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Efficient subdivision in hyperbolic groups and applications

Uri Bader, Alex Furman and Roman Sauer�

Abstract. We identify the images of the comparison maps from ordinary homology and Sobolev
homology, respectively, to the `1-homology of a word-hyperbolic group with coefficients in
complete normed modules. The underlying idea is that there is a subdivision procedure for
singular chains in negatively curved spaces that is much more efficient (in terms of the `1-
norm) than barycentric subdivision. The results of this paper are an important ingredient in
a forthcoming proof of the authors that hyperbolic lattices in dimension � 3 are rigid with
respect to integrable measure equivalence. Moreover, we prove a new proportionality principle
for the simplicial volume of manifolds with word-hyperbolic fundamental groups.

Mathematics Subject Classification (2010). Primary 20F67; Secondary 55N99.

Keywords. Hyperbolic groups, measure equivalence, simplicial volume.

1. Introduction and statement of the main results

Bounded cohomology of (discrete or continuous) groups proved to be a useful tool
for various questions about rigidity of groups. Since bounded cohomology is, in
general, extremely hard to compute, the question of surjectivity or bijectivity of
the comparison map from bounded cohomology to ordinary cohomology is very
important. It is conjectured to be surjective (and might even be an isomorphism, for
all we know) for simple connected Lie groups with finite center and trivial coefficients
[3]. Furthermore, in degrees � 2 it is surjective for word-hyperbolic groups and
arbitrary Banach modules as coefficients [19].

In this paper we are concerned with a kind of pre-dual situation: the comparison
map from the ordinary homology of a discrete group into its `1-homology. We prove
in Theorem 1.5 that for word-hyperbolic groups the image of the comparison map in
the `1-homology coincides with the image of a similar comparison map from Sobolev
homology (Definition 1.2) to the `1-homology.

�U.B. and A.F. were supported in part by the BSF grant 2008267. U.B was supported in part by the ISF
grant 704/08 and the GIF grant 2191-1826.6/2007. A.F. was supported in part by the NSF grants DMS
0604611 and 0905977. R.S. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft,
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The Sobolev chain complex C .1;1/� .G/ of a group G can be viewed as a sub-
complex of the `1-chain complex C .1/� .G/, containing the ordinary chain complex
C�.G/, but being much larger thanC�.G/. The Sobolev homology of a groupG with
coefficients in the Banach spaceL1.X/, whereX is aG-probability space, is a natural
recipient of certain maps associated to measure equivalence cocycles G � X ! G

satisfying an `1-condition. This is reminiscent of the work of Monod and Shalom
[21], where bounded cohomology is used as a recipient of certain maps associated
to measure equivalence cocycles, and where they prove rigidity results regarding
measure equivalence of products of word-hyperbolic groups. In a forthcoming pa-
per [1] we prove that hyperbolic lattices are rigid with respect to integrable measure
equivalence using the main result of this paper, Theorem 1.5; in the present paper
we give an application to the simplicial volume: in Theorem 1.9 we prove a propor-
tionality principle with regard to integrable measure equivalence for manifolds with
word-hyperbolic fundamental groups, which generalizes Gromov’s proportionality
principle [10], Section 0.4, for such manifolds.

1.1. Norms on the standard resolution and Sobolev homology. Let X be a set.
We consider the chain complex C�.X/ where Cn.X/ is the free abelian group with
basis XnC1 and differentials defined by

dn.x0; x1; : : : ; xn/ D
nX
iD0
.�1/i .x0; : : : ; yxi ; : : : ; xn/:

If X D G is a group, then C�.G/ is called the standard homogeneous resolution
of G. Endowing each Cn.G/ with the diagonal G-operation, C�.G/ becomes a
chain complex of ZG-modules. Let C�.G;R/ D C�.G/˝Z R be the corresponding
complex with real coefficients.

There is a variety of norms one might impose onC�.G/; we consider the following:

Definition 1.1. Let G be finitely generated. Fix a word metric on G. For a subset
S � G we denote by diam.S/ the diameter with respect to this word metric. On
Cn.G/ and Cn.G;R/ we define

(1) the `1-norm��� X
a.g0;g1;:::;gn/ � .g0; g1; : : : ; gn/

���
1

D
X

ja.g0;g1;:::;gn/j;

and

(2) the Sobolev norm��� X
a.g0;g1;:::;gn/ � .g0; g1; : : : ; gn/

���
1;1

D
X

ja.g0;g1;:::;gn/j � �
1C diam.g0; g1; : : : ; gn/

�
:
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It is easy to verify that different word metrics onG give rise to equivalent Sobolev
norms. We denote Cn.G/ when endowed with the Sobolev norm or `1-norm by
C
.1;1/
n .G/ and C .1/n .G/ respectively. Note that both are automatically complete

because of the integral coefficients. The differentials above are continuous with
respect to both the `1-norm and the Sobolev norm. In particular, we obtain chain
complexes of normed modules C .1;1/� .G/ and C .1/� .G/.

In Section 2 we explain the less common setting of normed rings and normed
modules over normed rings. The integral group ring ZG endowed with the `1-norm
is a normed ring in the sense of definition 2.1. The chain complexes C .1;1/� .G/ and
C
.1/� .G/ are normed chain complexes over the normed ring ZG. In subSection 2.2

we explain the construction of a completed tensor product y̋ ZG over the normed ring
ZG endowed with the `1-norm, which is an integral version of the projective tensor
product of Banach spaces (compare Remark 2.11). It will be essential to the proof of
Theorem 1.9 to use y̋ ZG rather than the usual projective tensor product.

Definition 1.2. Let E be a normed module E over the normed ring ZG. The n-th
Sobolev homology H .1;1/

n .G;E/ is the n-th homology of C .1;1/� .G/ y̋ ZG E. The
n-th `1-homology H .1/

n .G;E/ is the n-th homology of C .1/� .G/ y̋ ZG E.

Definition 1.3. Let E be a normed module E over the normed ring ZG. The homo-
morphismsH�.G;E/ ! H

.1/� .G;E/ andH .1;1/� .G;E/ ! H
.1/� .G;E/ induced by

the natural chain maps C�.G/ ˝ZG E ! C
.1/� .G/ y̋ ZG E (compare Lemma 2.6)

and C .1;1/� .G/ y̋ ZG E ! C
.1/� .G/ y̋ ZG E (compare Example 2.3), respectively, are

called comparison maps.

Remark 1.4. If E� is a chain complex of normed modules over a normed ring, then
its homology groups Hn.E�/ inherit a semi-norm by defining the semi-norm of a
homology class x as the infimum of the norms of chains representing x.

Caveat. If E D R with the trivial G-action, then H .1/
n .G;E/ is just the usual `1-

homology ofG as considered by various authors (see e.g. [17], [15]), i.e. the homology
of the `1-completion of the bar complex ofG with real coefficients (cf. Remark 2.11).
The `1-completion of the bar complex of G is the pre-dual of the complex defining
bounded cohomology of G.

We would like to warn the reader that in the literature (see e.g. the work of Mineyev
[18]) the term `1-homology is also used for the (usual) group homology of G with
coefficients in the G-module `1.G/ which differs from our definition.

1.2. Main results. Our main theorem is:

Theorem1.5. LetG be a hyperbolic group. LetE be a complete normedZG-module.
Then the following images under the comparison maps coincide:

im
�
H�.G;E/ ! H .1/� .G;E/

� D im
�
H .1;1/� .G;E/ ! H .1/� .G;E/

�
:
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The above theorem follows rather easily (see Section 3) from the following theo-
rem. Here C r� .G/ denotes the Rips complex of G, which is a subcomplex of C�.G/
(see Definition 3.1).

Theorem 1.6. Let G be a ı-hyperbolic group. There exist a ZG-chain homomor-
phism f� W C�.G/ ! C�.G/ and constants r.n/ D r.n; ı/ > 0 for every n � 0 such
that:

(1) f0 D id,

(2) im.fi / � C
r.i/
i .G/ for i � 0, and

(3) fi is bounded with respect to the Sobolev norm on the domain and the `1-norm
on the target for i � 0.

Remark 1.7. The statement in the preceding theorem is actually true for some con-
stant r D r.i/ that does not depend on i (only on the group G), thus giving a chain
map f� W C�.G/ ! C r� .G/ which can be seen to be a homotopy equivalence. We
refrain from a proof of this statement since it is more complicated, and the weaker
statement in Theorem 1.6 is sufficient to conclude our main result, Theorem 1.5, and
its corollaries presented below.

Remark 1.8. The map fi is a kind of subdivision map that maps arbitrarily large
simplices inCi .G/ to a sum of simplices of bounded diameter (bounded by r.i/). For
fi to be continuous the number of simplices in this sum must grow at most linearly
in the diameter of the large simplex you start with. That such an efficient subdivision
is possible on trees is quite easy to see. We approximate simplices in Ci .G/ by trees
(see Theorem 4.2) to reduce to this case.

Next we present an application of Theorem 1.5 to the simplicial volume of aspher-
ical manifolds, which will be proved in Section 5. Recall that a topological space
is aspherical if its universal cover is contractible. Two aspherical CW-complexes
are homotopy equivalent if and only if their fundamental groups are isomorphic.
The simplicial volume kMk 2 R�0 of an n-dimensional closed orientable mani-
fold M is defined as the infimum of the `1-norms of real singular chains represent-
ing the fundamental class in Hn.M;R/. The simplicial volume has many applica-
tions in geometry; see the groundbreaking paper of Gromov [10] for much more
information.

The definitions of (integrable) measure equivalence and (integrable) ME-coupling
will be recalled in Subsection 5.1. Measure equivalence is an equivalence relation
between groups, introduced by Gromov in [12] as a measure-theoretic counter part
to quasi-isometry between finitely generated groups; it is intimately related to orbit
equivalence in ergodic theory, to the theory of von Neumann algebras, and to questions
in descriptive set theory. We will not go further into a discussion of this notion here,
but refer the reader to the surveys [24], [22], [8].
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Theorem 1.9.1 Let M and N be closed, aspherical, orientable manifolds. Assume
that there is an ergodic, integrable ME-coupling .�;�/ of the fundamental groups
G D �1.M/ andH D �1.N /with coupling index c� D �.Hn�/=�.Gn�/. Then:

(1) If kN k > 0 and G is word-hyperbolic, then dim.N / � dim.M/.

(2) If G andH are word-hyperbolic andM and N have dimension � 2, then

kMk D c� � kN k and dim.M/ D dim.N /:

Since closed, aspherical, orientable manifolds with word-hyperbolic fundamental
groups have positive simplicial volume (except in dimension 1) by Lemma 5.12, we
obtain the following corollary.

Corollary 1.10. Let M and N be closed, aspherical, orientable manifolds of di-
mension at least 2 whose fundamental groups G D �1.M/ and H D �1.N / are
word-hyperbolic. Assume that there is an ergodic, integrable ME-coupling .�;�/
of G andH with coupling index c� D �.Hn�/=�.Gn�/. Then kMk D c� � kN k
and dim.M/ D dim.N /. Further, ifH Š G, then c� D 1.

Remark 1.11. Any ME-coupling .�;�/ has a decomposition [7], Lemma 2.2, into
ergodic ME-couplings .�;�z/. If .�;�/ is integrable, then almost every .�;�z/ is
integrable (see also [1]). Hence the equality of dimensions in the previous corollary
also holds without the ergodicity assumption.

Remark 1.12. LetM andN be closed, orientable, negatively curved manifolds with
isometric universal covers. Denote their universal cover by W . Then the isometry
group ofW contains both �1.M/ and �1.N / as cocompact lattices. In particular, the
isometry group of W endowed with the Haar measure is an integrable measure cou-
pling. Up to the ergodicity assumption the previous corollary generalizes Gromov’s
proportionality principle [10], Section 0.4, in that situation.

A positive answer to the following question would be a even more far-reaching
generalization of the proportionality principle of the simplicial volume with strong
consequences for the measure equivalence rigidity of hyperbolic lattices (see [1]); a
positive answer would also fit well with the proportionality ofL2-Betti numbers with
regard to measure equivalence [9] and a conjectural bound of L2-Betti numbers by
the simplicial volume [16], Conjecture 14.1 on p. 489.

Question 1.13. Let M and N be closed, orientable, aspherical manifolds. Assume
that�1.M/ and�1.N / are measure equivalent with index c > 0. Does this imply that
kMk D c � kN k? Further, if both simplicial volumes are positive, are the dimensions
of M and N equal?

1We thank Clara Löh for pointing out Lemma 5.12 to us, which allowed us to drop the assumption that
the simplicial volumes are positive in assertion (2).
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1.3. Some global conventions. We use the terms hyperbolic group and word-hyper-
bolic group interchangeably. We also use the terms integrable ME-coupling and `1-
ME-coupling interchangeably. A ı-hyperbolic group is understood in the sense of
[2], Definition 1.1 on p. 399, using the slim triangles condition.

We denote the metric on a metric space generically by d ; we also denote the
differential in a chain complex generically by d , if it is clear without ambiguity.

2. Normed rings and modules

We transfer several concepts from topological vector spaces to the setting ofR-mod-
ules, where R is an arbitrary normed ring (for example, R D Z). Most of this
section is straightforward but we review basic notions like, e.g., completions and
tensor products because it is not very common to consider normed modules over Z
or ZG.

Let R be a unital ring, and let 1R denote its unit element. We follow the usual
convention and denote the element n � 1R by n 2 R.

Definition 2.1. Let j � jZ denote the usual absolute value on Z. A normed ring R is a
unital ring R endowed with a real-valued function x 7! jxjR (called norm) such that
for all x; y 2 R and every n 2 Z:

(1) jxjR D 0 () x D 0;
(2) jx C yjR � jxjR C jyjR;
(3) jxyjR � jxjRjyjR;
(4) jnxjR D jnjZjxjR.

Definition 2.2. A normed (left)R-module over a normed ringR is a (left)R-module
M endowed with a real-valued norm functionm 7! kmkM such that for all u; v 2 M ,
r 2 R, and n 2 Z:

(1) kukM D 0 () u D 0;
(2) kuC vkM � kukM C kvkM ;
(3) krukM � jr jRkukM ;
(4) knukM D jnjZkukM ;

A normed right R-module is defined similarly.

If k�k on M satisfies (2)–(4), but not necessarily (1), we call M a semi-normed
module. Whenever M or R are clear from the context, we denote the norms on M
or R simply by k�k or j � j, respectively. Observe that a normed module is necessarily
torsion-free as an abelian group.

A normed complex over R is just a chain complex in the category of normed
R-modules. A bounded R-chain map is a chain map between normed complexes
consisting of bounded R-homomorphisms in each degree.
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Example 2.3. Let ZG be endowed with the `1-norm. Then ZG is a normed ring.
The ZG-modulesCk.G/ are normed modules when endowed with either the `1 or the
Sobolev norms (Definition 1.1). To emphasize the normed module structure on these
modules we will denote them byC .1/

k
.G/ andC .1;1/

k
.G/, respectively. The boundary

maps dk are bounded with respect to both norms (by k C 1), thus both complexes
C
.1/� .G/ and C .1;1/� .G/ are normed ZG-complexes. The inclusion C .1;1/� .G/ ,!

C
.1/� .G/ is a bounded chain map of norm at most 1.

2.1. Dual spaces and completions. Let R be a normed ring. A homomorphism
� W M ! N between two normed R-modules M , N is continuous with respect to
the topologies induced by the norm of M and N , respectively, if and only if it is
bounded, that is, there is c � 0 such that k�.m/k � ckmk; the infimum of such
constants c is the operator norm k�k. In that case we say that � is a bounded
R-homomorphism.

Let homb
R.M;N / be the abelian group of boundedR-homomorphisms fromM to

N . Equipped with the operator norm it becomes a normed Z-module. Every normed
R-module has an underlying normed Z-module. So we can define its dual

M 0 D homb
Z.M;R/:

IfM is a normed left R-module, thenM 0 is naturally a normed right R-module, and
the double dual M 00 is again a normed left R-module. In fact M 0 and M 00 are real
vector spaces (and modules over R ˝Z R).

Given a Cauchy sequence .fi / in M 0, one verifies that f .m/ D limi!1 fi .m/

defines a bounded f 2 M 0. Hence we obtain:

Lemma 2.4. M 0 is complete.

There is a natural mapM ! M 00, given, as usual, by an evaluation. The following
is a version of the Hahn–Banach theorem that applies for normed modules.

Lemma 2.5 (Hahn–Banach for normed modules). Let R be a normed ring, and let
M , N be semi-normed R-modules.

(1) For an injective bounded R-homomorphism N ,! M , the induced dual map
N 0 ! M 0 is surjective.

(2) Every m 2 M has a supporting functional, that is,

8m 2 M 9f 2 M 0 such that kf k D 1 and kf .m/k D kmk:
(3) The canonical bounded R-homomorphism M ! M 00 given by evaluation is

isometric. IfM is normed, it is also injective.

Proof. Firstly, since the R-linearity in the above statement is automatic, we regard
M , N as Z-modules. Secondly, observe that it is enough to prove (1). Indeed,
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assertion (2) implies assertion (3), and assertion (1) implies (2) by setting N D Zm,
and letting f be an extension of the map N ! R induced by m 7! kmk.

Assertion (1) can be easily reduced to the Hahn–Banach theorem for Q-vector
spaces and R-valued functionals. Although the Hahn–Banach theorem for Q-vector
spaces is not commonly stated, the usual proof for real vector spaces (see e.g. [4],
III §6) carries over verbatim.

The map M ! Q ˝Z M; m 7! 1 ˝ m is an injection since M is torsion-free.
The following norm on Q ˝Z M is the unique one that turns this injection into an
isometry: Let ai , bi integers for i D 1; : : : ; m. Let c D b1b2 � � � bn. Then we set

��� mX
iD1

ai=bi ˝mi

���
Q˝ZM

D c�1
��� mX
iD1

aic

bi
mi

���
M
:

The isometric embedding M ,! Q ˝Z M induces an isometric isomorphism
.Q ˝M/0 ! M 0. Its inverse is given by

M 0 3 f 7! Nf ; Nf .q ˝m/ D qf .m/:

The proof of (1) now follows: for an injection of Z-normed modules, N ,! M ,
we obtain an injection Q˝N ,! Q˝M which induces by Hahn–Banach a surjection
.Q ˝M/0 � .Q ˝N/0, thus a surjection M 0 � N 0.

The completion xM of a (semi-)normed R-module M is defined as the closure of
the image of M in M 00. Using Lemma 2.5 (3) one easily sees that the completion
satisfies the following universal property: Every bounded homomorphism ofM into
a complete normedR-module V extends uniquely to a bounded homomorphism from
xM to V .

2.2. Tensor products. Our next goal is to define the tensor product of normed
modules. Our definition below is an extension of the construction known as the
projective tensor product, which satisfies a universal property with respect to bilinear
maps.

Given a normed right R-module E, a normed left R-module F , a normed Z-
module V and a Z-module morphism � W E ˝R F ! V , we obtain the associated
R-bilinear map Q� W E � F ! V . We set

k Q�k D inf
˚
c � 0 j k Q�.f; e/k � ckf kkek for all f 2 F; e 2 E �

;

and say that Q� is bounded if k Q�k < 1.

Lemma 2.6. Let E be a normed right R-module and F be a normed left R-module.
Then there is a complete normed Z-module, denoted byE y̋RF , and a Z-homomor-
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phism E ˝R F
p! E y̋R F satisfying the following universal property:

E ˝R F
�

��

p

��

V

E y̋R F .
9Š N�

���
�

�
�

�

Expressed inwords: For every complete Z-moduleV and for every Z-homomorphism
� W E˝R F ! V such that the associated bilinear map Q� W E �F ! V is bounded,
there exist a unique bounded Z-homomorphism N� W E y̋RF ! V such that� D N�Bp
and k N�k D k Q�k.

Furthermore, the pair .E y̋R F; p/ is unique up to isometric isomorphism.

Definition2.7. Retain the setting of the previous lemma. The normed moduleE y̋RF
is called the projective tensor product of E and F over R.

Proof. There is a natural Z-module morphism:

E ˝R F! homb
R.E; F

0/0; e ˝ f 7! �
T 7! hTe; f i�;

where h_; _i is the evaluation map F 0 �F ! R. We denote the closure of the image
by E y̋R F and the map E ˝R !E y̋R F by p. By Lemma 2.4, homb

R.E; F
0/0 is

complete, hence so is E y̋R F .
For every complete Z-module V and for every Z-homomorphism � W E˝RF !

V such that the associated bilinear map Q� W E � F ! V is bounded, we obtain the
map

V 0  �! homb
R.E; F

0/;  .v0/ D e 7! �
f 7! v0. Q�.e; f //�;

and it is clear that the composition

E ˝R F
p�! homb

R.E; F
0/0

 0

�! V 00

coincides with

E ˝R F
��! V

i�! V 00;
where i is the canonical map given by evaluation. Since V is complete, i.V / is
closed in V 00 by Lemma 2.5, and therefore  0�1.i.V // is closed in homb

R.E; F
0/0.

It follows that the closure of p.E ˝R F /, that is E y̋R F , lies in  0�1.i.V //.
Therefore  0.E y̋R F / � i.V / Š V , and we obtain a map N� W E y̋R F ! V such
that N� B p D �. We leave it to the reader to check using Lemma 2.5 that indeed
k N�k D k Q�k.

The uniqueness of the pair .E y̋R F; p/ up to isomorphism follows directly from
the universal property. Observe that by choosing the above � to be the identity map
of E y̋R F we get that k Qpk D 1. It follows that the unique isomorphism between
modules having the above universal property is actually isometric.
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We summarize some of the properties of the projective tensor product. The proofs
are easy and use the universal property above; we leave them to the reader.

Lemma 2.8. Let M be an normed R-module. The following isomorphisms are
natural and isometric:

(1) R y̋RM is isomorphic to the completion xM . In particular, Z y̋ ZM is isomor-
phic to xM .

(2) R y̋ Z M is a Banach space. If M is a normed real vector space, R y̋ Z M is
isomorphic to xM . IfM is a Banach space, R y̋ Z M is isomorphic toM .

(3) We have M 0 Š .R y̋ Z M/0 Š homb
R.R y̋ Z M;R/. In particular, if M is a

Banach space, thenM 0 is isomorphic to the dual ofM as a Banach space.

The functor M 7! R y̋ Z M is called Banachification.

Example 2.9. Let .X;�/ be a measure space. LetM be the abelian group consisting
of finite-valued measurable functions fromX to Z supported on a set of finite measure.
Integration gives a semi-norm on M , turning it into a semi-normed Z-module. The
completion xM is denoted by L1.X;Z/. It is the normed module consisting of �-
integrable measurable maps f W X ! Z modulo null sets. The Banachification of
M is naturally identified with L1.X;R/. The dual space M 0 is isomorphic to the
Banach dual of L1.X;R/, hence can be identified with L1.X;R/.

Let .Y; �/ be another measure space. Let prX W X�Y ! X and prY W X�Y ! Y

be the projections onto X and Y , respectively. The isometric bilinear map

L1.X;Z/ � L1.Y;Z/ ! L1.X � Y;Z/; .f; g/ 7! .f B prX / � .g B prY /;

where X � Y carries the product measure � � �, induces, by the universal property,
an isometric map

L1.X;Z/ y̋ Z L
1.Y;Z/ ��!Š L1.X � Y;Z/:

Since the image is closed and dense, this map is an isometric isomorphism. Similarly,
we obtain an isometric isomorphism

L1.X;R/ y̋ R L
1.Y;R/ ��!Š L1.X � Y;R/:

Example 2.10. Taking in the previous example Y D GkC1 endowed with the count-
ing measure, we obtain the isomorphisms

C
.1/

k
.G/ y̋ Z L

1.X;Z/ ��!Š L1.GkC1 �X;Z/;
C
.1/

k
.G/ y̋ Z L

1.X;R/ ��!Š L1.GkC1 �X;R/;
where GkC1 �X carries the product of the counting measure and the given measure
on X .
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If we endow Y D GkC1 with the measure that assigns to each point .g0; : : : ; gk/
the weight 1Cdiam.g0; : : : ; gk/, thenL1.Y / Š C

.1;1/

k
.G/ as normed ZG-modules,

and we obtain an isomorphism

C
.1;1/

k
.G/ y̋ Z L

1.X;Z/ ��!Š ˚
f 2 L1.GkC1 �X;Z/ jR

GkC1�X jf .g0; : : : ; gk; x/j
�
1C diam.g0; : : : ; gk/

�
< 1�I

similarly for C .1;1/
k

.G/ y̋ Z L
1.X;R/.

Remark 2.11. Let E and F be Banach spaces over R. Observe that

E y̋ Z F Š E y̋ R F;

since the left hand side satisfies the universal property of the right hand side. The
universal property satisfied by E y̋ R F is the one satisfied by the classical projec-
tive tensor product of Banach spaces. It follows that Definition 2.7 generalizes the
classical definition of projective tensor product (see [13], [6]).

3. Theorem 1.6 implies Theorem 1.5

Throughout this section, letG be a finitely generated group with a fixed word metric.
We consider ZG as a normed ring endowed with the `1 norm.

Definition 3.1 (Rips complex). Let X be a metric space. Let r > 0. We denote
by C r� .X/ the subcomplex of C�.X/ such that C rn .X/ � Cn.X/ is the submodule
generated by all .n C 1/-tuples .x0; : : : ; xn/ whose diameter in X is at most r . If
X D G is a group as above, then C r� .G/ is a ZG-subcomplex of C�.G/.

Theorem 3.2 ([2], 3.23 Proposition on p. 469). Let G be a ı-hyperbolic group. If
r � 4ı C 6, then

Hn.C
r� .G// D

´
Z if n D 0,

0 if n > 0.

If we endow C r� .G/ with the `1-norm, we use sometimes the notation C r;.1/� .G/.

Lemma 3.3. LetE be a complete normed ZG-module. For every n 2 N the natural
map

C rn .G/˝ZG E ! C r;.1/n .G/ y̋ ZG E (3.1)

is an isomorphism.



274 U. Bader, A. Furman and R. Sauer

Proof. Let N be the number of all tuples .e; g1; : : : ; gn/ in GnC1 with diameter
at most r . The ZG-module C rn .G/ D C

r;.1/
n .G/ is isomorphic to the free module

ZGN . From that and from Lemma 2.8 one sees that both sides in (3.1) are canonically
isomorphic to EN .

We need the following continuous version of the fundamental lemma in homo-
logical algebra.

Lemma 3.4. Let n � 1. Let �i W C .1;1/i .G/ ! C
.1/
i .G/, 0 � i � n, be a ZG-chain

homomorphism up to degree n, that is, we have d�i D �i�1d for every 0 � i � n.
Assume that � induces the identity on the zeroth homology. Then there are bounded
ZG-homomorphisms hi W C .1;1/i .G/ ! C

.1/
iC1.G/, 0 � i � n, such that

dhi C hi�1d D �i � id for every 0 � i � n,

where h�1d D 0 is understood. That is, h� is a chain homotopy between �� and the
identity up to degree n.

Proof. Recall that C .1;1/� .G/ D C�.G/ and C .1/� .G/ D C�.G/ as ZG-modules.
One verifies that h0

i W Ci .G/ ! CiC1.G/ defined by

h0
i .g0; : : : ; gi / D .e; g0; : : : ; gi /

is a (non-equivariant) chain contraction of the augmented chain complex C�.G/ (see
the comment on augmented chain complexes after Lemma 4.3).

Obviously, h0� is continuous with respect to the `1-norm. Let x 2 C1.G/ be an
element such that �0.e/ � e D dx for the unit e 2 G; this element exists since ��
induces the identity on 0-th homology. Then let h0 W C0.G/ ! C1.G/ be the ZG-
homomorphism withh0.g/ D gx. Clearly, h0 is bounded and satisfies�0�id D dh0.

Now suppose that we have already constructed an equivariant bounded map
hi W Ci .G/ ! CiC1.G/ for i D 0; : : : ; k � 1, where k � n, such that

dhi C hi�1d D �i � id (3.2)

for all i D 1; : : : ; k � 1 (where we set h�1 D 0). Then define

hk.e; g1; : : : ; gk/ D �
h0
k B .�k � id � hk�1d/

�
.e; g1; : : : ; gk/

and extend hk to all of Ck.G/ by ZG-linearity. It is easy to see that hk is bounded
with respect to the Sobolev norm in the domain and the `1-norm in the target and
satisfies (3.2).

Proof that Theorem 1.6 implies Theorem 1.5. Let G be a ı-hyperbolic group. Let E
be a complete normed ZG-module. The �-inclusion in the statement of Theorem 1.5
is clear. Let n � 0. It remains to show that

im
�
Hn.G;E/ ! H .1/

n .G;E/
� � im

�
H .1;1/
n .G;E/ ! H .1/

n .G;E/
�
: (3.3)
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Let r.i/ D r.i; ı/, i � 0, be the constants and f� W C�.G/ ! C�.G/ be the map
provided by Theorem 1.6. Let

r D maxf4ı C 6; r.0/; r.1/; : : : ; r.nC 1/g:
The complex C r� .G/ is acyclic according to Theorem 3.2. We have im.fi / � C ri .G/

for every 0 � i � nC 1.
The map f� is a bounded chain homomorphism f� W C .1;1/� .G/ ! C

r;.1/� .G/ up
to degree nC1. SinceC r� .G/ is acyclic, it is a free ZG-resolution of Z. Thus, by the
fundamental lemma of homological algebra, there is a ZG-chain map g� W C r� .G/ !
C�.G/. Since C ri .G/ is finitely generated as a ZG-module for each i � 0, the map
gi is automatically continuous with respect to the `1-norms. Consider the following
diagram for 	 � nC 1:

C
.1;1/� .G/ y̋ ZG E

f� y̋ idE ��

��

C
r;.1/� .G/ y̋ ZG E C

r;.1/� .G/˝ZG E

g�˝idE

��

C
.1/� .G/ y̋ ZG E C�.G/˝ZG E.��

Note that f� induces a map f� y̋ idE on the completed tensor products since it is
continuous. The unlabeled arrows in the diagram are induced by natural inclusions.
The equality in the diagram follows from Lemma 3.3. The diagram is commutative
up to chain homotopy by Lemma 3.4. This implies (3.3).

4. Tree approximation and the proof of Theorem 1.6

4.1. Tree approximation. In this subsection we consider a version of Gromov’s tree
approximation of hyperbolic groups [11], Section 6, which is suited for our specific
purposes.

Definition 4.1. Let G be a finitely generated group. Fix a finite symmetric gener-
ating set in G. Let G be the corresponding Cayley graph of G. A family W D
fwx;yg.x;y/2G2 is called a full family of geodesics in G if wx;y W Œ0; d.x; y/� ! G

is a geodesic from x to y in G for every pair .x; y/ 2 G2. For any n-tuple
Y D .y0; : : : ; yn�1/ 2 Gn let ŒY �W � G be the set of vertices of the union G .Y / of
the images of all geodesics wyi ;yj

with i < j .

Recall that a map between metric spaces f W X ! Y is called a c-rough isometry
if for every x; x0 2 X we have

jd.x; x0/ � d.f .x/; f .x0//j � c for all x; x0 2 X:



276 U. Bader, A. Furman and R. Sauer

The metric spaces X and Y are c-roughly isometric if there are c-rough isometries
f W X ! Y , g W Y ! X such that d.x; g.f .x/// � c and d.y; f .g.y/// � c

for every x 2 X and every y 2 Y . Furthermore, if there is a c-rough isometry
f W X ! Y such that f .X/ is c-dense in Y , thenX and Y are 2c-roughly isometric.

A metric simplicial tree T D .V;E/ is a simplicial tree with vertices V and edges
E endowed with a path metric d on (the geometric realization of) T such that each
edge e 2 E is isometric to a compact interval Œ0; le� � R.

Theorem 4.2. Let G be a ı-hyperbolic group. Let W D fwx;yg.x;y/2G2 be a full
family of geodesics in G. For every n 2 N there is a constant c D c.ı; n/ > 0 such
that for every n-tuple Y 2 Gn the subspace ŒY �W is c-roughly isometric to a metric
simplicial tree.

Proof. Consider an n-tuple Y D .y0; : : : ; yn�1/ � G. Let G be the Cayley graph of
G. Let

G .Y /0 D
[
0<i<n

im.wy0;yi
/;

G .Y / D
[

0�i<j<n
im.wyi ;yj

/:

Since the set of vertices in G .Y /, which is just ŒY � D ŒY �W , is 1-dense, if G .Y / is
c-roughly isometric to some metric space, then ŒY � is .cC2/-roughly isometric to the
same space. We will now construct a rough isometry of G .Y / to a metric simplicial
tree.

It is proved in [5], Théorème 1 on p. 91, that there is a constant c0.ı; n/ > 0,
which only depends on ı and n, and a map f W G .Y /0 ! T to a metric simplicial
tree T such that for each 0 < i < n the restriction f jim.wy0;yi

/ is a bijective isometry
and

d.x; y/ � c0.ı; n/ � d.f .x/; f .y// � d.x; y/ (4.1)

for all x; y 2 G .Y /0. Note that f is automatically surjective. The unique geodesic
segment between points z and z0 of T will be denoted by Œz; z0� � T . Next we extend
f to G .Y / as follows: For every x 2 G .Y /nG .Y /0 choose 0 < a.x/ � n � 1 and
0 < b.x/ � n � 1 such that x 2 im.wya.x/;yb.x/

/. Because of (4.1) we can pick a
point z 2 Œf .ya.x//; f .yb.x//� such that

jd.z; f .ya.x/// � d.x; ya.x//j < c0.ı; n/;
jd.z; f .yb.x/// � d.x; yb.x//j < c0.ı; n/:

Then set f .x/ D z.
To finish the proof, we show that f W G .Y / ! T satisfies

jd.x; x0/ � d.f .x/; f .x0//j � c for all x; x0 2 G .Y /, (4.2)
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where
c D 4ı C 3c0.ı; n/:

Letx andx0 be points on the geodesicswyi ;yj
andwyi0 ;yj 0 , where i D a.x/; j D b.x/

and i 0 D a.x0/; j 0 D b.x0/. By ı-hyperbolicity there is a point z onwy0;yi
orwy0;yj

such that
d.x; z/ < ı: (4.3)

By the triangle inequality we obtain that

jd.yi ; x/ � d.yi ; z/j < ı and jd.yj ; x/ � d.yj ; z/j < ı:
Thus,

jd.f .yi /; f .x// � d.f .yi /; f .z//j < ı C c0.ı; n/;
jd.f .yj /; f .x// � d.f .yj /; f .z//j < ı C c0.ı; n/:

(4.4)

Since T is tree and f .x/ 2 Œf .yi /; f .yj /�, either f .x/ 2 Œf .yi /; f .z/�, or f .x/ 2
Œf .z/; f .yj /�. In both cases (4.4) implies that

d.f .x/; f .z// < ı C c0.ı; n/: (4.5)

Similarly, we find a point z0 on wy0;yi0 or wy0;yj 0 such that

d.x0; z0/ < ı and d.f .x0/; f .z0// < ı C c0.ı; n/: (4.6)

From (4.5), (4.6), (4.3) and the fact that f is a c0.ı; n/-rough isometry on G .Y /0 we
obtain that

d.x; x0/ � d.z; z0/C 2ı � d.f .z/; f .z0//C 2ı C c0.ı; n/
� d.f .x/; f .x0//C 4ı C 3c0.ı; n/:

Similarly, we get

d.x; x0/ � d.f .x/; f .x0//C 4ı C 3c0.ı; n/;

which proves (4.2).

4.2. An efficient chain contraction of the Rips complex to a tree

Lemma 4.3. For every r � 1 and every n 2 N there is a constant e.r; n/ > 0 with
the following property: Let T be a metric simplicial tree. Let V be a subset of the
vertices of T such that the distance of any two distinct vertices in V is at least 1.
Then there is a chain contraction hTi W C ri .V / ! C riC1.V /, i � �1, of the augmented
chain complex C r� .V / such that

khTi k < e.r; i/ for every i � 1; (4.7)

where the operator norm is taken with respect to the `1-norms.
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Here we mean by the augmented chain complex the complex C r� .V / extended by
C r�1.V / D Z and the differential (augmentation) d W C r0 .V / ! Z that maps every
v 2 V to 1 2 Z.

Proof. Fix a base point x 2 V . Let hT�1 be defined by hT�1.1/ D x. For every v 2 V
we define hT0 by

hT0 .v/ D
m�1X
iD0

.vi ; viC1/;

where x D v0; v1; : : : ; vm D v (in that order) are the vertices in V lying on the
unique geodesic from x to v. It is clear that

dhT0 .v/ D v � x D .id � hT�1d/.x/:
For v 2 V and i � 0 consider the linear map given by

cv W Ci .V / ! CiC1.V /; cv.v0; : : : ; vi / D .v; v0; : : : ; vi /:

One verifies that for i � 1, v 2 V , and .v0; : : : ; vi / 2 V iC1 we have

dcv.v0; : : : ; vi / D .id � cvd/.v0; : : : ; vi /:
We define the homomorphisms hTi W C ri .V / ! CiC1.V / for i D 1; 2; : : : inductively
by

hTi .v0; : : : ; vi / D cv0

�
.id � hTi�1d/.v0; : : : ; vi /

�
: (4.8)

It follows inductively from the following computation that hT� is a chain contraction:

dhTiC1.v0; : : : ; viC1/ D dcv0
.id � hTi d/.v0; : : : ; viC1/

D .id � cv0
d/.id � hTi d/.v0; : : : ; viC1/

D .id � hTi d � cv0
d C cv0

dhTi d/.v0; : : : ; viC1/
D .id � hTi d � cv0

d C cv0
.id � hTi�1d/d/.v0; : : : ; viC1/

D .id � hTi d/.v0; : : : ; viC1/:
Next we define e.r; i/ and show that (4.7) holds by induction. Set e.r; 1/ D r C 1.
Let .u; v/ 2 C r1 .V / be a 1-simplex. Let v D z0, z1; : : : ; zm D u (in that order) be
the vertices in V lying on the unique geodesic from v to u. Since T is a tree, we get
that

hT0 d.u; v/ D
m�1X
kD0

.zk; zkC1/: (4.9)

Since the distance from u to v is � r and the distance from zk to zkC1 is � 1 by
assumption, we havem � r and thus kh0d.u; v/k1 � r . This implies kh1k � e.r; 1/.
For i � 2 set

e.r; i/ D e.r; i � 1/ � .i C 1/C 1:



Efficient subdivision in hyperbolic groups 279

Because of e.r; 1/ D r C 1 one sees that e.r; i/ only depends on r and i , but not on
the specific tree T . Definition (4.8) and the fact that the differential in degree i has
norm at most i C 1 yield (4.7).

Finally we prove that im.hTi / � C riC1.V /. It suffices to show that for every i � 1

and every .v0; : : : ; vi / 2 C ri .V / we have

supp
�
hTi .v0; : : : ; vi /

� � conv.v0; : : : ; vi /: (4.10)

Here the support supp.s/ of an element s 2 Ci .V /, which can be uniquely written as
a linear combination of .i C 1/-tuples in V iC1, is the union of all v 2 V that appear
in one of these .i C 1/-tuples. We denote the convex hull of a set S � V by conv.S/.
We have (4.10) for i D 1 by definition (4.8) and because all the points zi in (4.9) lie
on the geodesic from u to v. If (4.10) holds for hTi with i � 1, it is true for hTiC1
because of

supp
�
hTiC1.v0; : : : ; viC1/

� � fv0; : : : ; viC1g [
iC1[
kD0

supp
�
hTi .v0; : : : ; yvk; : : : ; viC1/

�

� fv0; : : : ; viC1g [
iC1[
kD0

conv.v0; : : : ; yvk; : : : ; viC1/

D conv.v0; : : : ; viC1/:

4.3. Proof of Theorem 1.6

Proof. Choose a full family W D fwx;yg.x;y/2G2 of geodesics in G that is G-equi-
variant in the sense that for all x; y; g 2 G we have gwx;y D wgx;gy .

For a k-tuple Y 2 Gk we write ŒY � instead of ŒY �W in the sequel. For i D 0; 1; : : :

we define inductively real numbers r.i/ � 1 and ZG-homomorphisms fi W Ci .G/ !
C
r.i/
i .G/ for i 2 N such that

a) f0 is the identity,
b) dfi D fi�1d ,
c) fi is bounded when endowing the source with the Sobolev and the target with

the `1 norm, and
d) for every .g0; : : : ; gi / 2 Ci .G/ we have

fi
�
.g0; : : : ; gi /

� 2 C r.i/i

�
Œ.g0; : : : ; gi /�

�
:

The theorem follows from a)–c). Property d) is just needed for running the in-
duction argument.

The basis of the induction will be an explicit construction of f0 and f1. We set
r.0/ D r.1/ D 1. Define f0 to be the identity map. If for x; y 2 G the points
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x D z0, z1; : : : ; zd D y are the successive vertices on the geodesic wx;y from x to
y, we define f1 by

f1
�
.x; y/

� D
´Pd

iD1.zi�1; zi / if i � 1,

.x; y/ if i D 0 and x D y:

It is clear that f0 and f1 respect all the properties above.
Fix i � 1 and assume fj is already defined for 0 � j � i satisfying a)–d).

According to Theorem 4.2 there is a constant c.i/ > 0 such that for every Y 2 GiC1
the subspace ŒY � is c.i/-roughly isometric to metric simplicial tree. We set

r.i C 1/ D r.i/C 2c.i/:

By Lemma 4.3 for every n 2 N there is a constant e.i; n/ > 0 such that for every
metric simplicial tree T with a subset V of vertices whose distinct elements have
distance � 1 from each other there is a chain contraction

hT� W C r.i/Cc.i/� .V / ! C
r.i/Cc.i/
�C1 .V /

of the augmented chain complex such that the operator norm with respect to the
`1-norm satisfies khnk < e.i; n/. Let

B D ˚
.e; g1; : : : ; giC1/I gk 2 G for 1 � k � i C 1

�
:

Note that B is ZG-basis of CiC1.G/. After some preparation we define fiC1.�/ 2
C
r.iC1/
iC1 .G/ in (4.11) for every � 2 B such that

e) dfiC1.�/ D fid.�/,
f) kfiC1.�/k1 � �

e.i; i C 1/C .i C 1/
�kfik.i C 2/k�k1;1, and

g) fiC1.�/ 2 C r.iC1/iC1
�
Œ��

�
hold for every � 2 B . The theorem then follows from the following easy claim,
which we leave to the reader.

Claim. The ZG-linear extension toCiC1.G/ ! C
r.iC1/
iC1 .G/of a mapfiC1 W B !

C
r.iC1/
iC1 .G/ satisfying e)–g) satisfies b)–d). The extension

fiC1 W CiC1.G/ ! C
r.iC1/
iC1 .G/

has operator norm

kfiC1k � �
e.i; i C 1/C .i C 1/

�kfik.i C 2/:

Let � 2 B . Let T � be a metric simplicial tree such that Œ�� is c.i/-roughly
isometric to T � . Let V � be a set of points of T � such that any two distinct points in
V � have distance � 1 and V � is 3-dense in T � . By subdividing T � we may assume
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that V � consists of vertices. Upon increasing c.i/ by 6 D 2 � 3, thus r.i C 1/ by
12 D 2 �6, we may and will assume that Œ�� is also c.i/-roughly isometric to V � . Let

�� W Œ�� ! V � and  � W V � ! Œ��

be two c.i/-rough isometries such that

d.�� � ; idV � / � c.i/ and d. ��� ; idŒ��/ � c.i/:

The maps �� and  � induce chain maps

��� W C r.i/�
�
Œ��

� ! C r.i/Cc.i/� .V � / and  �� W C r.i/Cc.i/� .V � / ! C r.iC1/�
�
Œ��

�
:

The next claim follows by a straightforward computation.

Claim. Let r > 0. The map h�� W C r.i/�
�
Œ��

� ! C
r.iC1/
�C1 .Œ��/ defined by

h�n.g0; : : : ; gn/ D
nX
kD0

.�1/k�
g0; : : : ; gk;  

��� .gk/; : : : ;  
��� .gn/

�

is a chain homotopy between the composition  �� ��� W C r.i/� .Œ��/ ! C
r.iC1/� .Œ��/

and the identity, that is,  �n �
�
n � id D dh�n C h�n�1d for every n � 0, where we set

h��1 D 0.
For � 2 B define now

fiC1.�/ D  �iC1h
T�

i �
�
i fid.�/ � h�i fid.�/ 2 C r.iC1/iC1 .Œ��/: (4.11)

Property g) is clear from the definitions. The differential in degree .i C 1/ of C�.G/
(endowed with the Sobolev norm) has norm at most .iC2/, and h�i has norm at most
.i C 1/ (with respect to the `1-norms). The maps ��i and  �i have norm at most 1.
Hence we obtain that

kfiC1.�/k1 � �
e.i; i C 1/C .i C 1/

�kfik.i C 2/k�k1;1:

Property e) follows from

dfiC1.�/ D d
�
 �iC1h

T�

i �
�
i fid � h�i fid

�
.�/

D �
 �i dh

T�

i �
�
i fid � dh�i fid

�
.�/

D �
 �i .id � hT�

i�1d/�
�
i fid � . �i ��i � id � h�i�1d/fid

�
.�/

D �
fid �  �i hT�

i�1d�
�
i fid

�
.�/C �

h�i�1fi�1dd
�
.�/

D �
fid �  �i hT�

i�1�
�
i�1fi�1dd

�
.�/

D fid.�/:
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5. Integrable measure equivalence and simplicial volume

5.1. Integrable measure equivalence. We recall the central notion of measure
equivalence which was suggested by Gromov [12], 0.5.E.

Definition 5.1. Two countable groupsG,H are called measure equivalent if there is
a standard measure space .�;�/ with commuting �-preserving G- and H -actions,
such that each one of the actions admits a finite measure fundamental domain. The
space .�;�/ endowed with these actions is called an ME-coupling of G and H .

Given measure equivalent groups G and H , an actual choice of fundamental
domains is not a part of the structure of an ME-coupling of G and H . But it is easy
to see that the measures of G- and H -fundamental domains are independent of the
choice. So for an ME-coupling .�;�/ of G and H , the ratio c� D �.XH /=�.XG/

of the measure of an H -fundamental domain by the measure of a G-fundamental
domain is well defined and called the coupling index of �.

The map XG ,! � � Gn� is a measure isomorphism. Since H acts on Gn�,
this identification induces a measurable action ofH onXG , for which we use the dot
notation h � x for h 2 H and x 2 XH to distinguish it from the action hx of H on
�. Similarly for XH .

The coupling � is called ergodic if the H -action on Gn� is ergodic, or equiva-
lently, the G-action on Hn� is ergodic [7], Lemma 2.2.

Definition 5.2. Let .�;�/ be an ME-coupling of G and H . Let XG � � and
XH � � be fundamental domains of the G- and H -action, respectively.

(1) We define ˛XH
as

˛XH
W G �XH ! H; .g; x/ 7! h with gx 2 h�1XH ;

and call ˛XH
the (measurable) cocycle associated to XH . Similarly for ˛XG

.
(2) Assume that H is finitely generated, and let l W H ! N be the length function

associated to some word-metric onH . We say that the fundamental domainXH
is integrable if the function x 7! l.˛XH

.g; x// is in L1.XH / for every g 2 G.
Similarly for XG .

Definition 5.3. Let G and H be finitely generated. We say that an ME-coupling of
G and H is an `1-ME-coupling or an integrable ME-coupling if it admits integrable
G- and H -fundamental domains. We say that G and H are `1-measure equivalent
if there exists an `1-ME-coupling of G and H .

Remark 5.4. Measure equivalence and `1-measure equivalence are equivalence re-
lations on countable and finitely generated groups, respectively (see [7], [1]).
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Remark 5.5. A locally compact group G with its Haar measure is an ME-coupling
for all its lattices; it is an integrable ME-coupling for every pair of cocompact lattices
in G.

By [23], Theorem 3.6, the isometry group Isom.Hn/ of the n-dimensional hyper-
bolic space with n � 3 endowed with its Haar measure is an `1-ME-coupling for all
its lattices. Shalom in loc. cit. was concerned with `2-integrability and showed that
all lattices in simple Lie groups not locally isomorphic to Isom.H2/ Š PSL2.R/ or
Isom.H3/ Š PSL2.C/ are `2-integrable. However, his proof also implies the above
statement.

5.2. Bounded cohomology and ME-induction. We briefly recollect basic notions
of bounded cohomology.

Let G be a discrete group and E be a real Banach space with isometric G-action.
We denote byC kb .G;E/ the Banach spaceL1.GkC1; E/ consisting of bounded maps
from GkC1 to E endowed with the supremum norm and the isometric G-action:

.g � f /.g0; : : : ; gk/ D g � f .g�1g0; : : : ; g�1gk/:

The sequence of Banach G-modules C kb .G;E/, k � 0, becomes a chain complex of
Banach G-modules via the standard homogeneous coboundary operator

d.f /.g0; : : : ; gk/ D
kX
i�0
.�1/if .g0; : : : ; ygi ; : : : ; gk/:

The bounded cohomology H�
b .G;E/ of G with coefficients E is the cohomology

of the complex of G-invariants C �
b .G;E/

G . The bounded cohomology H�
b .G;E/

inherits a semi-norm fromC �
b .G;E/: The (semi-)norm of an element x 2 H k

b .G;E/

is the infimum of the norms of all cocycles in the cohomology class x.
The topological dual of the complex of Banach spaces

C .1/� .G/ y̋ ZG E Š C .1/� .G;R/ y̋ RG E;

whose homology H .1/� .G;E/ is the so-called `1-homology of G with coefficients E
(compare Remark 2.11), is canonically isomorphic to C �

b .G;E
0/ (see [20], Propo-

sition 2.3.1 on p. 20). Thus, we obtain a natural pairing, which descends to (co-)
homology (both pairings are denoted by h_; _i):

h_; _i W H k
b .G;E

0/˝H
.1/

k
.G;E/ ! R:

In the next theorem we identify the set Hx \ XH which consists of just one
element with the element itself.

Theorem 5.6 (Monod–Shalom). Let .�;�/ be an ME-coupling of G and H . Let
XG and XH be measurable fundamental domains for the G- and H -action on �,
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respectively. Let ˛ W H �XG ! G be the cocycle associated to XG . The maps

˛� W C �
b .G;L

1.XH ;R// ! C �
b .H;L

1.XG ;R// (5.1)

˛kf .h0; : : : ; hk/.x/ D f
�
˛.h�1

0 ; x/
�1; : : : ; ˛.h�1

k ; x/
�1�.Hx \XH /

define a chain map that restricts to the invariants

˛� W C �
b .G;L

1.XH ;R//G ! C �
b .H;L

1.XG ;R//H

and induces an isometric isomorphism

H�
b .˛/ W H�

b .G;L
1.XH ;R// ��!Š H�

b .H;L
1.XG ;R//:

in cohomology. The mapH�
b .�/ given by the commutative diagram

H�
b .G;L

1.Hn�;R//
Š

��

H�
b .�/�� H�

b .H;L
1.Gn�;R//

H�
b .G;L

1.XH ;R//
H�

b .˛/ �� H�
b .H;L

1.XG ;R//,

Š
��

where the vertical isomorphisms are induced by the (restrictions) of the projections
XH ! Hn� and XG ! Gn�, respectively, does not depend on the choices of
fundamental domains.

Proof. Apart from the fact that the isomorphism is isometric, this is exactly Propo-
sition 4.6 in [21] (with S D � and E D R). The proof therein relies on [20],
Theorem 7.5.3 in §7, which also yields the isometry statement.

To formulate the next theorem, consider the measurable and countable-to-one map

�˛k W H kC1 �XG ! GkC1 �XH ;
.h0; : : : ; hk; x/ 7! �

˛.h�1
0 ; x/

�1; : : : ; ˛.h�1
k ; x/

�1;Hx \XH
�
:

Theorem 5.7. Retain the notation of Theorem 5.6. Let c� D �.XH /=�.XG/ be the
coupling index. We equipXG andXH with the normalized measures �.XG/�1�jXG

and �.XH /�1�jXH
. Then

˛k W C .1/
k
.H/ y̋ Z L

1.XG ;R/ ! C
.1/

k
.G/ y̋ Z L

1.XH ;R/; (5.2)

˛kf . Ng; x/ D c� �
X

. Nh;y/2.�˛
k
/�1. Ng;x/

f . Nh; y/

defines, using the identification in Example 2.10, a chain map that descends to the
coinvariants

C .1/� .H/ y̋ ZH L1.XG ;R/ ! C .1/� .G/ y̋ ZG L
1.XH ;R/
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and induces an isometric isomorphism

H .1/� .˛/ W H .1/�
�
H;L1.XG ;R/

� ! H .1/�
�
G;L1.XH ;R/

�
:

Furthermore, the dual of the map (5.2) is the map (5.1).

We need the following general (and easy) lemma

Lemma 5.8. Let .X; �X / and .Y; �Y / be standard measure spaces and p W X ! Y

a measurable map such that

(1) the fiber p�1.y/ is countable for �Y -a.e. y 2 Y , and

(2) p is locally measure-preserving, that is, if pjA is injective for a measurable
A � X , then �X .A/ D �Y .p.A//.

Then for any f 2 L1.X; �X / the function y 7! P
x2p�1.y/ f .x/ is �Y -integrable

and Z
X

fd�X D
Z
Y

X
x2p�1.y/

f .x/d�Y .y/:

Proof. The assertion is obvious for f D 	A being the characteristic function of a
measurable subset A � X for which pjA is injective. By the selection theorem every
f 2 L1.X; �X / can be approximated by linear combinations of such characteristic
functions which proves the lemma.

Proof of Theorem 5.7. We verify that the dual of map (5.2) is the map (5.1), that is,
for f 2 C .1/

k
.H/ y̋ ZH L1.XG ;R/ and g 2 C kb .G;L1.XH ;R//,

h˛kf; gi D hf; ˛kgi (5.3)

holds true. Since �˛
k

is countable-to-one and locally measure-preserving, (5.3) is
implied by the previous lemma as follows:

h˛kf; gi D �.XH /

�.XG/

X
Ng2GkC1

Z
XH

X
. Nh;y/2HkC1�XG

�˛
k
. Nh;y/D. Ng;x/

f . Nh; y/g. Ng; x/�.XH /�1d�.x/

D �.XG/
�1 X

Ng2GkC1

Z
XH

X
. Nh;y/2HkC1�XG

�˛
k
. Nh;y/D. Ng;x/

f . Nh; y/g B �˛k . Nh; y/d�.x/

D �.XG/
�1 �

X
Nh2HkC1

Z
XG

f . Nh; x/g B �˛k . Nh; x/d�.x/

D hf; ˛kgi:
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Since ˛� is a chain map, we know that the dual of ˛kd � d˛kC1 vanishes. The
Hahn–Banach theorem implies that ˛kd � d˛kC1 D 0, so ˛� is also a chain map.
Similarly one concludes that ˛� descends to the coinvariants from the fact that ˛�
restricts to the invariants.

Since H k
b .˛/ is an isometric isomorphism, also H .1/

k
.˛/ is an isometric isomor-

phism by [15], Theorem 1.1.

Remark 5.9. With more effort one can also show that H .1/� .˛/ does not depend on
the choice of the fundamental domains, thus could be rightfully denoted byH .1/� .�/

similar to the cohomological case. Since we do not need this, we refrain from proving
this.

5.3. Invariance of the simplicial volume

Lemma 5.10. Let .�;�/ be an ME-coupling of two finitely generated groupsG and
H . Let XG and XH be fundamental domains of the G- and H -action, respectively.
Let c� D �.XH /=�.XG/ be the coupling index. Assume that XG is integrable, and
let ˛ W H � XG ! G be the associated integrable cocycle. Then the image of the
composition

H�
�
H;Z

� ! H .1/�
�
H;L1.XG ;R/

� H
.1/
� .˛/�����! H .1/�

�
G;L1.XH ;R/

�
(5.4)

is contained in

c� � im
�
H .1;1/�

�
G;L1.XH ;Z/

� ! H .1/�
�
G;L1.XH ;R/

��
; (5.5)

where all maps exceptH .1/� .˛/ are the composition of the corresponding comparison
and coefficient change maps.

Proof. For a .k C 1/-tuple Nh D .h0; : : : ; hk/ 2 H kC1 we abbreviate

˛. Nh; x/ D �
˛.h0; x/; : : : ; ˛.hk; x/

�
;

Nh�1 D �
h�1
0 ; : : : ; h

�1
k

�
:

We use the identifications in Example 2.10. The image of Ck.H/ D Ck.H/˝Z Z
in

C
.1/

k
.H/ y̋ Z L

1.XG ;Z/ Š L1.H kC1 �XG ;Z/
is certainly contained in the set of bounded measurable functions f W H kC1�XG !
Z for which there is a finite subset F � H kC1 such that f is supported on F �XG .
Let f W H kC1 � XG ! Z be such. It is immediate from (5.2) that c�1

� � ˛kf is
Z-valued. So it remains to show thatZ

GkC1�XH

j˛kf . Ng; y/j diam. Ng/ < 1:
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Using Lemma 5.8 this is implied byZ
GkC1�XH

j˛kf . Ng; y/j diam. Ng/

�
Z
GkC1�XH

Z
.�˛

k
/�1. Ng;y/

jf . Nh; x/j diam. Ng/

D
Z
GkC1�XH

Z
.�˛

k
/�1. Ng;y/

jf . Nh; x/j diam
� N̨ . Nh�1; x/�1

�
5.8D

Z
HkC1�XG

jf . Nh; x/j diam
� N̨ . Nh�1; x/�1

�
� ess-sup.f / �

Z
HkC1�XG

diam
� N̨ . Nh�1; x/�1

�
< 1:

The last step follows from the integrability.

Let N be an aspherical topological space, and let H D �1.N /. By asphericity
and the fundamental lemma of homological algebra there is up to equivariant chain
homotopy a unique H -equivariant chain homotopy equivalence

cH W C�. zN/ ! C�.H/

from the singular chain complex of the universal cover zN to the standard resolution
ofH . By a theorem of Gromov [14], Theorem 4.1, the map cH induces an isometric
isomorphism in bounded cohomology with R-coefficients. By the translation princi-
ple in [15], Theorem 1.1, cH induces an isometric isomorphism in `1-homology, and
thus (compare [15], Proposition 2.4) the induced map in homology is an isometric
isomorphism:

Lemma 5.11. Let N be aspherical andH D �1.N /. The canonical map

H�.cH / W H�.N;R/ ! H�.H;R/

is an isometric isomorphism with respect to the semi-norms induced by the `1-norms.

Lemma 5.12. The simplicial volume of an aspherical, orientable, closed manifold
with word-hyperbolic fundamental group and of dimension at least 2 does not vanish.

Proof. Let N be such a manifold. Since the comparison map from the bounded co-
homology of H D �1.N / to the cohomology of H , which is isomorphic to the one
of N by asphericity, is surjective for R-coefficients by [19], Theorem 3, the coho-
mological fundamental class of N has a bounded representative. Thus the simplicial
volume of N is positive [10], Corollary in Section 1.1.
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Theorem 5.13. Let M and N be closed, oriented manifolds of dimension n � 2

whose fundamental groups G D �1.M/ andH D �1.N / are word-hyperbolic. Let
.�;�/ be an ergodic, integrable ME-coupling .�;�/ of G and H with coupling
index c D �.Hn�/=�.Gn�/.

Let xG 2 Hn.G;R/ be the element that maps to the cohomological fundamental
class of M under the isomorphism Hn.cG/ W Hn.G/ ! Hn.M/. We define xH 2
Hn.H;R/ analogously.

Suppose thatxb
G 2 Hn

b .G;R/ is an element thatmaps toxG under the comparison
.forgetful) mapHn

b .G;R/ ! Hn.G;R/. Consider the composition

Hn
b .G;R/ ! Hn

b .G;L
1.Hn�;R//

Hn
b .�/����! Hn

b .H;L
1.Gn�;R// I

n

�! Hn
b .H;R/ ! Hn.H;R/

(5.6)

where the first map is induced by the inclusion of constant functions, I n is the map
induced by integration in the coefficients and the last map is the comparison map.
Then xb

G is mapped to ˙c � xH under (5.6).

Proofs of Theorems 1.9 and 5.13. Let Hn.iH / W Hn.H;R/ ! H
.1/
n .H;R/ denote

the comparison map; it is isometric with respect to the semi-norms induced by the
`1-norm on the chain complexes: This follows from the fact that C�.H/˝ZH R !
C
.1/� .H/ y̋ ZH R is isometric and has dense image (compare [15], Proposition 2.4).

We denote – by a slight abuse of notation – the comparison (forgetful) map for the
groupH in bounded cohomology byHn.iH / W Hn

b .H;R/ ! Hn.H;R/. We define
Hn.iG/ and Hn.iG/ for the group G similarly.

Let XH � � and XG � � be integrable fundamental domains of the H -action
and G-action on �, respectively. Let ˛ W H � XG ! G be the cocycle associated
to XG . For the following we endow XH and XG with the normalized measures
�.XH /

�1�jXH
and �.XG/�1�jXG

, respectively.

With normalization, the chain map jH W C .1/� .H/ y̋ ZH R ! C
.1/� .H/ y̋ ZH

L1.XG ;R/ given by the inclusion of constant functions is isometric. Integration
in L1.XG ;R/ provides a norm-decreasing left inverse. Hence the induced map in
`1-homology

H .1/
n .jH / W H .1/

n

�
H;R

� ! H .1/
n

�
H;L1.XG ;R/

�
is isometric. Again by a slight abuse of notation, we denote the map in bounded
cohomology induced by inclusion of constants maps by

Hn
b .jH / W Hn

b

�
H;R

� ! Hn
b

�
H;L1.XG ;R/

�
:

We define the map jG for the group G similarly.
We start with the proof of Theorem 1.9. Let m D dim.M/ and n D dim.N /.

Assume that kN k > 0. Let ŒN � 2 Hn.N;R/ be the homological fundamental class
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of N . Since each map in the composition

Hn.H;R/
Hn.iH /�����! H .1/

n .H;R/

H
.1/
n .jH /������! H .1/

n .H;L1.XG ;R//
H

.1/
n .˛/�����! H .1/

n .G;L1.XH ;R//

is isometric with respect to the semi-norms induced by the respective `1-norms (see
Theorem 5.7) andHn.H;R/ is generated by the elementHn.cH /.ŒN �/ with positive
semi-norm (Lemma 5.11), we obtain thatH .1/

n .˛/ BH .1/
n .jH / BHn.iH / is injective.

Lemma 5.10 and the fact that ŒN � 2 im.Hn.N;Z/ ! Hn.N;R// yield that

0 ¤ H .1/
n .˛/ BH .1/

n .jH / BHn.iH / BHn.cH /.ŒN �/
2 c� � im

�
H .1;1/
n

�
G;L1.XH ;Z/

� ! H .1/
n

�
G;L1.XH ;R/

��
:

If G is word-hyperbolic, then Theorem 1.5 implies that

H .1/
n .˛/ BH .1/

n .jH / BHn.iH / BHn.cH /.ŒN �/
2 c� � im

�
Hn

�
G;L1.XH ;Z/

� ! H .1/
n

�
G;L1.XH ;R/

��
:

(5.7)

In particular, Hn
�
G;L1.XH ;Z/

� ¤ 0, which implies that n � m D dim.M/.
Next assume that H and G are both word-hyperbolic. By Lemma 5.12 M and

N have positive simplicial volume. From the argument above and by symmetry we
conclude that m D n.

The group G is an orientable Poincaré duality group; the Poincaré duality iso-
morphism is functorial with respect to coefficient homomorphisms. Further, for any
coefficient module E there is a functorial isomorphism H 0.G;E/ Š EG . Thus we
obtain a commutative diagram:

Hn
�
G;Z

�
��

Š
��

Hn
�
G;L1.XH ;Z/

�
Š

��

H 0
�
G;Z

�
��

Š
��

H 0
�
G;L1.XH ;Z/

�
Š

��

Z
Š �� L1.XH ;Z/G .

The bottom map is an isomorphism because of ergodicity. In combination with (5.7)
this implies that there is a non-zero integer e 2 Z such that

H .1/
n .˛/ BH .1/

n .jH / BHn.iH / BHn.cH /.ŒN �/
D e � c� �H .1/

n .jG/ BHn.iG/ BHn.cG/.ŒM �/:
(5.8)

Since the maps involved here are isometric and jej � 1, this implies that

kN k � c� � kMk:
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By interchanging the roles of H and G, we obtain similarly kMk � c�1 � kN k and
thus

e D ˙1 and kMk D c� � kN k; (5.9)

which concludes the proof of Theorem 1.9.
Next we prove Theorem 5.13. The assumptions imply thatM andN have positive

simplicial volume (see Lemma 5.12). Hence we know from the argument above
that (5.8) holds with e D ˙1. The assertion follows from the fact thatHn.H;R/ Š R
andHn.iH /BI nBHn

b .�/BHn
b .jG/.x

b
G/ evaluated against the imageHn.ŒcH �/.ŒN �/

of the fundamental class of ŒN � is ˙c�:˝
Hn.iH / B I n BHn

b .�/ BHn
b .jG/.x

b
G/;Hn.cH /.ŒN �/

˛
D ˝
Hn.iH / B I n BHn

b .˛/ BHn
b .jG/.x

b
G/;Hn.cH /.ŒN �/

˛
D ˝
I n BHn

b .˛/ BHn
b .jG/.x

b
G/;Hn.iH / BHn.cH /.ŒN �/

˛
D ˝
Hn

b .˛/ BHn
b .jG/.x

b
G/;H

.1/
n .jH / BHn.iH / BHn.cH /.ŒN �/

˛
D ˝
Hn

b .jG/.x
b
G/;H

.1/
n .˛/ BH .1/

n .jH / BHn.iH / BHn.cH /.ŒN �/
˛

(5.8)D ˙c� � ˝
Hn

b .jG/.x
b
G/;H

.1/
n .jG/ BHn.iG/ BHn.cG/.ŒM �/

˛
D ˙c� � ˝

xb
G ;Hn.iG/ BHn.cG/.ŒM �/

˛
D ˙c� � ˝

xG ;Hn.cG/.ŒM �/

D ˙c�:
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