Groups Geom. Dyn. 5 (2011), 443–450 DOI 10.4171/GGD/189 **Groups, Geometry, and Dynamics** © European Mathematical Society

Connectivity of complexes of separating curves

Eduard Looijenga

In memory of Fritz Grunewald

Abstract. We prove that the separating curve complex of a closed orientable surface of genus g is (g-3)-connected. We also obtain a connectivity property for a separating curve complex of the open surface that is obtained by removing a finite set from a closed one, where it is assumed that the removed set is endowed with a partition and that the separating curves respect that partition. These connectivity statements have implications for the algebraic topology of the moduli space of curves.

Mathematics Subject Classification (2010). 57N05, 55U15.

Keywords. Separating curve complex.

1. Statements of the results

Let *S* be a connected oriented surface of genus *g* with finite first Betti number 2g + n (i.e., a closed surface with *n* punctures) and make the customary assumption that *S* has negative Euler characteristic: if g = 0, then $n \ge 3$ and if g = 1, then $n \ge 1$. We recall that the *curve complex* $\mathcal{C}(S)$ of *S* is the simplicial complex whose vertex set consists of the isotopy classes of embedded (unoriented) circles in *S* which do not bound in *S* a disk or a cylinder. A finite set of vertices spans a simplex precisely when its elements can be represented by embedded circles that are pairwise disjoint. Thus, a closed 1-dimensional submanifold *A* of *S* with k + 1 connected components such that every connected component of its complement has negative Euler characteristic defines a *k*-simplex σ_A of $\mathcal{C}(S)$ and every simplex of $\mathcal{C}(S)$ is thus obtained.

This complex has proven to be quite useful in the study of the mapping class group of S. For the purposes of studying the Torelli group of S a subcomplex $\mathcal{C}_{sep}(S)$ of $\mathcal{C}(S)$ can render a similar service. It is defined as the full subcomplex of $\mathcal{C}(S)$ spanned by the separating vertices of $\mathcal{C}(S)$, where a vertex is called *separating* if a representative embedded circle separates S into two components. Our main result for the case when S is closed is contained in the following theorem.

E. Looijenga

Theorem 1.1 (A_g) . If $n \leq 1$, then the simplicial complex $\mathcal{C}_{sep}(S)$ is (g - 3)-connected.

Previous work on this topic that we are aware of concerns the case n = 0. Farb and Ivanov announced in 2005 [1], Theorem 4, that $\mathcal{C}_{sep}(S)$ is connected for $g \ge 3$. Putman gave in [6], Theorem 1.4, another proof of this and showed that $\mathcal{C}_{sep}(S)$ is simply connected for $g \ge 4$ (op. cit., Theorem 1.11). In that paper he also mentions that Hatcher and Vogtmann have proved that $\mathcal{C}_{sep}(S)$ is $\lfloor \frac{1}{2}(g-3) \rfloor$ -connected for all g (unpublished).

Remark 1.2. Possibly the connectivity bound in Theorem 1.1 is the best possible for every positive genus. In a paper with Van der Kallen [3] we showed that the quotient of $\mathcal{C}_{sep}(S)$ by the action of the Torelli group of *S* has the homotopy type of a bouquet of (g-2)-spheres. In the situation of the theorem, $\mathcal{C}_{sep}(S)$ has dimension 2g-4+n so that its connectivity is half the dimension (as $n \leq 1$). In particular, we cannot conclude that $\mathcal{C}_{sep}(S)$ is spherical.

Before we state a version for the case $n \ge 2$, we point out a consequence that pertains to the moduli space of curves. Consider the Teichmüller space $\mathcal{T}(S)$ of S, a contractible manifold on which acts the mapping class group $\Gamma(S)$. The action is proper and the orbit space may be identified with the moduli space \mathcal{M}_g of curves of genus g. The *Harvey bordification* of $\mathcal{T}(S)$, here denoted by $\mathcal{T}(S)^+ \supset \mathcal{T}(S)$, is a (noncompact) manifold with boundary with corners to which the action of $\Gamma(S)$ naturally extends. This action is also proper and according to [4] the orbit space $\mathcal{M}_g^+ := \Gamma(S) \setminus \mathcal{T}(S)^+$ is a compactification of \mathcal{M}_g that can also be obtained from the Deligne–Mumford compactification $\tilde{\mathcal{M}}_g \supset \mathcal{M}_g$ as a 'real oriented blowup' of its boundary $\Delta_g := \tilde{\mathcal{M}}_g - \mathcal{M}_g$. The walls of $\mathcal{T}(S)^+$ define a closed covering of the boundary $\partial \mathcal{T}(S)^+$ and any nonempty corner closure is an intersection of walls. As is well-known, the curve complex $\mathcal{C}(S)$ can be identified with the nerve of this covering of $\partial \mathcal{T}(S)^+$. Since the corner closures are contractible, Weil's nerve theorem implies that $\partial \mathcal{T}(S)^+$ has the same homotopy type as $\mathcal{C}(S)$.

Let $\Delta_{g,0} \subset \Delta_g$ denote the irreducible component of the Deligne–Mumford boundary whose generic point parameterizes irreducible curves with one singular point. We may understand $\mathcal{M}_g^c := \tilde{\mathcal{M}}_g - \Delta_{g,0}$ as the moduli space of stable genus g curves all of whose nodes are separating (which is equivalent to the irreducible components of the curve being smooth and with their genera summing up to g) and $\Delta_g^c := \Delta_g - \Delta_{g,0}$ as the locus in \mathcal{M}_g^c that parameterizes the singular ones among them. If Γ is a subgroup of $\Gamma(S)$ with the property that every Dehn twist along a separating curve in S has a positive power lying in Γ , then this defines a (not necessarily finite) cover $\tilde{\mathcal{M}}_g^c \to \mathcal{M}_g^c$.

Corollary 1.3. Suppose that $\Gamma \subset \Gamma(S)$ is as above and is in addition torsion-free. If we denote by $\widetilde{\Delta}_{g}^{c} \subset \widetilde{\mathcal{M}}_{g}^{c}$ the preimage of Δ_{g}^{c} , then the pair $(\widetilde{\mathcal{M}}_{g}^{c}, \widetilde{\Delta}_{g}^{c})$ is (g-2)-connected. Moreover, $H_{k}(\mathcal{M}_{g}^{c}, \Delta_{g}^{c}; \mathbb{Q}) = 0$ for $k \leq g-2$. *Proof.* Let $\mathcal{T}(S)_{sep}^+$ be obtained from $\mathcal{T}(S)^+$ by removing the walls that correspond to the nonseparating vertices of $\mathcal{C}(S)$. Then $\mathcal{T}(S)_{sep}^+$ is the preimage of \mathcal{M}_g^c in $\mathcal{T}(S)^+$. The same reasoning as above shows that $\partial \mathcal{T}(S)_{sep}^+$ is homotopy equivalent to $\mathcal{C}(S)_{sep}$ and so $\partial \mathcal{T}(S)_{sep}^+$ is (g-3)-connected. It follows that we can construct a relative CW complex $(Z, \partial \mathcal{T}(S)_{sep}^+)$ obtained from $\partial \mathcal{T}(S)_{sep}^+$ by attaching cells of dimension $\geq g-1$ in a $\Gamma(S)$ -equivariant manner as to ensure that Z is contractible and no nontrivial element of $\Gamma(S)$ fixes a cell. Then Γ acts freely on Z (as it does on the contractible space $\mathcal{T}(S)_{sep}^+$) and so there is a Γ -equivariant homotopy equivalence $Z \to \mathcal{T}(S)_{sep}^+$ relative to $\partial \mathcal{T}(S)_{sep}^+$. It follows that we also have a homotopy equivalence $\Gamma \setminus Z \to \tilde{\mathcal{M}}_g^c$ relative to $\tilde{\Delta}_g^c$ and we conclude that $(\tilde{\mathcal{M}}_g^c, \tilde{\Delta}_g^c)$ is (g-2)-connected.

The last assertion follows from the existence of a normal subgroup $\Gamma \subset \Gamma(S)$ of finite index that is torsion-free. For if Γ is such a group, then $H_k(\mathcal{M}_g^c, \Delta_g^c; \mathbb{Q}) \cong H_k(\widetilde{\mathcal{M}}_g^c, \widetilde{\Delta}_g^c; \mathbb{Q})^{\Gamma(S)/\Gamma} = 0$ for $k \leq g-2$.

A similar statement holds for the universal curve $\mathcal{M}_{g,1}$.

When n > 1, we need to come to terms with the fact that the separability notion has no good hereditary properties: if T is a closed surface, $A \subset T$ a compact 1-dimensional submanifold representing a simplex of $\mathcal{C}(T)$ and S a connected component of T - A, then a vertex of $\mathcal{C}(S)$ may split S, but not T. This happens precisely when the vertex in question separates two boundary components of ∂S that lie on the same connected component of T - S. So the basic object should be, what Andy Putman calls in [5], a partitioned surface: a closed surface minus a finite set, for which the removed set comes with a partition. This leads to the following definition.

Definition 1.4. Let *N* be the set of points of *S* at infinity (the cusps) and let *P* be a partition of *N*. We call a vertex of $\mathcal{C}(S)$ separating relative to *P* if a representative embedded circle $\alpha \subset S$ has the property that $S - \alpha$ has two connected components each of which meets *N* in a union of parts of *P*. We denote by $\mathcal{C}(S, P)$ the full subcomplex of $\mathcal{C}(S)$ spanned by such vertices.

One might also understand $\mathcal{C}(S, P)$ as the full subcomplex of $\mathcal{C}(S)$ spanned by the isotopy classes of embedded cycles which are separating on the surface S^P that is obtained by capping off for each part of P the corresponding set of cusps by a sphere with that many holes. Notice that $\mathcal{C}(S, P) \subset \mathcal{C}_{sep}(S)$ and that we have equality when P is discrete or N is empty.

We shall prove Theorem 1.1 by induction and simultaneously with

Theorem 1.5 $(A_{g,n})$. Suppose that g > 0 and n = |N| > 1. Let P be a partition of N. Then $\mathcal{C}(S, P)$ is (g - 2)-connected.

To be precise, the induction starts with g = 0, where the statements (A_g) and $(A_{0,n})$ are trivially true and the induction strategy will be to show that

- (i) $(A_{h,n})$ for h < g implies (A_g) , and
- (ii) (A_g) and $(A_{h,k})$ for (h,k) < (g,n) (for the lexicographic ordering) imply $(A_{g,n})$.

I am indebted to Allen Hatcher for pointing out that the stronger version of Theorem 1.5 that I stated in a previous version was incorrect. Yet it may be that some such statement might hold. For instance, if r(P) denotes the number of nonempty parts of P and s(P) the number of parts with at least two elements, is it true that $\mathcal{C}(S, P)$ is (g + r(P) + s(P) - 4)-connected when g > 0 (as I claimed in the earlier version)? In case g = 0, $\mathcal{C}(S, P)$ is a complex of dimension r(P) + s(P) - 4. Is this (r(P) + s(P) - 5)-connected? In other words, is this complex spherical?

I am grateful to the referee, whose meticulous job helped to improve the paper. The proof of Lemma 2.3 follows a suggestion by the referee and simplifies my original one.

I also gratefully acknowledge support by the Mathematical Sciences Center of Tsinghua University at Beijing, where some of this work was done.

2. Proofs

Before we start off, we mention the following elementary fact that we will frequently use.

Lemma 2.1. Let X_i be a d_i -connected space $(d_i = -1 \text{ means } X_i \neq \emptyset)$, where i = 1, ..., k. Then the iterated join $X_1 * \cdots * X_k$ is $(-2 + \sum_{i=1}^k (d_i + 2))$ -connected.

Proof that $(A_{h,n})$ for h < g, all n, implies (A_g) . So here $n \le 1$. We must show that $\mathcal{C}_{sep}(S)$ is (g - 3)-connected. For g < 2, there is nothing to show and so we may assume that $g \ge 2$. A theorem of Harer [2, Thm. 1.2] asserts that $\mathcal{C}(S)$ is (2g - 3)-connected. So it is certainly (g - 3)-connected. Let \mathcal{C}_k be the subcomplex of $\mathcal{C}(S)$ that is the union of $\mathcal{C}_{sep}(S)$ and the k-skeleton of $\mathcal{C}(S)$. So $\mathcal{C}_{-1} = \mathcal{C}_{sep}(S)$ and $\mathcal{C}_k = \mathcal{C}(S)$ for k large. Notice that a finite set of vertices of $\mathcal{C}(S)$ spans a simplex of \mathcal{C}_k if and only if no more than k + 1 of these are nonseparating. Hence a minimal simplex of $\mathcal{C}_k - \mathcal{C}_{k-1}$ is represented by a compact 1-dimensional submanifold $A \subset S$ with k + 1 connected components, each of which is nonseparating. We prove that the boundary of the star of such a simplex in \mathcal{C}_k is a (g - 3)-connected. Since $\mathcal{C}(S)$ is (g - 3)-connected, it then follows that $\mathcal{C}_{sep}(S)$ is. Let $\{S_i\}_{i \in I}$ be the set of connected components of S - A. Notice that if g_i is the genus of S_i , then $g_i < g$. An Euler characteristic argument shows that

$$g - 1 = k + 1 + \sum_{i \in I} (g_i - 1).$$

446

We denote by N_i the set of 'cusps' of S_i , i.e., the finitely many points needed to make S_i a closed surface. So an element of N_i is given by possibly a cusp of S (if it exists and if it is also a cusp of S_i) or by a connected component of A in the boundary of S_i endowed with the orientation it receives as such. The set N_i comes with an evident partition P_i : if S has a cusp and N_i contains it, then this cusp makes up a singleton part of P_i and any other two elements of N_i belong to the same part of P_i if and only if they come from connected components of A that lie on the same connected component of $S - S_i$. (NB: beware that a connected component of $S - S_i$ could be simply a connected component A_o of A; then its two orientations define a 2-element part of P_i .) connected components of A that bound S_i . Note that since the connected components of A are nonseparating, we always have $|N_i| \ge 2$. By our induction hypothesis $\mathcal{C}(S_i, P_i)$ is then $(g_i - 2)$ -connected. The boundary of the star of the k-simplex σ_A defined by A in \mathcal{C}_k lies in \mathcal{C}_{k-1} and can be identified with the (|I| + 1)-fold join

$$\partial \sigma_A * \left(\underset{i \in I}{\bigstar} \mathcal{C}(S_i, P_i) \right).$$

Since $\partial \sigma_A$ is a combinatorial (k-1)-sphere, this join has by Lemma 2.1 connectivity at least $-2 + k + \sum_{i \in I} g_i$. By the displayed formula above this is equal to g - 4 + |I| and is therefore $\geq g - 3$.

The proof of $A_{g,n}$ begins with a discussion. We now assume that g > 0 and $n \ge 2$. Let $x \in N$. Notice that $S' := S \cup \{x\}$ has still negative Euler characteristic. We put $N' := N - \{x\}$ and P' := P|N'. The goal is to compare $\mathcal{C}(S', P')$ with $\mathcal{C}(S, P)$. There is in general no forgetful map $\mathcal{C}(S, P) \to \mathcal{C}(S', P')$ because there will be vertices of $\mathcal{C}(S, P)$ that do not give vertices of $\mathcal{C}(S', P')$. Let us first identify this set of vertices.

Denote by $\Sigma_x \subset N - \{x\}$ the set of $y \in N - \{x\}$ for which $\{x, y\}$ is a union of parts of P. In other words, if P_x denotes the part of P that contains x, then Σ_x is empty if P_x has more than 2 elements, equals $P_x - \{x\}$ if P_x is a 2-element set, and equals the set of $y \neq x$ for which P_y is a singleton in case $P_x = \{x\}$. Then the vertices of $\mathcal{C}(S, P)$ that have no image in $\mathcal{C}(S', P')$ are precisely the vertices α of $\mathcal{C}_{sep}(S)$ which for some $y \in \Sigma_x$ bound a disk neighborhood of $\{x, y\}$ in $S \cup \{x, y\}$. Such a disk neighborhood can be thought of as a regular neighborhood of an arc in $S \cup \{x, y\}$ connecting the two added cusps; this may help to explain why we have chosen to denote this set of vertices by $\operatorname{arc}_{(S,P)}(x)$. Denote by $\mathcal{C}(S, P)_x$ the full subcomplex of $\mathcal{C}(S, P)$ spanned by the vertices not in $\operatorname{arc}_{(S,P)}(x)$.

Observe that $\operatorname{arc}_{(S,P)}(x)$ is empty (so that $\mathcal{C}(S, P)_x = \mathcal{C}(S, P)$) if Σ_x is.

Lemma 2.2. The link in $\mathcal{C}(S, P)$ of every vertex of $\operatorname{arc}_{(S,P)}(x)$ is a subcomplex of $\mathcal{C}(S, P)_x$ that projects isomorphically onto $\mathcal{C}(S', P')$.

Proof. A vertex of $\operatorname{arc}_{(S,P)}(x)$ defines a $y \in \Sigma_x$ and (up to isotopy) a closed disk D in $S \cup \{x, y\}$ that is a neighborhood of $\{x, y\}$. The inclusion $S - D \subset S'$ identifies the link in question with $\mathcal{C}(S', P')$.

E. Looijenga

Denote by \tilde{P} the refinement of P which coincides with P on $N - P_x$ and partitions P_x further into $\{x\}$ and $P_x - \{x\}$. So $\tilde{P}' = P'$. It is clear that $\mathcal{C}(S, P)$ is a subcomplex of $\mathcal{C}(S, \tilde{P})$. Notice that $\operatorname{arc}_{(S,P)}(x) = \mathcal{C}(S, P) \cap \operatorname{arc}_{(S,\tilde{P})}(x)$ (we have $\operatorname{arc}_{(S,P)}(x) = \operatorname{arc}_{(S,\tilde{P})}(x)$ unless $|P_x| = 2$) and $\mathcal{C}(S, P)_x = \mathcal{C}(S, P) \cap \mathcal{C}(S, \tilde{P})_x$. We denote by f the forgetful simplicial map $\mathcal{C}(S, \tilde{P})_x \to \mathcal{C}(S', P')$ so that we have the diagram

$$\begin{array}{rcl} C(S,P)_x &\subset & C(S,\widetilde{P})_x & \stackrel{f}{\longrightarrow} & C(S',P') \\ & \cap & & \cap \\ C(S,P) &\subset & C(S,\widetilde{P}). \end{array}$$

Lemma 2.3. The map $f: \mathcal{C}(S, \tilde{P})_x \to \mathcal{C}(S', P')$ is a homotopy equivalence.

Proof. Choose an arc γ which connects x with another point of N and defines a vertex of $\operatorname{arc}_{(S,P)}(x)$ and observe that the full subcomplex $K \subset \mathcal{C}(S, \tilde{P})_x$ spanned by vertices that avoid γ defines a section of f (the inclusion $S - \gamma \subset S'$ is isotopic to a homeomorphism). We shall prove that $\mathcal{C}(S, \tilde{P})_x$ admits K as a deformation retract. (The proof will in fact show that each fiber of |f| is a tree and essentially produces for every element of $|\mathcal{C}(S, \tilde{P})_x|$ the unique path in its |f|-fibre that connects it to the point of |K|.)

Denote by $K_r \subset \mathcal{C}(S, \tilde{P})_x$ the subcomplex whose simplices can be represented by a closed submanifold $A \subset S$ which meets γ transversally in at most r points. This defines a filtration $K = K_0 \subset K_1 \subset K_2 \subset \cdots$ whose union is $\mathcal{C}(S, \tilde{P})_x$. Although this filtration is infinite, it is enough to construct for every $r \ge 0$ a deformation retraction of $|K_{r+1}|$ onto $|K_r|$, for in the simplicial setting an infinite sequence of deformation retractions still gives a deformation retraction.

We do this per simplex: if σ is a simplex of K_{r+1} that is not in K_r and is minimal for this property, then its link in K_{r+1} lies in K_r and so it suffices to define for such a σ a deformation retraction h_{σ} of $|\text{Star}_{K_{r+1}}(\sigma)|$ onto $|\text{Link}_{K_{r+1}}(\sigma)|$.

The simplex σ is represented by a closed submanifold $A \subset S$ of which every connected component meets γ transversally and is such that $A \cap \gamma$ has cardinality r + 1 (a number that cannot be made smaller in its isotopy class). Let x_0 be the point of $A \cap \gamma$ closest to x. Denote by α_0 the connected component of A which contains x_0 and choose in S' a thin regular neighborhood of the union of α_0 and the subarc of γ which connects x_0 with x. The boundary of that neighborhood has two connected components. Both lie in S and only one of them is isotopic to α_0 . Denote by α'_0 the other boundary component. If τ is a simplex of K_{r+1} which contains σ , then adding α'_0 to τ gives also a simplex τ' of K_{r+1} and the codimension one face τ'' of τ' obtained by removing α_0 is contained in K_r . So if we regard $|\text{Star}_{K_{r+1}}(\sigma)|$ as the cone over $|\text{Link}_{K_{r+1}}(\sigma)|$ with the barycenter of σ as its vertex, then there is a simplicial map from this cone to its base which sends the barycenter to α'_0 and is the identity on the base. Its geometric realization yields the desired h_{σ} .

448

Corollary 2.4. The complex $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ is canonically homotopy equivalent to the join $\operatorname{arc}_{(S,P)}(x) * \mathcal{C}(S', P')$ (where $\operatorname{arc}_{(S,P)}(x)$ is discrete).

Proof. The set of vertices of $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ not in $\mathcal{C}(S, \tilde{P})_x$ is $\operatorname{arc}_{(S,P)}(x)$. The link of any such vertex is contained in $\mathcal{C}(S, \tilde{P})_x$ and by Lemma 2.2 that link projects isomorphically onto $\mathcal{C}(S', P')$. In view of Lemma 2.3 this implies that the inclusion of this link in $\mathcal{C}(S, \tilde{P})_x$ is also a homotopy equivalence. Hence the natural inclusion $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x \subset \operatorname{arc}_{(S,P)}(x) * \mathcal{C}(S, \tilde{P})_x$ is a homotopy equivalence. The corollary follows.

From now on we assume that A_g holds and that $A_{h,k}$ holds for all (h, k) smaller than (g, n) for the lexicographic ordering. Our goal is to prove $A_{g,n}$.

Lemma 2.5. The pair $(\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x, \mathcal{C}(S, P))$ is (g-1)-connected.

Proof. If $P_x = \{x\}$, then $\tilde{P} = P$ and there is nothing to show. We therefore assume that P_x has more than one element. Denote by \mathcal{C}_k the subcomplex of $\mathcal{C}(S, P) \cup$ $\mathcal{C}(S, \tilde{P})_x$ that is the union of $\mathcal{C}(S, P)$ and the k-skeleton of $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$: a finite set of vertices of $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ spans a simplex of \mathcal{C}_k if and only if no more than k + 1 of these separate x from $P_x - \{x\}$. Notice that $\mathcal{C}_{-1} = \mathcal{C}(S, P)$ and $\mathcal{C}_k = \mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ for k large. A minimal simplex of $\mathcal{C}_k - \mathcal{C}_{k-1}$ is represented by a compact 1-dimensional submanifold $A \subset S$ with k + 1 connected components, each of which separates x from $P_x - \{x\}$ (the graph that is associated to A is then a string with k + 2 nodes). We prove that the boundary of the star of such a simplex in \mathcal{C}_{k-1} is (g-2)-connected if g > 0. We enumerate the connected components of A as $\alpha_0, ..., \alpha_k$ and the connected components of S - A as $S_0, ..., \alpha_k$ S_{k+1} such that α_i is a boundary component of S_i and S_{i+1} and so that S_0 resp. S_{k+1} is punctured by x resp. $P_x - \{x\}$. The cusps of S - A are naturally indexed by $\widehat{N} := N \sqcup \{i_{\pm}\}_{i=0}^{k}$, where i_{-} resp. i_{+} corresponds to the cusp defined by α_{i} on S_{i} resp. S_{i+1} . Let $\hat{N}_i \subset \hat{N}$ index the set of cusps on S_i . Denote by P_i the partition of $(N - P_x) \cap S_i$ that is simply the restriction of P and denote by \hat{P}_i the partition of \hat{N}_i that on $(N - P_x) \cap S_i$ is equal to P_i and has what remains of \hat{N}_i as a single part. So this new part is $\{x, 0_+\}$ for i = 0, $\{(i - 1)_-, i_+\}$ for 0 < i < k + 1 and $(P_x - \{x\}) \cup \{k_-\}$ for i = k + 1.

The reason for introducing these partitions is that we can now observe that the boundary of the star of the k-simplex σ_A defined by A in \mathcal{C}_k lies in \mathcal{C}_{k-1} and can be identified with the iterated join

$$\partial \sigma_A * \mathcal{C}(S_0, \widehat{P}_0) * \cdots * \mathcal{C}(S_{k+1}, \widehat{P}_{k+1}).$$

It is then enough to show that this join is (g - 2)-connected for g > 0. Since $\partial \sigma_A$ is a (k - 1)-sphere, it is (k - 2)-connected. The connectivity of a factor $\mathcal{C}(S_i, \hat{P}_i)$ with $g_i > 0$ is at least $g_i - 2$. So by Lemma 2.1 the connectivity of the above join is at least $-2 + k + \sum_{\{i:g_i > 0\}} g_i = g + k - 2 \ge g - 2$.

Proof of $(A_{g,n})$. We must show that $\mathcal{C}(S, P)$ is (g - 2)-connected. In view of Lemma 2.5 it suffices to show that $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ has that property.

If $\operatorname{arc}_{(S,P)}(x) = \emptyset$, then n > 2 and so our induction hypothesis implies that $\mathcal{C}(S', P')$ is (g - 2)-connected by $A_{g,n-1}$. It follows from Corollary 2.4 that $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ is homotopy equivalent to $\mathcal{C}(S', P')$ and hence is (g - 2)-connected.

If $\operatorname{arc}_{(S,P)}(x) \neq \emptyset$, then we may have n = 2. At least we know that $\mathcal{C}(S', P')$ is (g-3)-connected (invoke A_g if n = 2). But since $\mathcal{C}(S, P) \cup \mathcal{C}(S, \tilde{P})_x$ is homotopy equivalent to $\operatorname{arc}_{(S,P)}(x) * \mathcal{C}(S', P')$ (by Corollary 2.4), it is (g-2)-connected. \Box

References

- B. Farb and N. V. Ivanov, The Torelli geometry and its applications: research announcement. *Math. Res. Lett.* 12 (2005), 293–301. Zbl 1073.57012 MR 2150885
- J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. (2) 121 (1985), 215–249. Zbl 0579.57005 MR 786348
- [3] W. van der Kallen and E. Looijenga, Spherical complexes attached to symplectic lattices. *Geom. Dedicata* 152 (2011), 197–211. Zbl 1217.05227 MR 2795243
- [4] E. Looijenga, Cellular decompositions of compactified moduli spaces of pointed curves. In *The moduli space of curves* (Texel Island, 1994), Progr. Math. 129, Birkhäuser, Boston 1995, 369–400. Zbl 0862.14017 MR 1363063
- [5] A. Putman, Cutting and pasting in the Torelli group. *Geom. Topol.* 11 (2007), 829–865.
 Zbl 1157.57010 MR 2302503
- [6] A. Putman, A note on the connectivity of certain complexes associated to surfaces. *Enseign. Math.* (2) 54 (2008), 287–301. Zbl 1182.57004 MR 2478089

Received January 7, 2010; revised January 23, 2012

E. Looijenga, Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80.010, 3508 TA Utrecht, The NetherlandsE-mail: E.J.N.Looijenga@uu.nl