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Connectivity of complexes of separating curves
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Abstract. We prove that the separating curve complex of a closed orientable surface of genus
g is .g � 3/-connected. We also obtain a connectivity property for a separating curve complex
of the open surface that is obtained by removing a finite set from a closed one, where it is
assumed that the removed set is endowed with a partition and that the separating curves respect
that partition. These connectivity statements have implications for the algebraic topology of
the moduli space of curves.
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1. Statements of the results

Let S be a connected oriented surface of genus g with finite first Betti number 2g Cn

(i.e., a closed surface with n punctures) and make the customary assumption that S

has negative Euler characteristic: if g D 0, then n � 3 and if g D 1, then n � 1. We
recall that the curve complex C.S/ of S is the simplicial complex whose vertex set
consists of the isotopy classes of embedded (unoriented) circles in S which do not
bound in S a disk or a cylinder. A finite set of vertices spans a simplex precisely when
its elements can be represented by embedded circles that are pairwise disjoint. Thus,
a closed 1-dimensional submanifold A of S with k C 1 connected components such
that every connected component of its complement has negative Euler characteristic
defines a k-simplex �A of C.S/ and every simplex of C.S/ is thus obtained.

This complex has proven to be quite useful in the study of the mapping class group
of S . For the purposes of studying the Torelli group of S a subcomplex Csep.S/ of
C.S/ can render a similar service. It is defined as the full subcomplex of C.S/

spanned by the separating vertices of C.S/, where a vertex is called separating if a
representative embedded circle separates S into two components. Our main result
for the case when S is closed is contained in the following theorem.
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Theorem 1.1 (Ag ). If n � 1, then the simplicial complex Csep.S/ is .g � 3/-
connected.

Previous work on this topic that we are aware of concerns the case n D 0. Farb
and Ivanov announced in 2005 [1], Theorem 4, that Csep.S/ is connected for g � 3.
Putman gave in [6], Theorem 1.4, another proof of this and showed that Csep.S/ is
simply connected for g � 4 (op. cit., Theorem 1.11). In that paper he also mentions
that Hatcher and Vogtmann have proved that Csep.S/ is b1

2
.g � 3/c-connected for all

g (unpublished).

Remark 1.2. Possibly the connectivity bound in Theorem 1.1 is the best possible for
every positive genus. In a paper with Van der Kallen [3] we showed that the quotient
of Csep.S/ by the action of the Torelli group of S has the homotopy type of a bouquet
of .g �2/-spheres. In the situation of the theorem, Csep.S/ has dimension 2g �4Cn

so that its connectivity is half the dimension (as n � 1). In particular, we cannot
conclude that Csep.S/ is spherical.

Before we state a version for the case n � 2, we point out a consequence that
pertains to the moduli space of curves. Consider the Teichmüller space T .S/ of S ,
a contractible manifold on which acts the mapping class group �.S/. The action is
proper and the orbit space may be identified with the moduli space Mg of curves of
genus g. The Harvey bordification of T .S/, here denoted by T .S/C � T .S/, is
a (noncompact) manifold with boundary with corners to which the action of �.S/

naturally extends. This action is also proper and according to [4] the orbit space
MC

g ´ �.S/nT .S/C is a compactification of Mg that can also be obtained from

the Deligne–Mumford compactification zMg � Mg as a ‘real oriented blowup’ of its
boundary �g ´ zMg � Mg . The walls of T .S/C define a closed covering of the
boundary @T .S/C and any nonempty corner closure is an intersection of walls. As is
well-known, the curve complex C.S/ can be identified with the nerve of this covering
of @T .S/C. Since the corner closures are contractible, Weil’s nerve theorem implies
that @T .S/C has the same homotopy type as C.S/.

Let �g;0 � �g denote the irreducible component of the Deligne–Mumford
boundary whose generic point parameterizes irreducible curves with one singular
point. We may understand Mc

g ´ zMg � �g;0 as the moduli space of stable genus
g curves all of whose nodes are separating (which is equivalent to the irreducible
components of the curve being smooth and with their genera summing up to g) and
�c

g ´ �g � �g;0 as the locus in Mc
g that parameterizes the singular ones among

them. If � is a subgroup of �.S/ with the property that every Dehn twist along a sep-
arating curve in S has a positive power lying in � , then this defines a (not necessarily
finite) cover zMc

g ! Mc
g .

Corollary 1.3. Suppose that � � �.S/ is as above and is in addition torsion-free.
If we denote by z�c

g � zMc
g the preimage of �c

g , then the pair . zMc
g ; z�c

g/ is .g � 2/-
connected. Moreover, Hk.Mc

g ; �c
g I Q/ D 0 for k � g � 2.
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Proof. Let T .S/C
sep be obtained from T .S/C by removing the walls that correspond

to the nonseparating vertices of C.S/. Then T .S/C
sep is the preimage of Mc

g in
T .S/C. The same reasoning as above shows that @T .S/C

sep is homotopy equivalent
to C.S/sep and so @T .S/C

sep is .g � 3/-connected. It follows that we can construct
a relative CW complex .Z; @T .S/C

sep/ obtained from @T .S/C
sep by attaching cells of

dimension � g � 1 in a �.S/-equivariant manner as to ensure that Z is contractible
and no nontrivial element of �.S/ fixes a cell. Then � acts freely on Z (as it
does on the contractible space T .S/C

sep) and so there is a �-equivariant homotopy
equivalence Z ! T .S/C

sep relative to @T .S/C
sep. It follows that we also have a

homotopy equivalence �nZ ! zMc
g relative to z�c

g and we conclude that . zMc
g ; z�c

g/

is .g � 2/-connected.
The last assertion follows from the existence of a normal subgroup � � �.S/ of

finite index that is torsion-free. For if � is such a group, then Hk.Mc
g ; �c

g I Q/ Š
Hk. zMc

g ; z�c
g I Q/�.S/=� D 0 for k � g � 2.

A similar statement holds for the universal curve Mg;1.
When n > 1, we need to come to terms with the fact that the separability no-

tion has no good hereditary properties: if T is a closed surface, A � T a compact
1-dimensional submanifold representing a simplex of C.T / and S a connected com-
ponent of T �A, then a vertex of C.S/ may split S , but not T . This happens precisely
when the vertex in question separates two boundary components of @S that lie on
the same connected component of T � S . So the basic object should be, what Andy
Putman calls in [5], a partitioned surface: a closed surface minus a finite set, for
which the removed set comes with a partition. This leads to the following definition.

Definition 1.4. Let N be the set of points of S at infinity (the cusps) and let P be a
partition of N . We call a vertex of C.S/ separating relative to P if a representative
embedded circle ˛ � S has the property that S � ˛ has two connected components
each of which meets N in a union of parts of P . We denote by C.S; P / the full
subcomplex of C.S/ spanned by such vertices.

One might also understand C.S; P / as the full subcomplex of C.S/ spanned by
the isotopy classes of embedded cycles which are separating on the surface SP that is
obtained by capping off for each part of P the corresponding set of cusps by a sphere
with that many holes. Notice that C.S; P / � Csep.S/ and that we have equality
when P is discrete or N is empty.

We shall prove Theorem 1.1 by induction and simultaneously with

Theorem 1.5 (Ag;n). Suppose that g > 0 and n D jN j > 1. Let P be a partition of
N . Then C.S; P / is .g � 2/-connected.

To be precise, the induction starts with g D 0, where the statements (Ag ) and
(A0;n) are trivially true and the induction strategy will be to show that
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(i) (Ah;n) for h < g implies (Ag ), and
(ii) (Ag ) and (Ah;k) for .h; k/ < .g; n/ (for the lexicographic ordering) imply

(Ag;n).

I am indebted to Allen Hatcher for pointing out that the stronger version of The-
orem 1.5 that I stated in a previous version was incorrect. Yet it may be that some
such statement might hold. For instance, if r.P / denotes the number of nonempty
parts of P and s.P / the number of parts with at least two elements, is it true that
C.S; P / is .g C r.P /C s.P /�4/-connected when g > 0 (as I claimed in the earlier
version)? In case g D 0, C.S; P / is a complex of dimension r.P / C s.P / � 4. Is
this .r.P / C s.P / � 5/-connected? In other words, is this complex spherical?

I am grateful to the referee, whose meticulous job helped to improve the paper.
The proof of Lemma 2.3 follows a suggestion by the referee and simplifies my original
one.

I also gratefully acknowledge support by the Mathematical Sciences Center of
Tsinghua University at Beijing, where some of this work was done.

2. Proofs

Before we start off, we mention the following elementary fact that we will frequently
use.

Lemma 2.1. Let Xi be a di -connected space (di D �1 means Xi 6D ;), where
i D 1; : : : ; k. Then the iterated join X1 �� � ��Xk is .�2CPk

iD1.di C2//-connected.

Proof that (Ah;n) for h < g, all n, implies (Ag ). So here n � 1. We must show that
Csep.S/ is .g � 3/-connected. For g < 2, there is nothing to show and so we may
assume that g � 2. A theorem of Harer [2, Thm. 1.2] asserts that C.S/ is .2g � 3/-
connected. So it is certainly .g � 3/-connected. Let Ck be the subcomplex of C.S/

that is the union of Csep.S/ and the k-skeleton of C.S/. So C�1 D Csep.S/ and
Ck D C.S/ for k large. Notice that a finite set of vertices of C.S/ spans a simplex
of Ck if and only if no more than k C 1 of these are nonseparating. Hence a minimal
simplex of Ck �Ck�1 is represented by a compact 1-dimensional submanifold A � S

with k C 1 connected components, each of which is nonseparating. We prove that
the boundary of the star of such a simplex in Ck is a .g � 3/-connected subcomplex
of Ck�1. This property implies that the pair .C.S/; Csep.S// is .g � 2/-connected.
Since C.S/ is .g � 3/-connected, it then follows that Csep.S/ is. Let fSigi2I be the
set of connected components of S � A. Notice that if gi is the genus of Si , then
gi < g. An Euler characteristic argument shows that

g � 1 D k C 1 C P

i2I

.gi � 1/:
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We denote by Ni the set of ‘cusps’ of Si , i.e., the finitely many points needed to make
Si a closed surface. So an element of Ni is given by possibly a cusp of S (if it exists
and if it is also a cusp of Si ) or by a connected component of A in the boundary
of Si endowed with the orientation it receives as such. The set Ni comes with an
evident partition Pi : if S has a cusp and Ni contains it, then this cusp makes up a
singleton part of Pi and any other two elements of Ni belong to the same part of
Pi if and only if they come from connected components of A that lie on the same
connected component of S � Si . (NB: beware that a connected component of S � Si

could be simply a connected component Ao of A; then its two orientations define a
2-element part of Pi .) connected components of A that bound Si . Note that since
the connected components of A are nonseparating, we always have jNi j � 2. By our
induction hypothesis C.Si ; Pi / is then .gi � 2/-connected. The boundary of the star
of the k-simplex �A defined by A in Ck lies in Ck�1 and can be identified with the
.jI j C 1/-fold join

@�A � � ¨

i2I

C.Si ; Pi /
�
:

Since @�A is a combinatorial .k � 1/-sphere, this join has by Lemma 2.1 connec-
tivity at least �2 C k C P

i2I gi . By the displayed formula above this is equal to
g � 4 C jI j and is therefore � g � 3.

The proof of Ag;n begins with a discussion. We now assume that g > 0 and
n � 2. Let x 2 N . Notice that S 0 ´ S [ fxg has still negative Euler characteristic.
We put N 0 ´ N � fxg and P 0 ´ P jN 0. The goal is to compare C.S 0; P 0/ with
C.S; P /. There is in general no forgetful map C.S; P / ! C.S 0; P 0/ because there
will be vertices of C.S; P / that do not give vertices of C.S 0; P 0/. Let us first identify
this set of vertices.

Denote by †x � N � fxg the set of y 2 N � fxg for which fx; yg is a union
of parts of P . In other words, if Px denotes the part of P that contains x, then †x

is empty if Px has more than 2 elements, equals Px � fxg if Px is a 2-element set,
and equals the set of y 6D x for which Py is a singleton in case Px D fxg. Then the
vertices of C.S; P / that have no image in C.S 0; P 0/ are precisely the vertices ˛ of
Csep.S/ which for some y 2 †x bound a disk neighborhood of fx; yg in S [ fx; yg.
Such a disk neighborhood can be thought of as a regular neighborhood of an arc in
S [ fx; yg connecting the two added cusps; this may help to explain why we have
chosen to denote this set of vertices by arc.S;P /.x/. Denote by C.S; P /x the full
subcomplex of C.S; P / spanned by the vertices not in arc.S;P /.x/.

Observe that arc.S;P /.x/ is empty (so that C.S; P /x D C.S; P /) if †x is.

Lemma 2.2. The link in C.S; P / of every vertex of arc.S;P /.x/ is a subcomplex of
C.S; P /x that projects isomorphically onto C.S 0; P 0/.

Proof. A vertex of arc.S;P /.x/ defines a y 2 †x and (up to isotopy) a closed disk D

in S [ fx; yg that is a neighborhood of fx; yg. The inclusion S � D � S 0 identifies
the link in question with C.S 0; P 0/.
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Denote by zP the refinement of P which coincides with P on N �Px and partitions
Px further into fxg and Px � fxg. So zP 0 D P 0. It is clear that C.S; P / is a
subcomplex of C.S; zP /. Notice that arc.S;P /.x/ D C.S; P / \ arc.S; zP /.x/ (we have

arc.S;P /.x/ D arc.S; zP /.x/ unless jPxj D 2) and C.S; P /x D C.S; P / \ C.S; zP /x .

We denote by f the forgetful simplicial map C.S; zP /x ! C.S 0; P 0/ so that we have
the diagram

C.S; P /x � C.S; zP /x

f�! C.S 0; P 0/
\ \

C.S; P / � C.S; zP /:

Lemma 2.3. The map f W C.S; zP /x ! C.S 0; P 0/ is a homotopy equivalence.

Proof. Choose an arc � which connects x with another point of N and defines a
vertex of arc.S;P /.x/ and observe that the full subcomplex K � C.S; zP /x spanned
by vertices that avoid � defines a section of f (the inclusion S �� � S 0 is isotopic to
a homeomorphism). We shall prove that C.S; zP /x admits K as a deformation retract.
(The proof will in fact show that each fiber of jf j is a tree and essentially produces
for every element of jC.S; zP /xj the unique path in its jf j-fibre that connects it to the
point of jKj.)

Denote by Kr � C.S; zP /x the subcomplex whose simplices can be represented
by a closed submanifold A � S which meets � transversally in at most r points. This
defines a filtration K D K0 � K1 � K2 � � � � whose union is C.S; zP /x . Although
this filtration is infinite, it is enough to construct for every r � 0 a deformation
retraction of jKrC1j onto jKr j, for in the simplicial setting an infinite sequence of
deformation retractions still gives a deformation retraction.

We do this per simplex: if � is a simplex of KrC1 that is not in Kr and is minimal
for this property, then its link in KrC1 lies in Kr and so it suffices to define for such
a � a deformation retraction h� of jStarKrC1

.�/j onto jLinkKrC1
.�/j.

The simplex � is represented by a closed submanifold A � S of which every
connected component meets � transversally and is such that A \ � has cardinality
r C 1 (a number that cannot be made smaller in its isotopy class). Let x0 be the point
of A \ � closest to x. Denote by ˛0 the connected component of A which contains
x0 and choose in S 0 a thin regular neighborhood of the union of ˛0 and the subarc of
� which connects x0 with x. The boundary of that neighborhood has two connected
components. Both lie in S and only one of them is isotopic to ˛0. Denote by ˛0

0

the other boundary component. If � is a simplex of KrC1 which contains � , then
adding ˛0

0 to � gives also a simplex � 0 of KrC1 and the codimension one face � 00 of
� 0 obtained by removing ˛0 is contained in Kr . So if we regard jStarKrC1

.�/j as
the cone over jLinkKrC1

.�/j with the barycenter of � as its vertex, then there is a
simplicial map from this cone to its base which sends the barycenter to ˛0

0 and is the
identity on the base. Its geometric realization yields the desired h� .
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Corollary 2.4. The complex C.S; P / [ C.S; zP /x is canonically homotopy equiv-
alent to the join arc.S;P /.x/ � C.S 0; P 0/ (where arc.S;P /.x/ is discrete).

Proof. The set of vertices of C.S; P / [ C.S; zP /x not in C.S; zP /x is arc.S;P /.x/.
The link of any such vertex is contained in C.S; zP /x and by Lemma 2.2 that link
projects isomorphically onto C.S 0; P 0/. In view of Lemma 2.3 this implies that the
inclusion of this link in C.S; zP /x is also a homotopy equivalence. Hence the natural
inclusion C.S; P /[C.S; zP /x � arc.S;P /.x/�C.S; zP /x is a homotopy equivalence.
The corollary follows.

From now on we assume that Ag holds and that Ah;k holds for all .h; k/ smaller
than .g; n/ for the lexicographic ordering. Our goal is to prove Ag;n.

Lemma 2.5. The pair .C.S; P / [ C.S; zP /x; C.S; P // is .g � 1/-connected.

Proof. If Px D fxg, then zP D P and there is nothing to show. We therefore assume
that Px has more than one element. Denote by Ck the subcomplex of C.S; P / [
C.S; zP /x that is the union of C.S; P / and the k-skeleton of C.S; P / [ C.S; zP /x:
a finite set of vertices of C.S; P / [ C.S; zP /x spans a simplex of Ck if and only if
no more than k C 1 of these separate x from Px � fxg. Notice that C�1 D C.S; P /

and Ck D C.S; P / [ C.S; zP /x for k large. A minimal simplex of Ck � Ck�1 is
represented by a compact 1-dimensional submanifold A � S with k C 1 connected
components, each of which separates x from Px � fxg (the graph that is associated
to A is then a string with k C 2 nodes). We prove that the boundary of the star of
such a simplex in Ck�1 is .g � 2/-connected if g > 0. We enumerate the connected
components of A as ˛0, …, ˛k and the connected components of S � A as S0, …,
SkC1 such that ˛i is a boundary component of Si and SiC1 and so that S0 resp. SkC1

is punctured by x resp. Px � fxg. The cusps of S � A are naturally indexed by
yN ´ N t fi˙gk

iD0, where i� resp. iC corresponds to the cusp defined by ˛i on Si

resp. SiC1. Let yNi � yN index the set of cusps on Si . Denote by Pi the partition
of .N � Px/ \ Si that is simply the restriction of P and denote by yPi the partition
of yNi that on .N � Px/ \ Si is equal to Pi and has what remains of yNi as a single
part. So this new part is fx; 0Cg for i D 0, f.i � 1/�; iCg for 0 < i < k C 1 and
.Px � fxg/ [ fk�g for i D k C 1.

The reason for introducing these partitions is that we can now observe that the
boundary of the star of the k-simplex �A defined by A in Ck lies in Ck�1 and can be
identified with the iterated join

@�A � C.S0; yP0/ � � � � � C.SkC1; yPkC1/:

It is then enough to show that this join is .g � 2/-connected for g > 0. Since @�A is
a .k � 1/-sphere, it is .k � 2/-connected. The connectivity of a factor C.Si ; yPi / with
gi > 0 is at least gi � 2. So by Lemma 2.1 the connectivity of the above join is at
least �2 C k C P

fi Wgi >0g gi D g C k � 2 � g � 2.
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Proof of (Ag;n). We must show that C.S; P / is .g � 2/-connected. In view of
Lemma 2.5 it suffices to show that C.S; P / [ C.S; zP /x has that property.

If arc.S;P /.x/ D ;, then n > 2 and so our induction hypothesis implies that
C.S 0; P 0/ is .g � 2/-connected by Ag;n�1. It follows from Corollary 2.4 that
C.S; P / [ C.S; zP /x is homotopy equivalent to C.S 0; P 0/ and hence is .g � 2/-
connected.

If arc.S;P /.x/ 6D ;, then we may have n D 2. At least we know that C.S 0; P 0/ is
.g �3/-connected (invoke Ag if n D 2). But since C.S; P /[C.S; zP /x is homotopy
equivalent to arc.S;P /.x/�C.S 0; P 0/ (by Corollary 2.4), it is .g �2/-connected.
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