m1) and such that dya.s(L, H) < 00, then, for some i, duas(L, gi H) < x.

Assuming this proposition for the moment, we shall see how it implies the invari-
ance of these commensurizer subgroups under quasi-isometries.

Suppose that £ : C1(G) — C1(G’)is a quasi-isometry between the Cayley graphs
of one-ended, finitely presented groups G and G’, that H is a two-ended subgroup
of G with at least n coends, for some 3 < n < oo, and that C = Commg (H).
Then, by Remark 4.2, we have that some neighborhood Nr(C) of C is a union of
pairwise finite Hausdorff distance, n-parting (¢, N) quasi-lines {L;}, all of which
satisfy iness(m21) for some m;.

By Theorem 3.8, there is a two-ended subgroup H' of G’ such that é(G, H) =
é(G’, H') and dyus(f(H), H') is finite. Let C’ = Commg/(H’). By Lemma 2.4,



The quasi-isometry invariance of commensurizer subgroups 229

there exists R’ such that the R’-neighborhood of each f(L;) is a (¢, N’) quasi-line,
for some ¢’ and N’ depending on R’. By Lemma 3.7, we can choose R’ so that each
Nr/(f(L;)) is 3-parting. By Lemma 2.18 and Remark 2.19, we can further suppose
that each Ng/(f(L;)) satisfies iness(m/), for some fixed m'. Thus we may apply
Proposition 4.3 to get some x such that each Ng/(f(L;)) is contained in N, (C’).
It follows that Ng/( f(Ng(C))) C Ny(C’), i.e. that f(C) is contained in a finite
neighborhood of C’.

As was the case for C, recall that a neighborhood of C”’ is a union of quasi-lines
as above. Thus, by running the same argument on a quasi-inverse to f, it follows
that dyaus(f(C), C’) < co. Hence we have the following.

Theorem 4.4. Let f: C1(G) — CY(G') be a (A, K)-quasi isometry between finitely
presented, one-ended groups, and suppose that H is a two-ended subgroup of G with
n coends in G, forn € {3,4,5,...} U{oco}. Then there is a two-ended subgroup H'
of G’ suchthat H' has n coends in G’ and there exists some constant y > 0 such that

dHaus(f(CommG (H))’ CommG/(H/)) <.

Proof of Proposition 4.3. Let L be the set of 3-parting (¢, N) quasi-lines in C!(G)
that satisfy iness(m), and are a finite Hausdorff distance from H. If L is finite, then
we are done, so assume that £ is infinite, and that no such x exists. Then we can find
a sequence {L;} of elements of L such that

min dyaus(Li, gH) — 00,
geC

asi — oo.
Letc; = g € C realize the minimum above for L;, and fix x; = x1(G, ¢, N, my)
from Lemma 3.4. Then we can pass to a subsequence so that, for all j > i,

dHaus(Lj’ CjH) > dHaus(Li’CiH) + Xx1. (3)

Then, by the following argument we will have that, for all g, ¢’ € G andi # j, we
have

dHaus(gLiag/Lj) > X1. “4)

Firstly, note that it suffices to show that dyays(L;, gL;) > x;1, forany g € G and
i < j.Ifg ¢ C,then dyys(H, gH) = 0o. But dyaus(Li. H) and dpaus(gL;, gH)
are finite, s0 dyaus(L;, gLj) = 00.

Assume then that g € C, and dyaus(Li, gL;) < x1. Then

dHaus(nga ciH) < dHaus(nga L;) + dyaus(Li, ci H) < x1 + dyaus(Li, ci H).
Thus

dHaus(Lj’g_lciH) = dHaus(nga ¢iH) < x1 + dyaus(L;, c; H).
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But note that dyaus(Lj.c; H) < dyaus(L;, g 'c; H) by the definition of cj, SO we
have that

dHaus(Lj,CjH) =x1+ dHaus(Li»ciH)»

contradicting (3). Thus (4) holds for all g € G.

By translating the L;’s, we can obtain a new set of quasi-lines that each contain
e € G, and for which (4) holds for all g € G, though the quasi-lines may no longer
be a finite Hausdorff distance from H. This new sequence of quasi-lines satisfies the
hypotheses of Lemma 3.4. This leads to a contradiction, since we had assumed L to
be infinite. O

5. Commensurizers of type F,

Recall that a group C is of type F,, if there is a K(C, 1) with finite n-skeleton. Being
of type F is equivalent to being finitely generated, and being of type F; is equivalent
to being finitely presented.

We shall prove the following result in this section:

Theorem 5.1. Let f: CY(G) — CY(G’) be a quasi-isometry between finitely gen-
erated groups, and suppose that C is a subgroup of G, C' is a subgroup of G, and
that dyas(f(C),C’) < oo. Then C is of type Fy, if and only if C' is of type F,, for
n>1.

In light of Theorem 4.4, we have, as an immediate corollary:

Corollary 5.2. Let f,G,G’, H and H' be as in Theorem 4.4. Then Commg (H) is
of type F,, if and only if Commg/(H') is of type Fy,.

We can prove Theorem 5.1 in the case that n = 1 with a short and simple argu-
ment, using a coarse geometric characterization for a subgroup to be finitely generated
(Lemma 5.3). To prove the theorem for n > 1, we will introduce some new termi-
nology and basic facts about “uniformly distorting” maps and “coarse isometries”.
In [11], M. Kapovich gives a proof that being of type F;, is a quasi-isometry invariant,
and we will note that his arguments go through in the more general setting of coarse
isometries.

First, we shall see that Theorem 5.1 holds when n = 1. Consider the following.

Lemma 5.3. Let C be a subgroup of a finitely generated group G. Then C is finitely
generated if and only if there exists some Ay > 0 such that, for any g,h € C,
there is some sequence Sg,S1,...5, C C so that g = so, h = sy, and for all i,
d(si,si+1) < Ao.
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Proof. Call a sequence {s;} as in the statement of the lemma an Ay-chain from g
to h. If C is finitely generated, then fix a generating set S¢ for C, and note that
the generators of C have word length in @' (G) less than some constant 4. For any
g.h € C, we can represent g~ '/ by a word 5155 - - - 5, with each s; in S¢, and then
the sequence e, S1, 152, ..., S152 Sy = g_lh is a Ag-chain from e to g_lh, and
hence g, g51, £5152,...,885182 8y, = his a Ag-chain in C from g to A.

Assume now that C contains a 4o-chain between any two of its elements, for some
Ao, and let Sc = C N By, (e). Since G is finitely generated, Sc is finite, and we
claim that S¢ generates C. Fix any h € C, and lete = s¢, 51, ... 8,—1,5, = hbea
Ao-chainin C frome toh. Thenh = so(sy 's1) (57 s2) +++ (57 55n—1) (s, L, sn), with
so = e and (si_ls,-+1) in S¢ for each i. Thus Sc generates C, so we are done. [J

Proof of Theorem 5.1 in the case that n = 1. Recall that f: C1(G) — C1(G')isa
quasi-isometry, and that dy..s(f(C),C’) < oo. We shall show that C is finitely
generated if and only if C’ is.

Let f be a (A, k)-quasi-isometry. Let n = dyaus(f(C), C’), and assume that C
is finitely generated. Since f has a quasi-inverse, it suffices to prove that C’ must
also be finitely generated.

Fix ¢/, € C’, and let s, ...s, be a sequence of vertices in C such that
d(f(s0).8") <n,d(f(sm).h') <n,and d(s;,siy+1) < Ag foralli. Lets; = f(s;),
and let s;' € C’ be such that d(s;,s;) < n. As d(s,s; ;) < AAo + k, we must

1’51

have that d(s{’, s;", ;) < AAo + k + 2n. Then the consecutive terms of the sequence

g, sq.87,....8,, h" are less than (A Ao + k + 2n) apart, thus by the lemma above,

»On

C' is finitely generated. O

Next, we will introduce a few new notions, and then see that the theorem holds
forn > 1. If C is a finitely generated subgroup of a finitely generated group G,
then we shall use dg to denote the metric on G, and hence C, induced from the
finite generating set that is fixed for G, and we shall denote by d¢ the metric on C
that is induced from the finite generating set fixed for C. For any w € C, we shall
write |w|c¢ for d¢ (e, w), and we shall write |w|g for dg (e, w), for any w € G. For
simplicity, in the remainder of this section we shall work with metric spaces such as
(G, dg), instead of with Cayley graphs.

Definition 5.4. We shall say that a map between metric spaces, f: (X,dx) —
(Y, dy), is (¢, ®)-uniformly distorting, or (¢, ®)-u.d. if ¢ and ® are weakly increas-
ing proper maps from Rx¢ to R>¢, or from Im(dy) to Im(dy), such that, for any
x,x" € X and any r,

(1) if dx (x,x") = r then dy (f(x), f(x)) = ¢(r), and

(2) if dx (x,x") < r thendy (f(x), f(x)) < O(r).
We will say that f is u.d. if f is (¢, ®)-u.d. for some ¢ and P.

Note that the composition of u.d. maps is u.d.
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Convention 5.5. The metric spaces that we are interested in are groups with word
metrics, hence all distance functions below will take on only integer values. Therefore
we will only consider (¢, ®)-u.d. maps where we shall take the domain and range of
¢ and @ to be Z>y.

We note the following fact:

Lemma 5.6. Let G be a finitely generated group with finitely generated subgroup C.
Then the identity map ic : (C,dc) — (C,dg) is u.d.

Proof. We shall see that the geometric action of C on itself ensures that all metric
distortion is uniform.
Let
¢(r) = min{lclg : c € C, [c|c = 1},

and let
®(r) = max{|c|g :c €C, |c|c <r}.

As C is finitely generated, & is finite valued, and note that both functions are weakly
increasing. In addition, forany c¢qy,¢; € C,letc = cl_lcz and note that d¢ (¢c1, ¢2) =
|c|c = r implies dg(c1,c2) = |c|lg = ¢(r) and dc(c1,¢c2) = |c|¢ < r implies
dg(cy,c2) = |c|lg < P(r). As G is finitely generated, hence locally finite, it follows
that lim, 00 ¢ (r) = lim, o, ®(r) = 00, and hence that ¢ and ® are proper. O

We note, though we shall not make use of this fact, that in the above proof,
the function ® is bounded above by a linear function. For let S¢ denote the finite
generating set for C and let

L = max |s|g.
seSc

It follows that, for any ¢ € C, |c|g < L|c|c,hence &(r) < Lr.

Definition 5.7. If f: (X, dx) — (Y, dy) is a map between metric spaces and ¢ > 0,
then we will say that f is ¢-onto if the ¢-neighborhood of Im( f) in Y is equal to Y.
If f is t-onto for some 7, then we will say that f is coarsely onto.

If f is both u.d. and coarsely onto, then we shall say that f is a coarse isometry.

We note that any quasi-isometry is a coarse isometry.

Definition 5.8. We say that a function f1: (X,dx) — (Y, dy) has finite distance
from a function f>: (X,dx) — (Y,dy) if

sup dy (f1(x), f2(x)) < oo.

Justification for the terminology “coarse isometry” is in the following fact:
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Lemma 5.9. If f: (X,dx) — (Y,dy) is a coarse isometry between metric spaces,
then there is a coarse isometry f': (Y,dy) — (X, dx) suchthat ' f and ff’ have
finite distances from idyx and idy respectively.

Definition 5.10. We shall call any function f” satisfying the conclusion of the above
lemma a coarse inverse to f.

Proof of Lemma 5.9. Let ¢, ® and ¢ be such that f is z-onto and (¢, ®)-u.d., and
note that we can assume that ®(0) = 0. Let 7 denote nearest point projection from
Y toIm(f), and define f': Y — X totake any y € Y to a point x € X such that
f(x) =n(y).
Let
¢'(r) = min{s € Zsg : D(s) >r}

and let
@' (r) = max{s € Zxo : ¢(s) < r}.

Note that both ¢" and @’ are weakly increasing, and that ¢’ is proper. As ¢ is a proper
map, it follows that @ is as well.

Suppose that y1, y» € Y andr > OQaresuchthatd(yq, y») > r. Then we have that
d(m(y1), w(y2)) = r—2t,and it follows that d( /' (y1), f'(¥2)) = ¢'(r —2t). Simi-
larlyifd(y1, y2) < r,thend(m(y1), m(¥2)) < r+2tandhenced(f'(y1), f'(12)) <
@' (r + 2t). Hence if we let ¢”(r) = ¢’ (r — 2¢) (taking ¢’ to be zero on the negative
integers) and ®”(r) = ®'(r + 2t), then we have that " is (¢”, ®”)-u.d.

To see that ' is coarsely onto, note that if f(x) = f(x’) then d(x, x’) < ®'(0),
and hence for any y € Y, diam(f~!(y)) < ®(0). Note that Im( ') meets f~!(y)
for each y € Y, and it follows that f” is ®’(0)-onto, and hence a coarse isometry.

The above argument also implies that sup,cy d(f’' f(x),x) < ®'(0), so the
composite map f’ f is a finite distance from Idx. On the other hand, forany y € Y,

ff'(y) = m(y), hence sup,cy d(ff'(y),y) < t,s0 ff"is afinite distance from
Idy as desired. ]

We note also the following, the proof of which is left to the reader:

Lemma 5.11. Suppose that f: X — Y,g: Y — Z are coarse isometries. Then
gf: X — Z is also a coarse isometry.

We can now show the following, which explains our interest in coarse isometries:

Proposition 5.12. Let f: CY(G) — CY(G’') be a quasi-isometry between finitely
generated groups, and suppose that C is a subgroup of G, C' is a subgroup of G’,
and that dyas(f(C), C’') < oo. Then there is a coarse isometry between (C, dc¢)
and (C',dc).
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Proof. Let ic: (C,d¢) — (C,dg) and ic: (C',d¢c’) — (C’,dg’) denote the
identity maps on C and C’. As we saw in Lemma 5.6, both i¢ and i¢’ are u.d. and
hence coarse isometries. Let i /C, be a coarse inverse to ic-.

Let ¢ be such that diaus(f(C),C’) < t. Then we can extend i, to a coarse
isometry jc- from the z-neighborhood of C’ in G’ to (C’, d¢+) by defining the pro-
jection map 7 to take each point # in the neighborhood to a point ¢/ € C’ such that
dgr(n,c’) < t, and then setting jc/(n) = i, (c’). We have that jc is a coarse
isometry, hence so is jcr o f oic: (C,dc) — (C’,dc). O

For any discrete metric space (X, dx) and d > 0, we let Rips;(X) denote the
d-Rips complex of X, i.e., the simplicial complex whose vertex set is equal to X,
and such that any finite collection X, of vertices spans a simplex if and only if
dx (x,x") <d forall x,x" € Xy. Itis immediate that the proof of Lemma 2.9 of [11]
extends to the following:

Lemma5.13. Let f: (X,dx) — (Y,dy) be (¢, ®)-u.d. Then f induces a simplicial
map Rips;(X) — Ripsgg)(Y) for each d > 0.

We recall Definition 2.10 of [11]:

Definition 5.14. A metric space X is said to be coarsely n-connected if, for each
r > 0 there exists some R > r such that the map Rips, (X) — Ripsz(X) induces
the trivial maps on i homotopy groups, for every 0 < i < n.

Corollary 2.15 of [11] shows that coarse n-connectedness is a quasi-isometry
invariant. Inlight of Lemma 5.13, aminor alteration of that proof shows the following.

Theorem 5.15. Coarse n-connectedness is a coarse isometry invariant.
Thus we have

Theorem 5.16. The property of a finitely generated group being of type Fy,, n > 1,
is a coarse isometry invariant.

Proof. Suppose that C and C’ are finitely generated groups, with C of type F,, and
that there is a coarse isometry between (C, d¢) and (C’, d¢+). Then Theorem 2.17
of [11] implies that (C, d¢) is coarsely (n — 1)-connected, hence, by Theorem 5.15,
sois (C’,dc¢’). Tt is shown in the proof of Theorem 2.21 of [11] that each coarsely
(n — 1)-connected group has type Fj, so the theorem follows. O

Thus, Theorem 5.1 in the case thatn > 1 is immediate from Proposition 5.12 and
Theorem 5.16.
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6. The quasi-isometry invariance of the vertices of commensurizer type
of the Scott—-Swarup JSJ decomposition

The proof of Theorem 4.4 was motivated by the goal of showing that certain vertex
groups of the Scott—Swarup JSJ decomposition for finitely presented, one-ended
groups are invariant under quasi-isometries. We will see that our result follows
immediately from Theorems 3.8 and 4.4, given the theory of Scott and Swarup.

We shall begin with some basic facts about the Scott—Swarup decomposition,
and then discuss Papasoglu’s results from [21] that show the invariance under quasi-
isometry of certain parts of the decomposition. Next we will discuss Scott and
Swarup’s theory in more detail, and see that our invariance results follow from The-
orems 3.8 and 4.4.

For an introduction to splittings and graphs of groups decompositions of groups,
and group actions on trees, the reader is referred to [31], [29]. In [27], Scott and
Swarup construct a canonical JSJ decomposition I'; (G) of any one-ended, finitely
presented group G, in which the vertex groups “enclose” all splittings of G over
two-ended subgroups, and moreover, enclose all nontrivial almost invariant subsets
of G over two-ended subgroups (see Definition 6.9).

If v is a vertex of I'; (G), then we shall denote its vertex group by G(v), which is
defined up to conjugacy. Similarly if e is an edge of I'1 (G), then we shall let G(e)
denote its edge group.

I'1 (G) is a regular neighborhood, as defined in [27], of all the nontrivial almost
invariant subsets of G over two-ended subgroups. Thus I'; (G) is a bipartite graph of
groups with fundamental group G, and with the vertices in the complementary subsets
called Vy-vertices and V;-vertices. If v is a vertex of I'1 (G), then G (v) is said to be
either a V- or V;-vertex group, depending on whether v is a Vy- or V;-vertex.

Furthermore, each nontrivial almost invariant subset of G over a two-ended sub-
group is “enclosed” by some Vj-vertex. We shall define nontrivial almost invariant
sets and the notion of enclosure below, but in the case that such an almost invariant set
is associated to a splitting of G, this means that the enclosing Vj-vertex group admits
a splitting that is compatible with I'y (G). Moreover, when I'; (G) is refined by this
splitting, the added edge is associated to the given splitting of G. Each Vj-vertex of
I'1 (G) encloses at least one such splitting of G over a two-ended subgroup.

Each Vy-vertex v is one of three types:

(1) v isisolated
(2) v is of Fuchsian type, or
(3) v is of commensurizer type.
If v is isolated, then v is of valence two. Moreover, if we let e; and e, de-
note the edges incident to v, then the inclusions of G(e;) and G(e3) into G(v) are
isomorphisms, and all three subgroups are two-ended.

If v is of Fuchsian type, then G(v) is finite-by-Fuchsian, where the Fuchsian
group is a discrete group of isometries of the hyperbolic plane or of the Euclidean
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plane, but is not finite nor two-ended. Associated to each peripheral subgroup of
G (v) there is exactly one corresponding edge e incident to v, and G(e) is conjugate
to that subgroup.

Lastly, if v is of commensurizer type, then v is not isolated nor of Fuchsian type,
and there is a two-ended subgroup H of G with é(G, H) > 3 such that G(v) =
Commg (H). Only in this case is it possible that the subgroups carried by the edges
incident to v are not two-ended, and in fact they may not even be finitely generated.
It follows that the V;-vertex groups of I'; (G) may not be finitely generated either.

We say that a subgroup C of G is a vertex group of isolated, Fuchsian or com-
mensurizer type respectively if C is the vertex group of a vertex of I'; (G) of isolated,
Fuchsian or commensurizer type respectively.

It is natural to ask if "1 (G) is somehow invariant under quasi-isometries. While
the underlying graph of I';(G) need not be invariant, one could ask whether or not
the existence of vertex groups of certain types is invariant under quasi-isometries. If
the answer to this is ‘yes’, then one could ask if the locations of these vertex groups
is also invariant under quasi-isometries, in the sense of a quasi-isometry being forced
to take a vertex group to within a finite Hausdorff distance of a vertex group of the
same type. Papasoglu has addressed these questions for the Dunwoody—Sageev JSJ
decomposition of one-ended, finitely presented groups.

The JSJ decomposition of a group G as given by Dunwoody and Sageev in [4] is
a graph of groups decomposition of G, say I'ps(G), which is bipartite. Call the two
types of vertex groups white and black, and then all the black vertex groups are either
of Fuchsian type or of isolated type (see above). I'ps (G ) describes all the splittings of
G over two-ended subgroups, in the sense that if G splits over a two-ended subgroup
C, either as A xc B or A*c, then C is conjugate into a vertex group of I'pgs, has
a finite index subgroup which is contained in a black vertex group, and each white
vertex group is conjugate into A or B.

All of the edge groups of I'ps(G) are two-ended, and it is this that Papasoglu
exploits in [21] to prove the quasi-isometry invariance of this JSJ decomposition.
Specifically, the author proves the following.

Theorem 6.1. [21] Let G and G’ be one-ended, finitely presented groups. Suppose
that f: CY(G) — CY(G') is a quasi-isometry. Then there is a constant C > 0 such
that if A is a subgroup of G conjugate to a vertex group, a vertex group of Fuchsian
type, or an edge group of the graph of groups U'ps(G), then f(A) has Hausdorff
distance less than or equal to C from a subgroup of G’ conjugate to, respectively, a
vertex group, a vertex group of Fuchsian type, or an edge group of Tps(G’).

Given any one-ended, finitely presented group G, I'ps (G) differs from I'; (G) as
follows. The Fuchsian type vertex groups of I'ps(G) and the Fuchsian type vertex
groups of I'1(G) are the same (up to conjugacy), and have the same edge groups.
Also, the isolated vertex groups of I'1 (G) are vertex groups of I'pg(G), and have the
same edge groups. Thus V;-vertices adjacent only to Fuchsian and isolated vertices of
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I'1 (G) are the same as the corresponding white vertex groups of I'ps(G). So I'1 (G)
differs from I'ps(G) only at the vertices of commensurizer type, and the adjacent
edges and V-vertices.

Thus Theorem 6.1 shows the invariance under quasi-isometries of the Vp-vertex
groups of I'1 (G) of isolated and Fuchsian types, as well as those V;-vertices that are
adjacent only to the isolated and Fuchsian Vjp-vertices. It does not, however, answer
the question of the invariance of the vertex groups of commensurizer type.

In fact the vertices of commensurizer type are invariant under quasi-isometries,
and this fact is an immediate corollary to Theorems 3.8 and 4.4, in light of the
following fact about I'; (G):

Theorem 6.2. Let G be a one-ended finitely presented group, and let H be a two-
ended subgroup of G. Then Commg (H ) is avertex group of I'1 (G ) of commensurizer
type if and only if (G, H) > 4.

This theorem is not stated explicitly in [27], so we digress in order to explain how
it follows from that work.

We will need a more detailed description of I'; (G) in order to do this. We begin
with some definitions from [27].

Let H be asubgroup of G, let X be a subset of G and let X * denote the complement
of X in G. Recall that X is said to be H -finite if it is contained in the union of finitely
many cosets Hg of H.

Definition 6.3. X is an H -almost invariant subset of G, or an almost invariant subset
of G over H,if HX = X and the symmetric difference of X and Xg is H -finite for
allg € G.

We say that an H -almost invariant set X is nontrivial if neither X nor X* is
H -finite.

(We note that any H-almost invariant subset of G represents an element of
(P G/ FrG)° from Section 3, though a representative of an element of (P G/ Fg G)©
need not be fixed by the left action of H.)

Remark 6.4. H -almost invariant subsets of G generalize splittings of G over H, for
there is a natural way to associate to any splitting of G over H an H -almost invariant
set as follows.

Suppose that G admits a splitting over H, and let T be the associated tree. Let
V(T) denote the vertex set of T, fix a basepoint w € V(T) and let e be an oriented
edge of 7" with stabilizer H. Then e determines a partition of V' (T'): consider the two
subtrees of T resulting from the removal of the interior of e. Let Y, denote the vertex
set of the subtree containing the terminal vertex of e and let Y,* denote the vertex
set of the other subtree. Let ¢ : G — V(T') be defined by setting ¢(g) = g - w, let
Ze =9 1(Y,) and let Z} = o~ 1(Y}F).
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Lemma 2.10 of [27] shows that Z, and Z are H-almost invariant subsets of
G. Moreover, these sets are canonically associated to the given splitting, up to com-
plementation and H -finite symmetric difference. (A different choice of basepoint,
for instance, would result in an H -almost invariant set that has H -finite symmetric
difference with Z,.) See section 2 of [27] for more details.

By looking at the translates gZ, of Z, by elements of G, one can recover the
action of G on T, but in general one does not get a tree action by looking at translates
of almost invariant sets.

There is a notion of almost invariant sets crossing:

Definition 6.5. Let X be an H -almost invariant subset of G and let Y be a K-almost
invariant subset of G. We say that Y crosses X if none of the foursets X NY, X*NY,
XNY*and X* NY™*is H-finite.

Scott shows in [26] that the crossing of nontrivial almost invariant sets is sym-
metric:

Theorem 6.6. [26] Let G be a finitely generated group with subgroups H and K, let
X be a nontrivial H -almost invariant subset of G and let Y be a nontrivial K -almost
invariant subset of G.

Then Y crosses X if and only if X crosses Y.

Recall that, if X is a subset of G then we may think of X as a subset of the vertex
set of C1(G), hence we may think of the coboundary of X, §X, as a collection of
edges in C1(G).

In [27], notions of strong and weak crossings play an important role.

Definition 6.7. Let X, Y be as in Definition 6.5. Then we say that Y crosses X
strongly if §Y N X and §Y N X* project to infinite sets in H\C'(G).
If Y crosses X, but not strongly, then we say that Y crosses X weakly.

Remark 6.8. If Y crosses X strongly, then Y crosses X.

Whether or not Y crosses X strongly does not depend on our choice of finite
generating set for G.

In general, strong crossing is not symmetric: it is possible to have ¥ cross X
strongly and X cross Y weakly (see Example 2.26 of [27]). However, if H and K
are both two-ended, then the notion is symmetric ([27], Proposition 7.2).

Finally, we must discuss the notion of enclosing. Recall that, given a based G-tree
T with an edge e, we defined almost invariant sets Z, and Z,* in Remark 6.4.

Definition 6.9. Let X be a nontrivial H -almost invariant subset of a group G, let T’
be a G-tree and let I denote the graph of groups decomposition of G associated to



The quasi-isometry invariance of commensurizer subgroups 239

T. Pick a basepoint in V(T), so that, for any oriented edge e of T, we can define the
sets Z,., Z.* as in Remark 6.4.

Suppose that u € V(T) is such that, for all edges e of T that are incident to u
and directed towards u, X N Z,* and X* N Z,* are H -finite. Then we say that the
vertex v = G\u in I encloses X .

Suppose for a moment that X is associated to a splitting o of G (see Remark 6.4).
In this special case, a vertex v in I' enclosing X is equivalent to I" and o having a
common refinement I', that differs from I" only in that v is replaced by an edge, and
the splitting of G associated to that edge is o.

The reader is referred to Section 4 of [27] for more detail and motivation for the
concept of enclosing.

We have defined everything we need in order to discuss I'; (G) in enough detail
to explain how Theorem 6.2 follows from [27]. All almost invariant subsets of G
discussed in the remainder of this section are over two-ended subgroups.

Recall that I'1 (G) is such that its Vj-vertices enclose all nontrivial almost invariant
subsets of G, and that each Vy-vertex encloses at least one such subset.

If v is isolated, then the only almost invariant sets enclosed by v are those from
the splitting of G associated to the edges incident to v, hence v does not enclose
any crossing almost invariant sets. Conversely, if a Vj-vertex v does not enclose any
crossing almost invariant sets over two-ended subgroups, then v is isolated. Moreover,
if X is an H -almost invariant set of G which is enclosed by v, then (G, H) must be
2 or 3 (see part 1 of Theorem 1.9 from [28]).

If v is of Fuchsian type, then v is not isolated, and any almost invariant sets
enclosed by v that cross do so strongly. (See Propositions 7.2, 7.4 and 7.5 of [27].)
Also, Theorem 7.8 of [27], tells us that, if X is an H -almost invariant set that is
enclosed by a vertex v of Fuchsian type, then we have that either é(G, H) = 2, or X
is associated to the splitting given by an edge incident to v.

If v is of commensurizer type, then any two almost invariant sets enclosed by
v that cross do so weakly. Moreover, if X and Y are almost invariant sets over
subgroups H and K that are enclosed by v, then H and K are commensurable
(see Propositions 7.3 and 7.5 of [27]), G(v) = Commg(H) = Commg(K), and
e(G,H) = e(G, K) is at least 4. Conversely, if H is a two-ended subgroup of G
such that é(G, H) > 4 and there exists a nontrivial H -almost invariant subset of G,
then there is a commensurizer vertex group of I'1 (G) that is equal to Commg (H ).
(See part 1 of Theorem 1.9 from [28].) We note that if (G, H) > 4 and there are no
nontrivial H -almost invariant subsets of G, then Lemma 2.40 of [27] implies that H
contains a (finite index) subgroup H’ such that (G, H') = é(G, H) and there exists
a nontrivial H'-almost invariant subset of G. Hence in this case I'; (G) contains a
commensurizer vertex group equal to Commg (H’) = Commg (H).

Thus if H is a two-ended subgroup of G, then Commg (H ) is a vertex group of
I'1 (G) of commensurizer type if and only if €(G, H) > 4. This proves Theorem 6.2,
and thus we have the following immediate corollary to Theorem 3.8:
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Corollary 6.10. Let f: C1(G) — CY(G') be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groups G and G'. Then T'1(G) has a vertex
group of commensurizer type if and only if T'1(G') does.

Moreover, the next fact follows immediately from Theorem 4.4.

Corollary 6.11. Let f: C1(G) — CY(G') be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groups G and G’', and suppose that C is a
vertex group of T'1(G) of commensurizer type. Then there is a vertex group, C’, of
I'1(G’) of commensurizer type such that

diaus(f(C), C’) < o0.

In addition, “small” and “large” vertex groups of commensurizer type are invariant
under quasi-isometries. We recall from [27] that a vertex group C = Commg (H)
of I'1 (G) of commensurizer type is said to be small if H is of finite index in C, and
otherwise, C is said to be large. Thus C is small if and only if e(C) = 2.

Hence Theorem 4.4 also implies the following.

Corollary 6.12. If f: C1(G,) — CU(G,) is a quasi-isometry between the Cayley
graphs of finitely presented, one-ended groups G1 and G, then I'1(G1) has a vertex
group of small commensurizer type if and only if T'1(G3) does, and T'1(G1) has a
vertex group of large commensurizer type if and only if I'1(G>) does.

7. On the quasi-isometry invariance of the topological JSJ decomposition

We recall that any orientable Haken 3-manifold M with incompressible boundary has
aJSJ decomposition, and the “characteristic” pieces of this decomposition essentially
make up the characteristic submanifold of M, V(M). (See below for a description
of V(M).) In this section, we shall discuss how Scott and Swarup’s theory of JSJ
decompositions of groups, together with Corollary 6.11, imply the invariance under
quasi-isometries of the Seifert fibered components of V(M) that meet OM.

We first remark that M. Kapovich and Leeb have used different methods to prove
a stronger result that implies this one. In Theorem 1.1 of [15], the authors prove
the quasi-isometry invariance of all components of characteristic submanifolds of
Haken manifolds with zero Euler characteristic. We also note that, in the earlier
work [14], the authors proved the quasi-isometry invariance of the existence of (not
necessarily peripheral) Seifert fibered components of characteristic submanifolds for
Haken manifolds with zero Euler characteristic that are not Nil nor Sol.

Our main result in this section is the following.

Corollary 7.1. Let M and M' be connected orientable Haken 3-manifolds with in-
compressible boundary, and with f: m1(M) — w1 (M’) a quasi-isometry. Suppose
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that N is a nonexceptional Seifert fibered component of the characteristic submani-
fold of M that meets the boundary of M.

Then there is a nonexceptional Seifert fibered component, N', of the characteristic
submanifold of M’ that meets the boundary of M'. Moreover, if C denotes the
subgroup of w1 (M) induced by the inclusion of N into M and C' denotes the subgroup
of w1 (M) induced by the inclusion of N' into M’, then

dHaus(f(C), Cl) < OQ.

This corollary will follow immediately from Corollary 6.11 and the following
proposition.

Proposition 7.2. Let M be a connected orientable Haken 3-manifold with incom-
pressible boundary and let G = 1(M). Then there is a one-to-one correspondence
between the nonexceptional Seifert fibered components of V(M) that meet M and the
commensurizer vertex groups of 1I'1(G), given by taking a Seifert fibered component
N to the subgroup of G given by the inclusion of w1 (N) into w1 (M).

Before proving Proposition 7.2, we recall some basic definitions. We say that a
3-manifold M is irreducible if every 2-sphere in M bounds a 3-ball. We call a map
of a surface S into M proper if the map takes 05 into dM. A proper embedding
of an orientable surface S that is not the disk or 2-sphere into M is said to be
incompressible if it induces an injection on fundamental groups. An embedding of
the 2-sphere into M is incompressible if the image does not bound a 3-ball. We
say that M has incompressible boundary if the inclusion of dM into M induces an
injection on fundamental groups. We say that M is an orientable Haken 3-manifold
if M is compact, orientable, irreducible, and contains an incompressible surface.

A map of the torus into M is said to be essential if it is incompressible and not
homotopic into M, and a proper map of the annulus into M is said to be essential
if it is incompressible and is not properly homotopic into dM .

Following [27], we shall say that an embedded essential annulus or torus S in
M is canonical if any essential map of the annulus or torus into M can be properly
homotoped until it is disjoint from S. We shall say that a submanifold N of M is
simple if any essential map of an annulus or torus into M with image in N can be
properly homotoped into the frontier of N.

Jaco and Shalen [9] and Johannson [10] proved that there is a unique finite collec-
tion 7 of disjoint canonical annuli and tori in M such that 7 contains one represen-
tative from each isotopy class of canonical annuli and tori in M. These authors also
showed that the pieces obtained by cutting M along 7 are I-bundles over surfaces,
Seifert fibered, or simple; we shall consider these pieces to be submanifolds of M.

We define the characteristic submanifold of M, V (M), to be the collection of [ -
bundle and Seifert fibered submanifolds as above, except that if two such submanifolds
meet one another at some surface S € 7, then we shall remove aregular neighborhood
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of S from V(M). Also if two simple submanifolds meet at some S € 7, then we
shall add a regular neighborhood of S to V(M).

Thus V(M) is a submanifold of M, each component of which is a regular neigh-
borhood of an annulus or a torus, an /-bundle over a surface, or is Seifert fibered. We
shall say that a component of V(M) is exceptional if it is a solid torus with frontier
3 annuli of degree 1, or 1 annulus of degree 2 or 3, or is a twisted I-bundle over the
Klein bottle as described in [27]. A component of V(M) is called peripheral if it
meets OM .

We are now in a position to show the correspondence between the nonexceptional
peripheral Seifert fiber components of V(M) and the commensurizer vertex groups
of I't (r1 (M)).

Proof of Proposition 7.2. Let M be a connected orientable Haken 3-manifold with
incompressible boundary and let G = 7;(M). For any subgroup H of a group G,
we shall denote by Ng (H) the normalizer of H in G.
The proposition is vacuously true if G is finite, so it suffices to take M such that G
is infinite, hence torsion-free. Thus the two-ended subgroups of G are infinite cyclic.
If N is a Seifert fiber space with infinite fundamental group, then we have the
following short exact sequence:

1>7Z— m(N) > m(B) > 1,

where the Z is generated by a regular fiber of N and B denotes the base 2-orbifold
of N (see, for example, [25]).

In fact, [36] and [35] imply that if N is an orientable Haken 3-manifold with
infinite fundamental group, then the converse holds: if 71 (N) has a normal infinite
cyclic subgroup then N is Seifert fibered. We will be interested in manifolds N that
are orientable, irreducible and with nonempty boundary. Any such N is Haken, so
this result will apply.

Consider again M and G, and suppose that H = (h) C G is infinite cyclic.
Recall that Ng(H) C Commg (H); it follows from work of Jaco and Kropholler
that Commg(H) = Ng({(h™)) for some m > 1. To see this, we have that Jaco
showed in [8] that any g € Commg (H) is contained in Ng ({h")) for some n, thus
any finitely generated subgroup of Commg (H) is contained in Ng ({h")), for some
n depending on the subgroup. In [17], Kropholler showed that ascending chains of
centralizers in G must terminate, and thus ascending chains of normalizers of infinite
cyclic subgroups must also terminate. Since Commg (H ) can be exhausted by finitely
generated subgroups, it follows that Commg (H) = Ng({(h"™)) for some m > 1, and
that Commg (H) is finitely generated.

We note that if M is Seifert fibered and H = Z denotes the subgroup of 3 (M)
that is carried by a regular fiber of M, then H has infinite index in 71 (M), and has
more than three coends in G if and only if M is a nonexceptional Seifert fiber space
with nonempty boundary. Thus the proposition follows if M is Seifert fibered or G
is itself of commensurizer type.
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We shall now prove the proposition, assuming neither of these are the case. Sup-
pose that N is a Seifert fibered component of V(M) and let C denote the subgroup
of G that is carried by N. Thus N is orientable, Haken and with boundary, and C
must be finitely generated. Let H = (h) denote the subgroup of G generated by a
regular fiber of N, so that H is normal in C. As we noted above, H is of infinite
index in C, and N is peripheral and nonexceptional (hence a peripheral component
of V(M)) exactly when (G, H) > 3.

In this case, C is contained in a commensurizer vertex group C’ = Commg (H)
of T'1(G), with C' = Ng({h™)) finitely generated and m > 1. Suppose that this
containment is proper.

Consider the cover of M with fundamental group C’, which we shall call M¢,
and denote by p the projection from M¢ to M. By the theory of Scott [24], M¢-
contains a compact submanifold, let’s say N’, with fundamental group C’. Thus N’
is a Seifert fiber space, and it follows from [9] or [10] that p can be homotoped so
that p(N’) is contained in a Seifert fibered component of V(M).

As we have assumed that C is properly contained in C’, this component must be
different from N. Let us call it S, and note that S is nonexceptional and peripheral,
for e(G, (h™)) > 3 and hence the subgroup carried by a regular fiber of S will also
have more than three coends in G. It follows that there is a collection of canonical
annuli and tori that separates N from S in M, which we shallcall ¥, ..., ;. Hence
G has a graph of groups decomposition over the surface groups 1 (X;), with C and
C’ contained in distinct vertex groups. But C C C’, so C must be contained, up to
conjugacy, in an edge group 71(X;). This is not possible, hence we must have that
Cc=cC.

Now suppose that C’ = Commg (H ) is a commensurizer vertex group of I'1 (G),
so C' = Ng({h™)) for some m > 1 and C’ is finitely generated. Consider the cover
of M with fundamental group C’, which we shall call M¢/, and denote by p the
projection from M¢- to M. As we saw above, M¢- contains a Seifert fiber space N',
and p can be homotoped so that p(N') is contained in a Seifert fibered component S
of V(M). Let D denote the inclusion of 71(S) into G, and we have that C' C D
and D = Ng(H'), where H' is a finite index subgroup of (™). We note that
é(G, H') > 3, s0 S is nonexceptional peripheral. But Ng(H') C Commg(H’) =
Commg (H), so D = C’, and the proposition follows. O

8. Application to the groups QI(G)

As we will see in Corollaries 8.1 and 8.3 below, Proposition 4.3 gives some insight into
the structure of groups of quasi-isometries of one-ended, finitely presented groups.
Corollary 8.1 is related to a result of Souche and Wiest, who investigate QI(7" x R")
for infinite trees T in [32].

We first introduce the notion of the group of quasi-isometries of a group. Given
metric spaces X and Y, one may consider all quasi-isometries from X to Y, modulo
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the relation that /' ~ f’ when

sup d(f(x), f'(x)) < oo. (&)

This collection forms a group, which we shall denote by QI(X, Y). It is standard
to denote QI(X, X) by QI(X), and QI(C'(G)) by QI(G), for any finitely generated
group G.

The groups QI(G) are generally very complicated—for instance, Sankaran has
shown that QI(Z) contains Thompson’s group F and the free group of continuous
rank ([23]).

Our first corollary is about the quasi-isometries of commensurizer groups. Sup-
pose that G is finitely presented, one-ended, and equal to the commensurizer of a
two-ended subgroup H such that (G, H) > 3. Then recall that we can think of H
as a subset of the vertex set of C!(G). The vertex set of C'(G) is equal to the disjoint
union of the translates (that is, cosets) of H, and any two translates gH, g’ H are of
finite Hausdorff distance from one another (see Lemma 4.1).

Thus we can define a metric on G/H such that the distance between gH and g’ H
is equal to the Hausdorff distance between gH and g’H in C!(G). Note that if H
happens to be a normal subgroup of G, then this recovers the metric on the vertex set
of the Cayley graph for G/H , with respect to the given generating set for G.

If f is aquasi-isometry from G to itself, then, by Theorem 3.8 and Proposition 4.3,
there is some infinite cyclic H' C G with &(G, H’) > 3 and a constant y such
that, for each g € G, dyas(f(gH),g’H') < y for some g’ € G. In addition, it
follows from Theorem 3.1 that H and H’ are a finite Hausdorff distance from one
another in C!(G). Hence there is some constant z > y such that, for each g € G,
duas(f(gH), g'H) < z for some g’ € G.

Thus the quasi-isometry f: C1(G) — C!(G) induces a map from G/H to itself,
that takes any gH to some point g’ H such that dy..s(f(gH),g'H) < z. As fisa
quasi-isometry, it follows that this new map is as well, and this gives the following.

Corollary 8.1. Suppose that G is a one-ended, finitely presented group such that

G = Commg (H) for a two-ended subgroup H of G that has at least three coends

in G. Consider G/H, with a metric defined by setting the distance between gH and

g’ H to equal the Hausdorff distance between the vertex sets gH and g'H in C1(G).
Then there is a canonical map QI(G) — QI(G/H).

Remark 8.2. We note that the kernel of this map QI(G) — QI(G/H) is exactly
the set of equivalence classes of quasi-isometries f: C1(G) — C!(G) for which the
distances dy.us(f(gH), gH) are uniformly bounded.

We can generalize this for the case of general one-ended finitely presented groups
G. Suppose that G contains at least one two-ended subgroup H with (G, H) > 3,
and for any such H, let My denote the metric space with underlying set equal to
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Commg (H)/H and the distance between any two points gH and g’ H defined to
equal the Hausdorff distance between those sets in C!(G).

Fix any such H, and any quasi-isometry f : €!(G) — C!(G). Then Theorem 3.8
shows that there is some two-ended subgroup of G, H’, (possibly equal to H) such
that dyas(f(H), H') < o0 and e(G, H) = ¢(G, H').

Proposition 4.3 implies that f induces a quasi-isometry from My to My asin the
above argument. Thus, not only do we get a natural map taking f into QU( Mg, My-),
but we also get a natural map of f into the symmetric group of a suitable collection
of two-ended subgroups of G with a fixed number of coends.

We shall fix some more notation so that we can say this more carefully. For each
n € {3,4,5,...} U{oo}, let K, denote a maximal collection of two-ended subgroups
of G that have n coends in G and are of pairwise infinite Hausdorff distance in €1 (G).
Thus, for any n, f induces an element of HHeKn QI(Mpu, My (a)), for some o in
the symmetric group on K.

In fact, we can say a bit more. Note that by Theorem 4.4, any groups H and
o (H) as above must have quasi-isometric commensurizers. Thus if we let {K;) } jedn
denote the partition of K, into collections of subgroups with quasi-isometric com-
mensurizers, i.e., H, H' € K; for some j € Jy if and only if Commg (H) and
Commg (H’) are quasi-isometric, then the permutation o above must be contained in
[lies, Sym(Kj), where Sym(K; ) denotes the symmetric group on K; . Moreover,
f induces such a map for all .

Thus we have the following corollary:

Corollary 8.3. Let G be a one-ended finitely presented group and let further N =
{3,4,5,...} U{oo}. Foranyn € N, let K, be a maximal collection of two-ended
subgroups of G with n coends that have mutually infinite Hausdorff distance, and let
(K} }ied, be the partition of K, into sets of subgroups of quasi-isometric commen-
surizers.

Then there is a canonical map

QI(G) — {HneN [lex, QUMu, Mo)) @ 0 € [[hen HjeJn Sym(K,ﬁ.)}.

Remark 8.4. As was the case in Corollary 8.1, the kernel of the map given in Corol-
lary 8.3 is not hard to describe at the following level: a quasi-isometry f: C1(G) —
C!(G) is in this kernel if and only if, for each two-ended subgroup H with at least
three coends in G, there is a constant y > 0 such that, for all g € Commg (H),

dyans(f(gH ), gH) < y.

A. Appendix

This appendix contains a proof of Theorem 3.1, which is provided to clarify the
argument given in [21]. A few definitions are required first.
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Let (X, d) be a metric space. If A, B C X then let di,s(A, B) denote

inf d(a,b).
aezlclr,lbeB (a )

We note that when A and B are not single points, this function does not necessarily
obey the triangle inequality. Nonetheless, this notation will be useful to us.

If A C X, let fr(A) denote the frontier of 4 in X, so fr(4) = AN X — A.

Let A C B C X, with B path connected, and we will let CH(A, B) denote the
convex hull of 4 in B, with respect to the path metric in B induced by the geometry
of X.

Fix A¢ > 0, and recall from the proof of Lemma 5.3 that a sequence sg, 81, . . ., Sp
of points in X is an Ag-chain from s to s, if d(s;, s;+1) < Ao forall i.

Let L' be a (¢, N) quasi-line with associated line I’. Following [21],if x = I"(xg)
and y = I’(yo), then we will denote by [x, y];- the segment I’([xo, yo]) in L', and
we will write x < y if xo < yo. Moreover, for arbitrary x, y € L’, we shall denote
by [x, y]r’ the “thickened segment” {z € L’ : d(z,[x0, Yoy < N}, where xo (yo
respectively) is a point in /” that can be connected to x (y respectively) by a path in
L' of length no more than N. Let length([x, y]z/) denote length([xo, yo]).

Recall that we say that two points a and b are K -separated by a quasi-line L1 if
Bk (a) and Bk (b) are in different components of X — L.

Theorem 3.1 ([21]). Let G be a one-ended, finitely presented group, and let L, L,
be (¢', N') quasi-lines in C'(G) that satisfy iness(m')). Suppose that L is 3-parting.

Then there is some K = K(G,¢’, N', m') such that no two points a,b € L are
K-separated by L.

Proof. Let C! = C1(G) and let €2 = C2(G). Recall that we may think of C! as the
1-skeleton of G2, and that there is a uniform bound to the size of the 2-cells of C2.
We will begin by showing that it suffices to work in C2, instead of C!.

We note that there exist A > 1, C > 0, depending only on G (and its associated
finite presentation), such that the inclusion of C! into €2 is a (A, C) quasi-isometry.

Suppose that L’ is a (¢’, N') quasi-line in C! that satisfies iness(m}) and is n-
parting in C!, for some n > 1, and consider L’ as a subset of the 1-skeleton of G2,
By Lemmas 2.18 and 3.7, there is a neighborhood of L’ in G2, which we shall call L',
that is an n-parting (¢”, N') quasi-line satisfying iness(m1), where ¢”, N” and m,
depend only on G, ¢, N' and m/;. We can further assume that L'isa subcomplex
of €2,

Now recall the quasi-lines L, L in C!. Suppose that there is some K such that
no two points in L canbe K -separated by Ly in G2, Recall that inclusion is a (A, C)
quasi-isometry from C! to 2. Thus no two points in L can be (AK + C + N”)-
separated by L; in C!, so the theorem will follow, with (AK + C + N") replacing
K. Thus we shall no longer work with C 1 but with @2 instead, together with L and
L1, which are both (¢, N”) quasi-lines.
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We shall next reduce to the case that L is simply connected. Let A’ denote a
collection of regular polygons attached to €2 along all simple closed edge paths of
L of length no more than [¢”(2N” + 1) + 2N” + 1]. Then the methods from the
proof of Lemma 2.13 show that LUA is simply connected in G2 U A’. Let X denote
@2 U A/, and we note that X is simply connected.

By construction Lis 3-parting in €2, and it follows that LUAis 3-parting in X.
Also we have that L U A’ is a (¢, N) quasi-line, for some ¢ and N' depending on ¢”
and N”.

Consider the union of L with any cells of A’ that meet it. This union has at least
as many essential complementary components in X as L does in C!, and is also a
(¢, N) quasi-line. By abuse of notation, we shall refer to this union containing L
as L1, and we shall refer to L U A’ as L throughout the following.

Thus L and L are both (¢, N) quasi-lines, and L is 3-parting. We note that both
L and L satisfy iness(m1). Moreover, as L is simply connected and X is the union
of a Cayley complex of G and some 2-cells of bounded size, the methods in the proof
of Lemma 2.14 show that L and L satisfy ess(mg) for some mg > 0.

We claim that it suffices to consider L and L; in X to prove the theorem. For
the inclusion of €2 into X is a (A’, C’) quasi-isometry for some A’ > 1,C’ > 0
depending on G and [¢”(2N" 4+ 1) + 2N" + 1]. So if we can find a value of K such
that no two points in L can be K-separated by L in X, then it follows that no two
points of Lcanbe (MK +C’ )-separated by Ly in €2, so the theorem holds.

We shall make one final reduction before beginning our argument. Let / be the
line associated to L and let /; be the line associated to L. If we show that no two
points a and b of L can be K-separated by L in the case that a and b are vertices
of [, then our result follows: in order to get the constant K for arbitrary a,b € L, it
suffices to add (N + 1) to the constant we find, since any point in L is a distance of
less than (N + 1) from a vertex of /.

Thus we shall prove that, given the new quasi-lines L and L defined above in the
2-dimensional CW complex X, there exists some K such that no two vertices a, b in
[ can be K-separated by L.

We shall make use of winding numbers (of curves about points in the disk) in
our argument. See, for instance, Chapter 10 of [20]. In particular, we will need the
following fact.

Lemma A.1. Suppose that a, B, y are oriented curves in a 2-disk D?, and let —y
denote the curve y with the opposite orientation. Suppose further that o U B, o U y,
and B U —y are closed oriented curves, and that v is a point in D? that is not met by
a, B ory. Forany oriented closed curve § C D?* —{v}, let w,(8) denote the winding
number of § about v.

Then

wy(a U B) = wy(@Uy) +wy(BU—y).

We will also make use of the next lemma. Stated in the setting of €', Lemma 1.9
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of [21] may be restated as the following.

Lemma A.2 ([21]). Let G be a finitely presented group and let L' be a 1-parting
(¢, N) quasi-line in C*>(G) that satisfies ess(mg). Given any ry > 0, there is some
ry = 12(G, ¢, N, r1,mg) > max{ry, mg} such that, for any vertices a < b in L' with
length([a, b)) > 272, and for any essential component Y of C2(G) — L', there is a
simplicial path p joining a tob in Y U L', such that

(1) pN Ny ([a+7r2,b—12]1) = D, and
(2) p C Ny, ([a.b]r).

As X is a Cayley complex, together with additional 2-cells of bounded size, we
note that there is an increasing function 7 : R — R such that, for any simplicial
path in X of length less than or equal to r, there is a simplicial null-homotopy of
that path that is contained in the i (r)-neighborhood of the path. The methods of
Lemma 2.13, together with this observation, imply the following lemma.

Lemma A.3. There exists a constant M = M(X, ¢", N”,i) such that, for any closed
curve y in Ly, there is a null-homotopy of y that is contained in Npys(y) C Npg(Ly).

We shall now set up some constants so that we can show that no two vertices in /
can be K-separated by L, for a value of K to follow. Let R > (%¢>(2N) +N+M),
let K7 > [%gb(Z(N + R+ 1))+ (2N + R+ 1)+ NJ, let r; be larger than K1 + N,
and let r, be as in Lemma A.2, with respect to r; and the other data we are working
with. Let K > max{3[¢(K1 + N +r2) + K1 + N + r2].ro + R+ 1}.

In summary, we have the following conditions on constants:

* R>1¢Q2N)+ N+ M,

Ki>3¢Q2(N+R+1)+ Q2N +R+1)+N,

*r1> Ky +N,

e rpisfrom LemmaA.2 and depends on G, ¢, N, ry, mg, with r, > max{ry, mo},
o K>max{3[p(Ki +N +r)+Ki+N+rl.ra+R+1}

Recall also that ¢: R>9 — Rx¢ is such that ¢ (¢) > ¢ for allt € Rx.

Now suppose that @ < b € [ are K-separated by L. Let X, X5, X3 denote
essential complementary components of L, and, fori = 1,2, 3, let p; denote a path
from a to b in X; U L from Lemma A.2, with respect to the constants r; and 7.

We can alter each p; so that it is a simple (simplicial) path, by deleting any
subpaths that begin and end at the same point. Note that this does not alter any of the
properties from Lemma A.2 that are satisfied by p;.

As a and b are in distinct components of the complement of L; and each p; is a
path from a to b, it follows that (p; N Ly) is nonempty. Let x € (p; N L) for any i,
and we shall show that di,¢(x, L) > K;. It suffices to show that, for any point ¢ € /,
d(x,c)> Ky + N.
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Asr; > K1+ N and x € p;, if ¢ € [a 4+ ra,b — rp]; then it is clear that
d(x,c) > Ki + N from the construction of p;. If ¢ € [(B,,(a) U B, (b)) N[a, b]],
then note that K > 1[¢(K;1 + N +1r2) + K1 + N + 2] = 3[(K1 + N +rp) +
K1+ N +r3] = K1+ N + rp, and recall that @ and b are K-separated by L;. Thus

d(x,c¢) > dint(L1,¢) > ding(L1, Bry(a) U By (b)) > K1 + N,

sod(x,c) > K; + N.

It follows from the construction of p; that x is of distance no more than r, from
a point d in [a, b];. Now suppose that ¢ € (—o0,a — ra];. If d(x,c) < K1 + N,
then d(d,c) < d(d,x) + d(x,c) < K1 + N + ra, and hence length[d,c]; <
¢ (K1 + N + rz). On the other hand, x € L1, so x ¢ Bx(a) and hence

K <d(a,x) <d(a,c)+d(c,x) <lengthla,c]; + (K1 + N)

and
K <d(a,x) <d(a,d)+ d(d, x) <lengthla,d]; + r>.

As a € (d, ), length[c, d]; = length[a, c]; + length[a, d];, hence the addition of
the above equations yields

2K <length[c,d]; + K1 + N + 7.

Combining this with the above observation that length[d, c]; < ¢(K1 + N +r3), we
have that

2K — Ky — N —rp <lengthla,d]; < $(K1 + N + r2).

Thus K < %[qﬁ (K1 + N +r2)+ K1 + N + r;]. But this contradicts our choice of
K. Thusd(x,c) > K1+ N, and similarlyifc € [b+r;,00);,thend(x,c) > K1+ N
as well. Hence diy¢(x, L) > K;.

Note that, if i # j, then (p; N p;) C L. It follows from this and our previous
observation that p; and p; will not meetin L.

Foreachi,letg;: S' — (X; U L) traverse the closed simplicial path p; U [a, b];.
As L is simply connected, Van Kampen’s Theorem implies that each X; U L is simply
connected. Thus thereisamapg; : (D;,dD;) — (X; UL, q;(S')), where D; denotes
a copy of the 2-disk D?, and gilap, = ¢i-

We shall denote by p; the subpath of dD; mapped homeomorphically onto p; by
gi. Similarly let m denote the subpath of dD; mapped homeomorphically onto
[a,b];,s0dD; = p; U m. We may resize D; and assume that the restriction of g;
to the domains p; and [;,-F] has unit speed.

Let D = D;|[ D2 ][ D3/ ~, where ~ denotes the canonical identification of
the subpaths m in Dy, D,, D3. We shall from now on consider D, D,, and D3
as subsets of D. Let g denote the map from D into X that is induced by g1, g2, £3-
The restriction of g to m is a unit speed homeomorphism onto [a, b];; let & denote
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the preimage of a under this restriction of g, and let b denote the preimage of b. The
restriction of g to each p; is also a unit speed homeomorphism. As a and b are in
different components of the complement of Ly, note that the prelmage of L, under
g is a (possibly disconnected) subset of D that separates d from b.

Note that each p; is simplicial and L is a subcomplex of X, hence 3D meets
g 1(L) in only finitely many components.

As L, K-separates a and b, and K > R, it follows that there exist points e; <
ey € (a,b); such that Br(e;) N L1 = @ = Bgr(ez) N Ly, and e; and e, are in
different components of X — L, say Y; and Y, respectively. Furthermore, we may
choose e; and e; such that, fixing € <« 1 < d(ey, ;) (recalling that the edges of X
are of length 1), we have that for any g € [e; + €, e2 —€];, Br(g) meets L;. Let B;
denote Br(e;) fori = 1,2.

As g is ahomeomorphism from m to [a, b];, foreachk = 1,2, g7 (ex)N m
is one point — denote it by é.

Forany 1 <i < j < 3,let D;j denote (D; U Dj) C D. Note that Djjisa
copy of the disk and 0D;; = p; U p;. Recall that g was defined to take D into X;
from now on, we shall have g denote the restriction of this map to D;;. Note that the
image of this restriction is contained in (X; U X; U L).

Let BAk denote the connected component of g~!(By) that contains ;. As L
separates B from B,, it follows that g (L)) separates §1 from éz. Let A;; denote
the connected component of g~1(Y7) in D;; that contains Bi. Thus there is some
connected component, Si i, of the frontier of A;; that separates B 1 from ]_‘?2. Note that
3,, is contained in g~! (Ll)

We may further take 8, j to be a simple curve by removmg subpaths that begin and
end at the same point, while maintaining that 81 j separates B, from B,.

A priori, 8,{, may or may not be a closed curve.

Lemma A.4. §; j is not a closed curve, but rather must be an arc.

The proof of this lemma follows the completion of this argument.

Thus §; ; is a curve with two distinct endpoints in p; U p;. Let X, J denote these
endpoints. We may assume that these endpoints are exactly the intersection of 5; i
with p; U ﬁj.

Forany ¢y, ¢, € [ suchthata <c¢; <cp < b, let [c/l,_c\z] denote the arc contained
in m that is mapped homeomorphically onto [c1, ¢2]; by g, and define the notation
[cl,/c\z), (c/l,\cz], and (c/l,_\cz) similarly. Thus [e/l,-e\z] is a path in D;; from é; to é5,

and hence 6;; must meet [eq, e3].

Denote by p, the subpath of 8; ; from £ to g7 ([e1, e2];), that does not meet
g 1([e1, e2];) in its interior, and define ) similarly. Let x denote g(%), let y denote
g(9), let yx denote the path g(Px) and let y,, denote g(y,). Note that y, (y, respec-
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tively) is a path from x (y respectively) to [eq, e>];, that does not meet [e1, e2]; except
at one endpoint.

The path yy is contained in (X; U X; U L), since the image of g is contained in
this union. As 81']' C g Y(Ly), yx is contained in L.

Moreover as L1 N By = &, y, is contained in X — By. Thus y,, and similarly
Yy, is contained in [L; N (X; U L U X;) N (X — By)].

Recall that, by definition, the R-ball about each pointin [e; + €, e; —€]; meets L.
Thus the (R + €)-ball about each point of [e;, e>]; meets L1, and the (N + R +¢)-ball
about each point of [eq, e>]; meets /1. Let my: [e1,e2]; — /1 denote nearest point
projection. Then Im(7r,) contains a 2(N + R + €)-chain from 7, (e1) to my(e2),
with consecutive points in the chain connected in /; by paths of length no more than
¢(2(N + R + ¢€)). Let x denote CH(Im(7ry), /1), and it follows that y is contained
in the [%¢(2(N 4+ R+ ¢€)) + (N 4+ R + €)]-neighborhood of [e1, e3];. Let A denote
162N +R+€)+ (N +R+e).

As x,y € (p; U pj) N Ly, we have from an argument above that

dint(x, L), dint(y, L) > K;.

Let w: L1 — [; denote nearest point projection. Since L; is a (¢, N) quasi-line,
d(z,7(z)) < N forany z € L;. We claim that 7 (x), 7(y) ¢ x. To see this, we have
that

dint (7 (x), x) = ding(Bn (x), Na(L)) > K1 — N — A.

As K; > N + A, we have that di¢(w(x), x) > 0. Similarly diy¢ (7 (y), ) > 0, and
thus 7w (x), 7 (y) ¢ x.

Let y;. denote the component of CH((yx), /1) — x that contains 7(x), so y% is
an arc in /; from 7(x) to y. Define y;, similarly.

A less immediate result is the following.

Lemma A.S. 7(x) ¢ y, and w(y) & vy

A proof for this lemma is given after the completion of this argument.

Soyr., )/; are segments in /; that both meet y in precisely one point. The subspace
[1— y consists of two components, and it follows from Lemma A.5 that y, is contained
in the closure of one and y;, in the closure of the other.

Our argument up to this point has been on the restriction of g to D;;. Note that,
while Si ; depended in i, j, the points é; and &, did not, nor did the segment y C /;.

Letk € {1,2,3}, k # i, j, and we can run the same argument in D;j. This will
result in points z, w € (X; N p;) U (Xx N px), and segments y., y,, from 7 (z), w(w)
respectively, to y, with y. and y,, contained in the closures of different components
of [ 1— X

Without loss of generality, we may suppose that y; and y} are contained in the
closure of the same component of /; — y, and y§ and y,, are contained in the closure
of the other component. We would like to say that x and z, or y and w, are contained
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in distinct elements of { X1, X5, X3}. If this is not the case, then we must have that all
four points are contained in X;. Then we will run our above argument for D . This
will result in another pair of points, say z, w, and segments yg, V{E' Without loss of
generality, we shall suppose that y, and y/ are contained in the closure of the same
component of /; — y, and we must have that x and Z are contained in different X;’s.

Thus, without loss of generality, we shall assume that x and z are contained in
distinct components of the complement of L, say with x € X; and z € Xj/.

Note that y;. is made up of a 2N -chain in 7 (yx) C [, together with connecting
segments in /; of length no more than ¢ (2N ). It follows that y. is contained in the
(3¢(2N) -+ N)-neighborhood of y. Similarly y; is contained in the (3¢ (2N )+ N)-
neighborhood of y,. As yx C (X; U L), we have that y; C N%¢(2N)+N(Xl U L),
and as y; C (X;» U L), we have that y, C N%¢(2N)+N(Xp UL).

Recall that dis(x, L) > K;, and we also have that dj,s(z, L) > K;. Thus
dine(m(x),L) > (K7 — N) and diy¢(7(z), L) > (K7 — N). Recall that 7(x) €
[yx N X;],and w(2) € [y, N Xp/], and hence

dinf(n(x)a )’;) = dinf([Xl - NKl—N(L)]’ N%¢(2N)+N(Xl/ U L))

and
din (71(2). v50) Z dini (X1 — Nk, N (D)]. N1y o) (X1 U L)).

As Ky — N > (L¢(2N) + N), we have that din((x), 1), dint ((2). y%) > 0, thus
n(x) ¢ y, and w(z) ¢ yy. But m(x) € yy, m(z5) € y; , and both y; and y, are
segments in the same component of llT)(, and both contain the endpoint of that
component.

As [y is an embedded copy of the real line, this situation is impossible. Thus we
have reached a contradiction, so the conclusion of the theorem follows. ]

It remains to prove Lemmas A.4 and A.5.

Lemma A.4. Let g be a continuous map from D;j to X as deﬁned in the pmof
of Theorem 3.1, with A;j the component of g 1(Y1) that contains By and §;; j the
component of the frontier of A;j that separates 31 from Bz, made to be simple by the
removal of loops that do not change that 5, j separates B 1 from 32

Then §;, ; not a closed curve.

Proof. Suppose that 3,- ;18 a closed curve.
Then 6;; is a curve about B; or Bs; without loss of generality, let’s say it is about

]§1. Let §8;; denote the closed (not necessarily embedded) curve g(gi 7), which is
contained in [L; N (X; U X; U L)].

By Lemma A.3, §;; admits a null-homotopy in X that is contained in the M-
neighborhood of L. Let D denote a copy of the 2-disk, with 4: D — X representing
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this null-homotopy. Let k: 9D — 5; ; be a homeomorphism, and further choose £
and k such that h|yp = g o k|yp.

Recall that L is a (¢, N) quasi-line. We claim that, if R’ is any constant greater
than %(]5 (2N)+ N, then the R’-ball about e, separates L into two infinite components,
with one contained in Ny ((—o0, e1);) and the other contained in Ny ((eq, 00);).

To see this, suppose for a contradiction that there is a point ¢ € (L — Bg/(e1)) N
Ny ((—00,e1);) N Ny ((e1,00);). Then there must be points g~ € (—o0, e1); and
gt € (ey,00); that do not meet Bg/_y(ey), that are both of distance no more
than N from ¢, and hence d(¢~,q") < 2N. It follows that length[g—,¢T]; <
¢(2N) and hence that one of g—, ¢ ™ is of distance no more than %¢(2N ) from e;.
But (R" — N) > %¢(2N), so neither ¢~ nor ¢ was contained in Bg_y(ey), a
contradiction. It follows that Bg/(e1) separates L as desired

Now let R’ denote R — M, and note that R’ > 2¢(2N) + N. Let [T denote
(e1,00);, let [~ = (=00, e1);, let LT denote (NN(I“E) N L) — Br/(ey) and let L™
denote (Ny(I7) N L) — Br/(ey). Thus the regions L™, L™ and (Bg/(e1) N L) may
not be connected subsets of L, but they are disjoint, and their union is L.

Note that, while Im(%) is contained in Njs(L1), it need not be contained in
(X; UX; UL)norin L;. However, as L; does not meet By = Br(ey), it follows
that Im(h) does not meet Bg/(eq). Thus Im(h) N L is contained in L+ U L~.

We shall want to consider h~!(L) C D. Let € denote the set of components of
h=Y(L)NdD. Note that,as h = gok on 3D, as g is cellular and as L is a subcomplex
of S, we have that € is finite.

Let PM = {+,—}, so each component of h~!(L) is contained in exactly one
h~Y(L*), with p € PM . Thus the same is true for each element of C. Let C? denote
€ N h~Y(LP) for each p € PM. It follows that no component of C* is connected to
any component of G~ through 27~ 1(L).

Recall that 2(0D) C Im(g), so we have that £(0D) C (X; U L U X;). Hence,
for each ¢ € C, either ¢ meets in 3D only h~!(X;), only 2~1(X;), or meets both
h=1(X;)and h~1(X;). Let €’ denote the collection of components ¢ € € that, in 9D,
meet both 271 (X;) and A7 (X).

Recall the identification k: 0D — SU, where hlgp = g o k|yp. Let k(C) =
{k(c) : ¢ € €'}, and thus the regions in k(C’) are exactly those components of

g Y(L) N §;; that meet both g~ (X;) and g~'(X;) in §;;.

Let us return to the disk D, and consider again the full components of A~ 1(L).
Consider only those components that meet €', so only those components that separate
a component of 271 (X;) N 3D from a component of A~1(X;) N dD. Let €” denote
the set of these components.

We first claim that C” is nonempty. For this, it suffices to note that €’ is nonempty,
which will follow if we know that 8, ; meets both g71(X;) and g1 (X;).

Thus, we shall shift our attention back to D;;. Suppose that this is not the case,
so without loss of generality 8,- ; is contained in g71(X;) U g7 1(L).
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Recall that [g71 (L) N (a/,a)] Clg7' (X — BN (a/,a)] must be contained
in g=1(L7), and [g~'(L1) N (e1, b)] is contained in g~'(LF). Recall that §;jisa
simple closed curve about é;, hence it must contain an arc that connects (a/,-e\l) to
(e1, b) within D ;. Thus this arc must connect g~ '(L™) to g7!(L™), and must be
entirely contained in g~'(L), since we’ve assumed that §;; C [¢71(X;) U g~ (L)].
It follows that this arc must meet g~ (Bg'(e1)) C g~ '(B;). But 3,-.,4 is contained in
g~ (L), so this would imply that g~ (B;) meets g~!(L), and hence that B; meets
L1, a contradiction. Hence €” must be nonempty.

Note that we can see from the above paragraph that Si 7 must meet both g (L)
and g~!(L™), and any arc in §;; connecting g~ (L) to g~} (L ™) must liein g1 (X;)
or g71(X;). Furthermore, there must be at least one such arc in g~!(X;) and at least
one in g~ 1(X;).

It follows that ¢’ N €~ and €’ N € must both be nonempty. Any component of €’
is contained in a component of C”, so it follows that @’ NA~1(LT)and " NA~1(L7)
are both nonempty. But 2~ 1(L™") and =1 (L™) do not meet, so |C”| > 2.

Thus there exists a component 1 of 9D — C” that meets a component C T of
(€" N h~Y(L™")) and a component C~ of (C” N h~1(L™)). Suppose that |C”| = 2,
soC" ={C*,C™}.

Then the component of D — (Ct U C ™) that contains 1 meets exactly one other
component of D — €”, say 1. Let p be a point in the interior of 7, fix p’ in the
interior of 1’, and consider the two components of 3D — {p, p'}.

One of these components must contain C T N 9D and be disjoint from C~ N 9D
and the other must contain C~ N 9D and be disjoint from C* N 3D. Let y T denote
the former component, and y~ the latter.

We can moreover choose p and p’ so that 2(p) and h(p’) are both contained in X;
or both contained in X;. Without loss of generality, let’s suppose both are contained
in Xi .

Consider again D;;. Recall that m is a simple curve that contains ¢; and
separates D;; into two components, and note that k(p), k(p’) € 8; ;j are contained in

—

the same component of D;; — [a, b].

It may be the case that k(y~) meets (e1, b], but as (e, 5] C g~ (L), and y~
does not meet C*, note that k(y~) will not cross from g~ (X;) to g1 (X;) through
(e1,b]. Similarly k(y*+) does not cross from g~ (X;) to ¢ 1(X;) through [@,e1).
Thus Sij = [k(yT) Uk(y™) Uk(p) Uk(p’)] is the union of two segments that meet
each other in the same component of D;; — m, and each component only crosses
from g~ (X;) to g71(X;) through [a,e1) or (e1,b]. As g~'(By) separates g~ (L)
and contains é;, and Si ; does not meet g 1 (By), it follows that <§,~ 7 has winding number
zero about €1, a contradiction. Hence |C”| > 2.

Before moving on to the general case, we note that we did not need such strong
conditions on D for the above argument to work. Suppose still that 2 maps D into
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Num(Ly), and h maps 0D into (X; U X; U L), so that we may define C, €', C” as
before. Suppose that k is an embedding of dD into D;;. Retain 8; 7 and the map g as
was defined earlier.

Suppose however that / is not equal to g o k when restricted to a region of 0D,
and moreover, that the image under k of this region need not be in 8 -

In particular, let ¢ € € — €’ be this region and suppose that g ok = h except on c.

Let ¢; and ¢, denote the endpoints of ¢ in 9D, let ¢ denote the arc in Si ; that
connects k(1) to k(1) and is not k(dD — ¢). As ¢ ¢ €', k(1) and k(t2) must both
be in D; or both be in D;. Hence we may choose a path ¢ that connects k(¢1) to k(t2)
and is contained entirely in D; or D;, and does not meet m, except possibly at its

—

endpoints, if k(t1) or k(t2) is in [a, b].

Consider the closed curve attained by replacing ¢ in Si 7 with ¢, and the closed
curve ¢ U ¢. As we are still assuming that |€”| = 2, note that our previous argument
may be applied to show that the former curve has winding number zero about é;.
Thus if ¢ is such that ¢ U ¢ also has winding number zero about é;, then it would
follow that Si 7 has winding number zero about €1, a contradiction.

Moreover, if there were more than one region like ¢ in € — € C 9D on which D
and (§,~ ; did not correspond via k, and where each corresponding pair of paths ¢ and
¢ made a curve with winding number zero about é1, then a contradiction would also
follow. R

To complete the proof that §;; cannot be a closed curve, we shall induct on |C”|
to get a contradiction in every case. Let D;;, g and 8 ; be defined as above.

We shall work with exclusively with the following type of situation. Let Dg be
a disk, let 2o be any continuous map of Dy into Nps(L1), with kg taking D¢ into
(X;UX;UL),andletko: 0Dg — D;; be anembedding. Parallel with our definitions
of the sets associated to D and the map #,

* let Co denote the set of components of g ' (L) N 3Dy,

* let C) denote the subset of components ¢ € Cy that meet both /5! (X;) and
hy'(X;) in 3Dy,

* let Gy denote the components of 5! (L) in Dy that meet €}, and

e foreach p € PM, let Cf denote Co N hy!(LP).

We will assume that |Cj| is finite and greater than 2.

Let8y C Co—Cyf and suppose ttAlat the restriction of k¢ to 9Dy —8¢ is an embedding
into D;; with image contained in 6;;. Suppose further that, on the restricted domain
8@0 — 80, ho =g Oko.

For each s € Sy, let § denote the arc that is the component of 8; ;7 minus the image
under kg of the endpoints of s, that does not meet ko(dD — 5). Let So = {§:5€
So}. We shall assume that ko|yp,—s, does not interchange the “order” of segments

inherited from 0Dy and 3,- j, in the sense that there exists a homotopy in D;; rel
ko(0Dg — Sp) that takes each § to ko (s).
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Note that since s ¢ €, the two components of Dy — €y that s meets are both
contained in 5! (X;) or are both contained in 45! (X;). Thus both endpoints of § are
contained in D; or D;. Hence for each s € 89, there exists a path ¢, that connects
the endpoints of §, the interior of which is contained in D;; — m, and is such that
a small neighborhood n of § in 8,-]- has (n — §) U 1 is a path in D; or D;. (In other
words, ty may meet [Z,?] at its endpoints, but (n — §) U t5 does not cross [;,-F] from
D; into D; or vice versa.)

Also assume that the collection of closed curves § U (5 all have winding number
zero about €.

We shall refer to the maps and subspaces associated to Dy and &g defined and
satisfying the hypotheses above as the data associated to Dy. In the case that Dy and
its data satisfies all the hypotheses above, we shall say that Dy (with data implicit)
has property P.

Note that our original disk D, with § = &, has property P.

Fix n > 2, and our induction hypothesis is the following. For any disk Do with
property P, if |Cj| = (n — 1), then the closed curve attained from S,-j by replacing
each § € SAO with ¢; has winding number zero about é;. As we have assumed that
each curve § U iy has winding number zero about é; as well, it follows that gi ; has
winding number zero about ¢;. But this contradicts the construction of 3,- ., and thus
no Dq with such data can exist.

Assume now that Dy has property P, and that |C{| = n. So 8 is some (possibly
empty) subset of Cop — €, and the restriction of ko to (dDg — 8p) has image in 8; s
and is such that /¢ restricted to (Do — S¢) is equal to g o k¢. In addition, for each
s € 89, the closed curve § U t; has winding number zero about €.

We shall show that we can reduce to the |Cj| = (n — 1) case. Let C” € C{ be
an element of Cj such that, for some arc ¢ of fr(C"”), ¢ separates C” from every
other component of Gg . Let 1,1 denote the endpoints of ¢, and let d denote the
component of D¢ — {t1, t»} that does not meet any element of Cjj other than C”.

Now consider the simple closed curve attained from 0Dy by replacing d with c.

Let D; denote the disk in Dy that is bounded by this region. Note that the
restriction of /1o to Dy is a map into Nps(L1), and, as ¢ C hy!'(L), the restriction of
ho to 9D is a map into (X; U X; U L). Let h; denote the restriction of so to Dy,
so hy yields data Cq, €| and C7, defined analogously to the data Co, etc., that was
defined with respect to Dy and h. Note that ¢ € C; — €}, hence €| = (C; — C")
and [C]| = (n — 1).

Let ki: 0Dy — D;j be equal to k¢ on the domain 0D N 9Dy, and take c to
ko(d). Recall that k¢ is an embedding, thus k; is also an embedding.

Thus we shall have that Dy, with §; = [S¢ N dD;] U {c}, has property P if we
can find a path (¢ in D;; that connects ko(t1) with ko(t2), does not cross m, and
is such that ¢, U ko(d) has winding number zero about é;.

As ¢ meets only iy (X;) in 9D, for some / = i or j, a small neighborhood of



The quasi-isometry invariance of commensurizer subgroups 257

each of ko(t1) and ko(t2) in ko(dD1 — ¢) must be contained in ky ' (X;).

It follows that there is a path ¢, in D;; that connects ko(t1) to ko(t2) and is such
that a small neighborhood of k¢(c) in ko(dD1), with k¢(c) replaced by ¢, does not
Cross m. Next we will see that ko(d) U ¢ has winding number zero about é;.

The components of €y — C;, that meet d will complicate our argument slightly.
Let T denote those components of (Cy — Cf)) that are contained in d. If 1 € TN 8§,
then let ¢; and 7 be the paths in D; ; given in the hypotheses for Dy, and recall that
by assumption, the closed curve ¢; U ¢ has winding number zero about é;.

For the remaining ¢ € 7T, there is a path ¢, with interiorin D;; — m that connects
the image under k¢ of the endpoints of ¢, and is such that a small neighborhood of k¢ (¢)
inko(d), with ko (¢) replaced by ¢,, does not cross m. Ast ¢ 8o, ko(t) C g 1 (LP)
for some p € PM. Thus, for these components t € T — Sy, the curve ko () U ¢,
crosses only [ﬁ) or (e/l,\b], and thus has winding number zero about é;.

Hence, for each ¢t € T, 1, together with 7 (if ¢ € 8g) or ko(t) (if t ¢ Sp) has
winding number zero about é;. So in order to show that ko(d) U ¢, has winding
number zero about é1, it suffices to show that (., together with the path d’ , which
is attained by starting with ko(d) and replacing 7 or ko (t) by ¢, for each ¢t € T, has
winding number zero about é;.

To see this, recall that the components of (¢, U d ) — ko(d) are segments that do
not cross m and are connected by arcs in ko(d ). Also recall that d meets only one
component of €, hence these arcs in ko (d) are all contained in g~!(L ™), or are all
in g7'(L™). Thus (. U d’ has winding number zero about é;.

It follows that ¢, U ko(d) has winding number zero about €, and hence D; has
property P. But |C]| = (n — 1), so the closed curve attained by replacing each § € S
with ¢y has winding number zero about é;, and hence so does 3,~ . We have reached
a contradiction, and it follows that |Cj| = n is an impossibility, so the proof is
complete. (|

LemmaA.S. Let D;j, 3,-,; g:Dijj - (X;UX;UL)yC X, m: Ly - liand y Cly
be as in the proof of Theorem 3.1. Let X, y be the endpoints ofgij, and let x = g(x),
y = g(). Let Px denote the segment of&j from % to g7 ([e1, e2];), let yx denote the
path g(Px) from x to ey, e2];, and let y’. denote the component of CH(w (yx)), 1) — x
that contains x. Define y, and y, similarly.

Then mt(x) ¢ yy, and w(y) & V.-

Proof. We shall prove that 7 (x) is not contained in y,; that (y) ¢ y; shall follow
analogously.

To prove that (x) ¢ y;, it suffices to show that there is no path in L; from x to
y;, of length less than or equal to N. Moreover, it suffices to show that there is no
path in L from x to 7 (y,) of length less than or equal to (%¢(2N) + N), as yy is
comprised of a 2N -chain in 7 (yy ), together with connecting segments in /; of length
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no more than ¢(2/N). Furthermore, it suffices to show that there is no path in L,
from x to y, of length less than or equal to (%¢(2N) + 2N).
Suppose that this is not the case, and we will show that, if 7(x) C y,,, then we

can alter g[p, or g|p; so that 3,-]- becomes a closed curve. By Lemma A .4, this is a
contradiction, and thus 7 (x) cannot be contained in )/J’,.

Let « be a path from x to y, that is contained in L and has length no more than
(%¢(2N) + 2N). Recall that diy¢(x, L) > Ky, and K; > (%¢(2N) + 2N). Thus
the path « does not meet L, and moreover does not meet a small neighborhood of L.

Let g denote the endpoint of « that is contained in y), and let &y denote a point
in g~ (c0) N Py

Recall that X is contained in p; or p; — let’s say that, without loss of generality,
%€ p;i. Thus £ € g7'(X;),andasa N L = @, @ is also in g~} (X;) C D;.

Next we claim that there exists some path  from X to &g that is contained in D;
and does not meet g~ !([ey, e2];). We first claim that [e;, e;]; does not meet p;.

To see this, first recall that by construction, [a, b]; does not meet p; outside of
ro-neighborhoods of a and . Also recall that L1 meets the R-neighborhood of any
pointin [e; + €, e2 —€];, so the (R + €)-neighborhood of each point in [e1, e3]; meets
L1, and that L; K-separates a and b. Thus no point in [eq, e3]; is contained in the
(K — R — ¢)-neighborhoods of a or b.

Recall that

K>rn+R+e,

and thus that 7, < (K — R — ¢€). It follows that no point in [e}, e;]; is contained in
the rp-neighborhoods of a or b, and therefore [e], €3]; does not meet p;.

Hence in D;j, g !([e1, e2];) does not meet g~'(p;), and in particular does not
meet p;. Similarly, g~!([e1, e2];) does not meet p;, and thus does not meet dD;; .

Recall that X € p;, and @ is contained in Py, which is a path that does not meet
g 1 ([e1, e2];) but does contain y € (p; U p;). It follows that g~ ([e1, e2];) does not
separate X from &g in D;;.

Moreover, since g7 ([e1, e2];) N w = m and 0D; = w U p;, a similar
argument shows that g 7! ([e1, e»];) does not separate & from &g in D;. Thus let B be
a path in D; connecting £ to &, that does not meet g~!([e1, e2];). One may further
assume that 8 does not meet dD;.

Let 8’ denote the arc in 8;j from X to @y, so §'U B is a closed curve in D;;. We
claim that this curve has nonzero winding number about é; or é,. (Since we are only
worried about showing that this winding number is nonzero, we need not be careful
about curve orientation.)

Let §” denote Sij — 8. Thus 8" C Yy, SO 8" does not meet g ' ([e1. e2]r).

Let dg, 0; denote the two components of dD;; —{X, y}, so that, forsome {m,m’} =
{1,2}, Si 7 U0 has winding number %1 about é,, and winding number zero about é,,’,
and 3,- 7 U 01 has winding number 1 about é,,» and winding number zero about é,,.
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Now consider the closed curves (d; U 8" U B) for k = 0 and 1. These curves

do not meet g~ !([ey, e5];), so in particular they do not meet [ejTeT];, and hence do
not separate €; and é,. As 0D;; has winding number one about €; and &5, one curve
(0 U §" U B) has winding number zero about &; and é,, and the other has winding
number 1 about both points. Suppose without loss of generality that (d; U 8" U B)
has winding number zero about the two points.

As (91 U§” U B) has winding number zero about &, and (9; U 3j,~) has winding
number + 1 about é,,/, it follows that (3/ UB) must have winding number + 1 about é,,’.

Next we shall redefine g on a small neighborhood of 8. The restriction of g to
(piUpj U m) shall be unchanged.

By a “small neighborhood” of 8, we shall mean a small open neighborhood that is
contained in the interior of D; and does not meet g~ ([e1, e2];). Such a neighborhood
exists since B does not meet g~ !([ey, e2];) or dD;, and B, g~ !([e1, e2];) and dD; are
all closed.

Recall that 8 C Dj, so g(B) is a path contained in X; U L from x to og. We saw
earlier that there is a path & contained in (L1 N X;) from x to «p.

Since 71 (X; U L) = 0, it follows that we can homotope g(8) within (X; U L)
to . Homotope the map g on a small neighborhood of 8 so that g now takes 8 to «
(and g is not altered on any portion of the neighborhood of 8 that meets 8" ).

Recall the definition of 3,- i, defined with respect to the old map g, and consider

!/
1]’
altered map g. As §' U B is a closed curve with winding number +1 about &,,, it
follows that 3; ; must be a simple closed curve about &,

By Lemma A.4 this cannot happen. Thus 7 (x) cannot be contained in y;, as
desired. Similarly 7(y) cannot be contained in y. O

now the simple curve, call it 8., defined in the same manner, but with respect to the
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