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Abstract. We study the conjugacy problem in the automorphism group Aut.T / of a regular
rooted tree T and in its subgroup FAut.T / of finite-state automorphisms. We show that under
the contracting condition and the finiteness of what we call the orbit-signalizer, two finite-state
automorphisms are conjugate in Aut.T / if and only if they are conjugate in FAut.T /, and
that this problem is decidable. We prove that both conditions are satisfied by bounded auto-
morphisms and establish that the (simultaneous) conjugacy problem in the group of bounded
automata is decidable.
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1. Introduction

The interconnection between automata theory and algebra produced, in the last three
decades, many important constructions such as self-similar groups and semigroups,
branch groups, iterated monodromy groups, self-similar (self-iterating) Lie algebras,
branch algebras, permutational bimodules, etc. (see [17], [24], [9], [3], [1], [18] and
the references therein).

The connection between groups and automata occurs via a natural correspondence
between invertible input-output automata over the alphabet X D f1; 2; : : : ; dg and
automorphisms of a regular one-rooted d -ary tree T . To present this correspondence
let us index the vertices of the tree T by the elements of the free monoid X�, freely
generated by the set X and ordered by v � u provided u is a prefix of v. The group
Aut.T / of all automorphisms of the tree T decomposes as the permutational wreath
product Aut.T / Š Aut.T / o Sym.X/, where Sym.X/ is the symmetric group on
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the set X . This decomposition allows us to represent automorphisms in the form
g D .gj1; gj2; : : : ; gjd /�g , where �g 2 Sym.X/ is the permutation induced by the
action of g on the first level of the tree T . Iteratively, we can define the automorphism
gjv D gjx1

jx2
: : : jxn

for every vertex v D x1x2 : : : xn of the tree T , where xi 2 X .
Then every automorphism g 2 Aut.T / corresponds to an input-output automaton
A.g/ over the alphabet X and with the set of states Q.g/ D fgjv j v 2 X�g. The
automaton A.g/ transforms the letters as follows: if the automaton is in state gjv
and reads a letter x 2 X then it outputs the letter y D xgjv and the state changes

to gjvx; these operations can be best described by the labeled edge gjv xjy�! gjvx .
Following the terminology of automata theory every automorphism gjv is called the
state of g at v.

Using this correspondence with automata one can define several classes of special
subgroups of the group Aut.T /. A subgroup G < Aut.T / is called state-closed
or self-similar if all states of every element of G are again elements of G. Self-
similar groups play an important role in modern geometric group theory, and have
applications to diverse areas of mathematics. In particular, self-similar groups are
connected with fractal geometry through limit spaces and also with dynamical systems
through iterated monodromy groups as developed by V. Nekrashevych [17]. The
set theoretical union of all finitely generated self-similar subgroups in Aut.T / is
a countable group denoted by RAut.T / called the group of functionally recursive
automorphisms [5].

Automorphisms of the tree T which correspond to finite-state automata are called
finite-state. More precisely, an automorphism g 2 Aut.T / is finite-state if the set of
its states Q.g/ is finite. The set of all finite-states automorphisms forms a countable
group denoted by FAut.T /. Every finite-state automorphism is functionally recursive,
and hence the group FAut.T / is a subgroup of RAut.T /.

Other natural subgroups of Aut.T / are the groups Pol.n/ of polynomial automata
of degree n for every n � �1 and their union Pol.1/ D S

n Pol.n/. These groups
were introduced by S. Sidki in [23], who tried to classify subgroups of FAut.T / by
the cyclic structure of the associated automata and by the growth of the number of
paths in the automata avoiding the trivial state. Especially important is the group
Pol.0/ of bounded automata whose elements are called bounded automorphisms. A
finite-state automorphism g is bounded if the number of paths of length m in the
automaton A.g/ avoiding the trivial state is bounded independently of m. It is to be
noted that most of the self-similar groups currently studied are subgroups of Pol.0/.
In particular, the Grigorchuk group [8], the Gupta–Sidki group [12], the Basilica [11]
and BSV groups [6], the finite-state spinal groups [3], the iterated monodromy groups
of post-critically finite polynomials [17], and many others, are generated by bounded
automorphisms. Moreover, it is shown in [4] that finitely generated self-similar
subgroups of Pol.0/ are precisely those finitely generated self-similar groups whose
limit space is a post-critically finite self-similar set which play an important role in
the development of analysis on fractals (see [13]).
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In this paper we consider the conjugacy problem and the order problem in the
groups Aut.T /, RAut.T /, FAut.T /, Pol.0/. It is well known that the word problem
is solvable in the group FAut.T / and hence in all of its subgroups, while it is an open
problem in the group RAut.T /. Furthermore, the order and conjugacy problems are
open in FAut.T / and RAut.T /. The conjugacy classes of the group Aut.T / were
described in [22], [7]. It is not difficult to construct two finite-state automorphisms
which are conjugate in Aut.T / but not conjugate in FAut.T / (see [9]). At the same
time, two finite-state automorphisms of finite order are conjugate in Aut.T / if and
only if they are conjugate in FAut.T / (see [21]). The conjugacy classes of the group
Pol.�1/ of finitary automorphisms were determined for the binary tree in [5] and for
the general case in [19].

The conjugacy problem was solved for some well-known finitely generated sub-
groups of Pol.0/. In particular, the solution of the conjugacy problem in the Grig-
orchuk group was given in [14], [20], and it was generalized in [26], [10] to certain
classes of branch groups and their subgroups of finite index. Moreover, it was shown
in [15] that the conjugacy problem in the Grigorchuk group is decidable in polynomial
time. The conjugacy problem for the Basilica and BSV groups was treated in [11].
A finitely generated self-similar subgroup of FAut.T / with unsolvable conjugacy
problem was constructed in [25].

The general approach in considering any algorithmic problem dealing with auto-
morphisms of the tree T is to reduce the problem to some property of their states.
The order and the conjugacy problems lead us to the following definition. For an
automorphism a 2 Aut.T / consider the orbits Orba.v/ of its action on the vertices v

of the tree and define the set

OS.a/ D ˚
amjv j v 2 X�; m D jOrba.v/j�

which we call the orbit-signalizer of a. It is not difficult to see that the order problem
is decidable for finite-state automorphisms with finite orbit-signalizers. We prove that
every bounded automorphism has finite orbit-signalizer and hence the order problem
is decidable for bounded automorphisms.

Proposition 1. The order problem for bounded automorphisms is decidable.

We treat the conjugacy problem firstly in the group Aut.T /. Given two automor-
phisms a; b 2 Aut.T / we construct a conjugator graph ‰.a; b/ based on the sets
OS.a/; OS.b/, which portrays the inter-dependence among the different conjugacy
subproblems encountered in trying to find a conjugator for the pair a, b, and which
leads to the construction of a conjugator if it exists.

Theorem 2. Two finite-state automorphisms a, b with finite orbit-signalizers are
conjugate in Aut.T / if and only if they are conjugate in RAut.T / if and only if the
conjugator graph ‰.a; b/ is nonempty.
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An important class of self-similar groups is formed by the contracting groups.
The contracting property for groups corresponds to the expanding property in a dy-
namical system. A finitely generated self-similar group is contracting if the length
of its elements asymptotically contracts when applied to their states. A finite-state
automorphism is called contracting if the self-similar group generated by its states is
contracting. Bounded automorphisms are contracting (see [4]), however in contrast
to bounded automorphisms, contracting automorphisms do not form a group. For
contracting automorphisms with finite orbit-signalizers, we prove that conjugation is
controlled by the group of finite-state automorphisms.

Theorem 3. Two contracting automorphisms with finite orbit-signalizers are conju-
gate in Aut.T / if and only if they are conjugate in FAut.T /.

We prove a number of results for the conjugacy problem for bounded automor-
phisms in Section 4, which we collect in the following theorem.

Theorem 4. (1) The (simultaneous) conjugacy problem for bounded automorphisms
in Aut.T / is decidable.

(2) Two bounded automorphisms are conjugate in the group Aut.T / if and only
if they are conjugate in the group FAut.T /.

(3) The (simultaneous) conjugacy problem in Pol.0/ is decidable.
(4) Two bounded automorphisms are conjugate in the group Pol.1/ if and only

if they are conjugate in the group Pol.0/.

We develop two algorithms for the solution of the conjugacy problem in the group
Pol.0/. The first one exploits the cyclic structure of bounded automorphisms, while
the second exploits the number of active states of bounded automorphisms. This
last counting argument translates to a bounded trajectory problem for nonnegative
matrices which is shown to be decidable in the appendix by Raphaël M. Jurgens.
The methods developed in this study provide a construction for possible conjugators
whenever the associated conjugacy problems are solved.

The last section presents some examples, which illustrate the solution of the
conjugacy problems, and describes the connection between the property of having
finite orbit-signalizers and other properties of automorphisms.

2. Preliminaries

The set X� is considered as the set of vertices of the tree T as described in Introduction.
The length of a word v D x1x2 : : : xn 2 X� for xi 2 X is denoted by jvj D n. The
set Xn of words of length n forms the n-th level of the tree T . The vertices X� are
ordered by the lexicographic order on words induced by the order on the set X .

We are using right actions, so the image of a vertex v 2 X� under the action of
an automorphism g 2 Aut.T / is written as vg or .v/g, and hence vg �h D .vg/h.
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The state gjv of g at v, which was defined in Introduction, is the unique automor-
phism of the tree T such that the equality .vw/g D vg.w/gjv holds for all words
w 2 X�. Computation of states of automorphisms is done as follows:

.g � h/jv D gjv � hj.v/g ; g�1jv D .gj.v/g�1/�1;

gnjv D gjv � gj.v/g : : : gj.v/gn�1

for all g; h 2 Aut.T / and v 2 X�. Therefore, conjugation is computed by the rules
�
h�1gh

� jv D
�
h�1

� jv .gh/ j.v/h�1 D �
hj.v/h�1

��1
gj.v/h�1hj.v/h�1g I�

h�1gh
� j.v/h D .hjv/�1 gjvhj.v/g ;

and if .v/g D v then
�
h�1gh

� j.v/h D .hjv/�1 gjvhjv:

The multiplication of two automorphisms expressed as gD .gj1; gj2; : : : ; gjd /�g ,
h D .hj1; hj2; : : : ; hjd /�h is performed by the rule

g � h D .gj1hj.1/g ; gj2hj.2/g ; : : : ; gjd hj.d/g/�g�h:

Now every permutation � 2 Sym.X/ can be identified with the automorphism
.e; e; : : : ; e/� of the tree T acting on the vertices by the rule .xv/� D x�v for
x 2 X and v 2 X�.

The group RAut.T / of functionally recursive automorphisms consists of auto-
morphisms which can be constructed as follows. A finite set of automorphisms
g1; g2; : : : ; gm is called functionally recursive if there exist words wij over
fg˙1

1 ; g˙1
2 ; : : : ; g˙1

m g and permutations �i 2 Sym.X/ such that

g1 D .w11; w12; : : : ; w1d /�1;

g2 D .w21; w22; : : : ; w2d /�2;

:::

gm D .wm1; wm2; : : : ; wmd /�m:

This system has a unique solution in the group Aut.T /, here the action of each element
gi on the first level of the tree T is given by the permutation �i , and the action of the
state gi jj is uniquely defined by the word wij . An automorphism of the tree is called
functionally recursive provided it is an element of some functionally recursive set of
automorphisms.

For an automorphism g 2 Aut.T / define the numerical sequence

�k.g/ D jfv 2 Xk W gjv acts non-trivially on Xgj for k � 0;

which describes the activity growth of g. Looking at the asymptotic behavior of the
sequence �k. �/ we can define different classes of automorphisms of the tree T .
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The elements g 2 Aut.T /, whose sequence �k.g/ is eventually zero, are called
finitary automorphisms. In other words, an automorphism g is finitary if there exists
k such that gjv D 1 for all v 2 Xk , and the smallest k with this property is called the
depth of g. The set of all finitary automorphisms forms a group denoted by Pol.�1/.

For a finite-state automorphism g 2 FAut.T / the sequence �k.g/ can grow either
exponentially or polynomially (see [23], Corollary 7). The set of all finite-state
automorphisms g 2 FAut.T /, whose sequence �k.g/ is bounded by a polynomial of
degree n, is the group Pol.n/ of polynomial automata of degree n. In the case n D 0,
when the sequence �k.g/ is bounded, then the automorphism g is called bounded and
the group Pol.0/ is called the group of bounded automata. We get an ascending chain
of subgroups Pol.n/ < Pol.nC 1/ for n � �1. The union Pol.1/ D S

n Pol.n/

is called the group of polynomial automata. If we replace the condition “gjv acts
non-trivially on X” by “gjv is non-trivial” in the definition of the sequence �k. �/ then
we still get the same groups Pol.n/.

The bounded and polynomial automorphisms can be characterized by the cyclic
structure of their automata as described in [23]. A cycle in an automaton is called
trivial if it is a loop at the state corresponding to the trivial automorphism. Then an
automorphism g 2 FAut.T / is polynomial if and only if any two different non-trivial
cycles in the automaton A.g/ are disjoint. Moreover, g 2 Pol.n/, when n is the
largest number of non-trivial cycles connected by a directed path. In particular, an
automorphism g 2 FAut.T / is bounded if and only if any two different non-trivial
cycles in the automaton A.g/ are disjoint and not connected by a directed path. We
say that g is circuit if there exists a non-empty word v 2 X� such that g D gjv , i.e.
g lies on a cycle in the automaton A.g/. If g is a circuit bounded automorphism then
the state gjv is finitary for every word v, which is not read along the circuit.

3. Conjugation in groups of automorphisms of the tree

Let us recall the description of the conjugacy classes in the group Aut.T /.

Conjugacy classes in Aut.T /. First, recall that every conjugacy class of the sym-
metric group Sym.X/ has a unique (left-oriented) representative of the form

.1; 2; : : : ; n1/.n1 C 1; n1 C 2; : : : ; n2/ : : : .nk�1 C 1; nk�1 C 2; : : : ; nk/; (1)

where 1 � n1 � n2�n1 � � � � � nk�nk�1 and nk D d D jX j. This observation can
be generalized to the group Aut.T / (see Section 4.1 in [22]). Given an automorphism
a D .aj1; aj2; :::; ajd /�a in Aut.T / we can conjugate it to a unique (left-oriented)
representative of its conjugacy class using the following basic steps.

1. Conjugate the permutation �a 2 Sym.X/ to its unique left-oriented conjugacy
representative (1).
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2. Consider every cycle �i D .ni C 1; ni C 2; : : : ; niC1/ in the representative (1)
of �a and define

hiC1 D
�
ajni C1; e; .ajni C2/�1; .ajni C2ajni C3/�1; : : :

: : : ; .ajni C2ajni C3 : : : ajniC1�1/�1
�
:

Conjugate a by the automorphism h D .h1; h2; : : : ; hk/ to obtain

h�1ah D .a1; a2; : : : ; ak/;

where
ai D

�
e; :::; e; ajni C2 : : : ajniC1

ajni C1

�
�i :

3. Apply the Steps 1 and 2 to the automorphisms ajni C2 : : : ajniC1
ajni C1.

It is direct to see that an infinite iteration of this procedure produces a well-
defined automorphism of the tree which conjugates a into a representative and that
two different representatives are not conjugate in Aut.T /.

Another approach is based on the fact that two permutations are conjugate if and
only if they have the same cycle type. The orbit type of an automorphism a 2 Aut.T /

is the labeled graph, whose vertices are the orbits of a on X�, every orbit is labeled by
its cardinality, and we connect two orbits O1 and O2 by an edge if there exist vertices
v1 2 O1 and v2 2 O2, which are adjacent in the tree T . Then two automorphisms
of the tree T are conjugate if and only if their orbit types are isomorphic as labeled
graphs (see [7], Theorem 3.1). In particular it follows, that the group Aut.T / is
ambivalent (that is, every element is conjugate with its inverse). More generally,
every automorphism a 2 Aut.T / is conjugate with a� for every unit � of the ring
Zm of m-adic integers, where m is the exponent of the group Sym.X/ (see [22],
Section 4.3).

Conjugation lemma. We say that an element h is a conjugator for the pair .a; b/

if h�1ah D b, and we use the notation h W a ! b. For a; b 2 Aut.T / and the
permutations �a; �b 2 Sym.X/ induced by the action of a and b on X , the set of
permutational conjugators for the pair .�a; �b/ is denoted by

C….a; b/ D f� 2 Sym.X/ W ��1�a� D �bg
(this set can be empty).

The study of the conjugacy problem in the automorphism groups of the tree T is
based on the following standard lemma.

Lemma 5. Let a; b; h 2 Aut.T /.

(1) If h�1ah D b then jOrba.v/j D jOrbb.vh/j for every v 2 X� and

.hjv/�1amjvhjv D bmjvh ;

where m D jOrba.v/j.
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(2) Let O1; O2; : : : ; Ok be the orbits of the action of a on X . If there exists � 2
C….a; b/ such that ajOi jjv and bjOi jjv� are conjugate in Aut.T / for every
i D 1; 2; : : : ; k, where v 2 Oi is an arbitrary point, then a and b are conjugate
in Aut.T /.

Proof. The first statement follows from the equalities h�1amh D bm, .v/am D v.
Let Orba.v/ D fv0 D v; v1; : : : ; vm�1g, where vi D .v/ai . Put u D vh, then

Orbb.u/ D fu0 D u; u1; : : : ; um�1g, where ui D .u/bi and ui D vh
i . Then

bju0
D .h�1ah/ju0

D .hjv0
/�1ajv0

hjv1
;

bju1
D .h�1ah/ju1

D .hjv1
/�1ajv1

hjv2
;

:::

bjum�1
D .h�1ah/jum�1

D .hjvm�1
/�1ajvm�1

hjv0
:

Multiplying these equations, we get

.hjv/�1amjvhjv D .hjv0
/�1

�
ajv0

ajv1
: : : ajvm�1

�
hjv0

D bju0
bju1

: : : bjum�1
D bmju:

In particular

.hjvi
/�1amjvi

hjvi
D .hjvi

/�1
�
ajvi

ajviC1
: : : ajvi�1

�
hjvi

D bjui
bjuiC1

: : : bjui�1
D bmjui

;

hjvi
D �

ajv0
: : : ajvi�2

ajvi�1

��1
hjv0

�
bju0

: : : bjui�2
bjui�1

� D .ai jv/�1hjvbi ju:

(2)

If a and b are finite-state automorphisms (we need this only for the word problem),
Lemma 5 suggests a branching decision procedure for the conjugacy problem in
Aut.T /. We call this procedure CP and remark that it may not stop in general.

The order problem in Aut.T /. The problem of finding the order of a given element
of Aut.T / can be handled in a manner similar to the above. The next observation
gives a simple condition used in many papers to prove that an automorphism has
infinite order.

Lemma 6. Let a 2 Aut.T /.

(1) Let O1; O2; : : : ; Ok be the orbits of the action of a on X . Define ai D ami jxi

for every i D 1; 2; : : : ; k, where mi D jOi j and xi 2 Oi is an arbitrary point.
The automorphism a has finite order if and only if all the states ai have finite
order. Moreover, in this case, the order of a is equal to

jaj D lcm.m1ja1j; m2ja2j; : : : ; mkjakj/:



On the conjugacy problem for finite-state automorphisms of regular rooted trees 331

(2) Suppose ai D a for some choice of xi 2 Oi . If mi > 1 then a has infinite order.
If mi D 1 then a has finite order if and only if aj has finite order for all j ¤ i ,
in which case we can remove the term mi jai j from the right hand side of the
above equality.

If a is a finite-state automorphism, then the word problem ai D a can be effectively
solved and Lemma 6 suggests a branching procedure to find the order of a. We call
this procedure OP and remark that it may not stop in general. Such a procedure is
implemented in the program packages [2], [16].

Orbit-signalizer. Lemma 5 and Lemma 6 lead us to define the orbit-signalizer of an
automorphism a 2 Aut.T / as the set

OS.a/ D ˚
amjv j v 2 X�; m D jOrba.v/j� ;

which contains all automorphisms that may appear in the procedures OP and CP.
Notice that if m D jOrba.v/j, l D jOrba.vx/j, and k D jOrbamjv .x/j then l D mk

and
al jvx D .amjv/

k jx : (3)

This observation implies the recursive procedure to find the set OS.a/. We start from
the set OS0.a/ D fag and compute consecutively

OSnC1.a/ D fbmjx j b 2 OSn.a/; x 2 X; m D jOrbb.x/jg :
Then OS.a/ D S

n�0 OSn.a/. It follows from construction that if OSnC1.a/ does
not contain new elements, i.e., OSnC1.a/ � Sn

iD0 OSi .n/, then we can stop and
OS.a/ D Sn

iD0 OSi .n/. In particular, if the set OS.a/ is finite, then this procedure
stops in finite time and we can find OS.a/ algorithmically. For automorphisms with
finite orbit-signalizers one can model the procedures OP and CP by finite graphs.

Order graph. Consider an automorphism a 2 Aut.T / which has finite orbit-
signalizer. We construct a finite graph ˆ.a/ with vertex set OS.a/, called the order
graph of a, which models the branching procedure OP. The edges of this graph are
constructed as follows. For every b 2 OS.a/ consider all orbits O1; O2; : : : ; Ok of
the action of b on X and let xi 2 Oi be the least element in Oi . It is easy to see

that bmi jxi
2 OS.a/ for mi D jOi j, and we introduce the labeled edge b

mi�! bmi jxi

in the graph ˆ.a/ for every i D 1; : : : ; k. Then Lemma 6 can be reformulated as
follows.

Proposition 7. Let a 2 Aut.T / have finite orbit-signalizer. Then a has finite order if
and only if all edges in the directed cycles in the order graph ˆ.a/ are labeled by 1.

Moreover, in this case we can compute the order of a using the graph ˆ.a/.
Remove all the edges of every directed cycle in ˆ.a/. Then the only dead vertex of
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ˆ.a/, i.e. the vertex without outgoing edges, is the trivial automorphism, which has
order 1. Then inductively, for b 2 OS.a/ consider all outgoing edges from b, and
let m1; m2; : : : ; mk be the edge labels and b1; b2; : : : ; bk be the corresponding end
vertices, whose order we already know. Then by Lemma 6 the order of b is equal
to the least common multiple of mi jbi j. We illustrate the construction of the order
graph and the solution of the order problem in Example 2 of Section 5.

Conjugator graph. Consider automorphisms a; b 2 Aut.T / both of which have
finite orbit-signalizers. We construct a finite graph ‰.a; b/, called the conjugator
graph of the pair .a; b/, modeled after the branching procedure CP of Lemma 5. The
vertices of the graph ‰.a; b/ are the triples .c; d; �/ for c 2 OS.a/, d 2 OS.b/,
and � 2 C….c; d/ whenever this last set is nonempty. The edges are constructed as
follows.

Let Oi .c/ for 1 � i � k be the orbits of c in its action on X and let xi .c/ denote
the least element in each Oi .c/. We will simplify the notation by writing instead Oi

and xi with the understanding that these refer to c 2 OS.a/ under consideration.
For any vertex .c; d; �/, if one of the sets C….cmjxi

; d mjxi
� / with m D jOi j is

empty, then the triple .c; d; �/ is a dead vertex. Otherwise we introduce in the graph
the edge

.c; d; �/
xi�! .cmjxi

; d mjxi
� ; �/ with m D jOi j

for every � 2 C….cmjxi
; d mjxi

� / and i D 1; : : : ; k. Notice that cmjxi
2 OS.a/,

d mjx�
i
2 OS.b/, and hence the triple .cmjxi

; d mjxi
� ; �/ is indeed a vertex of the

graph.
We simplify the graph obtained above using the following reductions. Remove

the vertex .c; d; �/ which does not have an outgoing edge labeled by xi for some i .
Also, remove all edges leading to these deleted vertices. We repeat the reductions as
long as possible to reach the graph ‰.a; b/.

If the graph ‰.a; b/ is empty, then the automorphisms a and b are not conjugate.
Otherwise they are conjugate and every conjugator h W a! b can be constructed level
by level as follows. Choose any vertex .a; b; �/ in ‰.a; b/ and define the action of
h on the first level by xh D x� for x 2 X . There is an outgoing edge from .a; b; �/

labeled by xi D xi .a/, as explained previously. Choose an edge for every xi and let
.ci ; di ; �i / be the corresponding end vertex. We define the action of the state hjxi

by the rule .x/hjxi D x�i for x 2 X . All other states of h on the vertices of the first
level are uniquely defined by Equation (2) at the end of the proof of Lemma 5, and
thus we get the action of h on the second level. Similarly, we proceed further with the
vertices .ci ; di ; �i / and construct the action of h on the third level, and so on. Notice
that even if the same vertex .c; d; �/ appears at different stages of the definition of
h we still have a freedom to choose different outgoing edges from .c; d; �/ in each
stage of the construction.

Basic conjugators. Let us construct certain conjugators, called basic conjugators
for the pair .a; b/, by making as few choices as possible, in the sense that if we
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arrive at a triple .c; d; �/ at some stage of the construction then we choose the same
permutation � 2 C….c; d/ whenever the pair .c; d/ reappears further down. That is,
for every two vertices .c; d; �1/ and .c; d; �2/ obtained under construction we insist
to have �1 D �2. More precisely every basic conjugator can be defined using special
subgraphs of the conjugator graph ‰.a; b/. Consider the subgraph � of ‰.a; b/,
which satisfies the following properties:

(1) The subgraph � contains some vertex .a; b; �/ for � 2 C….a; b/.

(2) For every vertex .c; d; �/ of � and every letter xi , there exists precisely one
outgoing edge from .c; d; �/ labeled by xi . In particular, the graph is determin-
istic, and the number of outgoing edges at the vertex .c; d; �/ of the graph � is
equal to the number of orbits of c on X .

(3) For every c 2 OS.a/ and d 2 OS.b/ there is at most one vertex of the form
.c; d;�/ in the graph � . In other words, if .c; d; �1/ and .c; d; �2/ are vertices
of � then �1 D �2.

If the graph ‰.a; b/ is nonempty, there always exist subgraphs of ‰.a; b/, which
satisfy the properties 1–3. For every such a subgraph � we construct the basic
conjugator h D h.�/ as follows. We construct a functionally recursive system
involving every conjugator h.c;d/ W c ! d , where .c; d; �/ is a vertex of � and thus
in particular, we construct h D h.a;b/. First, we define the action of the conjugator
h.c;d/ on the first level by the rule xh.c;d/ D x� for x 2 X , where the permutation
� 2 C….c; d/ is uniquely defined such that the triple .c; d; �/ is a vertex of � . For

every edge .c; d; �/
x�! .c0; d 0; � 0/ we define the states of the conjugator h.c;d/ on

the letters from the orbit O D fx; .x/c; .x/c2; : : : ; .x/cm�1g of x under c recursively
by the rule

h.c;d/jx D h.c0;d 0/ and h.c;d/j.x/ci D �
ci jx

��1 � h.c0;d 0/ � d i jx� ;

for i D 1; : : : ; m � 1. These rules completely define the automorphisms h.c;d/.
By Lemma 5 every constructed automorphism h.c;d/ is indeed a conjugator for the
pair .c; d/. Since the graph � is finite, and the automorphisms a, b are finite-state,
we get a functionally recursive system which uniquely defines the basic conjugator
h D h.a;b/ given by the subgraph � .

We have proved the following theorem.

Theorem 8. Let a; b 2 FAut.T / have finite orbit-signalizers, and let ‰.a; b/ be the
corresponding conjugator graph. Then a and b are conjugate in Aut.T / if and only
if they are conjugate in RAut.T / if and only if the graph ‰.a; b/ is nonempty.

In particular, the conjugacy problem for finite-state automorphisms with finite
orbit-signalizers is decidable in the groups Aut.T / and RAut.T /. We present exam-
ples of the construction of the conjugator graph and basic conjugators in Example 3
of Section 5.
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The same method works for the simultaneous conjugacy problem, which given
automorphisms a1; a2; : : : ; ak and b1; b2; : : : ; bk asks for the existence of an auto-
morphism h such that h�1aih D bi for all i . We again consider the permutations �

such that ��1�ai
� D �bi

for all i , take an orbit Oi of ai on X , let xi 2 Oi be the
least element and mi D jOi j. Then the problem reduces to the simultaneous conju-
gacy problem for am1 jx1

; am2 jx2
; : : : ; amk jxk

and bm1 jx�
1

; bm2 jx�
2

; : : : ; bmk jx�
k

. If
automorphisms ai and bi are finite-state and have finite orbit-signalizers, then we can
similarly construct the associated conjugator graph so that Theorem 8 holds.

Conjugation of contracting automorphisms. A self-similar subgroup G < Aut.T /

is called contracting if there exists a finite set N � G with the property that for every
g 2 G there exists n 2 N such that gjv 2 N for all words v of length � n. The
smallest set N with this property is called the nucleus of the group. An automorphisms
f 2 Aut.T / is called contracting if the self-similar group generated by all states of
f is contracting. It follows from the definition that contracting automorphisms are
finite-state.

Theorem 9. Two contracting automorphisms a; b 2 Aut.T / with finite orbit-signal-
izers are conjugate in the group Aut.T / if and only if they are conjugate in the group
FAut.T /.

Proof. We will prove that all basic conjugators for the pair .a; b/ are finite-state. We
need a few lemmas, which are interesting in themselves.

Lemma 10. Let G be a contracting self-similar group, and let H be a finite subset
of G. Then the set of all possible elements of the form

.: : : ..h1jx1
� h2/jx2

� h3/jx3
� � � � � hn/jxn

and
.hn � � � � � .h3 � .h2 � h1jx1

/jx2
/jx3

: : : /jxn
;

where hi 2 H and xi 2 X , is finite.

Proof. The statement is a reformulation of Proposition 2.11.5 in [17]. We sketch the
proof for completeness.

We can assume that the set H is self-similar, i.e. hjv 2 H for all h 2 H and
v 2 X� (all elements are finite-state), and contains the nucleus N of the group G.
There exists a number k such that H 2jv � N � H for all words v of length � k.
Then H 2njv � H n for all v 2 Xk and n � 1. It is sufficient to prove that there are
finitely many elements of the form

.: : : ..h1jv1
� h2/jv2

� h3/jv3
� � � � � hn/jvn

for hi 2 H k and vi 2 Xk . Then h1jv1
2 H k and .h1jv1

� h2/jv2
2 H 2kjv2

� H k .
Inductively we get that all the elements above belong to H k .
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The next lemma is similar to Corollary 2.11.7 in [17], which states that different
self-similar contracting actions with the same virtual endomorphism are conjugate
via a finite-state automorphism.

Lemma 11. Let G be a contracting self-similar group and H � G be a finite subset.
Suppose that the automorphism g 2 Aut.T / satisfies the condition that for every
x 2 X there exist h; h0 2 H such that gjx D hgh0. Then g is finite-state.

Proof. For an arbitrary word x0x1x2 : : : xn 2 X� we have

gjx0x1x2:::xn
D .h1gh0

1/jx1x2:::xn

D �
...h1jx1

� h2/jx2
� h3/jx3

� � � � � hn/jxn
� hnC1

�

� g � �h0
nC1 � .h0

n � � � � � .h0
3 � .h0

2 � h0
1jy1

/jy2
/jy3

: : : /jyn

�
;

(4)

where hi , h0
i are some elements in H , and yi 2 X . By Lemma 10 the above products

assume a finite number of values, and hence g is finite-state.

Notice that in the previous lemma we only need that the groups generated by all
states of hi and separately by all states of h0

i be contracting, while together they may
generate a non-contracting group.

Lemma 12. Let F � Aut.T / be a finite collection of automorphisms. Suppose that
there exist two contracting self-similar groups G1, G2 and finite subsets H1 � G1,
H2 � G2 with the condition that for every g 2 F and every letter x 2 X there exist
h1 2 H1, h2 2 H2 and g0 2 F such that gjx D h1g0h2. Then all automorphisms in
F are finite-state.

Proof. The proof is the same as in Lemma 11. The only difference is that on the
right hand side of Equation (4) instead of g may appear any element of the finite
set F .

To finish the proof of Theorem 9 it is sufficient to notice that all basic conjugators
for the pair .a; b/ satisfy Lemma 12, and hence all of them are finite-state.

Example 4 of Section 5 shows that we cannot drop the assumption about orbit-
signalizers in the theorem.

The finiteness of orbit-signalizers can be used to prove that certain automorphisms
are not conjugate in the group FAut.T /.

Proposition 13. Let f; g 2 Aut.T / be conjugate in FAut.T /. Then f has finite
orbit-signalizer if and only if g does.

Proof. Let h�1f h D g for a finite-state automorphism h, and suppose f has finite
orbit-signalizer. Then m D jOrbf .v/j D jOrbg.vh/j for every v 2 X� and

gmjvh D .hjv/�1f mjvhjv 2 .hjv/�1 OS.f /hjv:
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It follows that OS.g/ � Q.h/�1 OS.f /Q.h/, where Q.h/ is the set of states of h,
and hence the set OS.g/ is finite.

4. Conjugation of bounded automorphisms

How to check that a given finite-state automorphism has finite orbit-signalizer is yet
another algorithmic problem. Let us show that some classes of automorphisms have
finite orbit-signalizers. Every finite-state automorphism a of finite order has finite
orbit-signalizer. Here the set OS.a/ is bounded by the number of all states of all
powers of a, which is finite. In particular, if a finite-state automorphism has infinite
orbit-signalizer, then it has infinite order.

Proposition 14. Every bounded automorphism has finite orbit-signalizer.

Proof. Let a be a bounded automorphism, and choose a constant C so that the number
of non-trivial states ajv for v 2 Xn is not greater than C for every n � 0. Then for
every vertex v 2 X� the state amjv with m D jOrba.v/j is a product of no more than
C states of a, which is a finite set.

In particular, the orbit-signalizer of a bounded automorphism can be computed
algorithmically, the procedure CP solves the conjugacy problem for bounded auto-
morphism in Aut.T /, and the procedure OP finds the order of a bounded automor-
phism.

Corollary 15. (1) The order problem for bounded automorphisms is decidable.
(2) The (simultaneous) conjugacy problem for bounded automorphisms in Aut.T /

is decidable.

Theorem 16. Two bounded automorphisms are conjugate in the group Aut.T / if and
only if they are conjugate in the group FAut.T /.

Proof. The bounded automorphisms are contracting by [4] and have finite orbit-
signalizers by Proposition 14, hence we can apply Theorem 9.

Corollary 17. Let a be a bounded automorphism. Then a and a�1 are conjugate in
FAut.T /.

Corollary 18. Let a bounded automorphism f and a contracting automorphism g

be conjugate in Aut.T /. Then f and g are conjugate in FAut.T / if and only if g has
finite orbit-signalizer.
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4.1. Deciding conjugacy between bounded automorphisms by a finitary auto-
morphism. Consider the conjugacy problem for bounded automorphisms in the
group Pol.�1/ of finitary automorphisms. One of the approaches is to restrict the
depth of a possible finitary conjugator. Let a, b be two bounded automorphisms. If a

and b are conjugate in Pol.�1/ and h W a! b is a finitary conjugator then every state
hjx for x 2 X is a finitary conjugator for the pair .amjx; bmjxh/ with m D jOrba.x/j,
and hjx has smaller depth than h. However, it is possible that every pair .amjx; bmjxh/

for x 2 X with m D jOrba.x/j is conjugate via a finitary conjugator of depth � d ,
while .a; b/ is not conjugate via a finitary conjugator of depth � d C 1. Hence
we still do not get a bound on the depth of h even if we know the bound on the
depth of a finitary conjugator for every pair .amjx; bmjxh/. The problem is that we
need to find a finitary conjugator hjx for the pair .amjx; bmjxh/ so that all elements
hj.x/ai D .ai jx/�1 � hjx � bi jxh for i D 0; : : : ; m � 1 are finitary. To overcome this
difficulty we introduce configurations of orbits, which describe these dependencies.

Configurationsof orbits. Every configuration will be of the form CDf.˛; ˇ/; DPCg,
where .˛; ˇ/ is a pair of automorphism called the main pair of C , and DPC is the
set of pairs of automorphism called dependent pairs. Configurations for the pair
.a; b/ are constructed recursively as follows. At zero level we have just one con-
figuration ƒ0 D fCg, where C D f.a; b/; DPC D f.e; e/gg. Further we con-
struct recursively the set ƒnC1 from the set ƒn. Take a configuration C 2 ƒn,
C D f.˛; ˇ/; DPCg. Consider every orbit O of the action of ˛ on X , let x be the
least element in O and m D jOj. For every � 2 C….˛; ˇ/ define new configuration
C 0 D C 0

x;� D f.˛mjx; ˇmjx� /; DPC 0g, where

DPC 0 D f..˛ic/jx; .ˇid/jx� / j .c; d/ 2 DPC and i D 0; : : : ; m � 1g: (5)

The set ƒnC1 consists of all configurations C 0 constructed in this way. Then ƒ DS
n�0 ƒn is the set of configurations for .a; b/. It follows from construction that

if ƒnC1 does not contain new configurations, i.e., ƒnC1 � Sn
iD0 ƒi , then we can

stop and ƒ D Sn
iD0 ƒi . In particular, if the set ƒ is finite then it can be computed

algorithmically.

Lemma 19. The set of configurations for a pair of bounded automorphisms is finite
and can be computed algorithmically.

Proof. Let C D f.˛; ˇ/; DPCg be a configuration for .a; b/ and denote AC D
fc j .c; d/ 2 DPCg. We prove by induction that there exists a word v 2 X� such that

˛ D al jv and AC D faj jv j j D 0; 1; : : : ; l � 1g; (6)

where l D jOrba.v/j. The basis of induction is the initial configuration C D
f.a; b/; DPC D f.e; e/gg that satisfies this condition for the empty word v D ;.
Suppose inductively that a configuration C satisfies the condition for a word v and
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proceed with the construction of C 0. Let x be the least element in an orbit of the
action of ˛ on X and put m D jOrb˛.x/j. Then jOrba.vx/j D lm and we get

˛mjx D .al jv/mjx D almjvx

and

AC 0 D f.˛ic/jx j c 2 AC and i D 0; 1; : : : ; m � 1g
D f..al jv/iaj jv/jx j i D 0; 1; : : : ; m � 1 and j D 0; 1; : : : ; l � 1g
D fakjvx j k D 0; 1; : : : ; lm � 1g (here k D li C j ).

Hence C 0 satisfies condition (6) for the word vx.
In particular, ˛ 2 OS.a/ and can assume only a finite number of values. The

number of different sets faj jv j 0 � j < jOrba.v/jg, v 2 X�, for a bounded auto-
morphism a, is finite (the proof is the same as of Proposition 14). Hence there are
finitely many possibilities for the set AC . The same observation holds for ˇ and the
set BC D fd j .c; d/ 2 DPCg. It follows that the number of configurations for a pair
of bounded automorphisms is finite.

Remark 1. Let h�1ah D b. Let O be an orbit of the action of a on X� and v 2 O be
the least element in the orbit and m D jOj. Then C D f.amjv; bmjvh/; DPCg, where

DPC D f.ai jv; bi jvh/; for i D 0; : : : ; m � 1g;
is a configuration for .a; b/.

Configurations satisfied by a finitary automorphism. We say that a finitary auto-
morphism h satisfies a configuration C if h is a conjugator for the main pair of C and
all elements c�1hd for .c; d/ 2 DPC are finitary. We say that a configuration C has
depth� d if C is satisfied by a finitary automorphism h of depth� d and all elements
c�1hd for .c; d/ 2 DPC have depth � d . In particular, the automorphisms a; b are
conjugate in Pol.�1/ if and only if the configuration C D f.a; b/; DPC D f.1; 1/gg
is satisfied by a finitary automorphism. Let us show that it is decidable whether a
given configuration C can be satisfied by a finitary automorphism.

Lemma 20. Let C D f.˛; ˇ/; DPCg be a configuration. Consider all orbits O1; O2;

: : : ; Ok of the action of ˛ on X and let xj 2 Oj be the least element in Oj . The
configuration C has depth � d if and only if there exists � 2 C….˛; ˇ/ such that
every configuration C 0

xj ;� , j D 1; : : : ; k, has depth � d � 1.

Proof. Suppose h�1˛h D ˇ and all automorphisms c�1hd , .c; d/ 2 DPC , are
finitary of depth � d . For the permutation � in C….˛; ˇ/ we take �h. Then

.hjxj
/�1˛mj jxj

hjxj
D ˇmj jx�

j
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and for every .c; d/ 2 DPC and i D 0; 1; : : : ; m � 1 we get

..˛ic/jxj
/�1 � hjxj

� .ˇid/jxj
� D .cj.xj /˛i /

�1hj.xj /˛i d j.xj /˛i h D .c�1hd/jy ; (7)

where y D .xj /˛ic. All automorphisms .c�1hd/jy are finitary of depth � d � 1.
Hence every configuration C 0

xj ;� has depth � d � 1.
Conversely, suppose there exists � 2 C….˛; ˇ/ such that every C 0

xj ;� is satisfied
by a finitary automorphism hj . Define automorphism h by the rules �h D � and

hjxj
D hj and hj.xj /˛i D .˛i jxj

/�1hjj ˇi jx�
j

:

Note that .˛i jxj
; ˇi jx�

j
/ D ..˛ic/jxj

; .ˇid/jx�
j

/ for .c; d/ D .e; e/ 2 DPC and

hence every pair .˛i jxj
; ˇi jx�

j
/ belongs to DPC 0 . Therefore the automorphism h is

finitary. Also h is a conjugator for .˛; ˇ/ by construction and satisfies the configura-
tion C by Equation (7).

Corollary 21. If a and b are conjugate in Pol.�1/ then there exists a finitary conjuga-
tor of depth� jƒj. In particular, the conjugacy problem for bounded automorphisms
in the group Pol.�1/ is decidable.

Instead of just running through all finitary automorphisms with a given bound
on the depth, the algorithm can be realized as follows. Construct the set ƒ of all
configuration for a given pair .a; b/. We will consecutively label configurations by
numbers which correspond to their depths. First, we identify configurations of depth
0, which are precisely configurations C D f.˛; ˇ/; DPCg such that ˛ D ˇ and c D d

for all .c; d/ 2 DPC . Then iteratively we label a configuration C D f.˛; ˇ/; DPCg
by number d if there exists � 2 C….˛; ˇ/ such that each C 0

xj ;� is already labeled
by a number � d � 1. After this process finishes, the configurations labeled by
d can be satisfied by a finitary automorphisms of depth � d , while the unlabeled
configurations cannot be satisfied by finitary automorphisms.

4.2. The conjugacy problem in the group of bounded automata. In this sub-
section we prove that the conjugacy problem in the group of bounded automata is
decidable. We will show two approaches.

First approach: by using cyclic structure of bounded automata. Let a and b be
bounded automorphisms. We apply the following algorithm to check whether a and
b are conjugate in Pol.0/. The algorithm will consecutively determine the pairs from
OS.a/ � OS.b/ that are conjugate in Pol.0/. Further we prove that the algorithm is
correct.

Step 1. Take .c; d/ 2 OS.a/ � OS.b/ and compute the set ƒ.c; d/ of all configura-
tions for .c; d/. For every configuration C and every .�1; ı1/; .�2; ı2/ 2 DPC check
whether .��1

1 �2/�1c.��1
1 �2/ and .ı�1

1 ı2/�1d.ı�1
1 ı2/ are conjugate in Pol.�1/, and
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if yes then c; d are conjugate in Pol.0/. Apply this step to every pair .c; d/ 2
OS.a/ � OS.b/. Note that since C D f.c; d/; DPC D f.e; e/gg is a configura-
tion for .c; d/ we also detect every pair .c; d/ conjugated in Pol.�1/ (just take
�1 D �2 D ı1 D ı2 D e).

Step 2. Take .c; d/ 2 OS.a/�OS.b/. Consider all words u 2 X� such that uc D u

and juj � jOS.c/j � jOS.d/j. Consider all circuit automorphisms h such that hju D h

and every finitary state of h has depth � jƒ.c; d/j. Note that there are only finitely
many bounded automorphisms with these properties. For every such h check whether
h�1ch D d . We apply this step to every pair .c; d/ 2 OS.a/ � OS.b/ not detected
in Step 1.

Step 3. For every pair .c; d/ 2 OS.a/ � OS.b/ for which we still do not know
whether it is conjugate in Pol.0/ proceed as follows. Consider orbits O1; : : : ; Ok of
the action of c on X , let xi 2 Oi be the least element in the orbit and mi D jOi j.
Check whether there exists � 2 C….c; d/ such that for every pair .cmi jxi

; d mi jx�
i

/

(it belongs to OS.a/ � OS.b/) we already know that it is conjugate in Pol.0/. If yes
then c; d are conjugate in Pol.0/. We repeat this step as long as possible until no new
pairs are detected. The other pairs from OS.a/ �OS.b/ are not conjugate in Pol.0/.

Proof of correctness of the algorithm. First, every pair detected in one of the steps is
indeed conjugate in Pol.0/. We need to prove the converse that if a, b are conjugate
in Pol.0/ then the pair .a; b/ will be detected. Let h�1ah D b for a bounded
automorphism h. There exists a level l such that for every v 2 X l the state hjv
is either circuit or finitary. Consider the orbits of the action of a on X l . Let v be
the least element in an orbit O and m D jOj. Then hjv is a conjugator for the pair
.c; d/ D .amjv; bmjvh/ 2 OS.a/ � OS.b/.

If hjv is finitary then the pair .c; d/ is detected in Step 1.
If hjv is circuit then we take a circuit conjugator g for .c; d/ having a circuit of the

shortest length. Let u be the word which is read along the circuit, so here gju D g.
Now consider two cases.

Case 1: uc ¤ u. Then gjuc D .cju/�1gjud jug is finitary. Since gju D g we get
.gju/�1c.gju/ D d and

.gjuc /�1
�
.cju/�1ccju

�
gjuc D .d jug /�1dd jug :

Hence .cju/�1ccju and .d jug /�1dd jug are conjugate in Pol.�1/. Let w be the least
element in the orbit O0 D Orbc.u/ and u D .w/ci . Let C be the configuration for
.c; d/ associated to the orbit O0 and the conjugator g (see Remark 1). Put �1 D ci jw ,
�2 D ciC1jw , ı1 D d i jwg , ı2 D d iC1jwg and note that .�1; ı1/; .�2; ı2/ 2 DPC .
Then cju D ��1

1 �2 and d jug D ı�1
1 ı2. Therefore the pair .c; d/ is detected in Step 1.

Case 2: uc D u. In this case the states of g along the circuit do not have
dependencies, and we have a freedom to change these states without changing other
states of the same level. Suppose there are two states gjv1

and gjv2
along the circuit

(let jv1j < jv2j so v1 is a prefix of v2), which solve the same conjugacy problem
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.cjv1
; d jvg

1
/ D .cjv2

; d jvg
2
/. Define the automorphism f by the rules f jv1

D gjv2
,

f jv D gjv for v 2 X jv1j; v ¤ v1, and the action of f on X jv1j is the same as the
action of g. Then f is a circuit bounded conjugator for the pair .c; d/ and it has
smaller circuit length; we arrive at contradiction. Hence, the states of g along the
circuit solve different conjugacy problems and therefore juj � jOS.c/j � jOS.d/j.
Now consider finitary states of g. We can assume that g is chosen is such a way
that the value of max.depth of f /, where f ranges over all finitary states of g, is
the smallest possible over all conjugators for .c; d/ with gju D g. Let gjw be a
finitary state. Then every state of g along the orbit of w under c is finitary. Hence the
configuration C for .c; d/ that corresponds to the orbit of w is satisfied by a finitary
automorphism. However the depth of C is not greater than jƒ.c; d/j by Lemma 20.
Hence the depth of every state of g along the orbit of w is not greater than jƒ.c; d/j.
Therefore g satisfies the conditions in Step 2 and the pair .c; d/ is detected in this
step.

We have proved that every pair from the action of a on X l is detected in Steps 1, 2.
The other pairs coming from the orbits of the action of a on smaller levels, in particular
the pair .a; b/, are detected in Step 3.

Second approach: by calculation of active states. Let a, b be two bounded au-
tomorphisms. We check whether a, b are conjugate in Aut.T / and if not then they
are not conjugate in Pol.0/. So further we assume that a, b are conjugate in Aut.T /.
Every conjugator for the pair .a; b/ can be constructed level by level as described
in Section 3 on page 10, by choosing the conjugating permutation for every orbit of
a. The number of orbits may grow when we pass from one level to the next, and
consequently the number of choices grows. However the number of configurations of
orbits is finite, and it is easy to see (and also follows from the previous method) that
if a and b are conjugate in Pol.0/ then there exists a bounded conjugator h such that
for all orbits of the same level and of the same configuration the corresponding states
of h are the same. Hence it is sufficient to choose a conjugating permutation only for
configurations. We will show how to count the number of active states depending on
our choice.

Suppose we have constructed a conjugator h up to the n-th level. Consider an
orbit O of the action of a on Xn and let C D f.˛; ˇ/IDPCg be its configuration (see
Remark 1) and v be the least element in O. The set DPC remembers only the pairs
.c; d/ which appear in the formula hj.v/ai D c�1hjvd , here c D ai jv and d D bi jvh

for i D 0; : : : ; jOj�1; we will call hj.v/ai a state of type .c; d/. However the number
of states of type .c; d/ is lost in this way. To preserve this information we introduce
the nonnegative integer column-vector uC of dimension jDPC j, where uC .c; d/ for
.c; d/ 2 DPC is equal to the number of i such that c D ai jv and d D bi jvh . When
we pass to the next level, we choose some permutation � 2 C….˛; ˇ/ and define
xhjv D x� for x 2 X . Then we check which states of h on the vertices from the
orbit O are active and which are not: the state hj.v/ai of type .c; d/ is active if the
permutation �c�1��d is non-trivial. We store this information in the row-vector �C ;�
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of dimension jDPC j by making �C ;�.c; d/ D 1 if �c�1��d ¤ e and �C ;�.c; d/ D 0

otherwise. Hence, when we choose the permutation � then the number of active
states of h along the orbit O is equal to �C ;� � uC D

P
�C ;�.c; d/uC .c; d/.

Let ƒ be the set of all configurations for the pair .a; b/. Let … D �C2ƒ C…C ,
where C…C D C….˛; ˇ/ and .˛; ˇ/ is the main pair of C . We view … as the set
of choices, so that when we choose � 2 … we have chosen a conjugating permu-
tation for every configuration. The sets ƒ and … are finite. For � D .�C /C2ƒ

define �� WD .�C ;�C
/C2ƒ and construct the square nonnegative integer matrix A� of

dimension
P

C2ƒ jDPC j, where the rows and columns of A� are indexed by pairs
ŒC ; .c; d/� with .c; d/ 2 DPC . The entry of A� in the intersection of ŒC1; .c1; d1/�-
row and ŒC2; .c2; d2/�-column is calculated as follows. Recall the construction of
configurations C 0 induced by C1 and �C1

, and given in Equation (5). Let .˛; ˇ/ be
the main pair of C1, consider orbits O1; : : : ; Ok of the action of ˛ on X , let xj be the
least element in Oj and mj D jOj j. Let C 0

j D C 0
xj ;�C1

be the induced configurations.
Define the ŒC1; .c1; d1/� � ŒC2; .c2; d2/�-entry of A� as

X
j

ˇ̌˚
0 � i < mj jC 0

j D C2 and ..˛ic1/jxj
; .ˇid1/j

x
�C1
j

/ D .c2; d2/
�ˇ̌

:

In other words, the ŒC1; .c1; d1/� � ŒC2; .c2; d2/�-entry of A� is equal to the number
of pairs of type .c2; d2/ and of configuration C2 induced by one pair .c1; d1/ from
configuration C1. Now if we have a column-vector u D .uC /C2ƒ, where uC .c; d/

is the number of states of type .c; d/ and of configuration C that we have at certain
level, and we choose � 2 …, then the number of pairs of each configuration on the
next level is given by the vector A�u. Put M D fA� W � 2 …g.

Now consider all orbits of a on Xn, take their configurations with respect to h

defined up to the n-th level, and define the column-vector u D .uC /C2ƒ as above.
To define the action of h on the .nC 1/-st level we choose � D .�C /C2ƒ 2 …, and
for every orbit with configuration C we define the action of the states of h along this
orbit using permutation �C as usual (we choose a permutation for every configuration
even if not all configurations appear on the n-th level). In this way the conjugator
h is defined up to the .nC 1/-st level. Then the number of active states of h on the
n-th level is equal to �� �u. The vector v D .vC /C2ƒ, where vC .c; d/ is equal to the
number of all states of type .c; d/ over all orbits of a on XnC1 with configuration C ,
is equal to v D A�u.

The process starts at the zero level, where we have the vector u0 D .uC / such that
uC .e; e/ D 1 for the configuration C D f.a; b/IDPC D f.e; e/gg, which corresponds
to the pair .a; b/, and uC 0.c; d/ D 0 for all other pairs and configurations. Then we
make choices �0; �1; : : : ; �n; : : : from … and construct the conjugator h. It follows
from the above discussion that the activity of h can be calculated by the following
rules:

�n.h/ D ��n
un and unC1 D A�n

un
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for all n � 0. If there is a choice such that the sequence �n.h/ is bounded, then there
will be an eventually periodic choice, and hence the constructed conjugator h will be
finite-state and bounded.

Hence the automorphisms a and b are conjugate in the group Pol.0/ if and only
if there exists a sequence An 2 M such that the corresponding sequence �An

un is
bounded. The last problem is solvable and can be deduced from the result presented
in Appendix.

In this method we do not need to solve the auxiliary conjugacy problems in Pol.�1/

as in the previous method, but the problem reduces to certain matrix problem which
should also be solved, while the previous method was direct. We demonstrate both
approaches in Examples 5 and 6 of Section 5.

We note that both approaches also solve the respective simultaneous conjugacy
problems. We have proved the following theorem.

Theorem 22. The (simultaneous) conjugacy problem in the group of bounded au-
tomata is decidable.

The above methods not only solve the studied conjugacy problem but also provide
a construction for a possible conjugator.

Similarly, one can solve the conjugacy problem for bounded automorphisms in
every group Pol.n/. However, we have a stronger statement.

Proposition 23. Two bounded automorphisms are conjugate in the group Pol.1/ if
and only if they are conjugate in the group Pol.0/.

Proof. Let a and b be two bounded automorphisms, which are conjugate in Pol.n/

for n � 1. We proceed as in the first method above. Again the problem reduces to
the case when a conjugator h 2 Pol.n/ lies on a circuit. Let u be the word which is
read along the circuit so that hju D h. We consider the two cases as in the proof of
correctness of the first approach.

If ua D v ¤ u then the state hjv should be in Pol.n � 1/. But then, h D hju D
ajuhjv.bjuh/�1 2 Pol.n � 1/. Hence, a and b are conjugate in Pol.n � 1/. The same
arguments work if wa ¤ w for some word w of the form uu : : : u.

Suppose wa D w for every word w of the form uu : : : u. Then h�1ajwh D bwh .
If ajw D e (and hence bjwh D e) then define the automorphism g by the rules
gjw D e, gjv D hjv for all v 2 X jwj, v ¤ w, and the action of g on X jwj is the same
as that of h. Then g belongs to Pol.n � 1/ and it is a conjugator for .a; b/.

If ajw ¤ e for every word w D uu : : : u, then some state ajw is a circuit auto-
morphism and ajw jv D ajw for some word v of the form uu : : : u. Without loss of
generality we can suppose that aju D a and bjuh D b. Then the states ajv and bjvh

are finitary for all v 2 X juj, v ¤ u. Consider every orbit O of the action of a on
X juj n u, let v 2 O be the least element in O and m D jOj. Then the finitary auto-
morphisms amjv and bmjvh are conjugate in Aut.T /, and hence they are conjugate
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in Pol.�1/. Define the automorphism g by the rules: the action of g on X juj is the
same as that of h, gju D g, gjv is a finitary conjugator for the pair .amjv; bmjvh/,

and gj.v/ai D �
ai jv

��1
gjvbi jvh (also finitary) for every i D 1; : : : ; m� 1 and every

orbit O. Then g is a bounded conjugator for the pair .a; b/.
Inductively we get that a and b are conjugate in Pol.0/.

5. Examples

All examples will be over the binary alphabet X D f0; 1g.
We will frequently use the automorphism a 2 Aut.T / given by the recursion a D

.e; a/	 , where 	 D .0; 1/ 2 Sym.X/ is a transposition, which is called the (binary)
adding machine. The automorphism a has infinite order, and acts transitively on each
level Xn of the tree T . In particular, every automorphism which acts transitively on
Xn for all n, is conjugate with a in the group Aut.T /.

In the next example we investigate the interplay between such properties as being
finite-state, contracting, bounded, polynomial, having or not a finite orbit-signalizer.

Example 1. The adding machine a is a bounded automorphism, hence it is contracting
and has finite orbit-signalizer, here OS.a/ D fag.

The automorphism b given by the recursion b D .a; b/ is finite-state, Q.b/ D
fe; a; bg, b belongs to Pol.1/ n Pol.0/, and OS.b/ D fa; bg. However b is not
contracting, because all elements bn D .an; bn/ for n � 1 are different and would
belong to the nucleus.

The automorphisms b1 D .a; b2/	 , b2 D .a; b1/ belong to Pol.1/ n Pol.0/,
but they have infinite orbit-signalizers. All elements a2nb1 for n � 0 are different
and belong to the set OS.b1/. At the same time, b1 and b2 are contracting, for the
self-similar group generated by a, b1, b2 has nucleus

N D fe; a˙1; b˙1
1 ; b˙1

2 ; .a�1b1/˙1; .a�1b2/˙1; .b�1
1 b2/˙1g:

The automorphism c D .c; c/	 is non-polynomial, contracting, and has finite
orbit-signalizer, here OS.c/ D fe; cg.

The automorphism d D .d; d �2/	 is contracting, the nucleus of the group hd i is
N D fe; d ˙1; d ˙2; d ˙3g. At the same time, the group ha; d i is not contracting; for
da D .da; d �2/ and its powers .da/n are different and would be in the nucleus.

The automorphism g D .a; g2/ is functionally recursive but not finite-state.
Hence the automorphism f D .g; g�1/	 is functionally recursive, not finite-state,
and has finite orbit-signalizer, here OS.f / D fe; f g.

In the next example we illustrate the solution of the order problem.
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Example 2. Consider the automorphisms b D .a; b/ and a D .1; a/	 . The order
graph ˆ.a/ is a subgraph of ˆ.b/ shown in Figure 1. There is a cycle labeled by 2,
hence a and b have infinite order.

The order graph ˆ.c/ for the automorphism c D .c; 	/ is shown in Figure 1.
There are no cycles with labels > 1, hence c has finite order, here jcj D 2.

1

11

1

1

1 2

2

ab c 	 e

Figure 1. The order graphs ˆ.b/ (on the left) and ˆ.c/ (on the right).

Let us illustrate the construction of the conjugator graph and basic conjugators.

Example 3. Consider the conjugacy problem for the trivial automorphism e with
itself. Here OS.e/ D feg and C….e; e/ D Sym.X/ D f"; 	g. The conjugator
graph ‰.e; e/ is shown in Figure 2. There are two defining subgraphs of the graph
‰.e; e/, each consists of the one vertex .e; e; �/ with loops in it for � 2 f"; 	g. The
corresponding basic conjugators are h1 D .h1; h1/ D e and h2 D .h2; h2/	 .

Consider the conjugacy problem for the adding machine a D .e; a/	 and its in-
verse a�1 D .a�1; e/	 . Here OS.a/ D fag, OS.a�1/ D fa�1g, and C….a; a�1/ D
f"; 	g. There is one orbit of the action of a on f0; 1g, a2j0 D a and a�2j0� D a�1

for every � 2 f"; 	g. The conjugator graph ‰.a; a�1/ is shown in Figure 2. There
are two defining subgraphs of the graph ‰.a; a�1/, each consists of the one vertex
.a; a�1; �/ with loop in it for � 2 f"; 	g. The corresponding basic conjugators are
h1 D .h1; h1a�1/ and h2 D .h2; h2/	 .

Consider the conjugacy problem for the adding machine a D .e; a/	 and the auto-
morphism b D .e; b�1/	 . Here OS.a/ D fag, OS.b/ D fb; b�1g, and C….a; b/ D
C….a; b�1/ D f"; 	g. There is one orbit of the action of a on f0; 1g, a2j0 D a,
b2j0� D b�1, and b�2j0� D b for every � 2 f"; 	g. The conjugator graph ‰.a; b/

is shown in Figure 2. There are four defining subgraphs of the graph ‰.a; b/, each
consists of the two vertices .a; b; �1/ and .a; b�1; �2/ with the induced edges for
�1; �2 2 f"; 	g. The corresponding basic conjugators h1, h2, h3, h4 are defined as
follows

h1 D .g1; g1/ h2 D .g2; g2/ h3 D .g3; ag3/	 h4 D .g4; ag4/	

g1 D .h1; h1b/ g2 D .h2; h2/	 g3 D .h3; h3b/ g4 D .h4; h4/	;

where g1, g2, g3, g4 are actually the basic conjugators for the pair .a; b�1/.
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.e; e; "/ .e; e; �/

.a; a�1; "/ .a; a�1; �/

.a; b; "/ .a; b�1; �/

.a; b�1; "/ .a; b; �/

0 0 0 0

0

0

0

0

0

0

0

0

0; 1 0; 1

0; 1

0; 1

Figure 2. The conjugator graph ‰.e; e/ (on the top left), ‰.a; a�1/ (on the bottom left), and
‰.a; b/ (on the right).

The next example shows that the condition of having finite orbit-signalizers can-
not be dropped in Theorem 9, and that Theorem 16 does not hold for polynomial
automorphisms.

Example 4. Consider the automorphisms b1 D .a; b2/	 , b2 D .a; b1/ defined in
Example 1. Inductively one can prove that the state b2n

1 j0n is active for every n, and
hence the automorphism b1 acts transitively on Xn for every n. Thus a and b1 have
the same orbit types (see page 329) and therefore they are conjugate in the group
Aut.T /. Both a and b1 are contracting, however, b1 has infinite orbit-signalizer, and
hence it is not conjugate with a in the group FAut.T /, by Proposition 13.

Finally, we illustrate the solution of the conjugacy problem in the group of bounded
automata.

Example 5. Consider the conjugacy problem for the adding machine a D .e; a/	

and its inverse a�1 D .a�1; e/	 in the group of bounded automata.
There are two configurations for the pair .a; a�1/:

C1 D f.a; a�1/; DP1 D f.e; e/gg; C2 D f.a; a�1/; DP2 D f.e; e/; .e; a�1/gg:
Neither of them is satisfied by the trivial automorphism, and hence by a finitary
automorphism. In particular, a and a�1 are not conjugate in the group Pol.�1/. The
pair .a; a�1/ is not detected in Step 1 of the first approach, basically, because .a; a�1/

is not conjugate in Pol.�1/. There are no u that satisfy Step 2, because a has no fixed
vertices. Hence, a and a�1 are not conjugate in the group Pol.1/.

For the second method we get the choice set … D f."; "/; ."; 	/; .	; "/; .	; 	/g.
The configuration C1 induces the configuration C2 on the next level when we choose
the conjugating permutation "; here the pair .e; e/ induces one pair .e; e/ and one
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pair .e; a�1/. For the choice 	 , the configuration C1 induces C1, and the pair .e; e/

gives two pairs .e; e/. For the choice ", the configuration C2 induces C2, here the
pair .e; e/ induces one pair .e; e/ and one pair .e; a�1/, and the pair .e; a�1/ gives
two pairs .e; a�1/. For the choice 	 , the configuration C2 induces C2, here the pair
.e; e/ gives two pairs .e; e/, and the pair .e; a�1/ gives one pair .e; e/ and one pair
.e; a�1/. We get the following set of matrices A� and vectors �� :

A.";"/ D
0
@

0 0 0

1 1 0

1 1 2

1
A ; A.";�/ D

0
@

0 0 0

1 2 1

1 0 1

1
A ;

A.�;"/ D
0
@

2 0 0

0 1 0

0 1 2

1
A ; A.�;�/ D

0
@

2 0 0

0 2 1

0 0 1

1
A ;

�.";"/ D .0; 0; 1/; �.";�/ D .0; 1; 0/; �.�;"/ D .1; 0; 1/; �.�;�/ D .1; 1; 0/:

The initial vector is u0 D .1; 0; 0/t and on n-th step we get unC1 D A�n
un and

�n D ��n
un when we choose �n 2 …. For any choice f�ngn�0 � … the sequence

�n has exponential growth, and hence a and a�1 are not conjugate in the group Pol.1/

of polynomial automata.

Example 6. Consider the conjugacy problem for the bounded automorphisms b D
.	; b/ and c D .c; 	/. Notice that the pairs 	 , c and b, 	 are not conjugate in
Aut.T /. Hence, only 	 may appear as the action on X of a possible conjugator,
and we take C….b; c/ D f	g. Here OS.b/ D fe; 	; bg and OS.c/ D fe; 	; cg,
C….	; 	/ D f"; 	g. The configurations for the pair .b; c/ are the following:

C1 D f.b; c/; DP1 D f.e; e/gg; C2 D f.	; 	/; DP2 D f.e; e/gg;
C3 D f.e; e/; DP3 D f.e; e/gg:

Let us check what configurations are satisfied by a finitary automorphism as described
after Corollary 21. The configurations C2 and C3 are satisfied by the trivial automor-
phism and have depth 0. For � 2 C….b; c/ we get that the configuration C 0

1;� induced
by C1 is equal to C1. Therefore C1 is not satisfied by a finitary automorphism, and
hence b and c are not conjugate in Pol.�1/. In Step 1 of the first approach we detect
pairs .e; e/ and .	; 	/. In Step 2 if we take u D 1 and h D .e; h/	 then h�1bh D c.
Hence .b; c/ is detected in Step 2 and b; c are conjugate in the group Pol.0/.

For the second method, we take for the choice set

… D f.	; "; "/; .	; 	; "/; .	; "; 	/; .	; 	; 	/g:
All matrices A� are the same for � 2 …. The vectors �� are as follows:

A� D
0
@

1 0 0

1 0 0

0 2 2

1
A ;

�.�;";"/ D .1; 0; 0/; �.�;�;"/ D .1; 1; 0/;

�.�;";�/ D .1; 0; 1/; �.�;�;�/ D .1; 1; 1/:
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The initial vector is u0 D .1; 0; 0/t and un D Anu0 D .1; 1; 2n � 2/ independently
of our choice. If we choose �n D .	; "; "/ for all n � 0 then the sequence �n D
.1; 0; 0/ � un D 1 is bounded. Hence b and c are conjugate in the group Pol.0/. The
conjugator corresponding to our choice is the adding machine a.

References

[1] L. Bartholdi, Branch rings, thinned rings, tree enveloping rings. Israel J. Math. 154
(2006), 93–139. Zbl 1173.16303 MR 2254535

[2] L. Bartholdi, FR — GAP package for computations with functionally recursive groups.
Available at http://www.gap-system.org/Packages/fr.html

[3] L. Bartholdi, R. I. Grigorchuk, and Z. Šuniḱ, Branch groups. In Handbook of algebra,
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Appendix

On the existence of a bounded trajectory for nonnegative integer systems

by Raphaël M. Jungers

The purpose of this note is to prove the following theorem.

Theorem 1. The following bounded trajectory problem is decidable.

INSTANCE: A finite set of nonnegative integer matrices M D fA1; : : : ; Amg �
Zn�n and a finite set of nonnegative integer vectors V D fu1; : : : ; upg � Zn.
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PROBLEM: Determine whether there exists a sequence .it /
1
tD1; it 2 f1; : : : ; mg

and an initial vector v0 2 V such that the sequence of vectors determined by the
recurrence

vt D Ait
vt�1; t D 1; 2; : : : (8)

is bounded.

In the following, M �, M t denote respectively the set of all products of matrices
in M ; and the set of all products of length t of matrices in M:

This problem is closely related to the so called joint spectral subradius of a set
of matrices, which is the smallest asymptotic rate of growth of any long product of
matrices in the set, when the length of the product increases. For a survey on the joint
spectral subradius and similar quantities, see [2]. While the joint spectral subradius is
notoriously Turing-uncomputable in general, we will see that in our precise situation,
we are able to provide an algorithmic solution to the problem.

The next lemma states that if there is a bounded trajectory, then it can be obtained
with an eventually periodic sequence of matrices.

Lemma 2. Let M , V be an instance of the bounded trajectory problem. There exists
a sequence .vt / as given by Equation (8) which is bounded if and only if there exist
matrices A; B 2 M � and a vector v0 2 V such that the sequence ut D AtBv0 is
bounded.

Proof. The if-part is obvious. In the other direction, if the set fvt D Ait
: : : Ai1v0g is

bounded it must be finite. Thus, there actually exist A; B 2 M � such that v D Bv0

and Av D v.

As it turns out it is possible to check in polynomial time, given a nonnegative
integer matrix A and a vector v; whether the sequence ut D Atv is bounded. In fact,
as we show below, this does not really depend on the actual value of the entries of
A and v; but only for each entry of A whether it is equal to zero, one, or larger than
one, and for each entry of v whether it is equal to zero or larger than zero. For this
reason we introduce two operators that get rid of the inessential information.

Definition 1. Given any nonnegative matrix (or vector) M 2 Zn1�n2 , we denote by
	.M / the matrix in f0; 1; 2gn1�n2 in which all entries larger than two are set to two,
while the other entries are equal to the corresponding ones in M .

Similarly, we denote by �.M/ the matrix in f0; 1gn1�n2 in which all entries larger
than zero are set to one, while the other entries are equal to zero.

We can now prove the main ingredient of our algorithm.

Theorem 3. Given a nonnegative matrix A 2 Zn�n, and two indices 1 � i; j � n;

the sequence .At /i;j remains bounded when t grows if and only if the sequence
.	.A/t /i;j remains bounded. Moreover, the boundedness of the sequence .At /i;j can
be checked in polynomial time.
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Proof. We consider the matrix A as the adjacency matrix of a directed graph on n

vertices. The edges of this graph are given by the nonzero entries of A. The graph
may have loops, i.e., edges from a node to itself, which correspond to diagonal entries.
We say that there is a path (of length t ) from i to j if there is a power At of A such
that .At /i;j � 1: Equivalently, there exist indices 1 � i0; : : : ; it � n; i0 D i; it D j;

such that for all 0 � t 0 � t � 1; Ait0 ;it0C1
� 1. It is obvious that if there is a path

from i to j; then there is such a path of length less than n.
We recall some easy facts from graph theory (see [3] for proofs and references).

For any directed graph, there is a partition of the set V of its vertices in nonempty
disjoint sets (the strongly connected components) V1; : : : ; VI such that for all v; w 2
V; v ¤ w; there is a path from v to w and a path from w to v if and only if they belong
to the same set in the partition. If there is no path from v to itself, then fvg is said to
be a trivial connected component. Moreover there exists a (non necessarily unique)
ordering of the subsets in the partition such that for any two vertices i 2 Vk; j 2 Vl ,
there cannot be a path from i to j whenever k > l . There is an algorithm to obtain
this partition in O.n/ operations (with n the number of vertices). In matrix terms,
this means that one can find a permutation matrix P such that the matrix P T AP is
in block upper diagonal form, where each block on the diagonal corresponds to a
strongly connected component.

In the following, we suppose for the sake of clarity that A is already in block
triangular shape. It is clear that entries in the blocks under the diagonal remain equal
to zero in any power of A: We need a different treatment for the entries within diagonal
blocks and the entries in blocks above the diagonal.

� Diagonal blocks. Let us consider an arbitrary diagonal block Bl , which is
strongly connected by definition. It is easy to see that either all the entries
in the block remain bounded or all the entries are unbounded. This occurs if
and only if the spectral radius of Bl is larger than one. It is easy to see that
given a nonnegative matrix with integer entries whose corresponding graph is
strongly connected, its spectral radius is larger than one if and only if one of
these conditions is satisfied:

– There is an entry in Bl larger than one.

– There is a row in Bl with two entries larger than zero.

Observe that these conditions do only depend on 	.A/:

� Non-diagonal blocks. Let us consider a particular .i; j /-entry in a non-diagonal
block. We will prove that this entry is unbounded if and only if one of the
following conditions holds (and these conditions can be checked in polynomial
time):

I. There is a path .i D i0; i1; : : : ; it�1; it D j / from i to j; and one of the
entries .is; is/ is unbounded for 0 � s � t:
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II. There exists t such that

At
i;i ; At

i;j ; At
j;j � 1: (9)

Moreover, if this condition holds, there is such a t smaller than n3 [3],
Proposition 1.

III. There exist two indices i 0 ¤ j 0 such that there is a path from i to i 0, a path
from j 0 to j; and such that the pair .i 0; j 0/ satisfies condition II above.

It is straightforward to check that any of these three conditions implies that the .i; j /-
entry is unbounded.

We claim that if the .i; j /-entry is unbounded yet I and II fail, then III should hold.
We prove the claim by induction on the number of vertices. The claim is obvious
for n D 1. Take now an arbitrary n; and suppose that the claim holds for n � 1: We
consider an n-by-n matrix such that the .i; j /-entry is unbounded, but I and II fail.

First, we must have that either .At /i;i D 0 for all t or .At /j;j D 0 for all t .
Indeed, it is not difficult to see that if there exist t1; t2; t3 such that .At1/i;i � 1;

.At2/j;j � 1; .At3/i;j � 1; then condition II holds (see [3], proof of Proposition 1).
We thus suppose without loss of generality that .At /j;j D 0 for all t , which means
that fj g is a trivial connected component. (If it is not the case, then the proof is
symmetrically the same replacing j with i .)

Now, since
.At /i;j D

X
k

At�1
i;k Ak;j ;

there is an index k ¤ j such that .At /i;k is unbounded and Ak;j � 1: Moreover
k ¤ i because Condition I does not hold. Thus, if the pair .i; k/ satisfies Condition
II the proof is done, because there is a path from k to j: If not, we now show that
one can remove the row and column corresponding to j in the matrix A and obtain a
submatrix A0 which fulfills the assumptions of the claim.

Firstly, the entry .i; k/ is also unbounded in the powers of A0. Indeed, we know
that fj g is a trivial component and there is no path from j to k. In matrix terms,
it means that A can be block-upper triangularized with the entry corresponding to
k before the entry corresponding to j; and k; j in different blocks. Hence, one can
erase all the rows and columns of all blocks after the one corresponding to k without
changing the successive values of the entry .i; k/.

Secondly, we just assumed that .i; k/ does not satisfy Condition II, and it cannot
satisfy Condition I either, because then Condition I would also hold on .i; j / in the
matrix A, since there is a path from k to j in A. Thus, one can apply the induction
hypothesis and the claim is proved, because, for any node j 0; if there is a path in
A0 from j 0 to k; there is a path in A from j 0 to j (obtained by appending the edge
.k; j /).

Finally, note that all the conditions here only depend on which entries are different
from zero (since they amount to check the existence of paths), except for the condition
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on the boundedness of the .i; i/-entry and the .j; j /-entry in Condition I, which is
treated in the first part of this proof (diagonal blocks).

We are now in position to present our algorithm:

Algorithm for solving the bounded trajectory problem

I. Construct a new instance of the bounded trajectory problem:

M 0 D f	.A/ W A 2M g and V 0 D f�.v/ W v 2 V g:
II. REPEAT

� V 0  V 0 [ f�.Av/ W A 2M 0; v 2 V 0g
� M 0  M 0 [ f	.AB/ W A 2M 0; B 2M 0g

UNTIL no new element is added to V 0; M 0:
III. For every pair .A; v/ 2M 0 � V 0:

IF the sequence ut D Atv is bounded, RETURN YES and STOP.
IV. RETURN NO.

Theorem 4. The algorithm is correct and stops in finite time.

Proof. We first show how to implement Line III in the algorithm. For any column
corresponding to a nonzero entry of v; one just has to check whether all the entries of
this column remain bounded in the sequence of matrices At : Thanks to Theorem 3,
it is possible to fulfill this requirement

By Lemma 2 we need to check whether there exist A; B 2 M � and v 2 V

such that AtBv is bounded. Note that AtBv is bounded if and only if 	.A/t�.Bv/

is bounded. The finite sets f	.A/ W A 2 M �g and f�.Bv/ W B 2 M �; v 2 V g
are precisely the sets M 0 and V 0 obtained after the loop at Line II in the algorithm.
Therefore the algorithm is correct and stops in finite time.

Let us show that one should not expect a polynomial time algorithm for the
problem.

Proposition 5. Unless P D NP; there is no polynomial time algorithm for solving
the bounded trajectory problem.

Proof. Our proof is by reduction from the mortality problem which is known to be
NP-hard, even for nonnegative integer matrices [1], p. 286. In this problem, one is
given a set of matrices M; and it is asked whether there exists a product of matrices
in M � which is equal to the zero matrix.

We now construct an instance M 0, V of the bounded trajectory problem such that
there is a bounded trajectory for this instance if and only if the set M is mortal: take
M 0 D fA0 D 2A W A 2 M g and v0 D e (the “all ones vector”) as the unique vector
in V:
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Now, it is straightforward that there exists a sequence .it /
1
tD1, it 2 f1; : : : ; mg,

such that the sequence of vectors

A0
it

: : : A0
i1

e D 2tAit
: : : Ai1e

is bounded if and only if the set M is mortal. Indeed, the matrices in M have
nonnegative integer entries, and if the vector Ait

: : : Ai1e is different from zero, then
its (say, Euclidean) norm is greater or equal to one.

Also, if one relaxes the requirement that the matrices and the vectors are nonneg-
ative, then the problem becomes undecidable, as shown in the next proposition.

Proposition 6. The bounded trajectory problem is undecidable if the matrices and
vectors in the instance can have negative entries.

Proof (sketch). It is known that the mortality problem with entries in Z is undecid-
able [2], Corollary 2.1. We reduce this problem to the bounded trajectory problem
in a way similar as in Proposition 5, except that we build much larger matrices: we
make 2n copies of each matrix in M and place them in a large block-diagonal matrix.
That is, our matrices in M 0 are of the shape

fdiag.2A; 2A; : : : ; 2A/ W A 2M g:
Now we take V D fv0g; where v0 2 f�1; 1g2nn is the concatenation of all the
different n-dimensional f�1; 1g-vectors. This vector has a bounded trajectory if and
only if there exists a zero product in M �:
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