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Abstract. An action of a group on a set is called k-transitive if it is transitive on ordered
k-taples and highly transitive if it is k-transitive for every k. We show that for n > 4 the group
Out(F,) = Aut(F,)/Inn(Fy,) admits a faithful highly transitive action on a countable set.
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1. Introduction

1.1. Highly transitive actions. The group Out(F},) = Aut(F},)/Inn of outer auto-
morphisms of the free group attracted much attention in the last couple of decades.
The theory that is developed around this group runs parallel to that of the mapping
class group of a surface Mod(X,) = Out(m;(X,)) and the special linear group
SL,(Z) = Out(Z"). The questions that are asked about the first two groups are
often motivated by the more classical theory of the arithmetic group SL,(Z) but
sometimes the answers exhibit new and interesting phenomena. In the lowest non-
trivial case these three families coincide Out(F,) = Mod(X;) = GL,(Z) and then
they ramify in different directions. Moreover, for large values of n all three theories
exhibit interesting “higher rank” phenomena that are not shared by the group SL,(Z).

Due to the efforts of many mathematicians, notably Margulis, we can exhibit
today an intricate and beautiful structure theory for the arithmetic groups SL,(Z),
for n > 3. This theory provides a complete understanding of many properties of
these groups, including their normal subgroups, finite index subgroups and finite
dimensional linear representations. More generally it is safe to say that we have a
complete understanding of representations of SL,(Z) into locally compact groups,
summarizing all of the above. In particular it was shown by Venkataramana [Ven87]
and upcoming paper of Willis—Shalom that every representation of p: SL,(Z) — G
into a locally compact group has either a pre-compact or a discrete image.

*The first author was supported by a European Postdoctoral Fellowship (EPDI).
**The second author was partially supported by ISF grant 441/11.
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There is a lot of information pertaining to representations of SL,,(Z) into Polish
groups that are not locally compact; including unitary representation (see for example
[BAIHVO08]), action on manifolds (see [ZMO08]) and infinite permutation representa-
tions. In this paper we are interested in the latter theory, namely representations
of a group I' into Sym(Z) — the full (Polish) group of permutations of Z, consid-
ered here as a countable set. From a different perspective this is also the study of
subgroups of T", via the well-known correspondence between transitive permutation
representations and (conjugacy classes of) subgroups. At the moment we have a very
limited understanding of permutation representations of SL,, (Z). Primitive permuta-
tion representations for SL,, (Z) and many other finitely generated linear groups, were
constructed by Margulis and Soifer [MS79], [MS81]. This work was later extended in
[GGO8] to construct faithful representations of many countable linear groups that are
not necessarily finitely generated. From the point of view of permutation representa-
tions however, primitivity is a rather weak notion, for example a primitive permutation
representation p : I' — Sym(Z) might still have a discrete image. In particular it
is an open question whether the analogue of the Venkataramana and Willis—Shalom
theorem is valid in this setting, namely if there exists permutation representations
p: SL,(Z) — Sym(Z) whose image is neither discrete nor pre-compact.

In this paper we solve the above mentioned question for the group I' = Out(F,)
for every n > 4, by exhibiting permutation representations that are as far from being
discrete as possible:

Theorem 1. For every n > 4 there exists a faithful permutation representation
p: Out(F,) — Sym(Z) with a dense image. Or, in other words, there exists a
permutation representation that is k-transitive for every k.

This theorem is stated again below as Theorem 4 with a more detailed description
of the action. It is interesting to note that the answer to the above mentioned question
is solved for Out(F}) before it is solved for SL, (Z) or for Mod(Z). In fact it might
very well be the case that SL, (Z) fails to admit such a highly transitive permutation
representation.

Let us just mention that very few examples are known of countable groups that
admit a highly transitive action on a set. Examples include nonabelian free groups (see
[McD77], [Dix90]) as well as fundamental groups of surfaces of genus at least 2 (see
[Kit09], [MS13], [FMS13]), the group of finitely supported permutations Sym (Z)
and, of course, any subgroup of Sym(Z) containing one of these examples.

1.2. Notation. Throughout the paper G will denote a finitely generated simple
group, with d = d(G) being its minimal number of generators. Given an n-tuple

g =1(g1,82,...,8n) € G" we denote by (g) = (g1, 82,...,8n) < G the subgroup

generated by it. Let F,, = (x1, X2, ..., X,) be the nonabelian free group on n gen-
erators. There is a natural identification of G" with Hom(F;,, G); associating the
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n-tuple g with the homomorphism
ag: Fn = G, ag(xi) = gi.

We will use Hom(F,, G) and G” interchangeably. For example, we will identify the
set of epimorphisms Epi(F},, G) with the set

Va(G) ={g € G" : (g) = G}

of all generating n-tuples.

The group Aut(G) acts on Hom(F,,, G) (from the left) by post-composition and
Aut(Fy) actson Hom(F,, G) (from the right) by pre-composition. One easily verifies
that in the corresponding action of Aut(F,) on G" the standard Nielsen transforma-
tions act as follows:

R (g1 8ive i 8n) = (81028 g gn).
L (81 8iveen8n) = (8150 & Gine o0 80)s
Pij:(g1:-- - 8iveees&jsees8n) =~ (&1, &jse s &ive s 8n),
Lii(Q1eGiven8n) = (81087 o 8n).

We denote by V,(G) the set of all Aut(G)-orbits on V,(G). Given g € Va(G) we

denote by [g] the corresponding equivalence class in V,(G). Since the Aut(F,) action

preserves V,(G) and commutes with the Aut(G) action it descends to an action of
I := Out(Fy,) = Aut(F,)/Inn(F,) on V,(G).

1.3. The main theorem. A Tarski monster group is a noncyclic group G all of
whose proper subgroups are cyclic. It was shown by A. Yu. Ol'shanskii that for
every large enough prime p there exist uncountably many Tarski monsters all of
whose subgroups are isomorphic to Z/ pZ, as well as Tarski monsters all of whose
subgroups are infinite cyclic (see [O180]).

Establishing the existence of infinite Tarski monsters is difficult, but once such a
group is given many structural results follow directly from the definition. A Tarski
monster G is necessarily simple. For every n > 2, the collection of generating
n-tuples is given by

Vu(G) = G™\ {g €G" | (g)is cyclic}.

Definition 2. An action of a group on a set I' ~ Q is called k-transitive if it is
transitive on ordered k-tuples of distinct points. It is called highly transitive if it is
k-transitive for every k € N.

Definition 3. A group G is said to satisfy a group law, if there exist some m and
some non-trivial word in the free group w € Fj, such that

w(g) =1 forallge G™.
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For example every abelian group satisfies the law given by the commutator [x, y] €
F> and every group of exponent p satisfies the word x? € Z. The goal of this paper
is to prove the following result.

Theorem 4. Let G be a Tarski monster and n > 4, then the action of I' = Out(Fy)
on the character variety V,(G) is highly transitive. Moreover, this action is faithful
if and only if G does not satisfy a group law.

Clearly every Tarski monster of finite exponent satisfies a group law. But there
are torsion-free Tarski monsters that do not admit a group law. Indeed, it was ob-
served by Zusmanovich [Zus09], Theorem 6.1, that Tarski monsters fail to satisfy a
group law if and only if they admit finite generating sets whose corresponding Cay-
ley graphs have arbitrarily large girth. The existence of such Tarski monsters was
established by OI’shanskif; the argument based on Corollary 1 of [0193] is described
by Zusmanovich loc. cit. A complete proof can be found in [OOS09].

Corollary 5. Forn > 4, let T';, = Out(Fy) and let Ty, ~, Q be the faithful highly
transitive action constructed above. Let A < Ty, be any subgroup containing a
non-trivial subnormal subgroup. Then the following holds:

(1) The action of A on Q2 is highly transitive,
(2) A contains an infinite index maximal subgroup,

(3) A does not satisfy any group law, in particular it cannot be finite, abelian, or
even virtually solvable.

@) If A’ < Ty, is another group containing a non-trivial subnormal subgroup then
ANA £ (e).

Proof. Saying that T, ~ €2 is highly transitive is equivalent to saying that the
corresponding embedding I, < Sym(£2) has a dense image, with respect to the
pointwise convergence topology on Sym(£2). Butthen N <1<1 T, = Sym(S2) for any
subnormal subgroup N <1< I',, and since Sym(£2) is topologically simple, N is also
dense, proving (1). Now (2) follows, since a highly transitive action is automatically
primitive, so A, < A is a maximal subgroup for every @ € Q. Since Sym(2)
contains a free subgroup it cannot satisfy any group law itself and this is automatically
inherited by any dense subgroup, which establishes (3). Finally for (4) assume by
way of contradiction that N, N’ <1<1 T, are two non-trivial subnormal subgroups that
intersect trivially. We claim that there are two (possibly equal) non-trivial subnormal
subgroups M, M’ that commute. Indeed, let N = N; <« Nj_1 <1 --- <« Ng = T,
and assume first that N’ is normal in I',. If j is the first index such that N'NN; = (e)
weset M = Nj and M = N’ N N;_;. The argument is concluded by induction on
the minimal length of a subnormal series for N’. Now since M, M’ are both dense
in the topology induced from Sym(€2) it turns out that Sym(€2) is abelian which is
absurd. O
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Item (2) above can be viewed as an analogue for Out(F},) of the theorems due to
Margulis and Soifer [MS79], [MS81] and to Ivanov [Iva92], Theorem 5, concerning
the existence of infinite index maximal subgroups (i.e. of the existence of primitive
actions on countable sets). Margulis and Soifer prove that a finitely generated linear
group admits an infinite index maximal subgroup if and only if it is not virtually
solvable. Ivanov’s theorem states that finitely generated subgroup of the mapping
class group of a surface admits a maximal subgroup of infinite index if and only if it
is not virtually abelian. Both theorems were then generalized in [GG08] to general
countable subgroups. On a certain level our current result is much stronger because
highly transitive actions are rarer than primitive actions. On the other hand our current
method is restricted to very special classes of subgroups of Out(F}).

1.4. Gilman’s work on the Wiegold conjecture. Transitivity of the action of I'
V,,(G) for various groups G was extensively studied in various different settings in
the last few decades. We refer the readers to a comprehensive survey article on this
subject by Alex Lubotzky [Lub]. In particular it is conjectured by Wiegold that the
action of Out(F3) ~ V3(G) is transitive for every finite simple group G.

Of particular interest from our point of view is the work of Gilman [Gil77] who
proved the Wiegold conjecture in the case G = PSL,(IF,,) for every prime p > 5 and
n > 3. Gilman showed, in fact, that the image of Out(F,) in Sym(V, (PSLy(F,)) is
either the full symmetric group, or the alternating group, thus proving a much stronger
statement.

Gilman has further proved that if G is a finite simple nonabelian group and n > 4
then Out(F;) acts as a symmetric or alternating group on at least one of its orbits in
V, (G). This result was extended to n = 3 by Evans [Eva93].

The current paper grew out of an attempt to find an infinite setting in which
Gilman’s proof can be implemented. Technically there is one qualitative difference
between the finite and the infinite case. In the former case, in order to prove that a finite
permutation group contains the alternating group it is sufficient to prove primitivity
and then to establish the existence of one long cycle. In the latter case, k-transitivity
has to be verified directly, by induction, for every k € N.

Acknowledgment. We would like to thank Dawid Kielak for his helpful comments.
We would also like to thank the referee for reading so carefully the original manuscript
and providing corrections as well as very helpful information pertaining to the struc-
ture of Tarski monsters.
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2. Preliminary results

2.1. Generation of powers. We denote by M, i (G) the collection of n x k matrices
with entries taken from the group G. Let

gl ... g’f - & -
A= g% 5”"2( |~ ® 7= §|1 g|k , (1)
gog) e o) N
be such a matrix, with g1,....g» € G* and g g € G" denoting the corre-

sponding row and column vectors respectively. The following result was originally
used by P. Hall [Hal36] in the realm of finite simple groups. Compare for example
[KL90], Proposition 6. For the convenience of the reader we add a proof.

Proposition 6. Let G be anonabelian simple finitely generated group, k > d(G) and
A € My 1 (G) a matrix as above, all of whose columns generate g' € V,(G) for all

1 <i <k. Denotebya!,..., ak e Hom(F,,, G) the corresponding epimorphisms,
by K',..., Kk their respective kernels and by A = (a',a?,. .., ak) the combined
homomorphism defined by

A Fy = GFwe (w(gh). w(g?).... . w(gh).

Then the following are equivalent.

(1) {[_gi] | 1 <i <k} are all different as elements of V,(G).
) o/ (Nig; K') =G foreveryl1 < j <k.

(3) A: F, > Gk is surjective.

Proof. (2) = (3) is obvious.

(3) = (1). Assume (1) fails. By definition this means that there is some o €
Aut(G)andindicesi, j suchthatooa/ = o. Butthen A(F,) < {(g1.....8%)|gi =
o(gj)} contradicting (3).

(l) — (2). By symmetry we argue for j = k. Since ¥ : F,, — G is surjective
and ﬂl_l (K') <1 F, is normal, it follows that o (ﬂl_l (K')) < G. By simplicity
of G we need only rule out the possibility that the latter group is trivial. If k& = 2 this
implies that K! < K2 and hence there is a commutative diagram

FnL)G
N

n

G.
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Since G is simple, n must be an isomorphism, contradicting (1).

We proceed by induction on k. Recall that by assumption G is nonabelian and let
X,y € G be two elements with [x, y] # e. By our induction assumption we can find
X,y € F, such that

A(X) = (*x,e,e,...,e,Xx),
A(P) = (e, x,e,...,e,p).

It follows that
A(X, 9] = (e.e.....e.[x.y]),
contradicting the triviality of o ( ﬂi:ll (K )) g

We assumed implicitly in the above proposition that & is finite. If k = oo itis no
longer possible for A to be surjective, but the above proposition remains correct upon
replacing (3) by the assumption that A(F,) = G*°°, where the closure is taken with
respect to the product topology.

2.2. Powers of Tarski monsters.. Denote by d(G) the minimal number of genera-
tors of a group G. It was shown by Wiegold and Wilson in [WW78], Theorem 4.3,
that d(G) < d(G¥) < d(G) + 1, k € N, for every finitely generated infinite simple
group G. In the case where G is a torsion-free Tarski monster it was further shown by
Wiegold in Theorem 2 of [Wie88] that d(G¥) = d(G) = 2. Since Wiegold’s argu-
ment in the latter paper is essential for our argument and the paper itself was somewhat
difficult to obtain we repeat here Wiegold’s argument in our own terminology.

Theorem 7 (Wiegold). Let G be a Tarski monster. Then 2 < d(G*) < 3 for all
k € N. Moreover if G is torsion-free then d(G*) = 2 for all k € N.

Proof. Given k € N we have to establish the existence of a matrix A € M3 (G)
satisfying the equivalent conditions of Proposition 6.
Indeed, let a, b € G be a generating tuple and consider the matrix

a a ... da
A=|b b ... b|eMu(G).
ci C2 ... Ck

Clearly every column generates. But if two columns, say g! and g2, are in the same
Aut(G)-orbit then we have an automorphism o € Aut(G) such that o(a) = a,
o(b) = b, 0(c1) = ca. Since a, b generate this implies that 0 = Id and ¢; = c¢,.
Thus condition (1) of Proposition 6 will be satisfied if all ¢; are different.

Assume now that G is torsion-free. Since G is finitely generated it contains a
proper maximal subgroup (a). Letb € G be any element that fails to commute with a.
By maximality of (a), if [a, b~ ab] = 1 then b~'ab = a™ for some m and hence
b € Ng({a)) = Zg({a)), contradicting our choice of b. Thus G = (a, b~ 'ab).
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Consider a matrix A € M« (G) given by

a a ... a
A= (ab ah ... akb)'
Clearly every column generates. Moreover if ¢ € Aut(G) is such that a® = a
and (a'b)® = (ab) then (b~ ab)’ = (@ 'b) 'a(a™ b)) = b~'ab. Since
(a,b~lab) = G and both these elements are fixed by o, the latter automorphism

must be the identity. Hence condition (1) of Proposition 6 is satisfied and the proof
is complete. O

2.3. Spread

Definition 8. We say that a 2-generated group G has spread greater than or equal to
k if for every g = (g1,82,---,8k) € G* there exists some & € G such that

G={hg) foralll <i <k.

Lemma 9. A Tarski monster group G has spread greater than or equal to k for every
k € N.

Proof. Letk € N and g = (g1.82.....8%) € G* be as above. Since G is finitely
generated, it follows from Zorn’s lemma that every g; is contained in a maximal
proper subgroup H; = G. By the definition of a Tarski monster every H; is cyclic
and hence of infinite index. But an infinite group cannot be the union of a finite
number of subgroups of infinite index. Thus, any 2 € G \ Uf-;l H; will satisfy the
condition required in the definition of the spread. O

2.4. Stronger generation properties. In order to prove Theorem 7 we constructed
a 3 x k matrix all of whose columns represent different elements of V;,(G). In the
sequel we will need a matrix satisfying a stronger condition, which is somewhat
technical but useful.

Lemma 10. For any k,n € N withn > 4 there exists a matrix A € My« (G), as in
Equation (1) in Section 2.1, with the following properties.

(1) Every pair of entries generates G :
i) #Um) = (g.g,) =G.
(2) Every three rows generate G*:

l<i<j<l<n = (g g.q)=G"
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(3) The following configuration will never appear as a 4 x 4 minor of the matrix,
foranyo,t,n,0 € Aut(G) and p,q,r,s € G:

- p° p? pf
@ - q" q°
7o T . r0
KL L

Proof. We construct the matrix entries one by one according to the following order:

1 1 1 2 2 k k
gla g27 g37 cee g15 g25 ) gn_lv gna

namely column by column, thereby making sure that that all three desired properties
hold:

(1) Every pair of elements generates G. Upon adding the element g;" one can
make sure that it generates G with every previous entry by Lemma 9. In fact the
proof of that lemma makes it clear that there are infinitely many possible choices of
an element that will satisfy this condition. Thus we can guarantee the validity of (1)
even if we require later in the proof to exclude finitely many possibilities at every
stage.

General discussion: Assuming from now on that (1) is indeed satisfied we notice that
for a given 2 x 2 minor
i J
g &
i o)
g &

there is at most one o € Aut(G) such that g/ = (g!)” and g/ = (g!)°. If this
holds for given 1 < i < j < k and for some choice of 1 < s < t < n we say
that the columns i, j are o-near. Next we extend the notion of near columns to
be an equivalence relation — declaring two columns i, j to be o-related if there is
a sequence of distinct columns i = ig,i1,i2,...,i, = j such that iy and i,4; are
og-near,®x = 0,...,r — 1, and 0 = 0yp0103...0,—1. We will denote the set of all
automorphisms relating two columns 1 <i < j <k by

Eij ={o0 €Aut(G) | jiso-relatedtoi}.

It is clear from the definition, and from the fact that any two matrix elements generate
G that this set is finite. Finally let us note that these relations can be defined even
for matrices that are only partially defined, namely for matrices with some missing
entries.
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Assume that we are now adding the element g7", i.e., that we have already con-
structed the matrix

gl gF ...ogrt gr O
o . -

1 1
811 g;n—l g;n—l 0
: : O O
g & g™t O O

We choose an element g;* which will satisfy condition (1) while excluding the finite
set of possibilities:

m—1 )
U U @he.
i=10€E;

(2) Every three rows generate G*. By Proposition 6 all we have to do in order to
prove that G¥ = (gi, &/ &1) istoexclude the possibility thatforsome 1 <s <m <k
and some o € Aut(G) we have

g gm\ 7
gl=1\s")
g g

where the automorphism applied to the vector just means that it is applied to each
entry separately. But such a configuration is not possible by construction because at
the time of the choice of the element g;*, the columns s, m are already o-related (in
fact they are even o-near) and thus the choice of g;* = (g7) is ruled out.

(3) Excluding cyclic configurations. A configuration such as the one appearing
in (3) is excluded because at the time of construction of the element labeled r?
this choice is in fact invalid. Indeed, at that time the first and the last column are
already 0710 = (67'1)(n~"'6) related so that the choice r? = (r”)"fle is invalid.
Equivalently, the same choice can be ruled out by the fact that the second and fourth
columns are 7~ ! §-related. O

3. Highly transitive actions

Let G be a Tarski monster. We argue by induction on k that the action of I' = Out(Fy)
on V,(G) is k-transitive.
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3.1. The induction basis

Proposition 11. For every n > 3, Aut(Fy) acts transitively on V,,(G), where G is a
Tarski monster group.

Proof. Let us fix a basepoint ¢ = (g1,82....,8n) € Vu(G). We are at liberty
to choose a convenient base point — and using Lemma 9 repeatedly we impose the
condition (g;, gj) = G foralli # j. Now givenany h = (hy,ha, ..., h,) € Vu(G)
we have to exhibit a sequence of Nielsen transformations taking g to 4. Since any
generating set contains a generating pair we may assume, after renumbering the
indices, that (h1, h2) = G. Since G has spread greater than or equal to 2 there exists
some z € G such that

(g2,2) = (h1,2) =G. )
We proceed with the following sequence of Nielsen transformations:
81 81 hy i h
g2 82 g2 h ha
g= g3 | o zZ Qs z Q> A Q> hs — h (3)
&n &n &n &n Iy

The first &> stands for a sequence of Nielsen transformations of the form w(R3,1, R3,2)
where w is any free word on two generators satisfying w(g1, g2) = g5 1z, The ex-
istence of such a word is guaranteed by the fact that (g1, g2} = G. The next three
&> use exactly the same argument, but instead of using the fact that (g;,g,) = G
they appeal in turn to the two parts of Equation (2) and then to our assumption that
(h1,h2) = G. O

Since Aut(F,) ~ V,(G) is transitive, so is the quotient action I' ~, V;,(G),
which is exactly what we require for the basis of our induction.

3.2. General Tarski monsters. We choose a base k-tuple
(Ig".1g%1.1g%]. ... [g] = [*D)

of distinct elements in V,(G). In order to establish the induction step we have to
show that for any [h] & {[gl], [52], [53], ..., [g%"1]} there is a group element y € T

such thaty[gi] = [gi] foralll <i <k-—1 and ylgl = [A].

Again we have a lot of freedom in the choice of our basis k-tuple. We make our
choice by picking a matrix

k
g% gl — gl — | |
1 k - g2 -
A= g? g = -, =g ... g¥|.
: : : | |
& - &k — & -
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satisfying the conditions guaranteed by Lemma 10, and taking its columns as repre-
sentatives. The element i = (hy, ha, ..., h,) € V,(G) on the other hand is dictated
to us. But, since (h) = G we may assume, after possibly reordering the indices, that
(h1,h2) = G.

We wish to proceed in much the same way as we did in Equation (3), taking g to
h, but this time we have to be careful not to touch the elements {g’ | 1 <i <k —1}.
Let us find an element z € G such that all the 3 x k matrices A4, ;13, Ay below satisfy
the equivalent conditions of Proposition 6:

m=- - s - -
g g ... gz
gl &3 gt

== = & - -
g g2 -
gl g ... ogtom

A4= gé g% glzc—l h2
gl g2 ... gt 2

For the matrices A,, A4 this can be achieved by avoiding finitely many bad values
of z, by an argument identical to that used in the proof of Lemma 10. For the matrix
A3 we can use the same argument assuming (/1, g3) = G. On the other hand, if
(h1, g3) is a cyclic subgroup then the desired condition [h1, g3, z] # [g}, g5, &',] for
all 1 <i < k is satisfied automatically, for any choice of z which makes {A1, g3, z}
into a generating set, just because all the other columns satisfy the condition that
every pair of elements generates G and the last column does not.

We now proceed by applying the following sequence of Nielsen transformations:

g1 g1 hy hy hy hy
82 82 82 ho ho hy
g3 g3 g3 g3 h3 h3
_g = g4 Q—> z Q—> z q9 z Q—> z C|—> h4 :b
&n &n &n &n &n hn

This time the first &> corresponds to w(R4,1, R4,2. R4,3), where w is chosen so as
to satisfy the two conditions

© w(g1,82.83) =g, 'z
s wigh,gh, gl) =Idforalll <i <k.
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The existence of such a word follows directly from condition (2) of Proposition 6,

combined with our assumptions on the matrix A. The existence of Nielsen transfor-

mations realizing the next three &>, while fixing gi forall 1 <i < k, follows in

exactly the same way using our assumptions on the matrices A,, A3, A4 respectively.
The last &> can be treated in a similar fashion as long as the matrix

g & .. &'
As=|gy & ... &'
g & ... & b

satisfies the conditions of Proposition 6.

Note that if there is a pair of indices such that (h;,h;) # G these conditions
are automatically satisfied, perhaps after rearrangement of the indices. Indeed, after
rearranging the indices so that

(ha,h3) # G,

the last column is the only one in A5 with this property and thus it cannot be in the
Aut(G)-orbit of any of the other columns. Thus we can assume that every pair of &
entries generates the entire group.

Finally consider the case that the conditions of Proposition 6 are not satisfied
for As. Not even when we change the order of the indices by making arbitrary
permutations of the first four rows of A. This means that there are four automorphisms
0,7,1,0 € Aut(G) and four columns 1 < i < j < [ < m < k such that the
corresponding 4 x 4 minor admits the forbidden configuration described in condition
(3) of Lemma 10,

g g g gr - ()T ()" (hy)?
g g & | |k o ()" ()
gh gl & gr| | () - ()’
g gl gl gn (ha)°  (ha)® (ha)" -

contradicting our construction of the matrix A.

4. Concerning faithfulness of the action

4.1. A theorem of Magnus. We will require the following well-known theorem of
Wilhelm Magnus from 1930:

Theorem 12 ([MKS76], Theorem N5, p. 172). Let a,b € Fy,, be elements of the free
group and assume that they generate the same normal subgroup

(@) = (b)".

Then a = gh€g™"' for some g € F,, and some € € {%1}.
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Namely, the normal closure of a cyclic group determines the generator up to
conjugation and inversion.

4.2. The action Out(F,) on the redundant locus of F,_;
Definition 13. If n > d(G), the redundant locus of V,(G) is defined as

Rn(G) ={p € Va(G) | (p(x1).....¢(xn-1)) =G

for some basis x1,...,x, < F,},
and R,(G) < V,,(G) is the image of this (invariant) set, modulo Aut(G).
Lemma 14. For every n > 3, Out(F,) acts faithfully on R, (F,_1).

Proof. ltiseasyto verifythat¢: F,, — F,_; corresponds to an element of R, (F,—1)
if and only if it is surjective and the kernel is generated, as a normal subgroup, by a
primitive element of F},.

Let @ € Aut(F,) represent an element of Out(F,) that is in the kernel of the
action on R, (F,_;). Thus, by definition, for every ¢ € R, (F,_) there exists some
0 € Aut(F,—1) such that ¢ o = 0 o ¢, and in particular

o~ (ker(¢)) = ker(¢ o o) = ker(o o ¢) = ker(¢).

So « acts trivially on the collection of normal subgroups generated by a primitive
element. By Magnus’ theorem stated above, for every primitive element x € F;, there
exist g5 € Fy,, € € {£1} such that

ax = gxxg, . “)
In the particular setting g; = gx,, €; = €x,, for some basis x = {x1,x2,...,x,} we
have .

o1 (x) xll

€ _
a2 (x) §2%5°85 "
ax)=1 . |= :
' en y—1
o (x) 8nXn &y

Here, since « is defined only up to an inner automorphisms, we may assume that
g1 = 1. So we have omitted it from the above formula.

Let Y be the 2n-regular Cayley tree of F,, with respect to the given set of gener-
ators. We label the oriented edges of ¥ by elements of the corresponding symmetric
generating set {x1, x7'!, x2,..., x; !} in suchaway that F, is identified with the group
of color preserving automorphisms of the tree. Every element x € F; actson Y as a
hyperbolic automorphism with translation length £(x) := min{d (v, xv)|v € Y} >0
and axis Xy = {v € Y | d(v,xv) = £(x)}. Equation (4) implies that «(x;) is a
hyperbolic element of translation length 1 whose axis is g; X, (with either of its two
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possible orientations). In particular the axis of a(x;) is labeled either. .. x;, x;, x;, . ..
or with the inverse of this sequence. Similarly the translation length and axis labeling
is preserved for any primitive element of Aut(F;).

We claim that Xo(x;) N Xex;) = &iXi N giX; # @ foralli # j. Indeed,
assuming the contrary, since « preserves the translation length of primitive elements
we have

2 = L(xixj) = La(xi)a(x))) =24+ 2d (Xax;), Xax;))):

80 d(Xa(x;)» Xa(x;)) = 0 which is a contradiction. Now, by the version of Helly’s
theorem for trees (see for example [Ser80], [.6.5, Lemma 10) this implies that there is a
point o € ();—;._, Xa(x;)- After conjugation by an appropriate power of x; = a(x1)

we may assume that
0= ﬂ Xo@x) = ﬂ X;.

i=l..n i=l..n

But now X; = Xy(x;) since these two axes share a point and, up to orientation, they
have the same coloring; hence upon replacing g; by gix;"i for an appropriate choice
of power m;, we can assume that g;o = o. This immediately implies that g; = 1 for
alli.

We still have to show that ¢; = 1 for all ;. But if, say, €; = —1 then the primitive
element x; x,x3 will map to xl_lx;zx;3 . A short verification will show that, regardless
of the values of €5, €3, this element is neither conjugate to x1x,x3 nor to (x; X2X3)_1.

This completes the proof of the lemma. O

4.3. Group laws on two letters are universal

Lemma 15. Assume that G is a finitely generated group that satisfies a group law.
Then G already satisfies a non-trivial group law on two letters.

Proof. Assume that G satisfies a group law w € Fy, for some m > 2. By [BG09],
Corollary 3.3, there is a homomorphism ¢ = (¢1, @2, ..., ¢n): Fy — F such that
¢(w) # 1. Now G satisfies the non-trivial group law ¢ (w) as

¢(w)(g7h)=w(¢1(g’h)7¢2(g7h)v7¢n(g7h))= 1 fora11g7hEG' D
4.4. When G satisfies a group law the action is not faithful

Proposition 16. If G is any finitely generated group which satisfies a group law, then
for any n > max{2, d(G)} the action of Out(Fy,) on V,,(G) is not faithful.

Proof. As we saw in Section 4.3 we may assume that G satisfies a group law on two
letters, i.e. there exists a word w € F, such that w(g,h) = 1forall g,h € G.
Consider the automorphism o = w(Rj,1. R 2) given explicitly by

(X1, ..y Xp) = (X1, .00, Xp—1, Xpn - wW(x1, X2)).
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Now « is not the trivial automorphism because, by assumption, w is a non-trivial
word in F, and R, 1, Ry 2 generate a free subgroup of Out(F,). But by construction
« acts trivially on G”. O

4.5. When the action is not faithful G satisfies a group law. The following com-
pletes the proof of our main theorem.

Proposition 17. Let G be a Tarski monster and n > 3. Then the action of Out(Fy)
on V,(G) is faithful if and only if G satisfies no group law.

Proof. The only if part is treated in Proposition 16. Assume that G is a Tarski monster
group and that the action of Out(F,) on V,,(G) is not faithful. We will show that G
satisfies a group law.

It is enough to show that there exists some non-trivial word w = w(x, y) € F»
such that w(a, b) = 1 for any (a, b) € V,(G). Indeed, assume that w can be written
in reduced form as w = z; ... z,, where z1, ..., z, € {xT1, y*1} and let

v=wzw 'z =z gzt T

where z € {x*!, y*1} satisfies that z z7Y zn, z; 1. Then v = v(x, ) is a non-
trivial word in F,. Moreover, if (a, b) € V,(G) then v(a, b) = 1 since w(a,b) = 1.
If a and b do not generate G, then they belong to the same cyclic group, and so there
existsomec € G and i, j € Z suchthata = cland b = ¢/ . In this case, w(a,b) =
w(ct,c’) = c* for some k € Z, and so v(a,b) = v(c!,c/) = ckele ™ et =1
(where [ € {£i,4j}). Hence, G satisfies a group law with the word v.

By assumption, there exists some automorphism o = (a1, @2, ..., ®,) € Aut(Fy),
which is not an inner automorphism, such that for any g € V;,(G) there exists some
o € Aut(G) such that -

a1(g) = o(g1),
az(g) = 0(82),

an(g) = 0 (gn).

In particular, for any (a, b) € V2(G) and for any word u € F5, we can apply the
above to the n-tuple (a, b,u(a,b),1,1,...) € V,(G) obtaining the equation

az(a,b,u(a,b)) = o(u(a,b)) =u(o(a),o(d))
= u(al(a,b,u(a,b)),az(a,b, u(a,b))).

Here we used o1 (a, b, u(a, b)) as a short for ay(a, b, u(a,b),1,1,...).
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Now consider the following three words on two letters:
wy (x,y) = u (a1 (x, y,ulx, y)), a2 x, y,u(x, y))) - as(x, y,ulx, y) ™,
wy (x, y) = u (a1 (x,u(x, y), y), a3(x, u(x, y), y)) - @z (x, u(x, y), )7,
wi (x, y) = u (@2 (u(x, y), x, y), @3 (u(x, y), x, y)) - o1 (u(x, y), x, )"

By permuting the role of a, b, u(a, b) among the first three coordinates in the above
argument we know that w¥(a,b) = 1 for all (a,b) € V»(G) forallu € Fy(x,y).
If one of the w; is a non-trivial word in F3, then we have our group law. But if
wl?‘ represents the trivial word in F, for every i = 1,2,3 and every u € F5, then
o = (01,00, a3) gives rise to an element of Out(F3) in the kernel of the action on
R3(F>) and hence a contradiction to Lemma 14. O

5. Final remarks and questions

We conclude with a remark and a few open questions.

Remark 18. The proof of Theorem 4 may be somewhat simplified if we assume that
G is a Tarski monster with Out(G) = (e). Indeed, given any countable group H, the
existence of Tarski monsters with Out(G) = H is guaranteed by [Obr96].

5.1. Lower rank groups

Question 19. What about Out(F,) and Out(F3)? Do they admit a highly transitive
action on a set?

There is a chance that the action that we study in this paper, of Out(F,) on V,,(G),
still has very good transitivity properties for n = 3. Even if this is true it seems that
the proof would be much harder as it would require a much better understanding of
the Tarski monster G and its automorphisms. A topic that we carefully avoided in
this paper. The main obstacle is to find Tarski monster groups that satisfy some 3 x 3
analogue for condition (3) of Lemma 10.

On the other hand it is plausible that one can construct completely different
actions in this lower rank setting. For example since Out(F;) = GL,(Z) =
Z/2Z x (Z/6Z *z27 Z]/4Z), there is a good chance that one can construct a
highly transitive action for this group using the methods of [Dix90]. It is important
however to note that this is not automatic. It is not in general true that if a finite index
subgroup admits a highly transitive action then so does the group itself. Even though
the other direction is true of course.

As for n = 3: at least for the group Aut(F3) it follows from Corollary 1.2 of
[GLO9] that there is a finite index subgroup A < Aut(F3) that maps onto a finitely
generated free group, and hence admits a (non-faithful) highly transitive action. Again
it is plausible that one might be able to construct a highly transitive non-faithful action
of Aut(F3) from this.
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5.2. Mapping class groups

Question 20. Does Mod(S), the mapping class group of a closed orientable surface
S of a high enough genus admit a highly transitive action on a set? If not, how about
k-transitive actions for various values of k?

Recall that from [GGO8] it follows that these groups do admit faithful primitive
actions.

5.3. Faithfulness. Our proof of the faithfulness statement in Section 4 gives rise to
the following general result.

Theorem 21. For any finitely generated group G, the following are equivalent:

* The action of Out(Fy) on the Aut(G)-classes of Hom(Fy,, G) is faithful for all
large enough n.

o The group G does not satisfy a group law.

It is a very natural question if the above still holds if one replaces Hom(Fy, G)
by V,(G).
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