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Abstract. We prove that commensurizers of two-ended subgroups with at least three coends in
one-ended, finitely presented groups are invariant under quasi-isometries. We discuss a variety
of applications of this result.
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1. Introduction

Any finitely generated group can be endowed with a metric, via the Cayley graph of
the group with respect to any finite generating set. The metrics we get on the group
from two different finite generating sets may differ greatly, but they will induce the
same “coarse geometry” on the group, in the sense that there will be a quasi-isometry
taking the group endowed with one metric to the group endowed with the other.

The discovery and investigation of algebraic properties of groups that are invariant
under quasi-isometries is an active area of geometric group theory. One can consider
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such quasi-isometric invariants to be “detectable” from the coarse geometry of a
group. Many important properties of groups have been shown to be detectable from
the coarse geometry of a group, for instance the properties of being finitely presented,
being of type Fn (see, for instance, [11]), admitting splittings over finite subgroups
([33], [34]), and containing a nilpotent subgroup of finite index ([7]), to name just a
few. However, there are few results that provide answers to the question that we are
interested in here: can one detect from the coarse geometry of a group the existence
and location within the group of certain types of subgroups?

In this paper, we show that we can answer this in the affirmative in the case of
certain commensurizer subgroups of one-ended, finitely presented groups. Corollar-
ies touching on JSJ decompositions, the structure of 3–manifolds and the structure
of certain groups of quasi-isometries follow from this theorem and its proof.

We recall the definition of a commensurizer:

Definition 1.1. Let G be a group with a subgroup H . Then the commensurizer of
H in G, denoted CommG.H/, is the subgroup consisting of all g 2 G such that
H \ gHg�1 is of finite index in H and in gHg�1.

Our main result is the following. We use dHaus to denote Hausdorff distance.

Theorem 4.4. Let f W G ! G0 be a .ƒ;K/-quasi isometry between finitely pre-
sented, one-ended groups, and suppose thatH is a two-ended subgroup of G with n
coends inG, forn 2 f3; 4; 5; : : :g[f1g. Then there is a two-ended subgroupH 0 ofG0
such thatH 0 has n coends in G0 and there exists some constant y D y.G;H;ƒ;K/

such that
dHaus.f .CommG.H//;CommG0.H 0// < y:

To prove this theorem, we make use of “quasi-lines”, which were defined by
Papasoglu in [21], and were used to prove the main results in that work. We make
use of some of his results, and develop his theory further.

As for corollaries, first we have the following.

Corollary 5.2. Let f;G;G0;H and H 0 be as in Theorem 4.4. Then CommG.H/ is
of type Fn if and only if CommG0.H 0/ is of type Fn.

This result follows from Theorem 4.4 as well as the theorem below, which we
show by introducing a theory of “coarse isometries” (a more general notion than that
of quasi-isometries), and applying M. Kapovich’s arguments from [11] that show that
being of type Fn is a quasi-isometry invariant.

Theorem 5.1. Let f W G ! G0 be a quasi-isometry between finitely generated
groups, and suppose that C is a subgroup of G, C 0 is a subgroup of G0, and that
dHaus.f .C /; C

0/ < 1. ThenC is of type Fn if and only ifC 0 is of type Fn, for n � 1.
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For the next consequence of Theorem 4.4, we recall that a JSJ decomposition
of a group is a graph of groups decomposition that encapsulates the structure of the
different splittings the group admits over two-ended subgroups, in the same way
that a JSJ decomposition of a 3-manifold encapsulates the structure of the essential
embeddings of annuli and tori into the manifold. Many different versions of these
decompositions of groups have been defined (see [16], [30], [22], [1], [2], [4], [5], [6]).
Scott and Swarup defined a version in [27], which exists for all one-ended, finitely
presented groups.

Papasoglu’s work in [21] proves the invariance under quasi-isometries of many
of the vertex groups of the Scott–Swarup JSJ decomposition. Theorem 4.4 implies
the invariance of some of the remaining vertex groups:

Corollary 6.11. Let f W G ! G0 be a quasi-isometry between the Cayley graphs of
one-ended, finitely presented groupsG andG0, and suppose that C is a vertex group
of commensurizer type of the Scott–Swarup JSJ decomposition of G. Then there is a
vertex group, C 0, of commensurizer type of the Scott–Swarup JSJ decomposition of
G0, which is such that

dHaus.f .C /; C
0/ < 1:

In the case when G and G0 are 3-manifold groups, the Scott–Swarup JSJ decom-
positions are closely related to the JSJ decompositions of the associated 3-manifolds.
In particular, Corollary 6.11 implies the following.

Corollary 7.1. Let M and M 0 be connected orientable Haken 3-manifolds with in-
compressible boundary, and with f W �1.M/ ! �1.M

0/ a quasi-isometry. Suppose
that N is a nonexceptional Seifert fibered component of the characteristic submani-
fold ofM that meets the boundary ofM .

Then there is a nonexceptional Seifert fibered component,N 0, of the characteristic
submanifold of M 0 that meets the boundary of M 0. Moreover, if C denotes the
subgroupof�1.M/ induced by the inclusion ofN intoM andC 0 denotes the subgroup
of �1.M 0/ induced by the inclusion of N 0 intoM 0, then

dHaus.f .C /; C
0/ < 1:

In [15], M. Kapovich and Leeb prove a result that implies Corollary 7.1, using
different methods. See also [14] for a related result.

Two more corollaries to Theorem 4.4 are results about groups of quasi-isometries
of groups. Under a suitable notion of equivalence, the quasi-isometries from a group
G to itself form a group, which is denoted QI.G/. These groups are often quite
complicated, and tend to be difficult to study.

The following two results are implied immediately from the proof of Theorem 4.4.

Corollary 8.1. Suppose that G is a one-ended, finitely presented group such that
G D CommG.H/ for a two-ended subgroup H of G that has at least three coends
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in G. Consider G=H , with the metric described in Section 8.
Then there is a canonical map QI.G/ ! QI.G=H/.

Corollary 8.3. Let G be a one-ended finitely presented group and let further N D
f3; 4; 5; : : :g [ f1g. For any n 2 N , let Kn be a maximal collection of two-ended
subgroups ofG with n coends that have mutually infinite Hausdorff distance, and let
fKjn gj2Jn

be the partition of Kn into sets of subgroups of quasi-isometric commen-
surizers.

Then there is a canonical map

QI.G/ ! ˚ Q
n2N

Q
H2Kn

QI.MH ;M�.H// W � 2 Q
n2N

Q
j2Jn

Sym.Kjn /
�
;

where, for any two-ended subgroup H of G, MH denotes the set CommG.H/=H ,
with a metric given in Section 8, and Sym.Kjn / denotes the symmetric group on the
set Kjn .

These results are discussed in the last section. We note that Corollary 8.1 is closely
related to work of Souche and Wiest [32].

Finally, let Fn denote the free group on n generators with n > 1, and it is known
to follow from the work of Whyte [37], Mosher–Sageev–Whyte [19] and Kapovich–
Kleiner–Leeb [13] that a finitely generated group is quasi-isometric to Fn � Z if
and only if it is virtually Fn � Z. The following special case of that result is a
straight-forward consequence of Theorem 4.4.

Theorem ([37], [19], [13]). Let Fn be the free group on n generators for any n > 1.
Then Fn Ì Z is quasi-isometric to Fn � Z if and only if it is virtually Fn � Z.

Acknowledgements. Much of the following work was done as part of the author’s
dissertation. The author gratefully thanks her advisor, Peter Scott, for his help and
guidance. The author also thanks Panos Papasoglu for several helpful discussions,
and Mario Bonk, for his help with the proof of Theorem 5.1 in the case that n D 1.
In addition, thanks to Matt Brin and Ross Geoghegan for their encouragement and
advice.

2. Basic definitions and facts about quasi-lines in finitely presented groups

In this section, we will introduce “quasi-lines”, which were defined by Papasoglu
in [21], and were main objects of study in that work. We will prove some basic
properties of quasi-lines, including justifying why we may think of two-ended sub-
groups of finitely generated groups as quasi-lines inside the ambient groups. We will
then prove several results about complementary components of certain quasi-lines
– in particular, that quasi-lines satisfy conditions ess.m0/ and iness.m1/ for some
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number m0 and function m1 in the settings that we are interested in. Some of these
results were used implicitly in [21].

We remark that a couple of the following lemmas are analogous to results used
by M. Kapovich and Kleiner in [12].

We will first set some basic notation and conventions. Let X be any metric space
and letx 2 X ,Y � X and0 � r < 1. Then xY shall denote the closure ofY inX . We
set balls to be open and neighborhoods closed, i.e. letBr.x/ D fz 2 X W d.z; x/ < rg
and Nr.Y / D fz 2 X W d.z; Y / � rg.

Let Y 0 be another subset ofX , and we shall denote by dHaus.Y; Y
0/ the Hausdorff

distance between Y and Y 0. I.e.,

dHaus.Y; Y
0/ D inffr � 0 W Y � Nr.Y

0/ and Y 0 � Nr.Y /g:
IfX 0 is another metric space, then a map f W X ! X 0 is a .ƒ;K/ quasi-isometry

if ƒ � 1 and K � 0 are such that, for any x1; x2 2 X ,

1

ƒ
dX .x1; x2/ �K � dX 0.f .x1/; f .x2// � ƒdX .x1; x2/CK;

and X 0 D NK.f .X//: We say that f is a quasi-isometry if f is a .ƒ;K/ quasi-
isometry for someƒ andK, and in this case we say thatX andX 0 are quasi-isometric.

A map g W X 0 ! X is a quasi-inverse to f if both supx2X d.x; g B f .x// and
supx02X 0 d.x0; f B g.x0// are finite.

Suppose further that X is a locally finite CW complex. Then the number of ends
of X is

e.X/ D sup jfinfinite components of X �Kgj;
where the supremum is taken over all finite subcomplexesK ofX . Thus e.X/ can take
on any value in Z�0[f1g. The number of ends of a metric space is a quasi-isometric
invariant: if X and X 0 are quasi-isometric, then e.X/ D e.X 0/.

Convention 2.1. We shall assume throughout this paper that all finitely generated
groups that we deal with come equipped with a chosen finite generating set, and that
all finitely presented groups come equipped with a chosen finite collection of defining
relations.

IfG is a finitely generated group, then we shall denote by C1.G/ the Cayley graph
for G with respect to the associated finite generating set. If G is a finitely presented
group, then we shall denote by C2.G/ the Cayley complex for G with respect to the
chosen finite generating set and relations. We recall that C2.G/ is a simply connected,
2-dimensional CW complex with 1-skeleton equal to C1.G/, and that G is identified
with the vertex sets of C1.G/ and C2.G/. The group G acts cocompactly and by
cellular isometries on C1.G/, and on C2.G/ if it exists. Furthermore, this action is
faithful, and transitive on vertices. We will take these actions of G to be on the left.
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Recall that the Cayley graphs (and Cayley complexes, if they exist) of a group G
with respect to different finite generating sets (finite presentations, respectively) are
all quasi-isometric. Thus there is a well-defined notion of the number of ends of a
finitely generated group: if G is finitely generated, then the number of ends of G,
e.G/, is defined to equal e.C1.G//. It is a fact that the number of ends of any finitely
generated group can be one of only 0; 1; 2 or 1. We have that e.G/ D 0 if and only if
G is finite, e.G/ D 2 if and only ifG contains a finite index infinite cyclic subgroup,
and, by the work of Stallings, e.G/ D 1 if and only ifG splits over a finite subgroup
and does not have a finite index infinite cyclic subgroup. See [29] for more details.

We will always take CW complexes to be metrized to have edges of length one,
and to have the interiors of 2-cells be isometric to regular polygons.

Let X be a CW complex and consider R as a graph by taking the integer points
to be the vertices. Then let l W R ! X .1/ be continuous, injective and cellular, hence
parametrized by arc length, i.e. with length.l.Œs; t �// D dR.s; t/, for all s; t 2 R.
Suppose further that l is a uniformly proper map, so for every M > 0, there exists
an N > 0 such that if A � X with diam.A/ < M , then diam.l�1.A// < N . Then
we shall say that l is a line, and we shall sometimes use l to denote the image of l .

To a line l , we associate the distortion function Dl.t/ W R�0 ! R�0, where

Dl.t/ D supfdiam.l�1.A// W diam.A/ � tg:

As l is parameterized by arc length, we note that Dl.t/ � t for all t 2 R.
Let L be a closed, path connected subspace of X containing a line l , with N > 0

such that any point in L can be joined to l by a path in L of length less than or
equal to N . If � W R�0 ! R�0 is a proper, increasing function and, for all t > 0,
Dl.t/ � �.t/, then we will say that L is a .�;N / quasi-line, or simply, a quasi-line.
We shall refer to � and N as parameters for L, and l as the line associated to L.

We note that the assumption that � be proper and increasing is not a strong one,
for any line l hasDl bounded by some increasing function, and, asDl.t/ � t for all
t , any such function must be proper.

Observe that if L is a .�;N / quasi-line and R > 0, then NR.L/ is a .�;N CR/

quasi-line, and we may take the line associated to L to also be associated to NR.L/.
The following lemma shows that the restriction that a line be embedded is not an

important one.

Lemma 2.2. Let l 0 be a uniformly proper cellular map from R into a CW complexX
(taking R to be a simplicial complex with vertex set Z). Then there is a line l W R ! X

with Im.l/ � Im.l 0/, and such that dHaus.Im.l/; Im.l 0// is finite, and bounded above
by a function ofDl .

Proof. If l 0 is an embedding, then it suffices to take l D l 0. So suppose that l 0 is not
an embedding.
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As l 0 is uniformly proper, there is some maximal n D n.l 0/ 2 R such that the
preimage of some point in Im.l 0/ has diameter n. Because l 0 is cellular, note that
n 2 Z. We shall induct on n. Note that n > 0, as l 0 is not an embedding.

Let S denote a maximal disjoint set of closed intervals of size n in R such that
the endpoints of each interval are sent to the same point of X by l 0. Note that we can
take S to be such that the endpoints of each interval in S are mapped by l 0 to vertices
of X .

Let � W R ! R denote the quotient map attained by identifying each component
of S � R to a point, and define a right inverse to �, �0, to take each such point to
an endpoint of its full preimage. Since the endpoints of each component of S are
identified by l 0, there is a well-defined, continuous map l1 W R ! X defined by
l1.t/ D l 0 B �.t/. Intuitively, l1 is the map we get by removing a disjoint collection
of maximal loops from l 0.

Clearly l1 is cellular, thus is parameterized by arc length, and we note that l1 is
uniformly proper, for ifA is any subset ofX , then diam.l�11 .A// � diam..l 0/�1.A//.
Furthermore, we have that dHaus.Im.l1/; Im.l 0// � 1

2
n.l 0/.

It remains to show that n.l1/ < n.l 0/. To see this, let us suppose that there are
t0; t1 2 R such that jt0� t1j � n.l 0/, and l1.t0/ D l1.t1/. Suppose that t0 is the image
of a collapsed segment under �. Then there exist two points s; s0 2 R that are the
endpoints of this segment, with �.s/ D �.s0/ D t0, l 0.s/ D l 0.s0/, and js�s0j D n.l 0/.
If t1 is the image under � of only a point, then let s1 denote that point. If t1 is the
image of a segment under the map �, then let s1 denote an endpoint of that segment.
Then l 0.s1/ D l 0.s/ D l 0.s0/, and either js1 � sj > js� s0j or js1 � s0j > js� s0j. But
js � s0j D n.l 0/, so this contradicts the definition of the function n.

Thus we may suppose that t0 and t1 are images under � of single points, say s0
and s1 respectively. If � collapses no segments in the interval Œs0; s1� then we reach
another contradiction, for Œs0; s1� must be an interval of size n.l 0/, whose endpoints
are mapped to the same vertex ofX by l 0, and that is disjoint from S . This contradicts
the maximality of S .

Finally, suppose that � collapses a segment Œs; s0� in Œs0; s1�. Then js� s0j D n.l 0/,
so js0 � s1j > n.l 0/. The endpoints s0 and s1 must share the same image under l 0,
and again this contradicts the definition of the function n.

Thus n.l1/ < n.l 0/. If l1 is not an embedding, then we can repeat this process on
l1, getting a map l2 W R ! X such that n.l2/ < n.l1/, and so on.

Eventually we must get a map lk such that n.lk/ D 0, and hence lk D l is the
desired line.

In our argument to prove Theorem 4.4, we will be concerned with two-ended
subgroups, their cosets, and images of these under quasi-isometries. The following
lemmas indicate why quasi-lines will be relevant to our discussion, and in particular
why we may think of all of these sets as quasi-lines in the Cayley graphs of the
ambient groups.

We recall that G is identified with the vertex set of C1.G/.
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Lemma 2.3. LetG be a finitely generated group, andH � G a two-ended subgroup.
If R > 0 is large enough so that NR.H/ � C1.G/ is connected, then NR.H/ is a
quasi-line.

Proof. LetH be a two-ended subgroup of G, let hhi Š Z be a finite index subgroup
ofH , and letR > 0 be such thatNR.H/ � C1.G/ is connected. Letp be a simplicial
path in NR.H/ from the identity to h. Let l 0 W R ! NR.H/ � C1.G/ be the natural
map onto

S
n2Z h

n � p that is parameterized by arc length.
Note that there is some N > 0 depending on hhi and R such that each point of

NR.H/ can be connected to Im.l 0/ by a path in NR.H/ of length less than or equal
toN . If we can show that l 0 is uniformly proper, then it will follow from Lemma 2.2
that NR.H/ is a quasi-line.

Fix any M > 0, and recall that p is a finite path and that H acts freely on
C1.G/. It follows that, for any point p0 2 p, the image under .l 0/�1 of the vertices
contained in BM .p0/ is finite, and hence diam..l 0/�1.BM .p0/// < 1. Let DM D
maxfdiam..l 0/�1.BM .p0///g, where the maximum is taken over all vertices p0 of p.

Now suppose thatA � C1.G/ has diameter less than .M �N/ and meetsNR.H/.
Then for any a 2 .A \ NR.H//, certainly A � BM�N .a/, and hence there is

some p1 2 l 0 of distance no more than N from a, and A � BM .p1/. Thus there
exists some n 2 Z such that hnA � BM .h

np1/ and hnp1 is a vertex of p. Therefore
we have that

diam..l 0/�1.A// D diam..l 0/�1.hnA// � diam..l 0/�1.BM .hnp1/// � DM ;

and it follows that l 0 is uniformly proper, withDl 0.M �N/ bounded byDM for each
M > 0.

Lemma 2.4. Let f W C1.G/ ! C1.G0/ be a .ƒ;K/ quasi-isometry and let L �
C1.G/ be a .�;N / quasi-line. Then there is someR D R.ƒ;K; �;N / > 0 such that
NR.f .L// is a quasi-line.

Proof. Let l be the line associated to L and let � denote nearest point projection of
C1.G0/ onto its vertex set. Let l 0 denote�Bf Bl jZ, and note that l 0 is uniformly proper.
As l is a line, for each i 2 Z, d.l.i/; l.iC1// D 1. Hence d.f B l.i/; f B l.iC1// �
.ƒCK/ so d.l 0.i/; l 0.i C 1// � .ƒCK C 1/.

Let  W Z ! R be such that, for all i 2 Z,  .iC1/� .i/ D d.l 0.i/; l 0.iC1//,
so increases distances by no more than a factor of .ƒCKC1/. Let l 00 W Im. / !
C1.G0/ be such that l 0 D l 00 B  , and it follows that l 00 is uniformly proper.

Next, we extend the definition of l 00 to all of R by mapping each Œ .i/;  .i C 1/�

isometrically to a geodesic segment from l 0.i/ to l 0.i C 1/. Thus l 00 is a unit speed,
cellular map of R into C1.G0/. As any point in l 00.R/ is of distance no more than
1
2
.ƒCKC1/ from a point of l 00.Im. // and l 00jIm. / is uniformly proper, it follows

that l 00 W R ! C1.G0/ is uniformly proper.
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Thus, by Lemma 2.2, there is a line Ol W R ! C1.G0/ such that Im. Ol/ � Im.l 00/
and dHaus.Im. Ol/; Im.l 00// is bounded by a constant depending only on ƒ;K; � and
N . There is some R > 0 depending on the same constants such that NR.f .L// is
connected and contains Im. Ol/, and thus is a quasi-line.

Remark 2.5. In our argument to prove Theorem 4.4, we shall work with a quasi-
isometry f W C1.G/ ! C1.G0/, and a two-ended subgroup H of G. We will discuss
a neighborhood of H that is a quasi-line in C1.G/, as well as translates of this
quasi-line under the action of G. We will also discuss quasi-lines in C1.G0/ that are
neighborhoods of the images under f of these translates, given by Lemma 2.4.

As a group acts on its Cayley graph by isometries, all of the translates of the quasi-
line containingH will be quasi-lines, and will share the same parameters. Since these
are all isometric, the quasi-lines in C1.G0/ that we will consider can also be taken
have the same parameters as one another.

We note next that quasi-lines are two-ended:

Lemma 2.6. LetL be a quasi-line contained in a locally finite CW complexX . Then
e.L/ D 2.

Proof. Let � and N be parameters for L, and let l � L be the line associated to L.
Then every point in L can be connected by a path of length less than or equal to N
to l , and e.l/ D 2, so e.L/ � 2. As the line l is an injective and cellular map into
the 1-skeleton of X , and X is locally finite, we must have that e.L/ � 1.

To see that e.L/ D 2, first note that if a; b 2 R are such that ja � bj > �.2N/,
then d.l.a/; l.b// > 2N . Thus if we fix such a and b, say with a < b, then, for any
q 2 l..�1; a�/ and q0 2 l.Œb;1//, d.q; q0/ > 2N . Let K be the set of all points
p 2 L such that there is a path of length less than or equal to N contained in L
that connects p to l..a; b//. Since X is locally finite, K is compact. Thus L � K

contains two infinite components – one intersecting l..�1; a�/ and one intersecting
l.Œb;1//.

The following definitions will be important, particularly to the remainder of this
section.

Definition 2.7. If L is a quasi-line in a metric spaceX , then a connected component
C of X � L is said to be essential if C [ L has one end. Otherwise, C is said to be
inessential.

If C is not contained inNR.L/, for anyR � 0, then we shall say that C is nearly
essential.

Definition 2.8. If there is some m0 > 0 such that, for each p 2 L, each essential
component of the complement of L intersects a vertex of Bm0

.p/, then we say that
L satisfies ess.m0/.
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Definition 2.9. If m1 W R�0 ! R�0 is such that, for each R � 0, each inessential
component of the complement ofNR.L/ is contained in them1.R/-neighborhood of
NR.L/, then we say that L satisfies iness.m1/.

We will see shortly that all the quasi-lines in which we are interested (see Re-
mark 2.5) will satisfy iness.m1/ for some m1. It follows that the components of the
complements of these quasi-lines are essential if and only if they are nearly essential.

Definition 2.10. L is said to be n-parting if the complement of L has at least n
essential components.

Note that, if L is n-parting and R > 0, then NR.L/ is also n-parting.
Next, we shall show that any quasi-line in a one-ended finitely presented group has

only finitely many essential components in its complement, and moreover satisfies
ess.m0/ for some m0.

Definition 2.11. Let L and C denote subsets of a metric space X , let n > 0, and let
x; y 2 C \ L. Then we shall say that x and y are connected by an .L; n/-chain in
C \L if there are points x D z0; z1; : : : ; zk D y in C \L such that, for each i , there
is a path in L connecting zi to ziC1 of length less than or equal to n.

We will begin by working in C2.G/.

Lemma 2.12. Let G be a finitely presented group, let L be a .�;N / quasi-line in
C1.G/, and let 0 < � � 1. Then let L0 be an open set in C2.G/ such that L � L0,
each point in L0 can be connected to L by a path in C2.G/ of length less than �, and
each point in L0 \ C1.G/ can be connected to L by a path in C1.G/ of length less
than �. Suppose in addition that bothL0 andL0 \C1.G/ deformation retract ontoL.

Then there is some n0 D n0.G; �;N; �/ such that, if C 0 denotes any component
of C2.G/�L0, and x; y 2 C 0 \L0, then x and y are connected by an .L0; n0/-chain
fzig in C 0 \ L0. Moreover, the path in L0 connecting any zi and ziC1 can be taken
to be in L, outside of an initial segment containing zi and a final segment containing
ziC1, each of length less than or equal to �.

To prove this lemma, we first need the following.

Lemma 2.13. Let G;C2.G/, L, L0, and � be as in Lemma 2.12.
Let .C2/00 denote the union of C2.G/ together with a disk added at each closed

edge path of L0 of length less than or equal to �.2.N C �/C 1/C 2.N C �/C 1,
and let L00 denote the union of L0 with these disks. Then L00 is simply connected.

Proof. Let l be the line associated to L, so that l � L � L0, and note that L0 is a
.�;NC�/ quasi-line. Recall that the edges of C2.G/ are of length one, and metrically,
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the 2-cells of C2.G/ are regular polygons. Let the disks added to create .C2/00 and
L00 be regular polygons as well.

Let � W S1 ! L00 be any closed curve in L00. In the following we shall replace
� with homotopic curves (which we shall also call � ), and we shall assume at each
stage that � is parameterized by arc length. Thus we shall consider copies of S1 with
different metrics as appropriate below.

Note first that � can be homotoped in L00 to a cellular path that is contained in
L0 \ ŒC2.G/�.1/ D L0 \ ..C2/00/.1/. Let � now denote the resulting curve under this
homotopy.

Fix a finite collection P of points in Im.�/� l such that the .1=2/-neighborhood
of P contains Im.�/ � l . At each point p0 in P , consider a spike from p0 to l in L0
of length no more than .N C �/. We shall homotope � to traverse the appropriate
spike each time it meets a point of P . We have thereby constructed a homotopy of �
to a curve that is contained in l except for finitely many segments in L0 \ ŒC2.G/�.1/
of length bounded by 2.N C �/C 1

Let † denote the components of the complement of ��1.l/ in S1, so each com-
ponent of † has length no more than 2.N C �/C 1. We will prove, by induction on
j†j, that � must be null-homotopic in L00.

Note that, after adding the spikes, � must meet l , so † must consist of at least
one segment. If j†j D 1, then we shall let � denote the element in†, and let p and q
denote the endpoints of � . Then the distance between �.p/ and �.q/ inL0\..C2/00/.1/
must be bounded by 2.N C �/C 1, so �.p/ and �.q/ are connected in l by a path of
length no more than �.2.N C�/C1/. It follows that this path in l together with �.�/
make up a circuit in L0 of length no more than �.2.N C �/C 1/C 2.N C �/C 1,
and thus must bound a disk in L00.

Thus � may be homotoped in L00 so that �.�/ is taken to this path in l , i.e. � may
be homotoped within L00 to lie entirely inside of l . But l is an embedding of R, so �
is null-homotopic in L00.

Next, assume that j†j D i > 1. By choosing any element � of †, the same
argument as was given above shows that we can homotope � within L00 so that � is
replaced by a path in l . Thus we have homotoped � so that now j†j D i � 1. By
repeating this process, we reduce to the case of j†j D 1 above, and hence � must
have originally been null-homotopic in L00. It follows that L00 is simply connected,
as desired.

Proof of Lemma 2.12. Again let l be the line associated to L, and let .C2/00 and L00
be as in Lemma 2.13.

Recall that L00 differs from L0 only by disks with boundary in L0, and that these
disks are not contained in C2.G/. It follows that the intersection of L0 with the
closures of the components of C2.G/ � L0 is the same as the intersection of L00
with the closures of the components of .C2/00 � L00. Thus, if we can prove that the
conclusion of Lemma 2.12 holds for L00 in .C2/00, then the lemma will follow for L0
in C2.G/.
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Let fC˛g denote the components of the complement of L00. As L00 is simply
connected, we can apply Van Kampen’s theorem to fC˛ [ L00g to see that each
C˛ [ L00 is simply connected. Since L00 and each C˛ are connected, we have that
C˛ \L00 is connected. Thus for any fixed x; y 2 C˛ \L00, there exists a path p from
x to y contained in C˛ \ L00.

Without loss of generality, we can assume that the frontier of L0 (which equals
the frontier of L00) meets any edge of C1.G/ D .C2/.1/ D ..C2/00/.1/ in only finitely
many points. The group G has one end and C2.G/ is simply connected, thus each
edge of C2.G/ is contained in a 2-cell. The same is true for .C2/00, thus we can take
p to be transverse to ..C2/00/.1/, with jfp\ ..C2/00/.1/gj finite and p still contained in
C˛ \ L00. Let z0; z1; : : : ; zk denote the elements of p \ ..C2/00/.1/, numbered in the
order in which they are traversed by p, traveling from x to y, with z0 D x; zk D y.

Recall thatG is finitely presented, so the 2-cells of C2.G/ are of bounded perime-
ter. Also the additional 2-cells added to create .C2/00 have diameter bounded by a
function of �;N and �, so there is a bound n0 D n0.G; �;N; �/ on the perimeters of
the 2-cells of .C2/00. Any component of p� .C2/.1/ must be contained in such a cell,
thus its interior can be replaced by a segment in .C2/.1/ with length less than n0.

Recall that p was originally contained in the frontier of L0, L0 � N�.L/ with
� � 1, and both L0 and L0 \ C1.G/ deformation retract onto L. Hence we can
replace each segment of p � .C2/.1/ with a segment in .C2/.1/ of length less than
n0 that is contained in L except for initial and terminal segments of length bounded
by �.

Thus the zi ’s form an .L00; n0/-chain from x to y as desired.

We can now prove that quasi-lines in finitely presented groups satisfy ess.m0/.

Lemma 2.14. LetG be a one-ended finitely presented group, withL a .�;N / quasi-
line in C1.G/. Then C1.G/ � L contains only finitely many essential components.
Moreover, there is some m0 D m0.G; �;N / such that L satisfies ess.m0/.

Proof. We shall prove that L satisfies ess.m0/, for some m0 > 0. Since C1.G/ is
locally finite, it will follow that the complement ofL contains finitely many essential
components.

LetC be a component of the complement ofL in C1.G/. We shall use Lemma 2.12
to show that there is some n > 0 (not depending on our choice of C ) such that any
x; y 2 . xC \ L/ are connected by an .L; n/-chain in . xC \ L/ � C1.G/ � C2.G/.

Let L0 be as defined in Lemma 2.12, so, for some 0 < � � 1, L � L0 � N�.L/,
L0 is open in C2.G/, and both L0 and L0 \ C1.G/ deformation retract onto L. Recall
that in Lemma 2.12, we proved a result similar to that desired now, but forL0 � C2.G/.

Fix any such x and y, and, as xC is connected, there is a simple oriented edge
path p in xC connecting them. Note that our assumptions on L0 imply that each edge
in p must meet one component of C2.G/ � L0. Thus p is a union of edge paths
p1; p2; : : : ; pk such that, for each i , the terminal vertex of pi is equal to the initial
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vertex of piC1, and each pi intersects L0 in components of length no more than
� containing its initial and terminal vertices, with the rest of pi contained in some
component C 0 of C2.G/ � L0. Let xi and yi denote the two points of .C 0 \ L0/, so
each is within � of a different endpoint of pi .

By Lemma 2.12, each pair xi and yi can be connected by an .L0; n0/-chain fz0
j g

in C 0 \L0. Recall that, moreover, a path of length no more than n0 between any two
consecutive points in the chain is in L, outside of initial and final segments of length
no more than �, and that L0 \ C1.G/ deformation retracts onto L. Thus, each z0

j can

be connected by a path of length no more than � inL0 \C1.G/ to a point zj 2 xC \L
such that fzj g forms an .L; n0C2�/-chain in xC \L, connecting the endpoints of pi .
Concatenating these chains, we see that, for n D n0 C 2�, x and y can be connected
by an .L; n/-chain in xC \ L as desired.

>From now on, we shall work only in C1.G/, not C2.G/.
We shall now find an m0 > 0 such that there is an .L; n/-chain in the frontier of

each essential component C of the complement of L that must intersect the m0-ball
about any given point of L.

Fix any a 2 L and R 	 N; n. As C is essential, e.C [ L/ D 1, and, from
Lemma 2.6, recall that L must have two ends. It follows then that C must intersect
both unbounded components of L � BR.a/; let x be in the intersection of xC \ L

with one, and y in the intersection of xC \L with the other. By the work above, there
exists an .L; n/-chain, fzig, from x to y in xC \ L.

Recall that L is a .�;N / quasi-line, and let l be the line associated to L. Then,
for each i , there is a path inL of length less than or equal toN connecting zi to some
wi 2 l . For each i , d.zi ; ziC1/ � n, thus d.wi ; wiC1/ � nC 2N , and thus the path
in l between any two adjacent wi ’s has length less than or equal to �.nC 2N/.

Let a0 2 l be of distance less than or equal to N from a 2 L. As R 	 0, x and
y are such that there is some i with l�1.wi / � l�1.a0/ � l�1.wi˙1/, and hence, for
some j , d.a0; wj / � 1

2
�.nC 2N/. Thus

d.a; zj / � d.a; a0/C d.a0; wj /C d.wj ; zj / � 1

2
�.nC 2N/C 2N:

Since zj 2 C , and zj is of distance less than 1 from a vertex of C , it follows that,
for any m0 � Œ1

2
�.n C 2N/ C 2N C 1�, C intersects Bm0

.a/ in a vertex. Thus L
satisfies ess.m0/.

We note that, in particular, the argument above proves the following:

Corollary 2.15. Let G be a one-ended finitely presented group, with L a .�;N /
quasi-line in C1.G/ and C a component of C1.G/�L, which need not be essential.
Let m0 D m0.G; �;N / be as in Lemma 2.14.

If K � L is such that K separates L into two infinite components and C meets
both of those components, then Bm0

.x/ meets C in a vertex, for each x 2 K.



218 D. M. Vavrichek

Remark 2.16. By Lemma 2.14, since all quasi-lines with which we are concerned
in any one Cayley graph will have the same parameters, they will all satisfy ess.m0/
for some fixed m0.

In the remainder of this section, we will show that any quasi-line L that we are
concerned with satisfies iness.m1/ for some m1.

Lemma 2.17. Let G be a one-ended finitely generated group, and let H be a two-
ended subgroup of G. Then any neighborhood of H that is a quasi-line satisfies
iness.m1/, for some m1 depending only onH and the size of the neighborhood.

Proof. FixR > 0 such thatNR.H/ is connected, hence is a quasi-line. It will suffice
to find some numberm1.R/ such that each inessential component of the complement
of NR.H/ is contained in the m1.R/-neighborhood of NR.H/.

We will prove this by first showing that a component C of C1.G/ � NR.H/ is
essential if and only if C is nearly essential. As NR.H/ has two ends, it follows that
C is nearly essential if C is essential. We now prove the converse.

Suppose that C is not essential. Then C [ NR.H/ has more than one end, so
there is a compact K � .C [NR.H// such that .C [NR.H// �K has more than
one infinite component.

Letm denote the number of infinite components of .C[NR.H//�K, and suppose
that m > 2. Since e.G/ D 1, each of these components must meet NR.H/, and as
e.NR.H// D 2, the intersection ofNR.H/with at least .m�2/ of these components
must be finite. LetM be the union ofK with these finite regions ofNR.H/, and thus
at least .m�2/ components of the complement ofM in .C [NR.H// do not intersect
NR.H/. Moreover, note that each such component, of which there is at least one,
must be a component of C1.G/ �M . At least one other component of C1.G/ �M

has infinite intersection with NR.H/, and hence e.G/ > 1, a contradiction.
Thus we must have that e.C [ NR.H// D 2. We shall show that we can find a

finite index subgroup of H that fixes C .
Note that since C is a component of the complement of NR.H/, then, for any

g 2 H , gC is also a component of the complement of NR.H/.
Let hhi be a finite index subgroup of H , and suppose that the hhi-orbit of C

contains infinitely many components of the complement of NR.H/.
Suppose, in addition, that C does not meet NR.H/ along its entire length, i.e.

that there is some compact region K 0 � NR.H/ and an infinite component LC of
NR.H/�K 0 such that C does not meetLC. As e.C1.G// D 1, the intersection of C
withNR.H/must be infinite, soNR.H/�K 0 must have another infinite component,
call itL�, andC must meetL�. Moreover, for any point q 2 NR.H/ and any r > 0,
C must meet L� outside of Br.q/.

Let � and N be parameters for NR.H/ and let m0 D m0.G; �;N / be as in
Lemma 2.14. Then, by Corollary 2.15, for any point p 2 L� that is sufficiently far
from K 0, C must meet Bm0

.p/ in a vertex. Fix such a point p.
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As we have assumed that hhi �C consists of infinitely many components, choose
fnig such that fhniC g are distinct. We can moreover choose the fnig such that
L� � hniL�, for all i .

But then each hniC must meet Bm0
.p/ in a vertex. C1.G/ is finitely generated,

hence there are only finitely many vertices in Bm0
.p/, but the translates hni � C are

disjoint, thus we have reached a contradiction.
If instead, for any compact subsetK 0 ofNR.H/,C meets both infinite components

of NR.H/ �K 0, then a similar argument, with L taking the role of L�, also gives a
contradiction. Thus the hhi-orbit of C must be a finite collection of components.

By passing to a finite index subgroup of hhi if necessary, we can assume that hhi
fixes C .

Recall that we showed above that .C [NR.H// has two ends. The subgroup hhi
acts on this union by isometries, so the quotient of .C [NR.H// by this action must
be compact. It follows that C is contained in a finite neighborhood ofNR.H/, hence
is not nearly essential.

Thus C is essential if and only C is nearly essential.
It remains to argue that each inessential component of the complement ofNR.H/

is contained in the m1.R/-neighborhood of NR.H/ for some m1.R/. Note that any
inessential component of C1.G/�NR.H/ is not nearly essential, hence projects onto
a bounded component of HnC1.G/ � HnNR.H/. As HnNR.H/ is compact and
HnC1.G/ is locally finite, there are only finitely many components of HnC1.G/ �
HnNR.H/, thus there is some m1.R/ > 0 such that each bounded component is
contained in the m1.R/-neighborhood of HnNR.H/.

It follows that any inessential component of the complement of NR.H/ is con-
tained in the m1.R/-neighborhood of NR.H/, as desired.

We show next that the property of satisfying iness.m1/ for some function m1 is
invariant under quasi-isometries.

Lemma 2.18. Let f W C1.G/ ! C1.G0/ be a .ƒ;K/ quasi-isometry between the
Cayley graphs of one-ended, finitely presented groupsG andG0, and let L � C1.G/

be a quasi-line satisfying iness.m1/.
If R0 � 0 is such that L0 D NR0.f .L// is a quasi-line in C1.G0/, then L0 must

satisfy iness.m0
1/, for some m0

1 depending on ƒ;K; m1, and R0.

Proof. Recalling Lemma 2.4, we fix R0 so that L0 D NR0.f .L// is a quasi-line. As
was the case previously, it suffices to prove that there is some number m0

1.R
0/ > 0

(dependent on R0) such that the inessential components of the complement of L0 are
contained in the m0

1.R
0/-neighborhood of L0.

Again we will begin by showing that any component of C1.G0/ � L0 is essential
if and only if it is nearly essential. Recall that we always have that essential implies
nearly essential.

Let f �1 be a quasi-inverse to f , and note that, for any R > 0, each component
of C1.G0/ � L0 gets mapped by f �1 either into NR.L/ or into the union of NR.L/
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with components of its complement. We claim that we may choose R large enough
that, if C 0 is a component of C1.G0/ � L0 such that f �1.C 0/ meets a component C
of C1.G/�NR.L/, then the image under f �1 of no other component of C1.G0/�L0
will meet C .

To see this, let ƒ0; K 0; ı be such that f �1 is a .ƒ0; K 0/ quasi-isometry, with
f �1.L0/ � Nı.L/. Let fC 0̨ g be the components of C1.G0/�L0, and letR1 > ƒ0K 0.
Note that, if ˛ ¤ ˇ, and C 0̨ � NR1

.L0/ and C 0
ˇ

� NR1
.L0/ are nonempty, then any

points p˛ 2 C 0̨ � NR1
.L0/, pˇ 2 C 0

ˇ
� NR1

.L0/ are at least a distance of 2ƒ0K 0
apart.

Let R > .ı C ƒ0R1 C K 0/, and note that f �1.NR1
.L0// � NR.L/. Recall

that f �1 is coarsely surjective, with NK0.f �1.C1.G0/// D C1.G/. Suppose that
there is some component of C1.G/ � NR.L/ that is met by more than one image
f �1.C 0̨ /. Then there are two such, call them f �1.C 0̨ / and f �1.C 0

ˇ
/, with some

p˛ 2 C 0̨ � NR1
.L0/; pˇ 2 C 0

ˇ
� NR1

.L0/, such that d.f �1.p˛/; f �1.pˇ // < K 0.
But this means that 1

ƒ0
d.p˛; pˇ /�K 0 < K 0, i.e. that d.p˛; pˇ / < 2ƒ0K 0, which is

a contradiction.
Thus, with R chosen as above, we have that the images under f �1 of different

components of the complement of L0 shall not meet the same component of the
complement of NR.L/.

Suppose now that C 0 is a component of C1.G0/ � L0 that is nearly essential. Let
C0 be the union of the components of C1.G/�NR.L/ that are met by f �1.C 0/. Since
L satisfies iness.m1/, C0 must contain an essential component of the complement of
NR.L/. Let C e0 denote the essential components in the complement of NR.L/ that
are met by f �1.C 0/, and now we have that C e0 is nonempty.

Observe that .C 0 [ L0/ is quasi-isometric to C0 [ f �1.L0/, which is quasi-
isometric to .C0 [ L/. Certainly this is quasi-isometric to .C0 [ NR.L//, which in
turn must be quasi-isometric to .C e0 [NR.L//, since the components of C0 that are
inessential must be contained in the m1.R/-neighborhood of NR.L/.

We claim that e.C e0 [ NR.L// D 1. This is immediate if C e0 contains only one
component, so assume that C e0 D fCig contains more than one, and suppose for a
contradiction that e.C e0 [NR.L// > 1.

Then there is some finite subgraph K of .C e0 [ NR.L// whose complement has
more than one infinite component. For each i , Ci is essential so .Ci [NR.L//�K
has exactly one infinite component which we shall call Di , and as C1.G/ is locally
finite, we note that NR.L/ � .Di \ NR.L// must therefore be finite. On the other
hand, asG is finitely presented, soNR.L/ satisfies ess.m0/ for somem0. Thus there
are only finitely many Ci ’s, so there must be indices i and j such thatDi andDj are
disconnected in .C e0 [NR.L// by K. As NR.L/ is finite outside of Di and is finite
outside of Dj , we have reached a contradiction.

Thus e.C e0 [NR.L// D 1, so e.C 0 [ L0/ D 1 and C 0 is essential.
Hence components of the complement of L0 are essential if and only if they are

nearly essential. It remains to conclude that L0 satisfies iness.m1/.
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As f �1 is coarsely surjective, we have that a finite neighborhood of the image
under f �1 of any component of the complement ofL0 is equal to a subset ofNR.L/,
together with a collection of components of the complement of NR.L/. As the
inessential components of the complement of NR.L/ are contained in the m1.R/-
neighborhood ofNR.L/, it follows that there is somem0

1.R
0/ > 0 such that any com-

ponent C 0 of the complement of L0 is either contained in the m0
1.R

0/-neighborhood
of L0, or is contained in no finite neighborhood of L0. Thus, C 0 must be contained in
Nm0

1
.R0/.L

0/ or else is nearly essential hence essential, as desired.

Remark 2.19. Recall that we are concerned with quasi-lines as follows. IfG is a one-
ended finitely presented group with two-ended subgroup H , then we will consider
quasi-lines in C1.G/ of the form NR.H/ and their translates under the action of G.
We will also consider quasi-lines that are R0-neighborhoods of the images of these
under a quasi-isometry f W C1.G/ ! C1.G0/.

G acts on C1.G/ by isometries, and hence it follows from Lemma 2.17 that any
collection of quasi-lines that are translates NR.H/ by elements of G will all satisfy
iness.m1/ for the same function m1.

This together with Lemma 2.18 implies that the R0-neighborhoods of the images
of these quasi-lines will all satisfy iness.m0

1/ for the same function m0
1.

Thus any collection of quasi-lines that we will consider in a given group will
satisfy iness.m1/ for the same m1.

3. The quasi-isometry invariance of two-ended subgroups
with at least three coends

In this section, we will prove that, up to finite Hausdorff distances, quasi-isometries
take two-ended subgroups with at least three coends to other two-ended subgroups
with at least three coends (Theorem 3.8). Coends will be defined below, and we will
see that two-ended subgroups having at least three coends will be exactly those whose
corresponding quasi-lines are 3-parting (Lemma 3.6).

The main ingredient in the proof of the quasi-isometry invariance of two-ended
subgroups with at least three coends is Proposition 3.5, which shows that any 3-
parting quasi-line satisfying iness.m1/ is a finite Hausdorff distance from an infinite
cyclic subgroup. For this, we use the proof of a similar result from [21]. There,
Papasoglu shows that, given a 3-parting quasi-line in the Cayley graph of a one-ended,
finitely presented group, either the quasi-line is a finite distance from an infinite cyclic
subgroup, or a related limit of translates of quasi-lines is. We will see below that this
latter possibility can be eliminated.

We first note that quasi-lines satisfying iness.m1/ but that are not 3-parting need
not be a finite Hausdorff distance from a copy of Z. For example, consider the
nearest-point projection of a line l0 in R2 with irrational slope into the Cayley graph
of Z2, where the vertices are taken to be the integer lattice points in R2 and we take
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the standard generating set. Let L denote a connected neighborhood in CZ2 of the
projection of l0. Then L is a 2-parting quasi-line in CZ2 that satisfies iness.m1/ for
some m1. However, the infinite cyclic subgroups of Z2 correspond to lines in R2

with rational slope, henceL is an infinite Hausdorff distance from any subgroup of Z2.

In order to prove Proposition 3.5, we will need to know that 3-parting quasi-lines
do not cross one another in an essential way. We shall say that a; b 2 C1.G/ are
K-separated by a quasi-line L if BK.a/ and BK.b/ are in different components of
the complement of L. The following is Proposition 2.1 from [21]:

Theorem 3.1. [21] Let G be a one-ended, finitely presented group, and let L, L1
be .�0; N 0/ quasi-lines in C1.G/ that satisfy iness.m1/. Suppose that L is 3-parting.

Then there is some K D K.G; �0; N 0; m1/ such that no two points a; b 2 L are
K-separated by L1.

We include a proof of this theorem in the appendix, in order to clarify some points
from the proof given in [21].

To restate Theorem 3.1, if there is some a 2 L that is in an essential component
C of the complement of L1 and is more than a distance of K from L1, and b 2 L is
in a different essential component of the complement of L1, then b is no more than
a distance of K from L1.

It follows that L is contained in theK-neighborhood of L1 [C . Letm0 be such
that L and L1 satisfy ess.m0/ (see Lemma 2.14), and let K 0 D K C 2m0. Then it
follows that L is contained in the K 0-neighborhood of C .

Thus we have the following corollary to Theorem 3.1:

Corollary 3.2. Let G, L and L1 be as in Theorem 3.1.
Then there is some K 0 D K 0.G; �;N;m1/ such that L is contained in the K 0-

neighborhood of an essential component of the complement of L1.

The next observation will be needed in Lemma 3.4.

Lemma 3.3. LetL andL0 be .�;N / quasi-lines in ametric spaceX . Then for anyx2,
there is some x1 D x1.�;N; x2/ > x2 such that if L ª Nx1

.L0/, then L0 ª Nx2
.L/.

Proof. Given x2, let x1 > 1
2
�.2.x2 CN//C 2N C x2. Suppose for a contradiction

thatL ª Nx1
.L0/ and thatL0 � Nx2

.L/. Let l and l 0 be the lines associated toL and
L0 respectively, and it follows that there is some t 2 R such that the .x1 � N/-ball
about l.t/ does not meet l 0.

AsL0 � Nx2
.L/, hence l 0 � Nx2CN .l/, it follows that there are t1 < t < t2 such

that jt� ti j � ..x1�N/� .x2CN// for each i and d.l.t1/; l.t2// � 2.x2CN/. But
our assumption on x1 implies that �.2.x2CN// < 2.x1�2N �x2/, a contradiction.
Thus L0 ª Nx2

.L/.
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We shall need the following lemma, both to prove Proposition 3.5 and also to
prove another later result.

Lemma 3.4. Let G be a one-ended, finitely presented group, and let fLig be a
collection of 3-parting .�;N / quasi-lines in C1.G/ satisfying iness.m1/. Suppose
that \iLi contains a vertex.

Then there is some constant x1 D x1.G; �;N;m1/ such that if, for all i; j ,
dHaus.L

i ; Lj / > x1, then fLig is finite.

Proof. Letm0 D m0.G; �;N /be as in Lemma 2.14, so that eachLi satisfies ess.m0/.
Let K 0 D K 0.G; �;N;m1/ be as in Corollary 3.2, so that, for each i; j , Li is con-
tained in the K 0-neighborhood of an essential component of the complement of Lj .
Furthermore, let m0

0 D m0.G; �;N C K 0/, so that, for any i , NK0.Li / (which is
a .�;N C K 0/ quasi-line) satisfies ess.m0

0/. Let x2 > maxfK 0; m0
0g and let x1

be from Lemma 3.3. Thus dHaus.L
i ; Lj / > x1 implies that Li ª Nx2

.Lj / and
Lj ª Nx2

.Li /.
Let L0 denote fLig, and suppose that L0 is infinite. Then choose any elementL0

from L0. AsL0 satisfies ess.m0/, the complement ofL0 has only finitely many essen-
tial components, so there is some essential component B0 whose K 0-neighborhood
contains infinitely many elements of L0. Let L1 D fL 2 ŒL0�L0� W L � NK0.B0/g.
Choose L1 from L1, and let B 0

1 be the essential component of the complement of L1
whose K 0-neighborhood contains L0. Note that x2 > K 0 implies that B 0

1 is unique.
As L1 is infinite, there is some essential component of the complement of L1

whoseK 0-neighborhood contains infinitely many elements of L1. LetB1 denote this
component, and let L2 denote fL 2 ŒL1 � fL0; L1g� W L � NK0.B1/g. Choose
L2 from L2, and continue on in this manner. This produces an infinite sequence of
quasi-lines fLig and subsets of C1.G/, fBig and fB 0

ig, such that, for each i , Bi is an
essential component of the complement of Li such that Lj � NK0.Bi / for all j > i ,
and B 0

i is an essential component of the complement of Li such that Lj � NK0.B 0
i /

for all j < i (with perhaps Bi D B 0
i ). Each Li is 3-parting, so we may set Di to be

an essential component of the complement of Li that is not equal to Bi nor B 0
i , for

each i .
We shall see next that the Di ’s are basically disjoint. Let i ¤ j , and note that,

since Li is not contained in the x2-neighborhood of Lj , there must be some point
p 2 Li such that Bx2

.p/ does not intersect Lj . Thus Bx2
.p/ is contained in Bj

or B 0
j .

Note that, for each i , Di � NK0.Li / is a collection of essential and inessential
components of the complement of NK0.Li /. Since Di is an essential component of
the complement ofLi , andLi satisfies iness.m1/, it follows thatDi �NK0.Li /must
contain an essential component Ei of the complement of NK0.Li /.

As x2 > m0
0, Bx2

.p/ must meet each essential component of the complement of
NK0.Li /, so, in particular, Bx2

.p/ meets Ei , hence Bx2
.p/ [Ei is connected.

The quasi-line Lj is disjoint fromDi �NK0.Li /, hence does not meet Ei , or the
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union Bx2
.p/[Ei . It follows that this union is contained in Bj or B 0

j , so is disjoint
from Dj , and hence from Ej � Dj . Thus, the Ei ’s are disjoint.

Now we recall that \iLi contains a vertex, say y 2 C1.G/, and hence Bm0

0
.y/

intersects eachEi . Since these regions are disjoint,Bm0

0
.y/must contain a collection

of vertices in bijection with fLig. ButG is finitely generated, henceBm0

0
.y/ has only

finitely many vertices, and we have reached a contradiction.

Proposition 3.5. Let L be a 3-parting .�;N / quasi-line in the Cayley graph of a
one-ended, finitely presented group G, and suppose that L satisfies iness.m1/ for
some m1. Then there is some subgroupH Š Z of G such that dHaus.L;H/ < 1.

Proof. LetL be as in the statement of the proposition, and let x1 be as in Lemma 3.4,
defined with the parameters ofL. In case 1 of section 6 of [21], Papasoglu makes the
following construction.

Fix some y 2 L, and choose a sequence fyig � L such that d.y; yi / ! 1. Let
gi be such that giyi D y, and, by passing to a subsequence, we may assume that, for
all i > j ,

gjL \ Bj .y/ D giL \ Bj .y/:
If there is some i such that dHaus.giL; gjL/ is less than or equal to any fixed constant
for infinitely many gj , then it is shown in [21] that there is some g contained in the
subgroup generated by these gj such that hgi Š Z, and giL is a finite Hausdorff
distance from hgi. Thus dHaus.L; g

�1
i hgi/ < 1. Since dHaus.g

�1
i hgi; g�1

i hgigi / is
bounded by the word length of gi , it follows thatL is a finite Hausdorff distance from
g�1
i hgigi Š Z.

Therefore, by passing to a subsequence, we may assume that, for each i and j ,
dHaus.giL; gjL/ > x1. It follows that this infinite subsequence of fgiLg satisfies the
hypotheses of Lemma 3.4, which is a contradiction.

Next, we will give the definition of coends. We will see that Theorem 3.8 follows
quickly from Proposition 3.5 and a few basic facts about coends.

Given a group G with a subgroup H and a subset Y , we say that Y is H -finite
if Y is contained in finitely many cosets Hg of H . In [18], Kropholler and Roller
defined

Qe.G;H/ D dimF2
.PG=FHG/

G ;

where PG is the power set of all subsets of G, and FHG is the set of all H -finite
subsets of G. The quotient set PG=FHG forms a vector space over F2, the field
with two elements, under the operation of symmetric difference. Thus a subset X
of G represents an element of .PG=FHG/G if and only if the symmetric difference
X CXg is H -finite for all g 2 G.

Following Bowditch [2], we shall call Qe.G;H/ the number of coends ofH in G.
(Kropholler and Roller called Qe.G;H/ the number of relative ends of H in G, and
we note that this is also sometimes referred to as the number of filtered ends of H
in G.)
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IfX is a subset ofG, then we can think ofX as a subset of the vertex set of C1.G/,
and thus ıX , the coboundary of X , is the set of edges in C1.G/ that have exactly
one vertex contained inX . It is a fact thatX represents an element of .PG=FHG/G

exactly when ıX is H -finite. (See Cohen [3] for a proof of this in the case when H
is trivial.)

The following lemma shows that we can characterize the number of coends of a
two-ended subgroup in terms of essential components:

Lemma 3.6. LetG be a one-ended, finitely generated groupwith two-ended subgroup
H , and let n < 1. Then Qe.G;H/ � n if and only if there is some R > 0 such that
NR.H/ is a quasi-line in C1.G/ that is n-parting.

Moreover, Qe.G;H/ D 1 if and only if, for each n < 1 there is some R D R.n/

such that NR.H/ is an n-separating quasi-line.

Proof. A subset X of G represents an element in the F2-vector space .PG=FHG/G

if and only if ıX is anH -finite set of edges in C1.G/. Note that this happens precisely
when ıX is contained in a finite neighborhood of H in C1.G/.

Essential components of the complement of any quasi-line of the form NR.H/

naturally correspond to elements of .PG=FHG/G : let yY be an essential component
of the complement of NR.H/, and let Y denote the vertex set of yY . Then for any
� > 0, the boundary of yY is contained in NRC�.H/, hence ıY � NRC1.H/, thus Y
represents an element of .PG=FHG/G . Note that Y is not H -finite, so the element
it represents must be nontrivial in .PG=FHG/G .

By Lemma 2.3, we can fix R > 0 such that NR.H/ is a quasi-line. Suppose that
NR.H/ isn-parting, and letY1; : : : ; Yn be essential components of the complement of
NR.H/. They are disjoint, hence represent independent elements of .PG=FHG/G ,
and thus Qe.G;H/ � n.

If Qe.G;H/ � n for some n < 1, then we can find representativesX1; : : : ; Xn of
elements of a basis for .PG=FHG/G . Thus there is someR > 0 such that, in C1.G/,
ıXi � NR.H/, for all i . Then note that each Xi is equivalent in .PG=FHG/G to
a union of components of C1.G/ � NR.H/. Recall from Lemma 2.17 that, for
some m1 > 0, NR.H/ satisfies iness.m1/, hence each Xi is equivalent to a union of
essential components of C1.G/�NR.H/. Since theXi ’s are independent, n of these
essential components must be disjoint, so the complement of NR.H/ has at least n
distinct essential components, i.e. NR.H/ is n-parting.

Now suppose that Qe.G;H/ D 1, and fix any n < 1. Then in particular
Qe.G;H/ � n so, by the previous paragraph, there is some R D R.n/ such that
NR.H/ is an n-parting quasi-line.

Lastly, suppose now that H is such that, for any n < 1 there exists some
R.n/ such thatNR.H/ is an n-parting quasi-line, and let Y n1 ; Y

n
2 ; : : : ; Y

n
n denote the

essential components of the complement of NR.H/.
Fix any sequence n1; n2; n3; : : : such that R.ni / < R.niC1/ for all i . Then we

note that there are indices ji ¤ ki such that 1 � ji ; ki � ni and such that Y ni

ji
� Y

nl

kl
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for all i > l , and hence fY ni

ji
g1
iD1 are a disjoint collection of representatives of

elements of .PG=FH .G//G . It follows that Qe.G;H/ D 1.

Lemma 3.7. Let f W C1.G/ ! C1.G0/ be a .ƒ;C / quasi-isometry between the
Cayley graphs of one-ended, finitely presented groups G and G0, and let L be a
.�;N / quasi-line in C1.G/ satisfying iness.m1/.

Then there is some R0 D R0.ƒ;C; �;N;m1/ > 0 such that, if L is n-parting,
then NR0.f .L// is also n-parting.

Proof. Lemma 2.4 shows that we can find some R00 > 0 such that NR00.f .L// is
a quasi-line. Thus so is NR0

0
.f .L// for any R0

0 � R00, and, by Lemma 2.18, we
also have that NR0

0
.f .L// satisfies iness.m0

1/ for some m0
1 (depending on R0

0). For

any such R0
0, the image under f of any component of C1.G/ � L will be contained

in the union of NR0

0
.f .L// and components of its complement. As in the proof

of Lemma 2.18, there is some R0 � R00 such that the images under f of distinct
components of C1.G/�L do not meet the same components of C1.G0/�NR0.f .L//.
Let L0 D NR0.f .L//.

As f is coarsely surjective and L0 satisfies iness.m0
1/, the image of any essential

component in the complement ofLmeets an essential component in the complement
of L0. As no two components of the complement of L meet the same components of
the complement of L0, it follows that the complement of L0 contains at least as many
essential components as the complement of L.

We now can prove the following:

Theorem 3.8. Let f W C1.G/ ! C1.G0/ be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groupsG andG0, and assume thatG contains
a 2-ended subgroupH that has n coends inG, for n 2 f3; 4; : : :g [ f1g. Then there
is a two-ended subgroupH 0 of G0 that has n coends in G0, and furthermore

dHaus.f .H/;H
0/ < 1:

Proof. Suppose first that n < 1. By Lemmas 2.3 and 2.17, for any R such that
NR.H/ is connected, we have that NR.H/ is a .�;N / quasi-line that satisfies
iness.m1/, where �;N , and m1 all depend on R. As Qe.G;H/ D n, it follows
from Lemma 3.6 that we can further choose R so that NR.H/ is n-parting. Let
L D NR.H/ for some such R.

Then, by Lemmas 2.4 and 2.18, and 3.7, there is some R0 such that NR0.f .L//

is a quasi-line satisfying iness.m0
1/, and NR0.f .L// is n-parting. Let L0 denote

NR0.f .L// for some such R0.
Proposition 3.5 implies that there is some H 0 Š Z that is a finite Hausdorff

distance from L0. Let L00 D NR00.H 0/, with R00 > 0 such that L00 contains L0. Then
L00 is n-parting, so, by Lemma 3.6, Qe.G0;H 0/ � n.
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If Qe.G0;H 0/ > n, then Lemma 3.6 and Lemma 3.7, applied to a quasi-inverse of
f , implies that there is some quasi-line that is a finite Hausdorff distance fromH and
ism-parting for somem > n. There is a neighborhood ofH contains this quasi-line,
thus is m-parting, so by Lemma 3.6, Qe.G;H/ � m, a contradiction.

Thus Qe.G0;H 0/ D n, so H 0 is the desired subgroup.
Suppose then that Qe.G;H/ D 1. Then Qe.G;H/ � m for any m < 1, and the

above argument shows that there is some R00 > 0 such thatNR00.H 0/ is anm-parting
quasi-line. Thus Lemma 3.6 implies that Qe.G0;H 0/ D 1.

4. The quasi-isometry invariance of commensurizer subgroups

In this section, we will see that commensurizers of two-ended subgroups with at least
three coends are invariant under quasi-isometries.

More specifically, we saw in the last section that, if f W C1.G/ ! C1.G0/ is a
quasi-isometry between the Cayley graphs of one-ended, finitely presented groupsG
andG0, andH is a two-ended subgroup ofG with at least three coends, then there is a
two-ended subgroupH 0 with at least three coends, that is a finite Hausdorff distance
from f .H/ in C1.G0/. We will now see that in fact CommG0.H 0/ is a finite Hausdorff
distance from the image under f of CommG.H/ in C1.G0/ (Theorem 4.4).

We first observe the geometric structure of commensurizers:

Lemma 4.1. If G is a finitely generated group with subgroupH , then

CommG.H/ D fg 2 G W dHaus.H; gH/ < 1g:

Proof. Let l.g/ be the minimal word length of representatives for g 2 G, with
respect to the given finite generating set for G. Then note that, for all x; g 2 G,
d.x; xg/ D d.e; g/ D l.g/. Thus dHaus.gH; gHg

�1/ � l.g�1/, so it suffices to
show that g 2 CommG.H/ if and only if dHaus.H; gHg

�1/ < 1.
LetHg denote gHg�1. If dHaus.H;H

g/ D M < 1, then, for any x 2 H , there
is some y 2 Hg such that d.x; y/ � M , i.e. d.y�1x; e/ D l.y�1x/ � M . Let
L.M/ D fk 2 G W l.k/ � M g. It follows that

H �
[

k2L.M/

Hgk (1)

and similarly that
Hg �

[
k2L.M/

Hk: (2)

Observe that in fact (1) and (2) are equivalent to having dHaus.H;H
g/ � M .

If H meets Hgk, then there is some h1 2 H with Hgk D Hgh1. G is finitely
generated, so L.M/ is finite, and it follows that (1) implies that there are finitely
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many elements h1; : : : ; hn in H such that

H �
n[
iD1

Hghi :

Thus H D Sn
iD1.H \ Hg/hi , i.e. .H \ Hg/ is of finite index in H . Similarly

.H \ Hg/ is of finite index in Hg , so H and Hg are commensurable, hence g 2
CommG.H/.

Conversely, if g 2 CommG.H/, then there are elements h1; : : : ; hn in H such
that H D Sn

iD1.H \ Hg/hi , and elements h0
1; : : : ; h

0
n in Hg such that Hg DSn0

iD1.H \ Hg/h0
i . In particular, (1) and (2) hold if we take M to be the maximal

word length of the hi ’s and .h0
i /’s.

Thus dHaus.H;H
g/ � M , so we have shown the lemma.

Remark 4.2. As we saw in the proof of Theorem 3.8, if H is a two-ended subgroup
of G with at least n coends, n < 1, then there is some R such that NR.H/ is an
n-parting .�;N / quasi-line satisfying iness.m1/, for some �;N , and m1. Thus, by
Lemma 4.1 and since G acts on its Cayley graph by isometries on the left,

NR.CommG.H// D
[

g2CommG.H/

NR.gH/ D
[

g2CommG.H/

g �NR.H/

is a union of isometric copies ofNR.H/ that are pairwise of finite Hausdorff distance
from one another. Hence we may think of CommG.H/ as a collection of “parallel”
n-parting .�;N / quasi-lines that satisfy iness.m1/.

Consider the following.

Proposition 4.3. Let G be a one-ended, finitely presented group with a two-ended
subgroup H that has at least three coends, and let C D CommG.H/ D `

i giH .
Givenquasi-line parameters� andN , anda functionm1, there exists a constantx > 0
(which depends onH ) such that, ifL is a 3-parting .�;N / quasi-line inC1.G/ satisfy-
ing iness.m1/ and such that dHaus.L;H/ < 1, then, for some i , dHaus.L; giH/ < x.

Assuming this proposition for the moment, we shall see how it implies the invari-
ance of these commensurizer subgroups under quasi-isometries.

Suppose that f W C1.G/ ! C1.G0/ is a quasi-isometry between the Cayley graphs
of one-ended, finitely presented groups G and G0, that H is a two-ended subgroup
of G with at least n coends, for some 3 � n < 1, and that C D CommG.H/.
Then, by Remark 4.2, we have that some neighborhood NR.C / of C is a union of
pairwise finite Hausdorff distance, n-parting .�;N / quasi-lines fLig, all of which
satisfy iness.m1/ for some m1.

By Theorem 3.8, there is a two-ended subgroup H 0 of G0 such that Qe.G;H/ D
Qe.G0;H 0/ and dHaus.f .H/;H

0/ is finite. Let C 0 D CommG0.H 0/. By Lemma 2.4,
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there exists R0 such that the R0-neighborhood of each f .Li / is a .�0; N 0/ quasi-line,
for some �0 and N 0 depending on R0. By Lemma 3.7, we can choose R0 so that each
NR0.f .Li // is 3-parting. By Lemma 2.18 and Remark 2.19, we can further suppose
that each NR0.f .Li // satisfies iness.m0

1/, for some fixed m0
1. Thus we may apply

Proposition 4.3 to get some x such that each NR0.f .Li // is contained in Nx.C 0/.
It follows that NR0.f .NR.C /// � Nx.C

0/, i.e. that f .C / is contained in a finite
neighborhood of C 0.

As was the case for C , recall that a neighborhood of C 0 is a union of quasi-lines
as above. Thus, by running the same argument on a quasi-inverse to f , it follows
that dHaus.f .C /; C

0/ < 1. Hence we have the following.

Theorem 4.4. Let f W C1.G/ ! C1.G0/ be a .ƒ;K/-quasi isometry between finitely
presented, one-ended groups, and suppose thatH is a two-ended subgroup ofG with
n coends in G, for n 2 f3; 4; 5; : : :g [ f1g. Then there is a two-ended subgroupH 0
ofG0 such thatH 0 has n coends inG0 and there exists some constant y > 0 such that

dHaus.f .CommG.H//;CommG0.H 0// < y:

Proof of Proposition 4.3. Let L be the set of 3-parting .�;N / quasi-lines in C1.G/

that satisfy iness.m1/, and are a finite Hausdorff distance fromH . If L is finite, then
we are done, so assume that L is infinite, and that no such x exists. Then we can find
a sequence fLig of elements of L such that

min
g2C dHaus.Li ; gH/ ! 1;

as i ! 1.
Let ci D g 2 C realize the minimum above forLi , and fix x1 D x1.G; �;N;m1/

from Lemma 3.4. Then we can pass to a subsequence so that, for all j > i ,

dHaus.Lj ; cjH/ > dHaus.Li ; ciH/C x1: (3)

Then, by the following argument we will have that, for all g; g0 2 G and i ¤ j , we
have

dHaus.gLi ; g
0Lj / > x1: (4)

Firstly, note that it suffices to show that dHaus.Li ; gLj / > x1, for any g 2 G and
i < j . If g … C , then dHaus.H; gH/ D 1. But dHaus.Li ;H/ and dHaus.gLj ; gH/

are finite, so dHaus.Li ; gLj / D 1.
Assume then that g 2 C , and dHaus.Li ; gLj / � x1. Then

dHaus.gLj ; ciH/ � dHaus.gLj ; Li /C dHaus.Li ; ciH/ � x1 C dHaus.Li ; ciH/:

Thus

dHaus.Lj ; g
�1ciH/ D dHaus.gLj ; ciH/ � x1 C dHaus.Li ; ciH/:
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But note that dHaus.Lj ; cjH/ � dHaus.Lj ; g
�1ciH/ by the definition of cj , so we

have that
dHaus.Lj ; cjH/ � x1 C dHaus.Li ; ciH/;

contradicting (3). Thus (4) holds for all g 2 G.
By translating the Li ’s, we can obtain a new set of quasi-lines that each contain

e 2 G, and for which (4) holds for all g 2 G, though the quasi-lines may no longer
be a finite Hausdorff distance fromH . This new sequence of quasi-lines satisfies the
hypotheses of Lemma 3.4. This leads to a contradiction, since we had assumed L to
be infinite.

5. Commensurizers of type Fn

Recall that a group C is of type Fn if there is aK.C; 1/ with finite n-skeleton. Being
of type F1 is equivalent to being finitely generated, and being of type F2 is equivalent
to being finitely presented.

We shall prove the following result in this section:

Theorem 5.1. Let f W C1.G/ ! C1.G0/ be a quasi-isometry between finitely gen-
erated groups, and suppose that C is a subgroup of G, C 0 is a subgroup of G0, and
that dHaus.f .C /; C

0/ < 1. Then C is of type Fn if and only if C 0 is of type Fn, for
n � 1.

In light of Theorem 4.4, we have, as an immediate corollary:

Corollary 5.2. Let f;G;G0;H and H 0 be as in Theorem 4.4. Then CommG.H/ is
of type Fn if and only if CommG0.H 0/ is of type Fn.

We can prove Theorem 5.1 in the case that n D 1 with a short and simple argu-
ment, using a coarse geometric characterization for a subgroup to be finitely generated
(Lemma 5.3). To prove the theorem for n > 1, we will introduce some new termi-
nology and basic facts about “uniformly distorting” maps and “coarse isometries”.
In [11], M. Kapovich gives a proof that being of typeFn is a quasi-isometry invariant,
and we will note that his arguments go through in the more general setting of coarse
isometries.

First, we shall see that Theorem 5.1 holds when n D 1. Consider the following.

Lemma 5.3. Let C be a subgroup of a finitely generated groupG. Then C is finitely
generated if and only if there exists some A0 > 0 such that, for any g; h 2 C ,
there is some sequence s0; s1; : : : sn � C so that g D s0, h D sn, and for all i ,
d.si ; siC1/ < A0.
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Proof. Call a sequence fsig as in the statement of the lemma an A0-chain from g

to h. If C is finitely generated, then fix a generating set SC for C , and note that
the generators of C have word length in C1.G/ less than some constant A0. For any
g; h 2 C , we can represent g�1h by a word s1s2 � � � sm with each si in SC , and then
the sequence e, s1, s1s2, : : :, s1s2 � � � sm D g�1h is a A0-chain from e to g�1h, and
hence g; gs1; gs1s2; : : : ; gs1s2 � � � sm D h is a A0-chain in C from g to h.

Assume now thatC contains aA0-chain between any two of its elements, for some
A0, and let SC D C \ BA0

.e/. Since G is finitely generated, SC is finite, and we
claim that SC generates C . Fix any h 2 C , and let e D s0; s1; : : : sn�1; sn D h be a
A0-chain inC from e to h. Then h D s0.s

�1
0 s1/.s

�1
1 s2/ � � � .s�1

n�2sn�1/.s�1
n�1sn/, with

s0 D e and .s�1
i siC1/ in SC for each i . Thus SC generates C , so we are done.

Proof of Theorem 5.1 in the case that n D 1. Recall that f W C1.G/ ! C1.G0/ is a
quasi-isometry, and that dHaus.f .C /; C

0/ < 1. We shall show that C is finitely
generated if and only if C 0 is.

Let f be a .ƒ; 	/-quasi-isometry. Let n D dHaus.f .C /; C
0/, and assume that C

is finitely generated. Since f has a quasi-inverse, it suffices to prove that C 0 must
also be finitely generated.

Fix g0; h0 2 C 0, and let s0; : : : sm be a sequence of vertices in C such that
d.f .s0/; g

0/ < n, d.f .sm/; h0/ < n, and d.si ; siC1/ < A0 for all i . Let s0
i D f .si /,

and let s00
i 2 C 0 be such that d.s0

i ; s
00
i / < n. As d.s0

i ; s
0
iC1/ < ƒA0 C 	, we must

have that d.s00
i ; s

00
iC1/ < ƒA0 C 	 C 2n. Then the consecutive terms of the sequence

g0; s00
0 ; s

00
1 ; : : : ; s

00
n; h

0 are less than .ƒA0 C 	 C 2n/ apart, thus by the lemma above,
C 0 is finitely generated.

Next, we will introduce a few new notions, and then see that the theorem holds
for n > 1. If C is a finitely generated subgroup of a finitely generated group G,
then we shall use dG to denote the metric on G, and hence C , induced from the
finite generating set that is fixed for G, and we shall denote by dC the metric on C
that is induced from the finite generating set fixed for C . For any w 2 C , we shall
write jwjC for dC .e; w/, and we shall write jwjG for dG.e; w/, for any w 2 G. For
simplicity, in the remainder of this section we shall work with metric spaces such as
.G; dG/, instead of with Cayley graphs.

Definition 5.4. We shall say that a map between metric spaces, f W .X; dX / !
.Y; dY /, is .�;ˆ/-uniformly distorting, or .�;ˆ/-u.d. if � andˆ are weakly increas-
ing proper maps from R�0 to R�0, or from Im.dX / to Im.dY /, such that, for any
x; x0 2 X and any r ,

(1) if dX .x; x0/ � r then dY .f .x/; f .x0// � �.r/, and
(2) if dX .x; x0/ � r then dY .f .x/; f .x0// � ˆ.r/.

We will say that f is u.d. if f is .�;ˆ/-u.d. for some � and ˆ.

Note that the composition of u.d. maps is u.d.
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Convention 5.5. The metric spaces that we are interested in are groups with word
metrics, hence all distance functions below will take on only integer values. Therefore
we will only consider .�;ˆ/-u.d. maps where we shall take the domain and range of
� and ˆ to be Z�0.

We note the following fact:

Lemma 5.6. LetG be a finitely generated group with finitely generated subgroup C .
Then the identity map iC W .C; dC / ! .C; dG/ is u.d.

Proof. We shall see that the geometric action of C on itself ensures that all metric
distortion is uniform.

Let
�.r/ D minfjcjG W c 2 C; jcjC � rg;

and let
ˆ.r/ D maxfjcjG W c 2 C; jcjC � rg:

As C is finitely generated,ˆ is finite valued, and note that both functions are weakly
increasing. In addition, for any c1; c2 2 C , let c D c�1

1 c2 and note that dC .c1; c2/ D
jcjC � r implies dG.c1; c2/ D jcjG � �.r/ and dC .c1; c2/ D jcjC � r implies
dG.c1; c2/ D jcjG � ˆ.r/. AsG is finitely generated, hence locally finite, it follows
that limr!1 �.r/ D limr!1ˆ.r/ D 1, and hence that � and ˆ are proper.

We note, though we shall not make use of this fact, that in the above proof,
the function ˆ is bounded above by a linear function. For let SC denote the finite
generating set for C and let

L D max
s2SC

jsjG :

It follows that, for any c 2 C , jcjG � LjcjC , hence ˆ.r/ � Lr .

Definition 5.7. If f W .X; dX / ! .Y; dY / is a map between metric spaces and t � 0,
then we will say that f is t -onto if the t -neighborhood of Im.f / in Y is equal to Y .
If f is t -onto for some t , then we will say that f is coarsely onto.

If f is both u.d. and coarsely onto, then we shall say that f is a coarse isometry.

We note that any quasi-isometry is a coarse isometry.

Definition 5.8. We say that a function f1 W .X; dX / ! .Y; dY / has finite distance
from a function f2 W .X; dX / ! .Y; dY / if

sup
x2X

dY .f1.x/; f2.x// < 1:

Justification for the terminology “coarse isometry” is in the following fact:
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Lemma 5.9. If f W .X; dX / ! .Y; dY / is a coarse isometry between metric spaces,
then there is a coarse isometry f 0 W .Y; dY / ! .X; dX / such that f 0f and ff 0 have
finite distances from idX and idY respectively.

Definition 5.10. We shall call any function f 0 satisfying the conclusion of the above
lemma a coarse inverse to f .

Proof of Lemma 5.9. Let �;ˆ and t be such that f is t -onto and .�;ˆ/-u.d., and
note that we can assume that ˆ.0/ D 0. Let � denote nearest point projection from
Y to Im.f /, and define f 0 W Y ! X to take any y 2 Y to a point x 2 X such that
f .x/ D �.y/.

Let
�0.r/ D minfs 2 Z�0 W ˆ.s/ � rg

and let
ˆ0.r/ D maxfs 2 Z�0 W �.s/ � rg:

Note that both �0 andˆ0 are weakly increasing, and that �0 is proper. As � is a proper
map, it follows that ˆ0 is as well.

Suppose thaty1; y2 2 Y and r � 0 are such thatd.y1; y2/ � r . Then we have that
d.�.y1/; �.y2// � r�2t , and it follows that d.f 0.y1/; f 0.y2// � �0.r�2t/. Simi-
larly ifd.y1; y2/ � r , thend.�.y1/; �.y2// � rC2t and henced.f 0.y1/; f 0.y2// �
ˆ0.r C 2t/. Hence if we let �00.r/ D �0.r � 2t/ (taking �0 to be zero on the negative
integers) and ˆ00.r/ D ˆ0.r C 2t/, then we have that f 0 is .�00; ˆ00/-u.d.

To see that f 0 is coarsely onto, note that if f .x/ D f .x0/ then d.x; x0/ � ˆ0.0/,
and hence for any y 2 Y , diam.f �1.y// � ˆ0.0/. Note that Im.f 0/ meets f �1.y/
for each y 2 Y , and it follows that f 0 is ˆ0.0/-onto, and hence a coarse isometry.

The above argument also implies that supx2X d.f 0f .x/; x/ � ˆ0.0/, so the
composite map f 0f is a finite distance from IdX . On the other hand, for any y 2 Y ,
ff 0.y/ D �.y/, hence supy2Y d.ff 0.y/; y/ � t , so ff 0 is a finite distance from
IdY as desired.

We note also the following, the proof of which is left to the reader:

Lemma 5.11. Suppose that f W X ! Y; g W Y ! Z are coarse isometries. Then
gf W X ! Z is also a coarse isometry.

We can now show the following, which explains our interest in coarse isometries:

Proposition 5.12. Let f W C1.G/ ! C1.G0/ be a quasi-isometry between finitely
generated groups, and suppose that C is a subgroup of G, C 0 is a subgroup of G0,
and that dHaus.f .C /; C

0/ < 1. Then there is a coarse isometry between .C; dC /
and .C 0; dC 0/.
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Proof. Let iC W .C; dC / ! .C; dG/ and iC 0 W .C 0; dC 0/ ! .C 0; dG0/ denote the
identity maps on C and C 0. As we saw in Lemma 5.6, both iC and iC 0 are u.d. and
hence coarse isometries. Let i 0C 0 be a coarse inverse to iC 0 .

Let t be such that dHaus.f .C /; C
0/ � t . Then we can extend i 0C 0 to a coarse

isometry jC 0 from the t -neighborhood of C 0 in G0 to .C 0; dC 0/ by defining the pro-
jection map � to take each point n in the neighborhood to a point c0 2 C 0 such that
dG0.n; c0/ � t , and then setting jC 0.n/ D i 0C 0.c

0/. We have that jC 0 is a coarse
isometry, hence so is jC 0 B f B iC W .C; dC / ! .C 0; dC 0/.

For any discrete metric space .X; dX / and d � 0, we let Ripsd .X/ denote the
d -Rips complex of X , i.e., the simplicial complex whose vertex set is equal to X ,
and such that any finite collection X0 of vertices spans a simplex if and only if
dX .x; x

0/ � d for all x; x0 2 X0. It is immediate that the proof of Lemma 2.9 of [11]
extends to the following:

Lemma 5.13. Letf W .X; dX / ! .Y; dY / be .�;ˆ/-u.d. Thenf induces a simplicial
map Ripsd .X/ ! Ripsˆ.d/.Y / for each d � 0.

We recall Definition 2.10 of [11]:

Definition 5.14. A metric space X is said to be coarsely n-connected if, for each
r � 0 there exists some R � r such that the map Ripsr.X/ ! RipsR.X/ induces
the trivial maps on i th homotopy groups, for every 0 � i � n.

Corollary 2.15 of [11] shows that coarse n-connectedness is a quasi-isometry
invariant. In light of Lemma 5.13, a minor alteration of that proof shows the following.

Theorem 5.15. Coarse n-connectedness is a coarse isometry invariant.

Thus we have

Theorem 5.16. The property of a finitely generated group being of type Fn, n > 1,
is a coarse isometry invariant.

Proof. Suppose that C and C 0 are finitely generated groups, with C of type Fn, and
that there is a coarse isometry between .C; dC / and .C 0; dC 0/. Then Theorem 2.17
of [11] implies that .C; dC / is coarsely .n� 1/-connected, hence, by Theorem 5.15,
so is .C 0; dC 0/. It is shown in the proof of Theorem 2.21 of [11] that each coarsely
.n � 1/-connected group has type Fn, so the theorem follows.

Thus, Theorem 5.1 in the case that n > 1 is immediate from Proposition 5.12 and
Theorem 5.16.
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6. The quasi-isometry invariance of the vertices of commensurizer type
of the Scott–Swarup JSJ decomposition

The proof of Theorem 4.4 was motivated by the goal of showing that certain vertex
groups of the Scott–Swarup JSJ decomposition for finitely presented, one-ended
groups are invariant under quasi-isometries. We will see that our result follows
immediately from Theorems 3.8 and 4.4, given the theory of Scott and Swarup.

We shall begin with some basic facts about the Scott–Swarup decomposition,
and then discuss Papasoglu’s results from [21] that show the invariance under quasi-
isometry of certain parts of the decomposition. Next we will discuss Scott and
Swarup’s theory in more detail, and see that our invariance results follow from The-
orems 3.8 and 4.4.

For an introduction to splittings and graphs of groups decompositions of groups,
and group actions on trees, the reader is referred to [31], [29]. In [27], Scott and
Swarup construct a canonical JSJ decomposition 
1.G/ of any one-ended, finitely
presented group G, in which the vertex groups “enclose” all splittings of G over
two-ended subgroups, and moreover, enclose all nontrivial almost invariant subsets
of G over two-ended subgroups (see Definition 6.9).

If v is a vertex of 
1.G/, then we shall denote its vertex group by G.v/, which is
defined up to conjugacy. Similarly if e is an edge of 
1.G/, then we shall let G.e/
denote its edge group.


1.G/ is a regular neighborhood, as defined in [27], of all the nontrivial almost
invariant subsets ofG over two-ended subgroups. Thus 
1.G/ is a bipartite graph of
groups with fundamental groupG, and with the vertices in the complementary subsets
called V0-vertices and V1-vertices. If v is a vertex of 
1.G/, then G.v/ is said to be
either a V0- or V1-vertex group, depending on whether v is a V0- or V1-vertex.

Furthermore, each nontrivial almost invariant subset of G over a two-ended sub-
group is “enclosed” by some V0-vertex. We shall define nontrivial almost invariant
sets and the notion of enclosure below, but in the case that such an almost invariant set
is associated to a splitting ofG, this means that the enclosing V0-vertex group admits
a splitting that is compatible with 
1.G/. Moreover, when 
1.G/ is refined by this
splitting, the added edge is associated to the given splitting of G. Each V0-vertex of

1.G/ encloses at least one such splitting of G over a two-ended subgroup.

Each V0-vertex v is one of three types:

(1) v is isolated
(2) v is of Fuchsian type, or
(3) v is of commensurizer type.

If v is isolated, then v is of valence two. Moreover, if we let e1 and e2 de-
note the edges incident to v, then the inclusions of G.e1/ and G.e2/ into G.v/ are
isomorphisms, and all three subgroups are two-ended.

If v is of Fuchsian type, then G.v/ is finite-by-Fuchsian, where the Fuchsian
group is a discrete group of isometries of the hyperbolic plane or of the Euclidean
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plane, but is not finite nor two-ended. Associated to each peripheral subgroup of
G.v/ there is exactly one corresponding edge e incident to v, and G.e/ is conjugate
to that subgroup.

Lastly, if v is of commensurizer type, then v is not isolated nor of Fuchsian type,
and there is a two-ended subgroup H of G with Qe.G;H/ > 3 such that G.v/ D
CommG.H/. Only in this case is it possible that the subgroups carried by the edges
incident to v are not two-ended, and in fact they may not even be finitely generated.
It follows that the V1-vertex groups of 
1.G/ may not be finitely generated either.

We say that a subgroup C of G is a vertex group of isolated, Fuchsian or com-
mensurizer type respectively ifC is the vertex group of a vertex of 
1.G/ of isolated,
Fuchsian or commensurizer type respectively.

It is natural to ask if 
1.G/ is somehow invariant under quasi-isometries. While
the underlying graph of 
1.G/ need not be invariant, one could ask whether or not
the existence of vertex groups of certain types is invariant under quasi-isometries. If
the answer to this is ‘yes’, then one could ask if the locations of these vertex groups
is also invariant under quasi-isometries, in the sense of a quasi-isometry being forced
to take a vertex group to within a finite Hausdorff distance of a vertex group of the
same type. Papasoglu has addressed these questions for the Dunwoody–Sageev JSJ
decomposition of one-ended, finitely presented groups.

The JSJ decomposition of a group G as given by Dunwoody and Sageev in [4] is
a graph of groups decomposition of G, say 
DS .G/, which is bipartite. Call the two
types of vertex groups white and black, and then all the black vertex groups are either
of Fuchsian type or of isolated type (see above). 
DS .G/ describes all the splittings of
G over two-ended subgroups, in the sense that ifG splits over a two-ended subgroup
C , either as A 
C B or A
C , then C is conjugate into a vertex group of 
DS , has
a finite index subgroup which is contained in a black vertex group, and each white
vertex group is conjugate into A or B .

All of the edge groups of 
DS .G/ are two-ended, and it is this that Papasoglu
exploits in [21] to prove the quasi-isometry invariance of this JSJ decomposition.
Specifically, the author proves the following.

Theorem 6.1. [21] Let G and G0 be one-ended, finitely presented groups. Suppose
that f W C1.G/ ! C1.G0/ is a quasi-isometry. Then there is a constant C > 0 such
that if A is a subgroup of G conjugate to a vertex group, a vertex group of Fuchsian
type, or an edge group of the graph of groups 
DS .G/, then f .A/ has Hausdorff
distance less than or equal to C from a subgroup of G0 conjugate to, respectively, a
vertex group, a vertex group of Fuchsian type, or an edge group of 
DS .G0/.

Given any one-ended, finitely presented groupG, 
DS .G/ differs from 
1.G/ as
follows. The Fuchsian type vertex groups of 
DS .G/ and the Fuchsian type vertex
groups of 
1.G/ are the same (up to conjugacy), and have the same edge groups.
Also, the isolated vertex groups of 
1.G/ are vertex groups of 
DS .G/, and have the
same edge groups. ThusV1-vertices adjacent only to Fuchsian and isolated vertices of
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1.G/ are the same as the corresponding white vertex groups of 
DS .G/. So 
1.G/
differs from 
DS .G/ only at the vertices of commensurizer type, and the adjacent
edges and V1-vertices.

Thus Theorem 6.1 shows the invariance under quasi-isometries of the V0-vertex
groups of 
1.G/ of isolated and Fuchsian types, as well as those V1-vertices that are
adjacent only to the isolated and Fuchsian V0-vertices. It does not, however, answer
the question of the invariance of the vertex groups of commensurizer type.

In fact the vertices of commensurizer type are invariant under quasi-isometries,
and this fact is an immediate corollary to Theorems 3.8 and 4.4, in light of the
following fact about 
1.G/:

Theorem 6.2. Let G be a one-ended finitely presented group, and let H be a two-
ended subgroup ofG. Then CommG.H/ is a vertex group of
1.G/ of commensurizer
type if and only if Qe.G;H/ � 4.

This theorem is not stated explicitly in [27], so we digress in order to explain how
it follows from that work.

We will need a more detailed description of 
1.G/ in order to do this. We begin
with some definitions from [27].

LetH be a subgroup ofG, letX be a subset ofG and letX� denote the complement
ofX inG. Recall thatX is said to beH -finite if it is contained in the union of finitely
many cosets Hg of H .

Definition 6.3. X is anH -almost invariant subset ofG, or an almost invariant subset
of G overH , ifHX D X and the symmetric difference of X and Xg isH -finite for
all g 2 G.

We say that an H -almost invariant set X is nontrivial if neither X nor X� is
H -finite.

(We note that any H -almost invariant subset of G represents an element of
.PG=FHG/

G from Section 3, though a representative of an element of .PG=FHG/G

need not be fixed by the left action of H .)

Remark 6.4. H -almost invariant subsets ofG generalize splittings ofG overH , for
there is a natural way to associate to any splitting ofG overH anH -almost invariant
set as follows.

Suppose that G admits a splitting over H , and let T be the associated tree. Let
V.T / denote the vertex set of T , fix a basepoint w 2 V.T / and let e be an oriented
edge of T with stabilizerH . Then e determines a partition of V.T /: consider the two
subtrees of T resulting from the removal of the interior of e. Let Ye denote the vertex
set of the subtree containing the terminal vertex of e and let Y �

e denote the vertex
set of the other subtree. Let ' W G ! V.T / be defined by setting '.g/ D g � w, let
Ze D '�1.Ye/ and let Z�

e D '�1.Y �
e /.
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Lemma 2.10 of [27] shows that Ze and Z�
e are H -almost invariant subsets of

G. Moreover, these sets are canonically associated to the given splitting, up to com-
plementation and H -finite symmetric difference. (A different choice of basepoint,
for instance, would result in an H -almost invariant set that has H -finite symmetric
difference with Ze .) See section 2 of [27] for more details.

By looking at the translates gZe of Ze by elements of G, one can recover the
action ofG on T , but in general one does not get a tree action by looking at translates
of almost invariant sets.

There is a notion of almost invariant sets crossing:

Definition 6.5. LetX be anH -almost invariant subset ofG and let Y be aK-almost
invariant subset ofG. We say that Y crossesX if none of the four setsX\Y ,X� \Y ,
X \ Y � and X� \ Y � is H -finite.

Scott shows in [26] that the crossing of nontrivial almost invariant sets is sym-
metric:

Theorem 6.6. [26] LetG be a finitely generated group with subgroupsH andK, let
X be a nontrivialH -almost invariant subset ofG and let Y be a nontrivialK-almost
invariant subset of G.

Then Y crosses X if and only if X crosses Y .

Recall that, ifX is a subset ofG then we may think ofX as a subset of the vertex
set of C1.G/, hence we may think of the coboundary of X , ıX , as a collection of
edges in C1.G/.

In [27], notions of strong and weak crossings play an important role.

Definition 6.7. Let X , Y be as in Definition 6.5. Then we say that Y crosses X
strongly if ıY \X and ıY \X� project to infinite sets in HnC1.G/.

If Y crosses X , but not strongly, then we say that Y crosses X weakly.

Remark 6.8. If Y crosses X strongly, then Y crosses X .
Whether or not Y crosses X strongly does not depend on our choice of finite

generating set for G.
In general, strong crossing is not symmetric: it is possible to have Y cross X

strongly and X cross Y weakly (see Example 2.26 of [27]). However, if H and K
are both two-ended, then the notion is symmetric ([27], Proposition 7.2).

Finally, we must discuss the notion of enclosing. Recall that, given a basedG-tree
T with an edge e, we defined almost invariant sets Ze and Ze
 in Remark 6.4.

Definition 6.9. Let X be a nontrivial H -almost invariant subset of a group G, let T
be a G-tree and let 
 denote the graph of groups decomposition of G associated to
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T . Pick a basepoint in V.T /, so that, for any oriented edge e of T , we can define the
sets Ze , Ze
 as in Remark 6.4.

Suppose that u 2 V.T / is such that, for all edges e of T that are incident to u
and directed towards u, X \Ze
 and X� \Ze
 are H -finite. Then we say that the
vertex v D Gnu in 
 encloses X .

Suppose for a moment thatX is associated to a splitting � ofG (see Remark 6.4).
In this special case, a vertex v in 
 enclosing X is equivalent to 
 and � having a
common refinement 
 0, that differs from 
 only in that v is replaced by an edge, and
the splitting of G associated to that edge is � .

The reader is referred to Section 4 of [27] for more detail and motivation for the
concept of enclosing.

We have defined everything we need in order to discuss 
1.G/ in enough detail
to explain how Theorem 6.2 follows from [27]. All almost invariant subsets of G
discussed in the remainder of this section are over two-ended subgroups.

Recall that
1.G/ is such that itsV0-vertices enclose all nontrivial almost invariant
subsets of G, and that each V0-vertex encloses at least one such subset.

If v is isolated, then the only almost invariant sets enclosed by v are those from
the splitting of G associated to the edges incident to v, hence v does not enclose
any crossing almost invariant sets. Conversely, if a V0-vertex v does not enclose any
crossing almost invariant sets over two-ended subgroups, thenv is isolated. Moreover,
ifX is anH -almost invariant set ofG which is enclosed by v, then Qe.G;H/must be
2 or 3 (see part 1 of Theorem 1.9 from [28]).

If v is of Fuchsian type, then v is not isolated, and any almost invariant sets
enclosed by v that cross do so strongly. (See Propositions 7.2, 7.4 and 7.5 of [27].)
Also, Theorem 7.8 of [27], tells us that, if X is an H -almost invariant set that is
enclosed by a vertex v of Fuchsian type, then we have that either Qe.G;H/ D 2, orX
is associated to the splitting given by an edge incident to v.

If v is of commensurizer type, then any two almost invariant sets enclosed by
v that cross do so weakly. Moreover, if X and Y are almost invariant sets over
subgroups H and K that are enclosed by v, then H and K are commensurable
(see Propositions 7.3 and 7.5 of [27]), G.v/ D CommG.H/ D CommG.K/, and
Qe.G;H/ D Qe.G;K/ is at least 4. Conversely, if H is a two-ended subgroup of G
such that Qe.G;H/ � 4 and there exists a nontrivial H -almost invariant subset of G,
then there is a commensurizer vertex group of 
1.G/ that is equal to CommG.H/.
(See part 1 of Theorem 1.9 from [28].) We note that if Qe.G;H/ � 4 and there are no
nontrivialH -almost invariant subsets ofG, then Lemma 2.40 of [27] implies thatH
contains a (finite index) subgroupH 0 such that Qe.G;H 0/ D Qe.G;H/ and there exists
a nontrivial H 0-almost invariant subset of G. Hence in this case 
1.G/ contains a
commensurizer vertex group equal to CommG.H

0/ D CommG.H/.
Thus if H is a two-ended subgroup of G, then CommG.H/ is a vertex group of


1.G/ of commensurizer type if and only if Qe.G;H/ � 4. This proves Theorem 6.2,
and thus we have the following immediate corollary to Theorem 3.8:
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Corollary 6.10. Let f W C1.G/ ! C1.G0/ be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groups G and G0. Then 
1.G/ has a vertex
group of commensurizer type if and only if 
1.G0/ does.

Moreover, the next fact follows immediately from Theorem 4.4.

Corollary 6.11. Let f W C1.G/ ! C1.G0/ be a quasi-isometry between the Cayley
graphs of one-ended, finitely presented groups G and G0, and suppose that C is a
vertex group of 
1.G/ of commensurizer type. Then there is a vertex group, C 0, of

1.G

0/ of commensurizer type such that

dHaus.f .C /; C
0/ < 1:

In addition, “small” and “large” vertex groups of commensurizer type are invariant
under quasi-isometries. We recall from [27] that a vertex group C D CommG.H/

of 
1.G/ of commensurizer type is said to be small if H is of finite index in C , and
otherwise, C is said to be large. Thus C is small if and only if e.C / D 2.

Hence Theorem 4.4 also implies the following.

Corollary 6.12. If f W C1.G1/ ! C1.G2/ is a quasi-isometry between the Cayley
graphs of finitely presented, one-ended groups G1 and G2, then 
1.G1/ has a vertex
group of small commensurizer type if and only if 
1.G2/ does, and 
1.G1/ has a
vertex group of large commensurizer type if and only if 
1.G2/ does.

7. On the quasi-isometry invariance of the topological JSJ decomposition

We recall that any orientable Haken 3-manifoldM with incompressible boundary has
a JSJ decomposition, and the “characteristic” pieces of this decomposition essentially
make up the characteristic submanifold of M , V.M/. (See below for a description
of V.M/.) In this section, we shall discuss how Scott and Swarup’s theory of JSJ
decompositions of groups, together with Corollary 6.11, imply the invariance under
quasi-isometries of the Seifert fibered components of V.M/ that meet @M .

We first remark that M. Kapovich and Leeb have used different methods to prove
a stronger result that implies this one. In Theorem 1.1 of [15], the authors prove
the quasi-isometry invariance of all components of characteristic submanifolds of
Haken manifolds with zero Euler characteristic. We also note that, in the earlier
work [14], the authors proved the quasi-isometry invariance of the existence of (not
necessarily peripheral) Seifert fibered components of characteristic submanifolds for
Haken manifolds with zero Euler characteristic that are not Nil nor Sol.

Our main result in this section is the following.

Corollary 7.1. Let M and M 0 be connected orientable Haken 3-manifolds with in-
compressible boundary, and with f W �1.M/ ! �1.M

0/ a quasi-isometry. Suppose
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that N is a nonexceptional Seifert fibered component of the characteristic submani-
fold ofM that meets the boundary ofM .

Then there is a nonexceptional Seifert fibered component,N 0, of the characteristic
submanifold of M 0 that meets the boundary of M 0. Moreover, if C denotes the
subgroupof�1.M/ induced by the inclusion ofN intoM andC 0 denotes the subgroup
of �1.M 0/ induced by the inclusion of N 0 intoM 0, then

dHaus.f .C /; C
0/ < 1:

This corollary will follow immediately from Corollary 6.11 and the following
proposition.

Proposition 7.2. Let M be a connected orientable Haken 3-manifold with incom-
pressible boundary and let G D �1.M/. Then there is a one-to-one correspondence
between the nonexceptional Seifertfibered components ofV.M/ thatmeet @M and the
commensurizer vertex groups of 
1.G/, given by taking a Seifert fibered component
N to the subgroup of G given by the inclusion of �1.N / into �1.M/.

Before proving Proposition 7.2, we recall some basic definitions. We say that a
3-manifold M is irreducible if every 2-sphere in M bounds a 3-ball. We call a map
of a surface S into M proper if the map takes @S into @M . A proper embedding
of an orientable surface S that is not the disk or 2-sphere into M is said to be
incompressible if it induces an injection on fundamental groups. An embedding of
the 2-sphere into M is incompressible if the image does not bound a 3-ball. We
say that M has incompressible boundary if the inclusion of @M into M induces an
injection on fundamental groups. We say that M is an orientable Haken 3-manifold
if M is compact, orientable, irreducible, and contains an incompressible surface.

A map of the torus into M is said to be essential if it is incompressible and not
homotopic into @M , and a proper map of the annulus into M is said to be essential
if it is incompressible and is not properly homotopic into @M .

Following [27], we shall say that an embedded essential annulus or torus S in
M is canonical if any essential map of the annulus or torus into M can be properly
homotoped until it is disjoint from S . We shall say that a submanifold N of M is
simple if any essential map of an annulus or torus into M with image in N can be
properly homotoped into the frontier of N .

Jaco and Shalen [9] and Johannson [10] proved that there is a unique finite collec-
tion T of disjoint canonical annuli and tori in M such that T contains one represen-
tative from each isotopy class of canonical annuli and tori in M . These authors also
showed that the pieces obtained by cutting M along T are I -bundles over surfaces,
Seifert fibered, or simple; we shall consider these pieces to be submanifolds of M .

We define the characteristic submanifold of M , V.M/, to be the collection of I -
bundle and Seifert fibered submanifolds as above, except that if two such submanifolds
meet one another at some surfaceS 2 T , then we shall remove a regular neighborhood
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of S from V.M/. Also if two simple submanifolds meet at some S 2 T , then we
shall add a regular neighborhood of S to V.M/.

Thus V.M/ is a submanifold ofM , each component of which is a regular neigh-
borhood of an annulus or a torus, an I -bundle over a surface, or is Seifert fibered. We
shall say that a component of V.M/ is exceptional if it is a solid torus with frontier
3 annuli of degree 1, or 1 annulus of degree 2 or 3, or is a twisted I-bundle over the
Klein bottle as described in [27]. A component of V.M/ is called peripheral if it
meets @M .

We are now in a position to show the correspondence between the nonexceptional
peripheral Seifert fiber components of V.M/ and the commensurizer vertex groups
of 
1.�1.M//.

Proof of Proposition 7.2. Let M be a connected orientable Haken 3-manifold with
incompressible boundary and let G D �1.M/. For any subgroup H of a group G,
we shall denote by NG.H/ the normalizer of H in G.

The proposition is vacuously true ifG is finite, so it suffices to takeM such thatG
is infinite, hence torsion-free. Thus the two-ended subgroups ofG are infinite cyclic.

If N is a Seifert fiber space with infinite fundamental group, then we have the
following short exact sequence:

1 ! Z ! �1.N / ! �1.B/ ! 1;

where the Z is generated by a regular fiber of N and B denotes the base 2-orbifold
of N (see, for example, [25]).

In fact, [36] and [35] imply that if N is an orientable Haken 3-manifold with
infinite fundamental group, then the converse holds: if �1.N / has a normal infinite
cyclic subgroup then N is Seifert fibered. We will be interested in manifolds N that
are orientable, irreducible and with nonempty boundary. Any such N is Haken, so
this result will apply.

Consider again M and G, and suppose that H D hhi � G is infinite cyclic.
Recall that NG.H/ � CommG.H/; it follows from work of Jaco and Kropholler
that CommG.H/ D NG.hhmi/ for some m � 1. To see this, we have that Jaco
showed in [8] that any g 2 CommG.H/ is contained in NG.hhni/ for some n, thus
any finitely generated subgroup of CommG.H/ is contained in NG.hhni/, for some
n depending on the subgroup. In [17], Kropholler showed that ascending chains of
centralizers inG must terminate, and thus ascending chains of normalizers of infinite
cyclic subgroups must also terminate. Since CommG.H/ can be exhausted by finitely
generated subgroups, it follows that CommG.H/ D NG.hhmi/ for somem � 1, and
that CommG.H/ is finitely generated.

We note that if M is Seifert fibered and H Š Z denotes the subgroup of �1.M/

that is carried by a regular fiber of M , then H has infinite index in �1.M/, and has
more than three coends in G if and only if M is a nonexceptional Seifert fiber space
with nonempty boundary. Thus the proposition follows if M is Seifert fibered or G
is itself of commensurizer type.
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We shall now prove the proposition, assuming neither of these are the case. Sup-
pose that N is a Seifert fibered component of V.M/ and let C denote the subgroup
of G that is carried by N . Thus N is orientable, Haken and with boundary, and C
must be finitely generated. Let H D hhi denote the subgroup of G generated by a
regular fiber of N , so that H is normal in C . As we noted above, H is of infinite
index in C , and N is peripheral and nonexceptional (hence a peripheral component
of V.M/) exactly when Qe.G;H/ > 3.

In this case, C is contained in a commensurizer vertex group C 0 D CommG.H/

of 
1.G/, with C 0 D NG.hhmi/ finitely generated and m � 1. Suppose that this
containment is proper.

Consider the cover of M with fundamental group C 0, which we shall call MC 0 ,
and denote by � the projection from MC 0 to M . By the theory of Scott [24], MC 0

contains a compact submanifold, let’s say N 0, with fundamental group C 0. Thus N 0
is a Seifert fiber space, and it follows from [9] or [10] that � can be homotoped so
that �.N 0/ is contained in a Seifert fibered component of V.M/.

As we have assumed that C is properly contained in C 0, this component must be
different from N . Let us call it S , and note that S is nonexceptional and peripheral,
for Qe.G; hhmi/ > 3 and hence the subgroup carried by a regular fiber of S will also
have more than three coends in G. It follows that there is a collection of canonical
annuli and tori that separatesN from S inM , which we shall call†1; : : : ; †k . Hence
G has a graph of groups decomposition over the surface groups �1.†i /, with C and
C 0 contained in distinct vertex groups. But C � C 0, so C must be contained, up to
conjugacy, in an edge group �1.†i /. This is not possible, hence we must have that
C D C 0.

Now suppose that C 0 D CommG.H/ is a commensurizer vertex group of 
1.G/,
so C 0 D NG.hhmi/ for somem � 1 and C 0 is finitely generated. Consider the cover
of M with fundamental group C 0, which we shall call MC 0 , and denote by � the
projection fromMC 0 toM . As we saw above,MC 0 contains a Seifert fiber spaceN 0,
and � can be homotoped so that �.N 0/ is contained in a Seifert fibered component S
of V.M/. Let D denote the inclusion of �1.S/ into G, and we have that C 0 � D

and D D NG.H
0/, where H 0 is a finite index subgroup of hhmi. We note that

Qe.G;H 0/ > 3, so S is nonexceptional peripheral. But NG.H 0/ � CommG.H
0/ D

CommG.H/, so D D C 0, and the proposition follows.

8. Application to the groups QI.G/

As we will see in Corollaries 8.1 and 8.3 below, Proposition 4.3 gives some insight into
the structure of groups of quasi-isometries of one-ended, finitely presented groups.
Corollary 8.1 is related to a result of Souche and Wiest, who investigate QI.T � Rn/
for infinite trees T in [32].

We first introduce the notion of the group of quasi-isometries of a group. Given
metric spaces X and Y , one may consider all quasi-isometries from X to Y , modulo
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the relation that f � f 0 when

sup
x2X

d.f .x/; f 0.x// < 1: (5)

This collection forms a group, which we shall denote by QI.X; Y /. It is standard
to denote QI.X;X/ by QI.X/, and QI.C1.G// by QI.G/, for any finitely generated
group G.

The groups QI.G/ are generally very complicated–for instance, Sankaran has
shown that QI.Z/ contains Thompson’s group F and the free group of continuous
rank ([23]).

Our first corollary is about the quasi-isometries of commensurizer groups. Sup-
pose that G is finitely presented, one-ended, and equal to the commensurizer of a
two-ended subgroup H such that Qe.G;H/ � 3. Then recall that we can think of H
as a subset of the vertex set of C1.G/. The vertex set of C1.G/ is equal to the disjoint
union of the translates (that is, cosets) of H , and any two translates gH; g0H are of
finite Hausdorff distance from one another (see Lemma 4.1).

Thus we can define a metric onG=H such that the distance between gH and g0H
is equal to the Hausdorff distance between gH and g0H in C1.G/. Note that if H
happens to be a normal subgroup ofG, then this recovers the metric on the vertex set
of the Cayley graph for G=H , with respect to the given generating set for G.

Iff is a quasi-isometry fromG to itself, then, by Theorem 3.8 and Proposition 4.3,
there is some infinite cyclic H 0 � G with Qe.G;H 0/ � 3 and a constant y such
that, for each g 2 G, dHaus.f .gH/; g

0H 0/ < y for some g0 2 G. In addition, it
follows from Theorem 3.1 that H and H 0 are a finite Hausdorff distance from one
another in C1.G/. Hence there is some constant z � y such that, for each g 2 G,
dHaus.f .gH/; g

0H/ < z for some g0 2 G.
Thus the quasi-isometry f W C1.G/ ! C1.G/ induces a map fromG=H to itself,

that takes any gH to some point g0H such that dHaus.f .gH/; g
0H/ < z. As f is a

quasi-isometry, it follows that this new map is as well, and this gives the following.

Corollary 8.1. Suppose that G is a one-ended, finitely presented group such that
G D CommG.H/ for a two-ended subgroup H of G that has at least three coends
in G. Consider G=H , with a metric defined by setting the distance between gH and
g0H to equal the Hausdorff distance between the vertex sets gH and g0H in C1.G/.

Then there is a canonical map QI.G/ ! QI.G=H/.

Remark 8.2. We note that the kernel of this map QI.G/ ! QI.G=H/ is exactly
the set of equivalence classes of quasi-isometries f W C1.G/ ! C1.G/ for which the
distances dHaus.f .gH/; gH/ are uniformly bounded.

We can generalize this for the case of general one-ended finitely presented groups
G. Suppose that G contains at least one two-ended subgroup H with Qe.G;H/ � 3,
and for any such H , let MH denote the metric space with underlying set equal to
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CommG.H/=H and the distance between any two points gH and g0H defined to
equal the Hausdorff distance between those sets in C1.G/.

Fix any suchH , and any quasi-isometry f W C1.G/ ! C1.G/. Then Theorem 3.8
shows that there is some two-ended subgroup of G, H 0, (possibly equal to H ) such
that dHaus.f .H/;H

0/ < 1 and Qe.G;H/ D Qe.G;H 0/.
Proposition 4.3 implies that f induces a quasi-isometry fromMH toMH 0 as in the

above argument. Thus, not only do we get a natural map taking f into QI.MH ;MH 0/,
but we also get a natural map of f into the symmetric group of a suitable collection
of two-ended subgroups of G with a fixed number of coends.

We shall fix some more notation so that we can say this more carefully. For each
n 2 f3; 4; 5; : : :g[f1g, letKn denote a maximal collection of two-ended subgroups
ofG that have n coends inG and are of pairwise infinite Hausdorff distance in C1.G/.
Thus, for any n, f induces an element of

Q
H2Kn

QI.MH ;M�.H//, for some � in
the symmetric group on Kn.

In fact, we can say a bit more. Note that by Theorem 4.4, any groups H and
�.H/ as above must have quasi-isometric commensurizers. Thus if we let fKjn gj2Jn

denote the partition of Kn into collections of subgroups with quasi-isometric com-
mensurizers, i.e., H;H 0 2 K

j
n for some j 2 Jn if and only if CommG.H/ and

CommG.H
0/ are quasi-isometric, then the permutation � above must be contained inQ

j2Jn
Sym.Kjn /, where Sym.Kjn / denotes the symmetric group on Kjn . Moreover,

f induces such a map for all n.
Thus we have the following corollary:

Corollary 8.3. Let G be a one-ended finitely presented group and let further N D
f3; 4; 5; : : :g [ f1g. For any n 2 N , let Kn be a maximal collection of two-ended
subgroups ofG with n coends that have mutually infinite Hausdorff distance, and let
fKjn gj2Jn

be the partition of Kn into sets of subgroups of quasi-isometric commen-
surizers.

Then there is a canonical map

QI.G/ ! ˚ Q
n2N

Q
H2Kn

QI.MH ;M�.H// W � 2 Q
n2N

Q
j2Jn

Sym.Kjn /
�
:

Remark 8.4. As was the case in Corollary 8.1, the kernel of the map given in Corol-
lary 8.3 is not hard to describe at the following level: a quasi-isometry f W C1.G/ !
C1.G/ is in this kernel if and only if, for each two-ended subgroup H with at least
three coends in G, there is a constant y � 0 such that, for all g 2 CommG.H/,
dHaus.f .gH/; gH/ < y.

A. Appendix

This appendix contains a proof of Theorem 3.1, which is provided to clarify the
argument given in [21]. A few definitions are required first.
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Let .X; d/ be a metric space. If A;B � X then let dinf.A;B/ denote

inf
a2A;b2B

d.a; b/:

We note that when A and B are not single points, this function does not necessarily
obey the triangle inequality. Nonetheless, this notation will be useful to us.

If A � X , let fr.A/ denote the frontier of A in X , so fr.A/ D xA \X � A.
Let A � B � X , with B path connected, and we will let CH.A;B/ denote the

convex hull of A in B , with respect to the path metric in B induced by the geometry
of X .

FixA0 > 0, and recall from the proof of Lemma 5.3 that a sequence s0; s1; : : : ; sn
of points in X is an A0-chain from s0 to sn if d.si ; siC1/ < A0 for all i .

LetL0 be a .�;N / quasi-line with associated line l 0. Following [21], if x D l 0.x0/
and y D l 0.y0/, then we will denote by Œx; y�l 0 the segment l 0.Œx0; y0�/ in L0, and
we will write x < y if x0 < y0. Moreover, for arbitrary x; y 2 L0, we shall denote
by Œx; y�L0 the “thickened segment” fz 2 L0 W d.z; Œx0; y0�l 0 � N g, where x0 (y0
respectively) is a point in l 0 that can be connected to x (y respectively) by a path in
L0 of length no more than N . Let length.Œx; y�L0/ denote length.Œx0; y0�/.

Recall that we say that two points a and b are K-separated by a quasi-line L1 if
BK.a/ and BK.b/ are in different components of X � L1.

Theorem 3.1 ([21]). Let G be a one-ended, finitely presented group, and let L, L1
be .�0; N 0/ quasi-lines in C1.G/ that satisfy iness.m0

1/. Suppose that L is 3-parting.
Then there is some K D K.G; �0; N 0; m0

1/ such that no two points a; b 2 L are
K-separated by L1.

Proof. Let C1 D C1.G/ and let C2 D C2.G/. Recall that we may think of C1 as the
1-skeleton of C2, and that there is a uniform bound to the size of the 2-cells of C2.
We will begin by showing that it suffices to work in C2, instead of C1.

We note that there exist ƒ � 1; C � 0, depending only on G (and its associated
finite presentation), such that the inclusion of C1 into C2 is a .ƒ;C / quasi-isometry.

Suppose that L0 is a .�0; N 0/ quasi-line in C1 that satisfies iness.m0
1/ and is n-

parting in C1, for some n � 1, and consider L0 as a subset of the 1-skeleton of C2.
By Lemmas 2.18 and 3.7, there is a neighborhood ofL0 in C2, which we shall call zL0,
that is an n-parting .�00; N 00/ quasi-line satisfying iness.m1/, where �00, N 00 and m1
depend only on G, �0, N 0 and m0

1. We can further assume that zL0 is a subcomplex
of C2.

Now recall the quasi-lines L, L1 in C1. Suppose that there is some K such that
no two points in zL can beK-separated by zL1 in C2. Recall that inclusion is a .ƒ;C /
quasi-isometry from C1 to C2. Thus no two points in L can be .ƒK C C C N 00/-
separated by L1 in C1, so the theorem will follow, with .ƒK C C CN 00/ replacing
K. Thus we shall no longer work with C1, but with C2 instead, together with zL and
zL1, which are both .�00; N 00/ quasi-lines.
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We shall next reduce to the case that zL is simply connected. Let �0 denote a
collection of regular polygons attached to C2 along all simple closed edge paths of
zL of length no more than Œ�00.2N 00 C 1/ C 2N 00 C 1�. Then the methods from the
proof of Lemma 2.13 show that zL[�0 is simply connected in C2[�0. LetX denote
C2 [�0, and we note that X is simply connected.

By construction zL is 3-parting in C2, and it follows that zL[�0 is 3-parting inX .
Also we have that zL[�0 is a .�;N / quasi-line, for some � and N depending on �00
and N 00.

Consider the union of zL1 with any cells of�0 that meet it. This union has at least
as many essential complementary components in X as L1 does in C1, and is also a
.�;N / quasi-line. By abuse of notation, we shall refer to this union containing zL1
as L1, and we shall refer to zL [�0 as L throughout the following.

Thus L and L1 are both .�;N / quasi-lines, and L is 3-parting. We note that both
L and L1 satisfy iness.m1/. Moreover, as L is simply connected and X is the union
of a Cayley complex ofG and some 2-cells of bounded size, the methods in the proof
of Lemma 2.14 show that L and L1 satisfy ess.m0/ for some m0 � 0.

We claim that it suffices to consider L and L1 in X to prove the theorem. For
the inclusion of C2 into X is a .ƒ0; C 0/ quasi-isometry for some ƒ0 � 1; C 0 � 0

depending onG and Œ�00.2N 00 C 1/C 2N 00 C 1�. So if we can find a value ofK such
that no two points in L can be K-separated by L1 in X , then it follows that no two
points of zL can be .ƒ0K C C 0/-separated by zL1 in C2, so the theorem holds.

We shall make one final reduction before beginning our argument. Let l be the
line associated to L and let l1 be the line associated to L1. If we show that no two
points a and b of L can be K-separated by L1 in the case that a and b are vertices
of l , then our result follows: in order to get the constant K for arbitrary a; b 2 L, it
suffices to add .N C 1/ to the constant we find, since any point in L is a distance of
less than .N C 1/ from a vertex of l .

Thus we shall prove that, given the new quasi-linesL andL1 defined above in the
2-dimensional CW complex X , there exists someK such that no two vertices a; b in
l can be K-separated by L1.

We shall make use of winding numbers (of curves about points in the disk) in
our argument. See, for instance, Chapter 10 of [20]. In particular, we will need the
following fact.

Lemma A.1. Suppose that ˛, ˇ, � are oriented curves in a 2-disk D2, and let ��
denote the curve � with the opposite orientation. Suppose further that ˛ [ ˇ, ˛ [ � ,
and ˇ [ �� are closed oriented curves, and that v is a point inD2 that is not met by
˛; ˇ or � . For any oriented closed curve ı � D2� fvg, letwv.ı/ denote the winding
number of ı about v.

Then
wv.˛ [ ˇ/ D wv.˛ [ �/C wv.ˇ [ ��/:

We will also make use of the next lemma. Stated in the setting of C1, Lemma 1.9
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of [21] may be restated as the following.

Lemma A.2 ([21]). Let G be a finitely presented group and let L0 be a 1-parting
.�;N / quasi-line in C2.G/ that satisfies ess.m0/. Given any r1 > 0, there is some
r2 D r2.G; �;N; r1; m0/ > maxfr1; m0g such that, for any vertices a < b inL0 with
length.Œa; b�L0/ > 2r2, and for any essential component Y of C2.G/�L0, there is a
simplicial path p joining a to b in Y [ L0, such that

(1) p \Nr1.ŒaC r2; b � r2�L0/ D ¿, and

(2) p � Nr2.Œa; b�L0/.

As X is a Cayley complex, together with additional 2-cells of bounded size, we
note that there is an increasing function i W RC ! RC such that, for any simplicial
path in X of length less than or equal to r , there is a simplicial null-homotopy of
that path that is contained in the i.r/-neighborhood of the path. The methods of
Lemma 2.13, together with this observation, imply the following lemma.

LemmaA.3. There exists a constantM D M.X; �00; N 00; i/ such that, for any closed
curve � in L1, there is a null-homotopy of � that is contained inNM .�/ � NM .L1/.

We shall now set up some constants so that we can show that no two vertices in l
can beK-separated byL1, for a value ofK to follow. LetR > .1

2
�.2N /CN CM/,

letK1 > Œ12�.2.N CRC 1//C .2N CRC 1/CN�, let r1 be larger thanK1 CN ,
and let r2 be as in Lemma A.2, with respect to r1 and the other data we are working
with. Let K > maxf1

2
Œ�.K1 CN C r2/CK1 CN C r2�; r2 CRC 1g.

In summary, we have the following conditions on constants:

� R > 1
2
�.2N /CN CM ,

� K1 >
1
2
�.2.N CRC 1//C .2N CRC 1/CN ,

� r1 > K1 CN ,
� r2 is from Lemma A.2 and depends onG, �,N , r1,m0, with r2 > maxfr1; m0g,
� K > maxf1

2
Œ�.K1 CN C r2/CK1 CN C r2�; r2 CRC 1g.

Recall also that � W R�0 ! R�0 is such that �.t/ � t for all t 2 R�0.
Now suppose that a < b 2 l are K-separated by L1. Let X1; X2; X3 denote

essential complementary components of L, and, for i D 1; 2; 3, let pi denote a path
from a to b in Xi [ L from Lemma A.2, with respect to the constants r1 and r2.

We can alter each pi so that it is a simple (simplicial) path, by deleting any
subpaths that begin and end at the same point. Note that this does not alter any of the
properties from Lemma A.2 that are satisfied by pi .

As a and b are in distinct components of the complement of L1 and each pi is a
path from a to b, it follows that .pi \L1/ is nonempty. Let x 2 .pi \L1/ for any i ,
and we shall show that dinf.x; L/ > K1. It suffices to show that, for any point c 2 l ,
d.x; c/ > K1 CN .
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As r1 > K1 C N and x 2 pi , if c 2 Œa C r2; b � r2�l then it is clear that
d.x; c/ > K1 CN from the construction of pi . If c 2 Œ.Br2.a/[Br2.b//\ Œa; b�l �,
then note that K > 1

2
Œ�.K1 C N C r2/ C K1 C N C r2� � 1

2
Œ.K1 C N C r2/ C

K1 CN C r2� D K1 CN C r2, and recall that a and b areK-separated by L1. Thus

d.x; c/ � dinf.L1; c/ � dinf.L1; Br2.a/ [ Br2.b// > K1 CN;

so d.x; c/ > K1 CN .
It follows from the construction of pi that x is of distance no more than r2 from

a point d in Œa; b�l . Now suppose that c 2 .�1; a � r2�l . If d.x; c/ � K1 C N ,
then d.d; c/ � d.d; x/ C d.x; c/ � K1 C N C r2, and hence lengthŒd; c�l �
�.K1 CN C r2/. On the other hand, x 2 L1, so x … BK.a/ and hence

K � d.a; x/ � d.a; c/C d.c; x/ � lengthŒa; c�l C .K1 CN/

and
K � d.a; x/ � d.a; d/C d.d; x/ � lengthŒa; d �l C r2:

As a 2 .d; c/l , lengthŒc; d �l D lengthŒa; c�l C lengthŒa; d �l , hence the addition of
the above equations yields

2K � lengthŒc; d �l CK1 CN C r2:

Combining this with the above observation that lengthŒd; c�l � �.K1CN C r2/, we
have that

2K �K1 �N � r2 � lengthŒa; d �l � �.K1 CN C r2/:

ThusK � 1
2
Œ�.K1CN C r2/CK1CN C r2�. But this contradicts our choice of

K. Thusd.x; c/ > K1CN , and similarly if c 2 ŒbCr2;1/l , thend.x; c/ > K1CN
as well. Hence dinf.x; L/ > K1.

Note that, if i ¤ j , then .pi \ pj / � L. It follows from this and our previous
observation that pi and pj will not meet in L1.

For each i , let qi W S1 ! .Xi [L/ traverse the closed simplicial path pi [ Œa; b�l .
AsL is simply connected, Van Kampen’s Theorem implies that eachXi [L is simply
connected. Thus there is a mapgi W .Di ; @Di / ! .Xi[L; qi .S1//, whereDi denotes
a copy of the 2-disk D2, and gi j@Di

D qi .
We shall denote by Opi the subpath of @Di mapped homeomorphically onto pi by

gi . Similarly let 1Œa; b� denote the subpath of @Di mapped homeomorphically onto
Œa; b�l , so @Di D Opi [1Œa; b�. We may resizeDi and assume that the restriction of gi
to the domains Opi and 1Œa; b� has unit speed.

Let yD D D1
`
D2

`
D3= �, where � denotes the canonical identification of

the subpaths 1Œa; b� in D1, D2, D3. We shall from now on consider D1, D2; and D3
as subsets of yD. Let g denote the map from yD into X that is induced by g1, g2, g3.
The restriction of g to 1Œa; b� is a unit speed homeomorphism onto Œa; b�l ; let Oa denote
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the preimage of a under this restriction of g, and let Ob denote the preimage of b. The
restriction of g to each Opi is also a unit speed homeomorphism. As a and b are in
different components of the complement of L1, note that the preimage of L1 under
g is a (possibly disconnected) subset of yD that separates Oa from Ob.

Note that each pi is simplicial and L is a subcomplex of X , hence @ yD meets
g�1.L/ in only finitely many components.

As L1 K-separates a and b, and K > R, it follows that there exist points e1 <
e2 2 .a; b/l such that BR.e1/ \ L1 D ¿ D BR.e2/ \ L1, and e1 and e2 are in
different components of X � L1, say Y1 and Y2 respectively. Furthermore, we may
choose e1 and e2 such that, fixing � � 1 < d.e1; e2/ (recalling that the edges of X
are of length 1), we have that for any q 2 Œe1 C �; e2 � ��l , BR.q/ meets L1. Let Bi
denote BR.ei / for i D 1; 2.

As g is a homeomorphism from1Œa; b� to Œa; b�l , for each k D 1; 2, g�1.ek/\1Œa; b�

is one point – denote it by Oek .
For any 1 � i < j � 3, let Dij denote .Di [ Dj / � yD. Note that Dij is a

copy of the disk and @Dij D Opi [ Opj . Recall that g was defined to take yD into X ;
from now on, we shall have g denote the restriction of this map toDij . Note that the
image of this restriction is contained in .Xi [Xj [ L/.

Let yBk denote the connected component of g�1.Bk/ that contains Oek . As L1
separates B1 from B2, it follows that g�1.L1/ separates yB1 from yB2. LetAij denote
the connected component of g�1.Y1/ in Dij that contains yB1. Thus there is some
connected component, Oıij , of the frontier ofAij that separates yB1 from yB2. Note that
Oıij is contained in g�1.L1/.

We may further take Oıij to be a simple curve by removing subpaths that begin and
end at the same point, while maintaining that Oıij separates yB1 from yB2.

A priori, Oıij may or may not be a closed curve.

Lemma A.4. Oıij is not a closed curve, but rather must be an arc.

The proof of this lemma follows the completion of this argument.
Thus Oıij is a curve with two distinct endpoints in Opi [ Opj . Let Ox, Oy denote these

endpoints. We may assume that these endpoints are exactly the intersection of Oıij
with Opi [ Opj .

For any c1; c2 2 l such that a � c1 � c2 � b, let 2Œc1; c2� denote the arc contained
in 1Œa; b� that is mapped homeomorphically onto Œc1; c2�l by g, and define the notation
2Œc1; c2/;2.c1; c2�; and 2.c1; c2/ similarly. Thus 2Œe1; e2� is a path in Dij from Oe1 to Oe2,

and hence Oıij must meet 2Œe1; e2�.

Denote by O�x the subpath of Oıij from Ox to g�1.Œe1; e2�l/, that does not meet
g�1.Œe1; e2�l/ in its interior, and define O�y similarly. Let x denote g. Ox/, let y denote
g. Oy/, let �x denote the path g. O�x/ and let �y denote g. O�y/. Note that �x (�y respec-
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tively) is a path from x (y respectively) to Œe1; e2�l , that does not meet Œe1; e2�l except
at one endpoint.

The path �x is contained in .Xi [ Xj [ L/, since the image of g is contained in
this union. As Oıij � g�1.L1/, �x is contained in L1.

Moreover as L1 \ B1 D ¿, �x is contained in X � B1. Thus �x , and similarly
�y , is contained in ŒL1 \ .Xi [ L [Xj / \ .X � B1/�.

Recall that, by definition, theR-ball about each point in Œe1C�; e2���l meetsL1.
Thus the .RC�/-ball about each point of Œe1; e2�l meetsL1, and the .NCRC�/-ball
about each point of Œe1; e2�l meets l1. Let �� W Œe1; e2�l ! l1 denote nearest point
projection. Then Im.��/ contains a 2.N C R C �/-chain from ��.e1/ to ��.e2/,
with consecutive points in the chain connected in l1 by paths of length no more than
�.2.N C R C �//. Let 
 denote CH.Im.��/; l1/, and it follows that 
 is contained
in the Œ1

2
�.2.N CRC �//C .N CRC �/�-neighborhood of Œe1; e2�l . Let A denote

Œ1
2
�.2.N CRC �//C .N CRC �/�.
As x; y 2 .pi [ pj / \ L1, we have from an argument above that

dinf.x; L/; dinf.y; L/ > K1:

Let � W L1 ! l1 denote nearest point projection. Since L1 is a .�;N / quasi-line,
d.z; �.z// � N for any z 2 L1. We claim that �.x/; �.y/ … 
. To see this, we have
that

dinf.�.x/; 
/ � dinf.BN .x/;NA.L// � K1 �N � A:
As K1 > N C A, we have that dinf.�.x/; 
/ > 0. Similarly dinf.�.y/; 
/ > 0, and
thus �.x/; �.y/ … 
.

Let � 0
x denote the component of CH.�.�x/; l1/ � 
 that contains �.x/, so � 0

x is
an arc in l1 from �.x/ to 
. Define � 0

y similarly.
A less immediate result is the following.

Lemma A.5. �.x/ … � 0
y and �.y/ … � 0

x .

A proof for this lemma is given after the completion of this argument.
So � 0

x; �
0
y are segments in l1 that both meet 
 in precisely one point. The subspace

l1�
 consists of two components, and it follows from LemmaA.5 that � 0
x is contained

in the closure of one and � 0
y in the closure of the other.

Our argument up to this point has been on the restriction of g to Dij . Note that,
while Oıij depended in i; j , the points Oe1 and Oe2 did not, nor did the segment 
 � l1.

Let k 2 f1; 2; 3g, k ¤ i; j , and we can run the same argument in Dik . This will
result in points z; w 2 .Xi \pi /[ .Xk \pk/, and segments � 0

z; �
0
w from �.z/, �.w/

respectively, to 
, with � 0
z and � 0

w contained in the closures of different components
of l1 � 
.

Without loss of generality, we may suppose that � 0
x and � 0

z are contained in the
closure of the same component of l1 � 
, and � 0

y and � 0
w are contained in the closure

of the other component. We would like to say that x and z, or y andw, are contained
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in distinct elements of fX1; X2; X3g. If this is not the case, then we must have that all
four points are contained in Xi . Then we will run our above argument forDjk . This
will result in another pair of points, say Nz; xw, and segments � 0Nz; � 0xw . Without loss of
generality, we shall suppose that � 0

x and � 0Nz are contained in the closure of the same
component of l1 � 
, and we must have that x and Nz are contained in different Xl ’s.

Thus, without loss of generality, we shall assume that x and z are contained in
distinct components of the complement of L, say with x 2 Xl and z 2 Xl 0 .

Note that � 0
x is made up of a 2N -chain in �.�x/ � l1, together with connecting

segments in l1 of length no more than �.2N /. It follows that � 0
x is contained in the

.1
2
�.2N /CN/-neighborhood of �x . Similarly � 0

z is contained in the .1
2
�.2N /CN/-

neighborhood of �z . As �x � .Xl [ L/, we have that � 0
x � N 1

2�.2N/CN .Xl [ L/,

and as �z � .Xl 0 [ L/, we have that � 0
z � N 1

2�.2N/CN .Xl 0 [ L/.
Recall that dinf.x; L/ > K1, and we also have that dinf.z; L/ > K1. Thus

dinf.�.x/; L/ > .K1 � N/ and dinf.�.z/; L/ > .K1 � N/. Recall that �.x/ 2
Œ� 0
x \Xl �, and �.z/ 2 Œ� 0

z \Xl 0 �, and hence

dinf.�.x/; �
0
z/ � dinf.ŒXl �NK1�N .L/�; N 1

2�.2N/CN .Xl 0 [ L//

and
dinf.�.z/; �

0
x/ � dinf.ŒXl 0 �NK1�N .L/�; N 1

2�.2N/CN .Xl [ L//:
AsK1 �N > .1

2
�.2N /CN/, we have that dinf.�.x/; �

0
z/; dinf.�.z/; �

0
x/ > 0, thus

�.x/ … � 0
z and �.z/ … � 0

x . But �.x/ 2 � 0
x , �.zs/ 2 � 0

zs
, and both � 0

x and � 0
zs

are

segments in the same component of l1 � 
, and both contain the endpoint of that
component.

As l1 is an embedded copy of the real line, this situation is impossible. Thus we
have reached a contradiction, so the conclusion of the theorem follows.

It remains to prove Lemmas A.4 and A.5.

Lemma A.4. Let g be a continuous map from Dij to X as defined in the proof

of Theorem 3.1, with Aij the component of g�1.Y1/ that contains yB1 and Oıij the
component of the frontier ofAij that separates yB1 from yB2, made to be simple by the

removal of loops that do not change that Oıij separates yB1 from yB2.
Then Oıij not a closed curve.

Proof. Suppose that Oıij is a closed curve.

Then Oıij is a curve about yB1 or yB2; without loss of generality, let’s say it is about
yB1. Let ıij denote the closed (not necessarily embedded) curve g. Oıij /, which is

contained in ŒL1 \ .Xi [Xj [ L/�.
By Lemma A.3, ıij admits a null-homotopy in X that is contained in the M -

neighborhood ofL1. Let D denote a copy of the 2-disk, with h W D ! X representing
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this null-homotopy. Let k W @D ! Oıij be a homeomorphism, and further choose h
and k such that hj@D D g B kj@D.

Recall that L is a .�;N / quasi-line. We claim that, if R0 is any constant greater
than 1

2
�.2N /CN , then theR0-ball about e1 separatesL into two infinite components,

with one contained in NN ..�1; e1/l/ and the other contained in NN ..e1;1/l/.
To see this, suppose for a contradiction that there is a point q 2 .L�BR0.e1//\

NN ..�1; e1/l/ \ NN ..e1;1/l/. Then there must be points q� 2 .�1; e1/l and
qC 2 .e1;1/l that do not meet BR0�N .e1/, that are both of distance no more
than N from q, and hence d.q�; qC/ � 2N . It follows that lengthŒq�; qC�l �
�.2N / and hence that one of q�; qC is of distance no more than 1

2
�.2N / from e1.

But .R0 � N/ > 1
2
�.2N /, so neither q� nor qC was contained in BR0�N .e1/, a

contradiction. It follows that BR0.e1/ separates L as desired.
Now let R0 denote R � M , and note that R0 > 1

2
�.2N / C N . Let lC denote

.e1;1/l , let l� D .�1; e1/l , let LC denote .NN .lC/ \ L/ � BR0.e1/ and let L�
denote .NN .l�/\L/�BR0.e1/. Thus the regions LC; L� and .BR0.e1/\L/ may
not be connected subsets of L, but they are disjoint, and their union is L.

Note that, while Im.h/ is contained in NM .L1/, it need not be contained in
.Xi [ Xj [ L/ nor in L1. However, as L1 does not meet B1 D BR.e1/, it follows
that Im.h/ does not meet BR0.e1/. Thus Im.h/ \ L is contained in LC [ L�.

We shall want to consider h�1.L/ � D. Let C denote the set of components of
h�1.L/\@D. Note that, as h D gBk on @D, as g is cellular and asL is a subcomplex
of S , we have that C is finite.

Let PM D fC;�g, so each component of h�1.L/ is contained in exactly one
h�1.L�/, with � 2 PM . Thus the same is true for each element of C. Let C� denote
C \ h�1.L�/ for each � 2 PM . It follows that no component of CC is connected to
any component of C� through h�1.L/.

Recall that h.@D/ � Im.g/, so we have that h.@D/ � .Xi [ L [ Xj /. Hence,
for each c 2 C, either c meets in @D only h�1.Xi /, only h�1.Xj /, or meets both
h�1.Xi / and h�1.Xj /. Let C0 denote the collection of components c 2 C that, in @D,
meet both h�1.Xi / and h�1.Xj /.

Recall the identification k W @D ! Oıij , where hj@D D g B kj@D. Let k.C0/ D
fk.c/ W c 2 C0g, and thus the regions in k.C0/ are exactly those components of
g�1.L/ \ Oıij that meet both g�1.Xi / and g�1.Xj / in Oıij .

Let us return to the disk D, and consider again the full components of h�1.L/.
Consider only those components that meet C0, so only those components that separate
a component of h�1.Xi / \ @D from a component of h�1.Xj / \ @D. Let C00 denote
the set of these components.

We first claim that C00 is nonempty. For this, it suffices to note that C0 is nonempty,
which will follow if we know that Oıij meets both g�1.Xi / and g�1.Xj /.

Thus, we shall shift our attention back to Dij . Suppose that this is not the case,
so without loss of generality Oıij is contained in g�1.Xi / [ g�1.L/.
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Recall that Œg�1.L1/ \ 1.a; e1/� � Œg�1.X � B1/ \ 1.a; e1/� must be contained
in g�1.L�/, and Œg�1.L1/ \ 1.e1; b/� is contained in g�1.LC/. Recall that Oıij is a

simple closed curve about Oe1, hence it must contain an arc that connects 1.a; e1/ to
1.e1; b/ within Dj . Thus this arc must connect g�1.LC/ to g�1.L�/, and must be

entirely contained in g�1.L/, since we’ve assumed that Oıij � Œg�1.Xi / [ g�1.L/�.
It follows that this arc must meet g�1.BR0.e1// � g�1.B1/. But Oıij is contained in
g�1.L1/, so this would imply that g�1.B1/meets g�1.L1/, and hence thatB1 meets
L1, a contradiction. Hence C00 must be nonempty.

Note that we can see from the above paragraph that Oıij must meet both g�1.LC/
and g�1.L�/, and any arc in Oıij connecting g�1.LC/ to g�1.L�/must lie in g�1.Xi /
or g�1.Xj /. Furthermore, there must be at least one such arc in g�1.Xi / and at least
one in g�1.Xj /.

It follows that C0 \C� and C0 \CC must both be nonempty. Any component of C0
is contained in a component of C00, so it follows that C00 \h�1.LC/ and C00 \h�1.L�/
are both nonempty. But h�1.LC/ and h�1.L�/ do not meet, so jC00j � 2.

Thus there exists a component � of @D � C00 that meets a component CC of
.C00 \ h�1.LC// and a component C� of .C00 \ h�1.L�//. Suppose that jC00j D 2,
so C00 D fCC; C�g.

Then the component of D � .CC [ C�/ that contains � meets exactly one other
component of @D � C00, say �0. Let p be a point in the interior of �, fix p0 in the
interior of �0, and consider the two components of @D � fp; p0g.

One of these components must contain CC \ @D and be disjoint from C� \ @D
and the other must contain C� \ @D and be disjoint from CC \ @D. Let �C denote
the former component, and �� the latter.

We can moreover choose p and p0 so that h.p/ and h.p0/ are both contained inXi
or both contained in Xj . Without loss of generality, let’s suppose both are contained
in Xi .

Consider again Dij . Recall that 1Œa; b� is a simple curve that contains Oe1 and
separates Dij into two components, and note that k.p/; k.p0/ 2 Oıij are contained in

the same component of Dij � 1Œa; b�.

It may be the case that k.��/ meets 1.e1; b�, but as 1.e1; b� � g�1.LC/, and ��
does not meet CC, note that k.��/ will not cross from g�1.Xi / to g�1.Xj / through
1.e1; b�. Similarly k.�C/ does not cross from g�1.Xi / to g�1.Xj / through 1Œa; e1/.

Thus Oıij D Œk.�C/[ k.��/[ k.p/[ k.p0/� is the union of two segments that meet

each other in the same component of Dij � 1Œa; b�, and each component only crosses

from g�1.Xi / to g�1.Xj / through 1Œa; e1/ or 1.e1; b�. As g�1.B1/ separates g�1.L/
and contains Oe1, and Oıij does not meetg�1.B1/, it follows that Oıij has winding number
zero about Oe1, a contradiction. Hence jC00j > 2.

Before moving on to the general case, we note that we did not need such strong
conditions on D for the above argument to work. Suppose still that h maps D into
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NM .L1/, and h maps @D into .Xi [ Xj [ L/, so that we may define C;C0;C00 as
before. Suppose that k is an embedding of @D intoDij . Retain Oıij and the map g as
was defined earlier.

Suppose however that h is not equal to g B k when restricted to a region of @D,
and moreover, that the image under k of this region need not be in Oıij .

In particular, let c 2 C�C0 be this region and suppose that g Bk D h except on c.
Let �1 and �2 denote the endpoints of c in @D, let Oc denote the arc in Oıij that

connects k.�1/ to k.�2/ and is not k.@D � c/. As c … C0, k.�1/ and k.�2/ must both
be inDi or both be inDj . Hence we may choose a path � that connects k.�1/ to k.�2/

and is contained entirely inDi orDj , and does not meet 1Œa; b�, except possibly at its

endpoints, if k.�1/ or k.�2/ is in 1Œa; b�.
Consider the closed curve attained by replacing Oc in Oıij with �, and the closed

curve � [ Oc. As we are still assuming that jC00j D 2, note that our previous argument
may be applied to show that the former curve has winding number zero about Oe1.
Thus if Oc is such that � [ Oc also has winding number zero about Oe1, then it would
follow that Oıij has winding number zero about Oe1, a contradiction.

Moreover, if there were more than one region like c in C�C0 � @D on which @D
and Oıij did not correspond via k, and where each corresponding pair of paths � and
Oc made a curve with winding number zero about Oe1, then a contradiction would also
follow.

To complete the proof that Oıij cannot be a closed curve, we shall induct on jC00j
to get a contradiction in every case. Let Dij , g and Oıij be defined as above.

We shall work with exclusively with the following type of situation. Let D0 be
a disk, let h0 be any continuous map of D0 into NM .L1/, with h0 taking @D0 into
.Xi[Xj[L/, and let k0 W @D0 ! Dij be an embedding. Parallel with our definitions
of the sets associated to D and the map h,

� let C0 denote the set of components of h�1
0 .L/ \ @D0,

� let C0
0 denote the subset of components c 2 C0 that meet both h�1

0 .Xi / and
h�1
0 .Xj / in @D0,

� let C00
0 denote the components of h�1

0 .L/ in D0 that meet C0
0, and

� for each � 2 PM , let C
�
0 denote C0 \ h�1

0 .L
�/.

We will assume that jC00
0j is finite and greater than 2.

Let S0 � C0�C0
0 and suppose that the restriction ofk0 to@D0�S0 is an embedding

into Dij with image contained in Oıij . Suppose further that, on the restricted domain
@D0 � S0, h0 D g B k0.

For each s 2 S0, let Os denote the arc that is the component of Oıij minus the image
under k0 of the endpoints of s, that does not meet k0.@D � s/. Let �S0 D fOs W s 2
S0g. We shall assume that k0j@D0�S0

does not interchange the “order” of segments

inherited from @D0 and Oıij , in the sense that there exists a homotopy in Dij rel
k0.@D0 � S0/ that takes each Os to k0.s/.
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Note that since s … C0
0, the two components of @D0 � C0 that s meets are both

contained in h�1
0 .Xi / or are both contained in h�1

0 .Xj /. Thus both endpoints of Os are
contained in Di or Dj . Hence for each s 2 S0, there exists a path �s that connects

the endpoints of Os, the interior of which is contained in Dij � 1Œa; b�, and is such that
a small neighborhood n of Os in Oıij has .n � Os/ [ �s is a path in Di or Dj . (In other

words, �s may meet 1Œa; b� at its endpoints, but .n� Os/[ �s does not cross 1Œa; b� from
Di into Dj or vice versa.)

Also assume that the collection of closed curves Os [ �s all have winding number
zero about Oe1.

We shall refer to the maps and subspaces associated to D0 and h0 defined and
satisfying the hypotheses above as the data associated to D0. In the case that D0 and
its data satisfies all the hypotheses above, we shall say that D0 (with data implicit)
has property P.

Note that our original disk D, with S D ¿, has property P.
Fix n > 2, and our induction hypothesis is the following. For any disk D0 with

property P, if jC00
0j D .n � 1/, then the closed curve attained from Oıij by replacing

each Os 2 �S0 with �s has winding number zero about Oe1. As we have assumed that
each curve Os [ �s has winding number zero about Oe1 as well, it follows that Oıij has
winding number zero about Oe1. But this contradicts the construction of Oıij , and thus
no D0 with such data can exist.

Assume now that D0 has property P, and that jC00
0j D n. So S0 is some (possibly

empty) subset of C0 � C0
0 and the restriction of k0 to .@D0 � S0/ has image in Oıij ,

and is such that h0 restricted to .@D0 � S0/ is equal to g B k0. In addition, for each
s 2 S0, the closed curve Os [ �s has winding number zero about Oe1.

We shall show that we can reduce to the jC00
0j D .n � 1/ case. Let C 00 2 C00

0 be
an element of C00

0 such that, for some arc c of fr.C 00/, c separates C 00 from every
other component of C00

0. Let �1; �2 denote the endpoints of c, and let d denote the
component of @D0 � f�1; �2g that does not meet any element of C00

0 other than C 00.
Now consider the simple closed curve attained from @D0 by replacing d with c.
Let D1 denote the disk in D0 that is bounded by this region. Note that the

restriction of h0 to D1 is a map into NM .L1/, and, as c � h�1
0 .L/, the restriction of

h0 to @D1 is a map into .Xi [ Xj [ L/. Let h1 denote the restriction of h0 to D1,
so h1 yields data C1;C

0
1 and C00

1, defined analogously to the data C0, etc., that was
defined with respect to D0 and h0. Note that c 2 C1 � C0

1, hence C00
1 D .C00

0 � C 00/
and jC00

1j D .n � 1/.
Let k1 W @D1 ! Dij be equal to k0 on the domain @D1 \ @D0, and take c to

k0.d/. Recall that k0 is an embedding, thus k1 is also an embedding.
Thus we shall have that D1, with S1 D ŒS0 \ @D1� [ fcg, has property P if we

can find a path �c in Dij that connects k0.�1/ with k0.�2/, does not cross 1Œa; b�, and
is such that �c [ k0.d/ has winding number zero about Oe1.

As c meets only h�1
0 .Xl/ in @D1, for some l D i or j , a small neighborhood of
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each of k0.�1/ and k0.�2/ in k0.@D1 � c/ must be contained in k�1
0 .Xl/.

It follows that there is a path �c in Dij that connects k0.�1/ to k0.�2/ and is such
that a small neighborhood of k0.c/ in k0.@D1/, with k0.c/ replaced by �c , does not
cross 1Œa; b�. Next we will see that k0.d/ [ �c has winding number zero about Oe1.

The components of C0 � C0
0 that meet d will complicate our argument slightly.

Let T denote those components of .C0 � C0
0/ that are contained in d . If t 2 T \ S0,

then let �t and Ot be the paths in Dij given in the hypotheses for D0, and recall that
by assumption, the closed curve �t [ Ot has winding number zero about Oe1.

For the remaining t 2 T, there is a path �t with interior inDij �1Œa; b� that connects
the image underk0 of the endpoints of t , and is such that a small neighborhood ofk0.t/
in k0.d/, with k0.t/ replaced by �t , does not cross1Œa; b�. As t … S0, k0.t/ � g�1.L�/
for some � 2 PM . Thus, for these components t 2 T � S0, the curve k0.t/ [ �t

crosses only 1Œa; e1/ or 1.e1; b�, and thus has winding number zero about Oe1.
Hence, for each t 2 T, �t together with Ot (if t 2 S0) or k0.t/ (if t … S0) has

winding number zero about Oe1. So in order to show that k0.d/ [ �c has winding
number zero about Oe1, it suffices to show that �c , together with the path Od 0, which
is attained by starting with k0.d/ and replacing Ot or k0.t/ by �t for each t 2 T, has
winding number zero about Oe1.

To see this, recall that the components of .�c [ Od 0/ � k0.d/ are segments that do
not cross 1Œa; b� and are connected by arcs in k0.d/. Also recall that d meets only one
component of C00

0, hence these arcs in k0.d/ are all contained in g�1.LC/, or are all
in g�1.L�/. Thus �c [ Od 0 has winding number zero about Oe1.

It follows that �c [ k0.d/ has winding number zero about Oe1, and hence D1 has
property P. But jC00

1j D .n� 1/, so the closed curve attained by replacing each Os 2 �S1
with �s has winding number zero about Oe1, and hence so does Oıij . We have reached
a contradiction, and it follows that jC00

0j D n is an impossibility, so the proof is
complete.

Lemma A.5. LetDij , Oıij , g W Dij ! .Xi [Xj [L/ � X , � W L1 ! l1 and 
 � l1

be as in the proof of Theorem 3.1. Let Ox, Oy be the endpoints of Oıij , and let x D g. Ox/,
y D g. Oy/. Let O�x denote the segment of Oıij from Ox to g�1.Œe1; e2�l/, let �x denote the
path g. O�x/ from x to Œe1; e2�l , and let � 0

x denote the component of CH.�.�x//; l1/�

that contains x. Define O�y and � 0

y similarly.
Then �.x/ … � 0

y and �.y/ … � 0
x .

Proof. We shall prove that �.x/ is not contained in � 0
y ; that �.y/ … � 0

x shall follow
analogously.

To prove that �.x/ … � 0
y , it suffices to show that there is no path in L1 from x to

� 0
y , of length less than or equal to N . Moreover, it suffices to show that there is no

path in L1 from x to �.�y/ of length less than or equal to .1
2
�.2N /C N/, as � 0

y is
comprised of a 2N -chain in �.�y/, together with connecting segments in l1 of length
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no more than �.2N /. Furthermore, it suffices to show that there is no path in L1
from x to �y of length less than or equal to .1

2
�.2N /C 2N/.

Suppose that this is not the case, and we will show that, if �.x/ � � 0
y , then we

can alter gjDi
or gjDj

so that Oıij becomes a closed curve. By Lemma A.4, this is a
contradiction, and thus �.x/ cannot be contained in � 0

y .
Let ˛ be a path from x to �y that is contained in L1 and has length no more than

.1
2
�.2N / C 2N/. Recall that dinf.x; L/ > K1, and K1 > .1

2
�.2N / C 2N/. Thus

the path ˛ does not meet L, and moreover does not meet a small neighborhood of L.
Let ˛0 denote the endpoint of ˛ that is contained in �y , and let Ǫ0 denote a point

in g�1.˛0/ \ O�y .
Recall that Ox is contained in Opi or Opj – let’s say that, without loss of generality,

Ox 2 Opi . Thus Ox 2 g�1.Xi /, and as ˛ \ L D ¿, Ǫ0 is also in g�1.Xi / � Di .
Next we claim that there exists some path ˇ from Ox to Ǫ0 that is contained in Di

and does not meet g�1.Œe1; e2�l/. We first claim that Œe1; e2�l does not meet pi .
To see this, first recall that by construction, Œa; b�l does not meet pi outside of

r2-neighborhoods of a and b. Also recall that L1 meets the R-neighborhood of any
point in Œe1C�; e2���l , so the .RC�/-neighborhood of each point in Œe1; e2�l meets
L1, and that L1 K-separates a and b. Thus no point in Œe1; e2�l is contained in the
.K �R � �/-neighborhoods of a or b.

Recall that

K > r2 CRC �;

and thus that r2 < .K � R � �/. It follows that no point in Œe1; e2�l is contained in
the r2-neighborhoods of a or b, and therefore Œe1; e2�l does not meet pi .

Hence in Dij , g�1.Œe1; e2�l/ does not meet g�1.pi /, and in particular does not
meet Opi . Similarly, g�1.Œe1; e2�l/ does not meet Opj , and thus does not meet @Dij .

Recall that Ox 2 Opi , and Ǫ0 is contained in O�y , which is a path that does not meet
g�1.Œe1; e2�l/ but does contain Oy 2 . Opi [ Opj /. It follows that g�1.Œe1; e2�l/ does not
separate Ox from Ǫ0 in Dij .

Moreover, since g�1.Œe1; e2�l/\1Œa; b� D 2Œe1; e2� and @Di D 1Œa; b�[ Opi , a similar
argument shows that g�1.Œe1; e2�l/ does not separate Ox from Ǫ0 inDi . Thus let ˇ be
a path in Di connecting Ox to Ǫ0, that does not meet g�1.Œe1; e2�l/. One may further
assume that ˇ does not meet @Di .

Let Oı0 denote the arc in Oıij from Ox to Ǫ0, so Oı0 [ ˇ is a closed curve in Dij . We
claim that this curve has nonzero winding number about Oe1 or Oe2. (Since we are only
worried about showing that this winding number is nonzero, we need not be careful
about curve orientation.)

Let Oı00 denote Oıij � Oı0. Thus Oı00 � O�y , so Oı00 does not meet g�1.Œe1; e2�l/.
Let @0, @1 denote the two components of @Dij�f Ox; Oyg, so that, for some fm;m0g D

f1; 2g, Oıij [@0 has winding number ˙1 about Oem and winding number zero about Oem0 ,
and Oıij [ @1 has winding number ˙1 about Oem0 and winding number zero about Oem.
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Now consider the closed curves .@k [ Oı00 [ ˇ/ for k D 0 and 1. These curves
do not meet g�1.Œe1; e2�l/, so in particular they do not meet 2Œe1; e2�l , and hence do
not separate Oe1 and Oe2. As @Dij has winding number one about Oe1 and Oe2, one curve
.@k [ Oı00 [ ˇ/ has winding number zero about Oe1 and Oe2, and the other has winding
number ˙1 about both points. Suppose without loss of generality that .@1 [ Oı00 [ ˇ/
has winding number zero about the two points.

As .@1 [ Oı00 [ ˇ/ has winding number zero about Oem0 and .@1 [ Oıj i / has winding
number ˙1 about Oem0 , it follows that . Oı0[ˇ/must have winding number ˙1 about Oem0 .

Next we shall redefine g on a small neighborhood of ˇ. The restriction of g to
. Opi [ Opj [ 1Œa; b�/ shall be unchanged.

By a “small neighborhood” of ˇ, we shall mean a small open neighborhood that is
contained in the interior ofDi and does not meet g�1.Œe1; e2�l/. Such a neighborhood
exists since ˇ does not meet g�1.Œe1; e2�l/ or @Di , and ˇ; g�1.Œe1; e2�l/ and @Di are
all closed.

Recall that ˇ � Di , so g.ˇ/ is a path contained in Xi [L from x to ˛0. We saw
earlier that there is a path ˛ contained in .L1 \Xi / from x to ˛0.

Since �1.Xi [ L/ D 0, it follows that we can homotope g.ˇ/ within .Xi [ L/

to ˛. Homotope the map g on a small neighborhood of ˇ so that g now takes ˇ to ˛
(and g is not altered on any portion of the neighborhood of ˇ that meets Oı00).

Recall the definition of Oıij , defined with respect to the old map g, and consider
now the simple curve, call it Oı0

ij , defined in the same manner, but with respect to the

altered map g. As Oı0 [ ˇ is a closed curve with winding number ˙1 about Oem0 , it
follows that Oı0

ij must be a simple closed curve about Oem0 .
By Lemma A.4 this cannot happen. Thus �.x/ cannot be contained in � 0

y , as
desired. Similarly �.y/ cannot be contained in � 0

x .
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