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Abstract. In an earlier work we introduced a geometric invariant, called finite decomposition
complexity (FDC), to study topological rigidity of manifolds. In particular, we proved the
stable Borel conjecture for a closed aspherical manifold whose universal cover, or equivalently
whose fundamental group, has FDC. In this note we continue our study of FDC, focusing
on permanence and the relation to other coarse geometric properties. In particular, we prove
that the class of FDC groups is closed under taking subgroups, extensions, free amalgamated
products, HNN extensions, and direct unions. As consequences we obtain further examples of
FDC groups – all elementary amenable groups and all countable subgroups of almost connected
Lie groups have FDC.
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1. Introduction

The geometric concept of finite decomposition complexity (FDC) was introduced
to study questions concerning the topological rigidity of manifolds [GTY]. Being
a coarse geometric property, FDC naturally arises in the following context at the
border of large-scale geometry and topology. The bounded Borel conjecture asks the
following: Is a quasi-isometry between uniformly contractible Riemannian manifolds
necessarily a bounded distance from a homeomorphism? In dimensions higher than
four, the powerful tools of surgery theory reduce this problem to proving the bounded
Farrell–Jones isomorphism conjecture – a coarse geometric analogue of the usual
Farrell–Jones conjecture – which asserts that a certain assembly map in bounded
L-theory is an isomorphism. We defined FDC for the purpose of developing a large
scale cutting and pasting method to attack these conjectures with the help of the
controlled Mayer–Vietoris sequence of Ranicki–Yamasaki [RY1], [RY2]. In [GTY]
we prove that if the fundamental group of a closed aspherical1 manifold has finite

�The authors were partially supported by grants from the U.S. National Science Foundation.
1Recall that the universal cover of a closed aspherical manifold is uniformly contractible.
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decomposition complexity, then its universal cover is boundedly rigid, that is, satisfies
the bounded Borel conjecture, and the manifold itself is stably rigid. Our technique
extends the controlled cutting and pasting method introduced in [Y1] to compute
operator K-theory and study the Novikov conjecture under the hypothesis of finite
asymptotic dimension.

Here, we shall focus on the FDC property itself, rather than on applications. We
shall work primarily in the setting of countable groups, equipped with proper left-
invariant metrics. Recall that every countable group admits such a metric, and that
any two such metrics are coarsely equivalent. As finite decomposition complexity
is a coarse invariant, the statement that a countable group has finite decomposition
complexity is independent of the choice of metric. Our permanence results are sum-
marized in the following theorem.

Theorem. The collection of countable groups having finite decomposition complexity
is closed under the formation of subgroups, extensions, free amalgamated products,
HNN extensions and direct unions.

The precise definition of FDC is inspired by the property of finite asymptotic
dimension introduced by Gromov [G1] and it is interesting to note that the class of
groups having finite asymptotic dimension satisfies the same stability results as above
[BD2], [DS] except for direct unions. Indeed, an infinite sum of copies of Z has FDC
whereas it does not have finite asymptotic dimension.

For the next statement, recall that a Lie group is almost connected if it has finitely
many connected components.

Theorem. The collection of countable groups having finite decomposition complexity
contains all countable subgroups of GL.n;R/, whereR is any commutative ring, all
countable subgroups of an almost connected Lie group, all hyperbolic groups and all
elementary amenable groups.

At the moment, we know of no group not having finite decomposition complexity
other than Gromov’s examples of (random) groups which do not coarsely embed into
a Hilbert space [G2], [G3], [AD]. Since these groups do not coarsely embed into
Hilbert space they do not have Property A and hence, according to the following
result, do not have FDC:

Theorem. Countable FDC groups have Property A.

On the other hand:

Theorem. Countable groups with finite asymptotic dimension have FDC.

Hence, finite decomposition complexity appears as a generalization of finite
asymptotic dimension. Let us emphasize that in general, solvable groups, or lin-
ear groups may have infinite asymptotic dimension.
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Organization and remarks. In Section 2 we introduce finite decomposition com-
plexity and outline its basic properties. This section overlaps with Section 2 of
[GTY]. In the subsequent section we develop the permanence characteristics of finite
decomposition complexity. In Section 4 we show that a metric space having finite
asymptotic dimension has finite decomposition complexity. In particular hyperbolic
groups have FDC. We then show that finite decomposition complexity implies Prop-
erty A. As a consequence, a sequence of expanding graphs (viewed as a metric space)
does not have finite decomposition complexity.

Section 5 is devoted to examples. We first prove that all (countable) elementary
amenable groups have finite decomposition complexity. In the balance of the sec-
tion we provide complements to [GTY], Theorem 3.0.1, in which we proved that
(countable) subgroups of GL.n;R/ have finite decomposition complexity, whenR is
a domain. Here, we extend this result to the case of an arbitrary commutative ring R
with unit. We also provide, for convenience of the reader, a short and self-contained
proof in the special case R D ZŒX1; : : : ; Xm� and a proof that GL.n;R/ has finite
asymptotic dimension when R D FqŒX1; : : : ; Xm�.

2. Decomposition complexity

As described in the introduction, finite decomposition complexity arises as a gener-
alization of the notion of finite asymptotic dimension, introduced by Gromov [G1].
Recall that a metric space X has asymptotic dimension at most d if the following
condition holds: for every r > 0 the space X may be written as a union of d C 1

subspaces, each of which may be further decomposed as an r-disjoint union:

X D
d[

iD0

Xi ; Xi D
G

r-disjoint

Xij ; (2.1)

in which the family fXij g (as both i and j vary) is bounded.2 It is frequently useful
to think of the integers 0; 1; : : : ; d as representing colors and as the spaceX as having
been covered by colored sets, any two sets of the same color being at a distance at
most r . If there exists a d 2 N for which X has asymptotic dimension at most d
then X has finite asymptotic dimension.

Consider now the group G D L
Z (countably infinite direct sum). We equip G

with the left-invariant metric associated to the proper length function

`.a/ D
X

njanj; where a D .an/
1
nD1.

The groupG contains Zn as a subgroup, for every n. Since the asymptotic dimension
of Zn is n, it is elementary to see that G does not have finite asymptotic dimension.

2Here, and subsequently, when Z is a metric space the notation Z D tZj (r-disjoint) means that Z

is the union of the Zj , and that the distance in Z between distinct Zj ’s is at least r .
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Nevertheless, we can still decompose G into bounded pieces in a manner similar to
(2.1), but in a two step process. First, we set d1 D 0; given r1 2 N we decompose as

G D G0; G0 D
G

r1-disjoint

x � Zr1 I (2.2)

the disjoint union is as cosets of the subgroup Zr1 � G consisting of those elements
supported on the first r1 coordinates. Second, we set d2 D r1; given r2 2 N we
decompose, using the fact that the asymptotic dimension of Zr1 is (at most) r1, as

Zr1 D
d2[

iD0

Xi ; Xi D
G

r2-disjoint

Xij :

Observe that since we use a left-invariant metric, decomposing the single space Zr1

gives a decomposition as in (2.1) of every coset x � Zr1 appearing in (2.2) with a
uniform bound on the size of the pieces. What is important here is that our success
in decomposing G is not affected by the amount of disjointness r1 and r2 required at
each step. Essentially, we have described here a simple case of the metric decomposi-
tion game which motivates the definition of (weak) finite decomposition complexity.
We shall now proceed to the formal definitions, focusing on finite decomposition
complexity – we shall conclude with a brief discussion of weak FDC.

2.1. Definition of FDC. As is clear from the previous discussion, it is advantageous
to formulate our definitions not for individual metric spaces but for (countable) fam-
ilies of metric spaces – such families appear naturally in the process of decomposing
a space. We shall denote such a metric family by X D fX g and shall view a single
metric space as a metric family with a single element.

In defining finite decomposition complexity we shall consider decompositions
very much like those appearing in the definition of finite asymptotic dimension (2.1);
however, for technical reasons related to the applications in [GTY], we shall require
d D 1 in (2.1).3 The following basic definitions appear in [GTY] as Definitions 2.0.1,
2.0.2 and 2.0.3.

2.1.1 Definition. An r-decomposition of a metric space X over a metric family Y is
a decomposition

X D X0 [X1; Xi D
G

r-disjoint

Xij ;

where each Xij 2 Y. A metric family X is r-decomposable over Y if every member

of X admits an r-decomposition over Y. We introduce the notation X
r�! Y to

indicate that X is r-decomposable over Y.

3At this point the reader may wish to ‘replay’ the decomposition game for
L

Z using only decompo-
sitions in which d D 1.
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2.1.2 Definition. Let A be a collection of metric families. A metric family X is
decomposable over A if, for every r > 0, there exists a metric family Y 2 A and
an r-decomposition of X over Y. The collection A is stable under decomposition if
every metric family which decomposes over A actually belongs to A.

A metric family Z is bounded if there is a uniform bound on the diameter of its
elements:

supf diam.Z/ W Z 2 Zg < 1:

2.1.3 Definition. The collection D of metric families with finite decomposition com-
plexity is the minimal collection of metric families containing the bounded metric
families and stable under decomposition. We abbreviate membership in D by saying
that a metric family in D has FDC.

Observe that the definitions immediately imply that a metric space with asymptotic
dimension at most one has FDC – further, metric families with asymptotic dimension
at most one uniformly in the sense of Bell and Dranishnikov [BD1] have FDC. The
question of whether metric spaces of finite asymptotic dimension have FDC is more
subtle and will be taken up later.

2.2. Equivalent formulations of FDC. We have chosen the most direct route to our
definition of FDC. We shall now present two equivalent descriptions of the collection
of families having FDC which we require. The first of our equivalent descriptions is
based on the following definition, repeated here from [GTY], Section 2.

2.2.1 Definition. We define, for each ordinal ˛, a collection of metric families ac-
cording to the following prescription:

(1) Let D0 be the collection of bounded families:

D0 D f X W X is boundedg:
(2) If ˛ is an ordinal greater than 0, let D˛ be the collection of metric families

decomposable over
S

ˇ<˛ Dˇ :

D˛ D f X W for all r there exist ˇ < ˛ and Y 2 Dˇ such that X
r�! Y g:

We introduce the notation Dfin for the union of the Dn, over n 2 N.

It is instructive to return to the example of
L

Z in the context of these definitions.
As is the case for any metric space having asymptotic dimension at most one, Z 2 D1.
A simple induction reveals that Zn 2 Dn and looking at the definitions we see thatL

Z 2 D! .

2.2.2 Theorem. A metric family has finite decomposition complexity precisely when
it belongs to D˛ for some countable ordinal ˛.



382 E. Guentner, R. Tessera and G. Yu

Our second equivalent description of the collection of families having FDC is
based on the idea of a winning strategy for the metric decomposition game. Under-
standing this description is important for understanding the proofs of the permanence
results we shall present below. As a consequence we shall go carefully into the details.

The metric decomposition game has two players, a defender and a challenger. The
defender attempts to decompose metric families (as in Definition 2.1.1) in response
to requests from the challenger for (presumably large) amounts of disjointness. More
formally, let X D Y0 be the starting family. On the first turn the challenger asserts
an integer r1, thereby requesting an r1-decomposition of Y0; the defender responds
by exhibiting an r1-decomposition of Y0 over a new metric family Y1. On the second
turn, the challenger asserts an integer r2, thereby requesting an r2-decomposition of
Y1; the defender responds by exhibiting an r2-decomposition of Y1 over a new metric
family Y2. The game continues in this way, turn after turn, and ends if and when the
defender produces a bounded family. In this case the defender has won.

A winning strategy is a set of instructions which, if followed by the defender,
guarantee victory no matter what requests are made by the challenger. A complete
game in which the defender follows the winning strategy produces a series of decom-
positions:

X D Y0

r1 �� Y1

r2 �� Y2
�� : : : rn �� Yn; Yn bounded: (2.3)

When the defender follows a winning strategy the eventual outcome of the game
is certain. Nevertheless, the number of turns required may not be known and may
depend on the requests made by the challenger. Indeed, the required number of turns
may be unbounded, as is already the case for the winning strategy inherent in the
discussion of our example

L
Z.

A winning strategy may or may not exist; when it does, we say that the original
metric family X admits a decomposition strategy. We have arrived at our second
description of FDC.4

2.2.3 Theorem. A metric family has finite decomposition complexity precisely when
it admits a decomposition strategy.

We shall work directly with decomposition strategies in the proof of this theorem,
as well as in the proofs of some of our permanence properties, and so provide their
precise mathematical formulation. The idea is to encode the turns of possible de-
composition games as a labeled tree – each turn of a possible game corresponds to a
vertex; the metric family relevant to a particular turn labels the corresponding vertex;
from each vertex emanate edges labeled with the possible requests of the challenger
and the defender responds by following the appropriate edge.

Formally, a decomposition tree is a directed, rooted treeT satisfying the following:

(1) every non-root vertex of T is the terminal vertex of a unique edge;
4Taken together, Theorems 2.2.2 and 2.2.3 form Theorem 2.2.1 of [GTY].



Discrete groups with finite decomposition complexity 383

(2) every non-leaf vertex of T is the initial vertex of countably many edges, which
are labeled by the natural numbers;

(3) T contains no infinite ray (geodesic edge-path).

A decomposition strategy for a metric family X comprises a decomposition tree T ,
the support tree of the strategy, together with a labeling of the vertices of T by metric
families Y subject to the following requirements:

(4) the root vertex of T is labeled X;
(5) every leaf of T is labeled by a bounded family;
(6) if Y labels the initial vertex and Z the terminal vertex of an edge labeled by

r 2 N then Y is r-decomposable over Z.

Games in which the defender follows the winning strategy correspond to paths in
T beginning at its root and ending at a leaf. For example, if the edges along the path
are labeled r1; : : : ; rn and the vertices are labeled X, Y1; : : : ;Yn we obtain the series
of decompositions in (2.3).

Again, we illustrate these ideas in the context of our example
L

Z. It will be
convenient to denote the interval f 0; 1; : : : ; r g � Z by Œr�. Further, we shall denote
a metric family in which all spaces are isometric to a single space by that space.

Tiling Z with translates of the interval Œr�, and coloring the translates alternately
red and blue gives an r-decomposition of Z over a bounded family. The diagram on
the left in Figure 1 expresses this as a decomposition strategy. A strategy for Z2 is
obtained by first applying the strategy for Z in one factor, and then in the other. The
decomposition game ends after two turns, with Z2 being decomposed into translates
of the product Œr2�� Œr1� of intervals. This strategy is depicted in the middle diagram
in Figure 1. Continuing in this way, we obtain a strategy for Zn in which the defender

M

Figure 1. Strategies for Z, Z2 and
L

Z.



384 E. Guentner, R. Tessera and G. Yu

wins in n turns, no matter how the challenger plays. Paths in this strategy beginning
with Zn and ending in a bounded family have the form

Zn
r1 �� Zn�1 � Œr1� �� : : : rn �� Œrn� � � � � � Œr1�:

Finally, we build a strategy for
L

Z as follows. Begin with the diagram on the right
in Figure 1, which represents the decomposition of

L
Z into cosets for the various

Zr described earlier. Then, to each leaf attach the strategy for the appropriate Zr .
Observe that in this strategy the number of turns required for the defender to win is
unbounded, and depends on the first request of the challenger.

We turn to the proofs of Theorems 2.2.2 and 2.2.3. We require the following
lemma.

2.2.4 Lemma. Let T be a decomposition tree. There exists a function v 7! ˛v from
the set of vertices of T to a set of countable ordinal numbers with the properties that
˛v D 0 if v is a leaf and

˛v D sup
w<v

f˛w C 1g
otherwise.

Proof. Observe that, by virtue of the no-infinite-ray assumption, a decomposition
tree has leaves. Define, for each countable ordinal ˛, a subset L˛ of the vertex set of
T by transfinite recursion: L0 is the set of leaves of T ; for ˛ > 0,

L˛ D the set of leaves of T n
[
ˇ<˛

Lˇ ;

if this set is non-empty, and L˛ D ; otherwise. Note that if it is non-empty, the set
T n S

ˇ<˛ Lˇ is again a decomposition tree, and therefore has leaves.
Let ˛0 D f˛ W L˛ ¤ ;g and let L D fL˛; ˛ < ˛0g. Clearly, L is a partition of

the set of vertices of T , and the map ˛ 7! L˛ W ˛0 ! L is a bijection. It follows that
˛0 is countable. Finally, for every vertex v, let ˛v be the unique ˛ such that v 2 L˛ .
It is not difficult to see that ˛v satisfies the desired properties.

Proof of Theorems 2.2.2 and 2.2.3. For purposes of the proof let D0 be collection
of families admitting a decomposition strategy; let D00 be the collection of families
belonging to D˛ for some countable ordinal ˛. We must show D00 D D0 D D.

A simple transfinite induction shows that D˛ � D for every ordinal ˛. Thus,
D00 � D.

Next, we show that D � D0. Since a bounded family trivially admits a decom-
position strategy, it suffices to show that the collection D0 is closed under decompos-
ability. Let X be a family decomposable over D0. For every r 2 N, obtain a family
Yr 2 D0 such that X is r-decomposable over Yr . A decomposition strategy for X is
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obtained by attaching strategies for the Yr to the bottom of an ‘infinite caret’ whose
root vertex is labeled X and whose edges are labeled by N as shown in Figure 2.

2

1

X

Y1

Y2

Figure 2. Concatenating strategies.

Finally, we show that D0 � D00. Let X 2 D0. Let T be the support tree of a
decomposition strategy for X; denote the label of a vertex v by Yv and let v 7! ˛v

be a function with the properties outlined in Lemma 2.2.4. It suffices to show that for
every ordinal ˛ we have: if ˛v � ˛ then Yv 2 D˛ . This follows easily by transfinite
induction.

2.2.5 Remark. At the outset of this project, we defined a property weaker than FDC
which is more transparently related to finite asymptotic dimension, introduced by
Gromov [G1]. The difference between this property – weak finite decomposition
complexity – and the one defined here lies in the type of decomposition – we replace
r-decomposability by the notion of .d; r/-decomposability.

A metric family X is .d; r/-decomposable over a metric family Y if everyX 2 X

admits a decomposition

X D X0 [ � � � [Xd ; Xi D
G

r-disjoint

Xij ;

where eachXij 2 Y. The metric family X weakly decomposes over the collection A
of metric families, if there exists ad 2 N such that for every r > 0, there exists Y 2 A
and a .d; r/-decomposition of X over Y. The collection of metric families with weak
finite decomposition complexity is the smallest collection containing bounded metric
families, and stable under weak decomposition.

Clearly, both FDC and finite asymptotic dimension (uniformly in the sense of
Bell and Dranishnikov [BD1]) imply weak FDC. While true that finite asymptotic
dimension implies FDC itself, this is already difficult. (See Theorem 4.1 below.)

2.2.6 Question. Are finite and weak finite decomposition complexity equivalent?
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3. Permanence of FDC

In this section we shall study the permanence characteristics of finite decomposition
complexity. While we shall focus on finite decomposition complexity, all permanence
results hold for weak finite decomposition complexity as well.

We begin by recalling some elementary concepts from coarse geometry. Let X

and Y be metric families. A subspace of the family Y is a family Z, every element
of which is a subspace of some element of Y. A map of families from X to Y is a
collection of functions F D ff g, each mapping some X 2 X to some Y 2 Y and
such that every X 2 X is the domain of at least one f 2 F . We use the notation
F W X ! Y and, when confusion could occur, write f W Xf ! Yf to refer to an
individual function in F . The inverse image of the subspace Z is the collection

F �1.Z/ D ff �1.Z/ W Z 2 Z, f 2 F g:
The inverse image is a subspace of X.

A map of families F W X ! Y is uniformly expansive if there exists a non-
decreasing function � W Œ0;1/ ! Œ0;1/ such that for every f 2 F and every
x; y 2 Xf

d.f .x/; f .y// � �.d.x; y//I (3.1)

it is effectively proper if there exists a proper non-decreasing function ı W Œ0;1/ !
Œ0;1/ such that for every f 2 F and every x, y 2 Xf

ı.d.x; y// � d.f .x/; f .y//I (3.2)

it is a coarse embedding if it is both uniformly expansive and effectively proper. (In
this case, if X is unbounded then � is also proper.) Summarizing, a map of familiesF
is a coarse embedding if the individual f are coarse embeddings admitting a common
ı and �. Similar remarks apply to uniformly expansive and effectively proper maps.

Recall that a coarse embedding f W X ! Y of metric spaces is a coarse equiv-
alence if it admits an ‘inverse’ – a coarse embedding g W Y ! X for which the
compositions f Bg and g Bf are close to the identity maps onX and Y , respectively:

there exists C > 0 such that d.x; gf .x// � C and d.y; gf .y// � C , (3.3)

for all x 2 X and y 2 Y . So motivated, a coarse embedding F W X ! Y of metric
families is a coarse equivalence if each f 2 F is a coarse equivalence admitting an
inverse g satisfying the following two conditions: first, the collection G D fgg is
a coarse embedding Y ! X of metric families; second, the composites f B g and
g B f are uniformly close to the identity maps on the spaces comprising X and Y,
in the sense that the constant C in (3.3) may be chosen independently of the spaces
X 2 X and Y 2 Y. Two metric families X and Y are coarsely equivalent if there
exists a coarse equivalence X ! Y. Coarse equivalence is an equivalence relation.
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3.1. Permanence for spaces. The primitive permanence properties for metric fam-
ilies are Coarse Invariance, the Fibering and Union Theorems. We shall prove these
in this section.

3.1.1 Lemma. Let X and Y be metric families and let F W X ! Y be a uniformly
expansive map. For every r > 0 there exists an s > 0 such that if Z and Z0 are

subspaces of Y and Z0 s�! Z then F �1.Z0/ r�! F �1.Z/. Further, s depends only
on r and on the non-decreasing function � satisfying (3.1).

Proof. AssumingF is uniformly expansive let� be such that (3.1) holds. Set s D �.r/

and assume Z0 s�! Z. An element ofF �1.Z0/has the formf �1.Z/ for someZ 2 Z0
and f 2 F . Given such an element obtain a decomposition

Z D Z0 [Z1; Zi D
G

s-disjoint

Zij ;

in which the Zij 2 Z. We then have a decomposition

f �1.Z/ D f �1.Z0/ [ f �1.Z1/; f �1.Zi / D
[
f �1.Zij /;

in which the f �1.Zij / 2 F �1.Z/. From the definition of s we see immediately that
the union on the right is r-disjoint.

3.1.2 Lemma. Let X and Y be metric families and let F W X ! Y be an effectively
proper map. If Z is a bounded subspace of Y then F �1.Z/ is a bounded subspace
of X.

Proof. Assuming F is effectively proper let ı be such that (3.2) holds. Let B bound
the diameter of the metric spaces in the family Z. Using the hypothesis that ı is
proper, let A be such that ı.A/ � B . Then F �1.Z/ is bounded by A.

3.1.3 Coarse Invariance. Let X and Y be metric families. If there is a coarse
embedding from X to Y and Y has finite decomposition complexity, then so does X.
In particular:

(1) a subspace of a metric family with FDC itself has FDC;

(2) if X and Y are coarsely equivalent, then X has FDC if and only if Y does.

Proof. By pruning and relabeling we can pull back a decomposition strategy for Y to
X. Precisely, select an increasing sequence of natural numbers s1; s2; : : : such that
si � i . Prune T by removing a vertex v, together with the entire ‘downward’ subtree
based at v and the unique upward edge incident at v, when this upward edge is labeled
by an element of N n f si g. The resulting graph T 0 is a subtree of T and a vertex of
T 0 is a leaf of T 0 exactly when it is a leaf of T . Relabel a typical edge as shown in
Figure 3. It follows from Lemmas 3.1.1 and 3.1.2 that the labeling requirements for
a decomposition strategy are fulfilled.
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Z F�1.Z/

Z0 F�1.Z0/

si i

Figure 3. Relabeling.

3.1.4 Fibering Theorem. Let X and Y be metric families and let F W X ! Y be a
uniformly expansive map. Assume Y has finite decomposition complexity, and that for
every bounded subspace Z of Y the inverse image F �1.Z/ has finite decomposition
complexity. Then X has finite decomposition complexity.

Proof. A decomposition strategy for Y pulls back, as in the previous proof, to a
partial decomposition strategy for X. It is partial in that the leaves of its support tree
are labeled by families which are not (necessarily) bounded but rather are the inverse
images of bounded subspaces of Y. We complete the partial strategy by attaching to
a leaf labeled by F �1.Z/ a strategy for this family.

3.1.5 Remark. Directly from the definitions we see that X 2 Dn precisely when
X admits a decomposition strategy in which the strategy tree has depth not greater
than n, meaning that the length of a geodesic emanating from the root vertex is
at most n. In the notation of the Fibering Theorem, the previous proof shows the
following: suppose that Y 2 Dn and that there exists a natural number m such that
F �1.Z/ 2 Dm for every bounded subspace Z of Y; then X 2 DnCm.

3.1.6 Remark. Continuing in the spirit of the previous remark, suppose that Y 2 Dfin

and that F �1.Z/ 2 Dfin for every bounded subspace Z of Y. Then X 2 D!Cfin,
meaning that for some natural number n we have X 2 D!Cn. The distinction
between this remark and the previous is that here we assume merely that each
F �1.Z/ 2 Dm for some natural number m, which may depend on Z.

3.1.7 Finite Union Theorem. Let X be a metric space, expressed as a union of
finitely many metric subspaces X D Sn

iD0Xi . If the metric family fXi g has finite
decomposition complexity so does X .

Proof. Consider first the case n D 2, illustrated in Figure 4. For every r > 0, the
metric spaceX D X1 [X2 is r-decomposable over the family fX1; X2 g 2 D. Thus
X 2 D. The general case follows by induction.

3.1.8 Union Theorem. LetX be a metric space, expressed as a union of metric sub-
spacesX D S

i2I Xi . Suppose that the metric family fXi g has finite decomposition
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complexity and that for every r > 0 there exists a metric subspace Y.r/ � X having
finite decomposition complexity and such that the subspaces Zi .r/ D Xi n Y.r/ are
pairwise r-disjoint. Then X has finite decomposition complexity.

Proof. To conclude that X has finite decomposition complexity, it suffices to show
thatX is decomposable over D. The proof of this is illustrated in Figure 5. Formally,
for every r > 0 let Y.r/ and Zi .r/ be as in the statement. The decomposition

X D Y.r/ [Z.r/; Z.r/ D
G

r-disjoint

Zi .r/

is an r-decomposition of X over the family Yr D fY.r/g [ fZi .r/ W i 2 I g. Since
theZi .r/ are subspaces of theXi and the family fXi g has finite decomposition com-
plexity, the family fZi .r/ W i 2 I g does as well; since Y.r/ has finite decomposition
complexity, the family Yr does as well.

X

fX1; X2g

fX1; X2g

Figure 4. A finite union.

X

Y1

Y2

Figure 5. A union.

3.1.9 Remark. While we could state union theorems in the context of metric families
(instead of single metric spaces) we shall not require this level of generality.

3.2. Permanence for groups. Most (though not all) permanence properties for dis-
crete groups are deduced by allowing the group to act on an appropriate metric space,
and applying the permanence results for spaces detailed in the previous section.

Let G be a countable discrete group. Recall that a countable discrete group
admits a proper length function ` and that any two metrics defined from proper
length functions by the formula

d.s; t/ D `.s�1t /

are coarsely equivalent (in fact, the identity map is a coarse equivalence). As a
consequence, a coarsely invariant property of metric spaces is a property of count-
able discrete groups – whether or not a group has the property is not an artifact of
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the particular metric chosen. Consequently, we say that a discrete group has finite
decomposition complexity if its underlying metric space has finite decomposition
complexity for some (equivalently every) metric defined as above.

3.2.1 Proposition. A countable direct union of groups with finite decomposition
complexity has finite decomposition complexity. Equivalently, a countable discrete
group has finite decomposition complexity if and only if every finitely generated
subgroup does.

Proof. Let G be a countable discrete group, expressed as the union of a collection
of subgroups each of which has finite decomposition complexity: G D [Gi . Equip
G with a proper length function and associated metric. We shall show that for every
r > 0 (the metric space) G is r-decomposable over a metric family with finite
decomposition complexity.

Let r > 0. Since the ball of radius r centered at the identity in G is finite there
exists i D i.r/ such that this ball is contained inGi . It follows that the decomposition
ofG into the cosets ofGi is r-disjoint. Further, the family comprised of these cosets
has finite decomposition complexity since each coset is isometric to Gi , which has
finite decomposition complexity (in any proper metric so in the subspace metric) by
assumption.

Let now X be a metric space, and suppose that G acts (by isometries) on X . For
R > 0 the R-coarse stabilizer of x is

Stab.x;R/ D fg 2 G W d.x; g � x/ < Rg:
In general an R-coarse stabilizer is a subset of G. The 0-coarse stabilizer of x is its
stabilizer, a subgroup of G. The space X is locally finite if every ball is finite.

3.2.2 Lemma. For every x 2 X the orbit map g 7! g � x W G ! X is uniformly
expansive.

3.2.3 Proposition. Let G be a countable discrete group acting on a metric space
X with finite decomposition complexity. If there exists x0 2 X such that for every
R > 0 the R-coarse stabilizer of x0 has finite decomposition complexity then G has
finite decomposition complexity.

Proof. By restricting to the orbit of x0 we may assume the action is transitive. To-
gether with the coarse stabilizer condition, the fact that the orbit map g ! g � x0 is
a surjective and equivariant map G ! X implies that the hypothesis of the Fibering
Theorem 3.1.4 are fulfilled. The proposition follows.

3.2.4 Corollary. LetG andX be as in the previous proposition. IfX is locally finite,
and if there exists x0 2 X such that the stabilizer of x0 has finite decomposition
complexity, then G has finite decomposition complexity.
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Proof. Under the stated hypotheses the Finite Union Theorem implies that the coarse
stabilizers ofx0 have finite decomposition complexity. Thus, the previous proposition
applies.

3.2.5Corollary. The collectionof countable discrete groupswithfinite decomposition
complexity is closed under extensions.

3.2.6 Proposition. If a countable discrete group acts (without inversion) on a tree,
and the vertex stabilizers of the action have finite decomposition complexity, then the
group itself has finite decomposition complexity.

Proof. According to the Bass–Serre theory, a group as in the statement is built from
vertex stabilizers of the action by iterated free products (with amalgam), HNN ex-
tensions and direct unions. An HNN extension, in turn, is built from free products
(with amalgam), a direct union and a group extension. As we have seen that the class
of (countable discrete) groups with finite decomposition complexity is closed under
direct unions, subgroups and extensions the proposition follows once we show that
a free product with amalgam has finite decomposition complexity if the factors do.
But, this follows axiomatically from the above proven permanence results – essen-
tially, apply fibering to the action on the Bass–Serre tree using the union theorem to
conclude that the coarse stabilizers have finite decomposition complexity. For a more
detailed discussion see [G] and the references therein.

4. FDC, Property A and finite asymptotic dimension

In this section we shall discuss how the property of finite decomposition complexity
relates to other familiar properties from coarse geometry, notably to Property A and
to finite asymptotic dimension.

We have seen that the definition of finite decomposition complexity is motivated
by finite asymptotic dimension. We begin by pursuing this discussion further, our
goal being to prove that a metric space having finite asymptotic dimension has finite
decomposition complexity as well.

Recall that a metric space is proper if closed and bounded sets are compact. A
discrete metric space is proper precisely when it is locally finite in the sense that every
ball is finite. It is not difficult to see that a proper metric space having finite asymptotic
dimension has finite decomposition complexity. Indeed, according to a theorem of
Dranishnikov–Zarichnyi a proper metric space having finite asymptotic dimension
admits a coarse embedding into the product of finitely many locally finite trees [DZ].
As trees have finite decomposition complexity, we may apply our permanence results
to conclude. More generally, for metric spaces which are not necessarily proper we
have the following theorem.
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4.1 Theorem. A metric space has finite asymptotic dimension if and only if it belongs
to Dfin. In particular, a metric space having finite asymptotic dimension has finite
decomposition complexity as well.

We are primarily interested in the forward implication, and shall reduce the general
case to the case of proper metric spaces using an ultralimit construction. Before
turning to the proof, we recall the relevant background notions. LetX be a (pseudo-)
metric space. The Gromov triple product (with respect to a base point x0) is

.xjy/ D 1
2
.d.x; x0/C d.y; x0/ � d.x; y// :

The (pseudo)-metric space X is Gromov 0-hyperbolic if

.xjz/ � minf .xjy/; .yjz/g;
for all x, y and z 2 X . The notion of 0-hyperbolicity is independent of the choice of
base point [A], Proposition 2.2. A Gromov 0-hyperbolic (pseudo)-metric space has
asymptotic dimension at most 1. (See [R1] for a direct argument.) Hence, a Gromov
0-hyperbolic (pseudo-)metric space has finite decomposition complexity.

Proof of Theorem 4.1. A simple induction shows that a (pseudo)-metric space be-
longing to Dn has asymptotic dimension is at most 2n � 1.

For the converse, let X be a (pseudo)-metric space having finite asymptotic di-
mension at most n. We shall show thatX has finite decomposition complexity, indeed
that X 2 Dfin. Apply the result of Drashnikov–Zarichnyi [DZ] to the finite subsets
of X – these are locally finite metric spaces and the essential observation here is that
the result of Drashnikov–Zarichnyi applies uniformly. Precisely, there exists � and ı
and for each finite subset F � X a �-uniformly expansive and ı-effectively proper
map into a product of trees:

F ! T F
0 � � � � � T F

n :

Projecting to the individual factors we lift the tree metrics back toF to obtain a family
of (pseudo-)metrics dF

0 ; : : : ; d
F
n on F with the following two properties. First, each

dF
i is Gromov 0-hyperbolic – recall here that an R-tree is Gromov 0-hyperbolic.

Second, the identity F ! F is �-uniformly expansive and ı-effectively proper,
when the domain is equipped with the subspace metric fromX and the range the sum
metric dF

0 C � � � C dF
n – explicitly, for all x, y 2 F we have

ı.dX .x; y// � dF
0 .x; y/C � � � C dF

n .x; y/ � �.dX .x; y//: (4.1)

Let now F be the collection of finite subsets of X containing a fixed base point
x0, viewed as a directed set under inclusion. Let ! be an ultrafilter on the set F with
the following property: for every convergent net .tF /F 2F of real numbers we have

lim tF D !-lim tF ;
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where the limit of the left is the ordinary limit of the convergent net, and the limit of
the right is the limit with respect to the ultrafilter !.

For each fixed i D 0; : : : ; n form the ultraproductXi D !-limFi , where we write
Fi for F equipped with the metric dF

i . Precisely, Xi is the space of of F-indexed
nets Nx D .xF /, with xF 2 F , for which dF

i .xF ; x0/ is bounded independent of F .5

Define a pseudo-metric on Xi by

di . Nx; Ny/ D !-lim dF
i .xF ; yF /,

where Nx D .xF / and Ny D .yF / are elements of Xi . Define a map ˛i W X ! Xi by
associating to x the ‘constant sequence’; it follows immediately from (4.1) that

˛i .x/F D
´
x; x 2 F;
x0; else

satisfies the boundedness condition required of elements of Xi .
Now, the individual Xi are Gromov 0-hyperbolic, essentially because the condi-

tion for 0-hyperbolicity, satisfied by the individual dF
i , involves only finitely many

points and passes to the limit intact. Thus, each Xi has finite decomposition com-
plexity and indeed belongs to D1. An elementary application of permanence shows
that the product X0 � � � � �Xn belongs to DnC1. See Remark 3.1.5.

The proof concludes with the observation that the product of the ˛i is a coarse
embedding X ! X0 � � � � � Xn. To verify this observe that for x 2 X we have
˛i .x/ D x for !-almost every F . So, if y 2 X as well we have

nX
iD0

di .˛i .x/; ˛i .y// D !-lim
nX

iD0

dF
i .x; y/

which by (4.1) is bounded from above by �.dX .x; y// and from below by ı.dX .x; y//.

4.0.7 Remark. We are unable to find a reference for the existence of an ultrafilter
as required in the previous proof; we provide instead the following simple argument.
In the notation of the proof, the collection of all subsets of F containing a set of the
form

fF 2 F W F0 � F g
is a filter, the filter of tails in F. An ultrafilter containing the filter of tails is as required
– the existence of an ultrafilter containing a given filter is a classic application of Zorn’s
lemma.

5As we work with pseudo-metric spaces it is not necessary to consider equivalence classes as would
be typical.
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We turn now to a discussion of Property A, a geometric property guaranteeing
coarse embeddability into Hilbert space [Y2]. We shall show that a metric space
with (weak) finite decomposition complexity has Property A. As a consequence,
any sequence of expanding graphs (as a metric space) does not have (weak) finite
decomposition complexity since it does not admit a coarse embedding into Hilbert
space.

To prove the main result of this section, it is convenient to work with a character-
ization of Property A introduced by Dadarlat and Guentner [DG]. A metric family
U D fU g is a cover of a metric space X if every U 2 U is a metric subspace of X
and

X D
[

U 2U

U:

Apartitionof unity onX subordinate to a coverU is a family of maps�U W X ! Œ0; 1�,
one for each U 2 U, such that each �U is supported in U and such that for every
x 2 X , X

U 2U

�U .x/ D 1:

We do not require that the sum is finite for any particular x 2 X .

4.0.8 Definition. A metric family X is exact if for every R > 0 and " > 0 and for
every X 2 X there is a partition of unity f X

U g on X subordinate to a cover UX of
X such that the collection

U D fU W U 2 UX , some X g
is a bounded metric family and such that for every X 2 X and every x, y 2 X ,

d.x; y/ � R H)
X

U 2UX

j X
U .x/ �  X

U .y/j � ":

4.0.9 Remark. Our definition of exactness is equivalent to the notion of an equi-
exact family of metric spaces introduced by Dadarlat and Guentner (compare [DG],
Definitions 2.7 and 2.8). However, we have indexed our partition of unity and cover
differently so our definition is not identical to the one in [DG].

For the statements of the next two results, recall that a metric space has bounded
geometry if for every r > 0 there exists an N D N.r/ such that every ball of radius
r contains at most N points.

4.2 Theorem ([DG], Proposition 2.10). A metric space having Property A is exact.
A bounded geometry exact metric space has Property A.

4.3 Theorem. A metric family having (weak) finite decomposition complexity is
exact. A bounded geometry metric space having finite decomposition complexity
has Property A.
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Proof. We shall present the proof only for FDC, leaving the case of weak FDC to the
reader. Let E be the collection of exact metric families. It suffices to show that E
contains the bounded families and is closed under decomposability.

Clearly, E contains the bounded families – forX selected from a bounded family
the partition of unity comprised of the constant function at 1, subordinate to the cover
fX g, fulfills the definition.

It remains to check that E is closed under decomposability. Let X be a family
and assume X is decomposable over E – for every r there exists Y 2 E such that X

is r-decomposable over Y. We shall apply [DG], Theorem 4.4, to show that X 2 E.
Let ı > 0. Select r large enough so that rı � 2 and obtain Y as above. Translating
the notion of decomposability into the language of [DG] we see that Y is an equi-exact
family with the property that every X 2 X admits an r-separated cover, the pieces
of which belong to Y. Thus, the hypotheses of [DG], Theorem 4.4, are satisfied and
we conclude that X is an equi-exact family. In other words, X 2 E.

4.0.10 Remark. Theorem 4.4 of [DG] is stated for a single metric space. The same
argument can be used to verify that it applies to a metric family.

5. Further examples

Additional examples of groups having finite decomposition complexity are readily
exhibited based on our results. In this section, we prove that all countable elementary
amenable groups, all countable subgroups of almost connected Lie groups, and all
countable subgroups of GL.n;R/ for any commutative ring R with unit have finite
decomposition complexity.

5.1. Amenable groups. The class of elementary amenable groups is the smallest
class of countable discrete groups containing all finite groups and all (countable)
abelian groups, and closed under the formation of subgroups, quotients, extensions
and direct unions.

5.1.1 Proposition ([C]). The class of elementary amenable groups is the smallest
class of countable discrete groups containing all finite groups and all (countable)
abelian groups and closed under the formation of extensions and direct unions.

Sketch of proof. Define a class of groups A by transfinite recursion as follows: A0 is
the class of all finite and countable abelian groups; for a successor ordinal ˛ define
A˛ to be the class of all groups obtained as a (countable) direct union or extension
of groups in A˛�1; for a limit ordinal ˛ define A˛ D S

ˇ<˛ Aˇ ; finally, A is the
collection of groups belonging to some A˛ .

From its construction A is closed under extensions and (countable) direct unions,
and is clearly contained in the collection of elementary amenable groups. It remains
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to show that A is closed under subgroups and quotients. Indeed, it is readily verified
by transfinite induction that each A˛ is closed under these operations.

5.1.2 Theorem. Elementary amenable groups have finite decomposition complexity.

Proof. We have observed that the class of countable discrete groups having finite de-
composition complexity is closed under the formation of extensions and direct unions.
Finite groups have finite decomposition complexity, as do (countable) abelian groups.
Indeed, a (countable) abelian group is the direct union of its finitely generated sub-
groups which, according to their general structure theory, have finite decomposition
complexity.

5.1.3 Question. Does every countable amenable group have FDC? In particular, does
a Grigorchuk group of intermediate growth have FDC?

5.2. Nearly linear groups. A linear group is a group isomorphic to a subgroup of
GL.n;K/ for some field K. In the companion paper to this note, we proved that a
countable linear group has FDC [GTY], Theorem 3.0.1. In this section our first goal
is to give two natural generalizations of this result to groups which are ‘nearly’ linear.

5.2.1 Theorem. A countable subgroup of an almost connected Lie group has finite
decomposition complexity.

Proof. We have seen that linear groups have FDC, that FDC is stable under extensions
and that (countable) abelian groups have FDC. Thus, the proof is the same as the proof
of [GHW], Theorem 6.5: a group as in the statement is realized as an extension with
finite quotient and with kernel a subgroup of a connected Lie group; a subgroup of
a connected Lie group is realized as an extension with linear quotient and abelian
kernel.

5.2.2 Theorem. Let R be a commutative ring with unit. A countable subgroup of
GL.n;R/ has finite decomposition complexity.

The proof is based on the following piece of commutative algebra.

5.2.3 Lemma. Let R be a finitely generated commutative ring with unit and let n be
the nilpotent radical of R,

n D f r 2 R W rn D 0 for some n 2 N g:
The quotient ring S D R=n contains a finite number of prime ideals p1; : : : ;pn such
that the diagonal map

S ! S=p1 ˚ � � � ˚ S=pn

embeds S into a finite direct sum of domains.
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Proof. This classical fact is a consequence of the Associated Prime Theorem which
states that the set of associated primes of a finitely generated module over a Noetherian
ring is finite [Ei], Theorem 3.1. Here, the module is the ring itself which is Noetherian
since it is finitely generated. The mentioned theorem then says that R has finitely
many minimal prime ideals p1; : : : ;pn. The conclusion follows from the fact that
their intersection is n.

Proof of Theorem 5.2.2. In views of Proposition 3.2.1, it is enough to treat the case
of GLn.R/, where R is finitely generated. With n and S as in the previous lemma,
we have an exact sequence

1 ! I CMn.n/ ! GL.n;R/ ! GL.n; S/ ! 1;

in which I CMn.n/ is nilpotent, and therefore has finite decomposition complexity
by Corollary 3.2.5. In the notation of the previous lemma, we have

GL.n; S/ ! GL.n; S=p1/ � � � � � GL.n; S=pn/:

So, the quotient has finite decomposition complexity by [GTY], Theorem 3.0.1.

Our next goal in this section is to provide a simplified proof, based on essentially
the same ideas, of the following result due to Matsnev [Ma]; it was an important
piece of the proof of FDC for linear groups presented in [GTY]. Before turning
to the statement, we recall the basic setup. A discrete norm on a field K is a map
� W K ! Œ0;1/ satisfying, for all x, y 2 K,

(1) �.x/ D 0 () x D 0,
(2) �.xy/ D �.x/�.y/,
(3) �.x C y/ � maxf �.x/; �.y/g,

and for which the range of � on K� is a discrete subgroup of the multiplicative
group .0;1/. Given a discrete norm we define, following [GHW], a (pseudo)-length
function `� on GL.n;K/ as follows:

`� .g/ D log max
ij

f �.gij /; �.g
ij /g; (5.1)

where gij and gij are the matrix coefficients of g and g�1, respectively.

5.2.4 Proposition (Matsnev). Let � be a discrete norm on a field K. The group
GL.n;K/, equipped with the (left-invariant pseudo-)metric induced by `� , is in Dfin.

Let � be a discrete norm on a field K. For the proof of the proposition we shall
introduce some subgroups of GL.n;K/. The subset

O D f x 2 K W �.x/ � 1g
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is a subring of K, the ring of integers; the subset

m D f x 2 K W �.x/ < 1g
is a principal ideal in O; a generator� of m is a uniformizer. Fix a uniformizer� . Let
D denote the subgroup of diagonal matrices with powers of the uniformizer on the
diagonal and let U denote the unipotent upper triangular matrices. Observe that D
normalizesU so that T D DU is also a subgroup (namely the group upper triangular
matrices). Restrict the length function `� to each subgroup and equip each with the
associated (left-invariant pseudo-)metric (which is in fact the subspace pseudo-metric
from G).

5.2.5 Lemma. The group U has asymptotic dimension zero. In particular, U 2 D1.

Proof. The dilation by (a nonzero) � 2 K is the function ‚ W U ! U defined by

‚.u/ij D �j �iuij I
the entries on the kth-superdiagonal of n are multiplied by �k . (For k D 0; : : : ; n� 1
the kth-superdiagonal of an n � n matrix consists of the positions .i; j / for which
j � i D k.) The formula for matrix multiplication shows that‚ is an endomorphism
of U . Further, it is an automorphism with inverse the dilation by ��1.

Fix � 2 K of norm greater than one – the inverse of a uniformizer will do. LetU0

be the subgroup of U comprised of elements of length zero, and define a sequence of
subgroups of U by Uk D ‚.Uk�1/. We shall show that

B.1; k log �.�// � Uk � B.1; k.n � 1/ log �.�//: (5.2)

The lemma follows immediately. Indeed, U is the union of the cosets of Uk and the
family of these cosets is both bounded and r-disjoint, provided k log �.�/ > r .

In order to verify (5.2) observe that the length function on U is given by

`� .u/ D log max
i<j

f 1; �.uij /; �.u
ij /g: (5.3)

For the first inclusion in (5.2) suppose `� .u/ � k log �.�/ so that in particular
�.uij / � �.�/k for all i < j . The non-diagonal .i; j / entry of‚�k.u/ is uij �

k.i�j /

so that each has norm at most one. Elementary properties of the norm and (5.3) show
that this implies ‚�k.u/ 2 U0, or u 2 Uk .

The second inclusion in (5.2) follows by induction from

`� .‚.u// � `� .u/C .n � 1/ log �.�/:

To verify this inequality, note that the non-diagonal .i; j / entry of ‚.u/ is uij �
j �i

which has norm bounded by �.uij /�.�/
n�1. Since ‚ is an automorphism a similar

statement applies to the entries of ‚.u/�1 D ‚.u�1/. The inequality now follows
from (5.3).
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5.2.6 Lemma. The group T is in DnC1.

Proof. Observe that D Š Zn, and that the restriction of `� to D is a proper length
function – indeed it corresponds (up to a multiplicative factor) with the supremum
norm on Zn:

`� .a/ D max jki j � log �.��1/;

where a is the diagonal matrix with entries �ki . Hence D is in Dn. It remains to
check, as an application of fibering, that T is indeed in DnC1.6

We require two observations. First, the map T ! D associating to each matrix
in T the matrix of its diagonal entries is a contraction. Indeed, it is a homomorphism
and from the definition of `� we see that it decreases length. Second, if B � D is a
bounded subset and b1 2 B then the subset b1U � BU is diam.B/-coarsely dense.
Indeed, if bu 2 BU then d.bu; bub�1b1/ � diam.B/ and, since D normalizes U ,

bub�1b1 D b1.b
�1
1 b/u.b�1b1/ 2 b1U:

We conclude by applying Theorem 3.1.4 or, more accurately, the subsequent Re-
mark 3.1.5 to the map T ! D.

Proof of Proposition 5.2.4. The inclusion of T inG is isometric. Further, it is metri-
cally onto in the sense that every element of G is at distance zero from an element of
T . Indeed, let H be the subgroup of those g 2 GL.n;K/ for which the entries of g
and g�1 are in O. Then G D TH [GHW], Lemma 4.5, and elementary calculations
show that every h 2 H has length zero. Hence, if g D th then d.t; g/ D `.h/ D 0.
Observe that we do not assume K is locally compact.

Finally, for the convenience of the reader we shall deduce the following conse-
quence of Proposition 5.2.4; while a special case of [GTY], Theorem 3.0.1, the proof
involves similar ideas and serves to illustrate the more general result.

5.2.7 Proposition. The group GL.n;ZŒX1; : : : ; Xm�/ belongs to D!Cfin. For a prime
power q and Fq the field with q elements, the group GL.n;FqŒX1; : : : ; Xm�/ has finite
asymptotic dimension. (Both assertions are true for every n � 1 and m � 0.)

We prepare for the proof by describing the relevant norms on rational function
fields. Let us agree that henceforth K stands for either Fq or Q. In the case of a
single indeterminant we define, for a nonzero P 2 KŒX�,

�.P / D edeg.P /I (5.4)

together with the convention �.0/ D 0 this determines uniquely a discrete norm on
K.X/. We view KŒX� � K.X/, and GL.n;KŒX�/ � GL.n;K.X//; we equip the
latter group with the length function associated by (5.1) to the norm (5.4).

6Since D � T isometrically, if T is in D˛ then necessarily ˛ � n. An argument more refined than
the one we present here achieves this bound: indeed T 2 Dn.



400 E. Guentner, R. Tessera and G. Yu

We generalize to the case of several indeterminants by defining, in analogy with
(5.4), norms on K.X1; : : : ; Xm/ reflecting the degree in each of the various indeter-
minants.7 We then view

GL.n;KŒX1; : : : ; Xm�/

,! GL.n;K.X1; : : : ; Xm// � � � � � GL.n;K.X1; : : : ; Xm//I (5.5)

here the factors are equipped with the length functions associated to the various norms
according to (5.1), and the length function on the product is the sum.

In the following proof we shall denote by `0 the length function GL.n;KŒX�/
inherits from GL.n;K.X//; in the multi-variable case, we shall denote by `0 the
length function GL.n;KŒX1; : : : ; Xm�/ inherits from the inclusion (5.5). This is
done for compatibility of notation with the relevant results from [GTY].

Proof. We begin with the case of a finite field. In the case of a single indeterminant
it suffices, by the previous discussion and Proposition 5.2.4, to show that the length
function (5.1) on GL.n;Fq.X// restricts to a proper length function on GL.n;FqŒX�/.
But, this is clear: in view of (5.1) and (5.4) bounding `0.g/ bounds the degree of the
polynomial entries of g and, since the field Fq is finite, there are only finitely many
polynomials of a given degree. In the case of several indeterminants the length
function on the product appearing in (5.5) restricts to a proper length function on
GL.n;FqŒX1; : : : ; Xm�/ for the same reason.

The case of Z is more involved – because there are infinitely many polynomi-
als in ZŒX� of a given degree the length function `0 will not be proper. We shall
consider only the case of a single indeterminant and shall rely on the permanence
result [GTY], Lemma 3.3.1. In the notation of that lemma, let r D ek . Evalua-
tion at a transcendental provides a field embedding Q.X/ ,! C and an embedding
GL.n;Q.X// ,! GL.n;C/. Fixing distinct transcendental elements t0; : : : ; tk 2 C
we obtain a diagonal embedding

GL.n;ZŒX�/ ,! GL.n;Q.X// ,! GL.n;C/ � � � � � GL.n;C/:

Equip each factor on the right with the length function coming from the operator
norm as in [GHW], [GTY]; the length function on the product is the sum; denote by
`r the length function GL.n;ZŒX�/ inherits from the inclusion. Now, with its length
function GL.n;C/ belongs to Dfin, so that GL.n;ZŒX�/ with the length function `r

does as well. By [GTY], Lemma 3.3.1, we are reduced to showing that the collection
of g 2 GL.n;ZŒX�/ satisfying the inequalities

`0.g/ � r D ek; `r.g/ � s

7These are in fact the norms of type (1) appearing in the proof of [GTY], Lemma 3.1.5. Precisely, in
the case of two indeterminants, if we identify K.X; Y / and K.X/.Y / then the extension to K.X; Y /

of the norm on K.X/ determined by (5.4) is itself determined by the formula �.P / D maxf �.Pj /g
where P.X; Y / D P0.X/ C P1.X/Y C � � � C Pn.X/Y n and the Pj 2 K.X/. In particular, if
P 2 KŒX; Y � so that the Pj 2 KŒX� then �.P / is exactly the degree of P ‘with respect to X ’. See
also [GHW], Theorem 2.2.
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is finite, for every s. Arguing exactly as in the first part of this proof, we conclude
from the first inequality that the polynomial entries of such g have degree bounded
by k. It follows from the second inequality that if P 2 ZŒX� is a polynomial entry
of such g then for every transcendental ti the absolute value of P.ti / is bounded by
s. In other words, we have reduced to showing that the set

fP 2 ZŒX�k W jP.ti /j � s for i D 0; : : : ; k g
is finite, where ZŒX�k is the set of polynomials of degree at most k. This is, however,
straightforward: the assignment

P 7! .P.t0/; : : : P.tk//

defines an isomorphism of complex vector spaces CŒX�k ! CkC1 – identifying a
polynomial P 2 CŒX�k with the column vector formed by its coefficients it is given
by the Vandermonde matrix corresponding to the distinct transcendentals t0; : : : ; tk
– and ZŒX�k � CŒX�k is discrete.
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