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1. Introduction

We consider the problem of adjoining roots to elements of finitely generated groups.
An element of a free group is primitive if it is part of a basis. The letter F will be
used to represents a nonabelian free group. An element of a group G is indivisible if
is not a proper power. Let G be a group. The group hG; � 0

i j .� 0
i /

ki��1
i i is denoted

GŒ ki
p
�i �.

By [8], if an amalgamA�htiB is finitely generated and free, then t is primitive in
one of A or B . If GŒ k

p
� �, k > 1, is free, it corresponds to the case where one of the

vertex groups is infinite cyclic, and since � is not primitive in h k
p
�i, � is primitive

in G. The identity map A �hti B ! A �hti B is a morphism of free groups, and one
purpose of this paper is to examine what happens when we are simply given a map
A �hti B ! F which embeds A and B .

Consider Vaught’s equation a2b2c2 D 1. Lyndon showed that if a, b, and c
satisfy Vaught’s equation in a free group then they commute [4]. Let V D ha; b; c j
a2b2c2i. Solutions to a2b2c2 D 1 in a group G correspond to elements of the
set Hom.V;G/, where V is the fundamental group of the connected sum of three
projective planes, or equivalently, the connected sum of a torus T and a projective
planeP . Lyndon’s theorem simply says that all elements of Hom.V;F/ factor through
the map killing@P . Equivalently, a commutator in a free group is not a square. Lyndon
and Schützenberger [5] (See also [6].) extended this fact to equations apbqcr D 1,
p; q; r � 2, of the same type.
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More generally:

Theorem 1.1 ([1]). If .y1; : : : ; ynC1/ is a solution to ı.x1; : : : ; xn/ D xk
nC1, k > 1,

where ı is a word in xi , in F , and ı is neither a proper power nor primitive in
hx1; : : : ; xni, then the subgroup of F generated by fy1; : : : ; ynC1g has rank less
than n

The theorems of Lyndon, Lyndon–Schützenberger, and Baumslag, may all be
reinterpreted as statements about maps of graphs of free groups to free groups which
embed vertex groups.

The purpose of this paper is to generalize this fact to (most) arbitrary finitely
generated groups. We define a complexity which reduces to Euler characteristic in
the case of a free group, behaves well with respect to adjunctions of roots to arbitrarily
many elements, and strictly decreases if roots are added to indivisible (mutually)
nonprimitive (collections of) elements. Theorem 1.3 is an important step in the proof
that limit groups have finite Krull dimension.

Definition 1.2 ([7], [11]). Let G be a finitely generated group with Grushko de-
composition G1 � � � � � Gp � Fq . The Scott complexity of G is the ordered pair
�fd.G/ D .q � 1; p/.
Theorem 1.3. LetG be a finitely generated group, and let �1; : : : ; �n and ı1; : : : ; ım

be nontrivial indivisible elements of G, such that all �i are contained in freely inde-
composable free factors of G, no ıj is contained in any freely indecomposable free
factor of G, and all ıj have nonconjugate centralizers. Suppose that G ,! H and
that the inclusion map extends to a surjection

G0 D G
h

ki
p
�i ;

lj

q
ıj

i
� H:

Then �fd.G/ � �fd.H/. If equality holds and H has no Z2 free factors then there
are elements dj of G such that

G Š G1 � � � � �Gp � F � hıd1

1 i � � � � � hıdm
m i

with Gi freely indecomposable, and F a free factor.

Theorem 1.1 corresponds to the case where �fd.G/ D �fd.H/ D .q � 1; 0/,
n D 0, and m D 1.

Example (No Z2 free factors of H is necessary.). Let G D A � B , with A and
B freely indecomposable, H1 D A � B=hhab�1ii, a 2 A n 1, b 2 B n 1. Let
H D H1 � hx j x2i. Suppose that the natural maps A;B ,! H1 are injective. Then
the mapG ! H which sendsA toA < H1 andB to xBx�1 < xH1x

�1 is injective,
a 7! a, b 7! xbx�1 D xax, and ab 7! .ax/2. Then H is a quotient of GŒ

p
ab �

but �fd.G/ D �fd.H/ D .0; 2/.
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Our analysis also gives the following two theorems, which we prove in Section 2.4.

Theorem 1.4 (Improved Shenitzer’s Theorem). Let G D A �hti B , A and B free of
rank n and m, respectively. If t is indivisible in at least one of A or B and G maps
onto a free group of rank nCm � 1, then G is free and t is primitive in at least one
of A or B . If t is not indivisible in either factor then G is a free product of a free
group and an amalgamated product of two infinite cyclic groups.

Baumslag obliquely suggests a conjugacy separability problem [1], pp. 278–279,
which we interpret as:

Theorem 1.5. Let F be a free group of rank n > 1, and let ftig be stable letters,
and let fıj g be nontrivial, nonconjugate elements of F . Let G be the group F �
hti i=hhtiıji

t�1
i D ıj 0

i
ii, and assume that each ıj participates. If G has a map onto a

free group of rank n embedding F , then F Š F 0 �hıj i for some j , with each element
�j 0 , j 0 ¤ j , conjugate (in F ) into F 0.

Acknowledgments. It is hard to overstate my gratitude to Mark Feighn for his careful
reading of more versions of this paper than I can count. I would also like to thank
Mladen Bestvina for telling me the proof of Shenitzer’s theorem and teaching me
folding. I would also like to thank the referee.

The author was supported in part by EPSRC grant EP/D073626/2 and NSF
MSPRF DMS-0703658.

2. Free groups

2.1. Immersions I. A graph is a one dimensional CW complex. A graph with
boundary � is a graph with some valence one vertices marked as elements of the
boundary @� . A graph is a core graph of it has no valence one vertices outside its
boundary. A morphism of graphs is a map that sends vertices to vertices and maps
interiors of edges homeomorphically to interiors of edges. A morphism of graphs
is an immersion if it is locally injective. Equivalently, a morphism of graphs is an
immersion if it is injective on links of vertices. Stallings observed that if f W A ,! B

is a morphism of finitely generated free groups then there is an immersion of finite
graphs ' W �A ! �B such that after identifyingA andB with the fundamental groups
of �A and �B appropriately, ' represents f . If � is a graph and p is a closed path
crossing some edge of � exactly once then p represents a primitive element in �1.�/.

Let b and r be circles, and let l W b ! r be the l-fold cover. The mapping cylinder
M.l/ of l is the space b � Œ0; 1� t r=.x; 1/ � l.x/. We call r � M.l/ the core, and
we call b � f0g � M.l/ the boundary. Let � be a graph, and let � W S1 ! � be
a cyclically reduced path, and suppose that � has an l-th root, that is, a cyclically
reduced path l

p
� W S1 ! � such that . l

p
�/l is homotopic to � through reduced edge
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paths. By the mapping cylinder M.�; l/ we mean the mapping cylinder of the l-fold
cover of S1, subdivided into squares, such that the edges of squares not contained in
the boundary or core are sent to vertices, and the restrictions to b � fxg are reduced
edge paths, and with the natural map M.�; l/ ! � induced by � , l

p
� , and the

homotopy. See Figure 1.

Figure 1. A subdivided mapping cylinder S1
�3��! S1.

To motivate the approach to Theorem 1.3 we first give a proof of Shenitzer’s Theo-
rem: IfG D A�htiB is free, then the inclusion mapsA;B ,! G may be represented
by immersions �A # R, �B # R, where R is a graph with fundamental group
identified with G. Represent hti by a pair of immersions S1 # �A; �B and glue the
boundary components of an (subdivided) annulus to �A t �B along the immersions
of S1 to obtain a graph of spaces X . Extend �A; �B ! R to a map ' W X ! R.
Pull back midpoints of edges of R to produce embedded graphs in X “transverse”
to both �A and �B . The hypothesis that �A; �B # R are immersions implies that
the preimage graphs must be finite forests, otherwise the identity map G ! G has
nontrivial kernel. This implies that the representative of t as an immersion, in at
least one of �A or �B , must cover some edge exactly once, and t is therefore a basis
element in one of A or B .

Consider Theorem 1.1: A solution to ı.x1; : : : ; xn/ D xk
nC1, ı a word in xi and

k > 1, in a free group F corresponds to a map hx1; : : : ; xniŒ k
p
ı� ! F . If the image

of hx1; : : : ; xni in F has rank less than n then the conclusion holds, so we may assume
that the map is an embedding on hxi i. The group hx1; : : : ; xniŒ k

p
ı� is an amalgam

of a free group and a cyclic group. We construct a space X and a map X ! R

representing the map hx1; : : : ; xniŒ k
p
ı� ! F exactly as in the proof of Shenitzer’s

theorem. The main observation of this paper is that if the image of hx1; : : : ; xniŒ k
p
ı�

has rank n then the preimage graphs are forestlike, and if k > 0 and ı is indivisible,
then they are indeed forests. Using this and the fact that a closed path crossing some
edge only once represents a primitive element we conclude again that ı must be
primitive. In the following subsection we make this argument precise.
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2.2. Graphs of graphs I. The following is from [3]. A graph of graphs is a graph
of spaces such that all vertex and edge spaces are finite combinatorial graphs and
all edge maps are embeddings. A graph is 2-covered by a family of subgraphs if
every edge is contained in exactly two elements of the cover, and a graph of graphs
X is 2-covered if each vertex space is 2-covered by incident edge spaces. A graph of
graphsX has an underlying graph �U .X/, and corresponds to a map from �U .X/ to
the category of combinatorial graphs and injective maps. We define the topological
realization of X in the usual way: For each edge space E introduce a product E � I
and identify the points in E � f0g and E � f1g with their images in vertex spaces
under the edge maps associated to E. We will usually conflate graphs of spaces with
their topological realizations. A 2-covered graph of graphs with boundary is a graph
of graphs such that non-valence-one vertex spaces are 2-covered by incident edge
spaces, and valence one vertex spaces are isomorphic to their incident edge space.
An edge of a vertex or edge space is vertical.

Let�.Ai ; Bj / be shorthand for a graph of groups with underlying graph�, vertex
groups Ai , and edge groups Bj . Let G D �.Fi ; Zj / be a graph of free groups Fi

over nontrivial subgroups Zj . If � W G ! F is a homomorphism embedding each
Fi < G, then there is a graph of spaces with fundamental groupG and a natural map
to a graph representing �. For each i , choose an immersion 'i W �i # R where R
is the rose with n petals, and fundamental group F and �1.�i / D Fi , and �i a core
graph. For each j , choose an immersion 'j W �j # Rn representing the image of
Zj . If Zj ,! Fi then 'j lifts to an immersion 'i;j W �j # �i . Use the 'i;j as
attaching maps of annuli, one for each edge of�, to define a graph of spacesX . The
homomorphism � induces a map ' W X ! R. Restricted to a product�j � I, the map
is projection to the first factor, followed by the immersion 'j . Let b be the basepoint
of R.

Let fVpg be the collection of connected components of '�1.b/, let edge graphs
be connected components of preimages of midpoints of edges ofR and regardX as a
graph of graphs by regarding the Vp as vertex graphs. The homomorphism Fi ,! G

is represented by the inclusion �i ! X , and the map X ! R therefore represents
the mapG ! F . Given � W G ! F as above, we sometimes writeX.G; �/ to denote
X . Since all vertical edges come from annuli X is 2-covered.

Theorem 2.1. Let � W GŒ lj

p
ıj � � H be as in Theorem 1.3, and suppose further

that G andH are free. Then rk.H/ 	 rk.G/. If equality holds then the edge spaces
of X.GŒ lj

p
ıj �; �/ are forests.

We postpone the proof of Theorem 2.1 until Section 2.4.
The horizontal subgraph�.X/ of a graph of graphsX is the subset of the topolog-

ical realization ofX obtained by restricting to the zero skeleta of the vertex and edge
spaces. Let �1.X/ be the subset of �.X/ consisting of the connected components
not homeomorphic to S1. ForX.G; �/ as above, �1.X/ D S

i �i � X . We assume
throughout that if X is a graph of graphs without boundary, and e is an edge of a
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vertex space, then e is covered by at least two edges from incident edge spaces. This
is equivalent to saying that the graph obtained by restricting to midpoints of edges of
vertex and edge spaces is a core graph.

2.3. Blowing up. Let X be a graph of graphs. If e is an edge in the underlying
graph of X then X=e, the graph of graphs obtained by blowing-down X is obtained
by collapsing the edge spaceE �I in the topological realization ofX toE, provided
the quotient map X ! X=e is a homotopy equivalence. The inverse of blowing
down is blowing up.

Theorem 2.2 ([3], Theorem 2.4). Given a graph of graphs X there is a homotopy
equivalent graph of graphs Y , obtained by repeatedly blowing up, such that each
edge space of X is homeomorphic to a disjoint union of edge spaces of Y , vertex
and edge spaces of Y are connected, and each vertex space of Y has exactly three
incident edge spaces.

Lemma2.3 (Euler Characteristic Lemma). LetX beagraphof graphswith connected
vertex and edge spaces. Then

�.�.X// 	 �.�U .X//:

Suppose that �.�.X// D �.�U .X// and every vertex space has three incident
edge spaces. If E1; E2 and E3 are incident to a vertex space V with no monogons
then E1 \E2 \E3 is a single point and V is 2-covered.

Proof. Identical to the proof of Theorem 1.1 of [3]. Blow X up to a homotopy
equivalent space Y with only valence three vertex spaces. Blowing up and down do
not change the Euler characteristic of the horizontal graph. If V is a vertex space with
three incident edges, connectivity implies that there is a vertex of V in the image of
all three incident edge spaces. This vertex corresponds to a valence three vertex of
�.X/, therefore the map from valence three vertices of �.X/ to vertex spaces of X
is surjective. Then by combinatorial Gauss–Bonnet �.�.X// 	 �.�U .X//.

If �.�.X// D �.�U .X// the map from valence three vertices of the horizontal
graph to the set of valence three vertices of the underlying graph is bijective. If an edge
of a vertex space is covered three times by incident edge spaces then the endpoints
are covered three times by incident edge spaces. Since the valence three vertices of
the underlying graph and the horizontal graph are in bijective correspondence, the
endpoints of the offending edge must be the same, hence V contains a monogon.

Graphs of spaces whose horizontal subgraphs have the same Euler characteristic
as their underlying graphs are particularly important. In this case vertex spaces have
a simple local structure.

Lemma 2.4. A graph V , 2-covered by connected subgraphs Ei � V , i D 1; 2; 3,
such that

T
Im.Ei / is a single vertex w, has one of the following forms:
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� Ei are all points.
� E1 is a point, and E2j3 Š V .
� V D Im.E1/ _w Im.E2/, E3 Š V .
� V is the union of three subgraphs V1j2j3 which meet at a single vertexw 2 V ŠW

w Vi . Ei Š ViC1 _w ViC2.

If V is as above and W � V we say that W is cut by w if W is not contained
in some Vi . If W1; W2 � V and neither W1 nor W2 is cut by w then we say that w
separatesW1 andW2 if, without loss of generality,W1 � V1,W1 6� V2, andW2 � V2,
W2 6� V1.

Proof of Lemma 2.4. Let P be the set of edge-paths starting at w and terminating if
they meet w again. Let fEigiD0;1;2 be the edge graphs incident to V . We divide P

into three subclasses Pj;k , j ¤ k. A path p lies in Pj;k if the image of p is contained
in Im.Ej / \ Im.Ek/. Let Vi D S

p2PiC1;iC2
Im.p/. At most one of Vi can be a

point. Every point/edge of V lies in one of Vi , which all meet at w, the sole point of
triple intersection. An incident edge Ei is then isomorphic to ViC1 [ ViC2.

2.4. Cylinders. A morphism of graphs of graphs is a morphism of graphs of spaces
immersing vertex and edge spaces, respecting the product structure of edge spaces,
in vertex and edge spaces, respectively. A cylinder in a graph of spaces X is a
morphism C ! X , where C is a graph of graphs with all edge maps isomorphisms
of connected graphs and with underlying graph a circle. Furthermore, the induced
map �U .C / ! �U .X/ should be a cyclically reduced path. Cylinders are partially
ordered by the relation “factors through”, i.e., C � C 0 if C 0 ! C ! X .

Let C ! X be a cylinder, and let F be a vertex space of C . If the map F ! X

is not an immersion, there are oriented edges h and k with the same initial endpoint
with the same image in a vertex graph of X . Let E ! F be an incident edge map.
The edges e and f are the images of edges h0 and k0 in E. Since edge maps of C
are all isomorphisms of graphs there is a rotation map C ! C given by translating
each vertex and edge space one unit: If edges are ordered coherently and .	i / and
.
i / are the edge maps then the rotation map is given by 
i 	

�1
i on vertex spaces and

by 	�1
iC1
i on edge spaces. If .a; b/ is an element of the orbit of .h.0/; k.0// then a and

b are folded together by the associated map C ! X . Fold all pairs in the orbits of
.h.0/; k.0// to obtain a new cylinder C 0 ! X . The map C ! X factors through the
natural map C 0 ! X . Since folding is equivariant with respect to rotation C 0 ! X

is a cylinder.
Let fi W Ci ! X be a collection of cylinders. As in the case of a graph, we define

the pullback of fCig to be the graph of graphs

P D f.x1; : : : ; xn/ 2 C1 � � � � � Cn j fi .xi / D fj .xj /g:
There are induced mapsgi W P ! Ci . IfC1; C2 ! X are cylinders and their pullback
contains a cylinder then either, without loss,C1 � C2 or neither is maximal. Suppose
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thatZ is a cylindrical component of the pullback. ThenC 0 D .C1[C2[Z/=.g1.z/ �
g2.z// is a cylinder, and has an induced map C 0 ! X . Now fold to obtain a larger
cylinder C 00 ! X . If C ! X is a cylinder, consider the (self) pullback of the
collection C;C ! X : if it contains a cylinder other than the diagonal then C is not
maximal.

Let X be a graph of graphs, let I be a subdivided interval, and let p W I !
X be a reduced edge path in �.X/. Let V be a vertex space of X , and say that
� W F ! V � X pushes along p if p.0/ D �.v/ for some vertex v of F and the map
.I [ F /=.0 � v/ ! X extends to the product I � F and the reduced edge paths
obtained by restricting to vertices of F are all identical.

Lemma 2.5. Suppose that �.�.X// D �.�U .X//, � W F # X pushes along p and
p0, the first edges of the projections of p and p0 to �U .X/ agree, and that F has
more than one point. Then, without loss of generality, the projection of p to �U .X/

is a sub-path of the projection of p0 to �U .X/.

Proof. Since F has more than one point, images of vertex spaces of I �F are uncut
by valence three vertices of �.X/. We may assume by removing prefixes that the
projections of p and p0 diverge after one step, and that they are both of length two,
but this implies that the image of F in the vertex space where the two paths diverge is
cut by a valence three vertex of �.X/, contradicting the fact that F pushes past that
vertex space.

Lemma 2.6. Suppose that �.�.X// D �.�U .X//. Suppose that � W F # X pushes
along a path p, and suppose �.x/ D �.y/ for some x ¤ y. Let F 0 # X be
the immersed graph obtained by identifying x and y and folding. Then F 0 pushes
along p.

Proof. The two element set fx; yg pushes along p, and F=x � y therefore pushes
along p. Furthermore, any two edges ofF=.x � y/ adjacent to Œx� push along p, and
since X is 2-covered, they push in a unique way, hence if e and f are identified by
folding, then .F=x � y/=.e � f / pushes along p. The lemma follows by induction
on the number of edges.

Lemma 2.7 (Vertex spaces embed). Let X be a 2-covered graph of spaces and let
C ! X be a cylinder. If E is an edge space of C and the induced map E ! X is
not injective then C is not maximal.

Proof. Identify points having the same images and fold.

Lemma 2.8 (Vertex spaces do not overlap much). Let C;C 0 ! X be two cylinders
such that all maps of vertex spaces are embeddings, and suppose two vertex spaces
E and E 0 of C and C 0, respectively, intersect in more than one point. Then either
(without loss of generality) C � C 0 or neither is maximal.
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Proof. The multi-element set E \ E 0 � X pushes along arbitrarily long reduced
edge paths, but the pullback of C and C 0 is finite, therefore there is a cylindrical
component of the pullback.

Existence of maximal cylinders is guaranteed by the previous corollaries. Let
Y be obtained from X by blowing up. If C is a maximal cylinder in X then there
is a maximal cylinder D in Y such that C is a blow-down of D and the two maps
D ! Y ! X and D ! C ! X agree. In particular, the collection of types of
cylinder cross-sections of X and Y are the same.

Lemma 2.9 (No cycles). LetV be a vertex space ofX , and suppose thatC0; : : : ; Cn�1

are distinct maximal cylinders,E0; : : : ; En�1 vertex spaces of Ci , such that Ci ! X

embeds Ei in V . If E.i mod n/ \ Ei�1 ¤ ; then Ei \ Ej ¤ ; for some ji � j j > 1.
Intersections of images of edge graphs of maximal cylinders are cut-points in the
associated edge spaces of X .

Proof. Suppose not. Without loss of generality there are pathspi;iC1, i D 0; : : : ; n�2,
such thatEi \EiC1 pushes along pi;iC1, the projection p of pi;iC1 to �U .X/ agree,
andE0\En�1 does not push along any path projecting top. Choose a longest pathp0
projecting to a sub-path ofp thatE0 \En�1 pushes along. Then the images ofE0 and
En�1 are separated by the valence three vertex of the vertex space corresponding to
the end of p0, but the relation ‘not separated by’ is transitive. Thus the setsEi \EiC1

push along arbitrarily long paths, and the pullback of Ci and CiC1 must contain a
cylinder.

Figure 2. Edge spaces are trees of cylinder cross-sections. The shaded regions are cylinder
cross-sections. On the right there is a cycle, which does not occur, and on the left the cross-
sections are glued in a treelike pattern.

Proof of Theorem 2.1. Consider the graph of graphs X D X.GŒ lj

p
ıj �; �/. Blow

X up to a graph of graphs Y with only valence three vertices. Each edge space of
X is a disjoint union of edge spaces of Y . We show that the edge spaces of Y are
trees. Assuming rk.G/ D rk.H/, we have �.�.Y // D �.�U .Y //. Let Mj .ıj ; lj /

be the subdivided mapping cylinder corresponding to ıj , now regarded as an element
of �1.Y /. Then Y is obtained by gluing the boundaries of the mapping cylinders
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Mj to �1.Y / along reduced edge paths representing the ıj . The map Mj ! Y

is a cylinder, and factors through a maximal cylinder C . Each ıj is indivisible,
therefore edge graphs ofMj embed in Y , hence edge graphs ofMj embed in C , and
since no two Mj are conjugate or overlap in a vertical edge, C is the union of some
subcollection of the Mj . Since the ıj are nonconjugate, C D Mj for some j . By
Lemma 2.9 intersections of images of edge graphs of the Mj are cut points of edge
spaces of Y . If e is an (vertical) edge of an edge space of Y then e is contained in the
image of some cross section of some Mj , and therefore each nontrivial edge space
of Y is a union of trees along cut-points, hence is a tree.

Proof of Theorem 1.3 when G andH are free. By Theorem 2.1 edge spaces of X
are forests, and since lj > 0 there is some element ıj which crosses an edge f of
�1.X/ only once, and no other ıj 0 crosses f . Thus G can be written as F � hıj i
with all ıj 0 , j 0 ¤ j , conjugate into F . Induct.

Proof of Theorem 1.4. The proof is exactly the same as the previous proof. Indivis-
ibility of t in at least one factor implies that edge spaces of X.G/ are forests, and a
valence one vertex of a forest corresponds to an edge that an immersion representing
t in one ofA orB crosses exactly once, hence t is primitive in at least one factor.

Proof of Theorem 1.5. The hypotheses are again designed to imply that edge spaces
of X.G; �/ are forests.

3. Groups

3.1. Immersions II. Immersions of (core) graphs efficiently represent inclusions of
free groups. We mimic this and represent injections

G D G1 � � � � �GpG
� FqG

,! H D H1 � � � � �HpH
� FqH

with immersions of graphlike complexes.

Definition 3.1 (Relative graph). A relative graph is a CW-complex � equipped with
a pair of collections of disjoint connected subcomplexes

Ell.�/ D fY1; : : : ; Ypg � Verts.�/ D fV1; : : : ; Vbg
such that cells not contained in any Y 2 Verts.�/ are one-dimensional, and if
�1.Y / ¤ 1, Y 2 Verts.�/, then Y 2 Ell.�/.

The vertices of a relative graph are the elements of Verts.�/. The edges of a relative
graph are the one-cells not contained in any element of Verts.�/. The valence of a
vertex v is the number of oriented edges with endpoints in v. A vertex is a tree if
it has trivial fundamental group, and is empty if it is just a 0-cell. A relative graph
with boundary is a relative graph with some valence one empty vertices marked as
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elements of @� . A relative graph � is reduced if all valence one empty vertices are
in @� .

Definition 3.2 (Morphism of relative graphs). Let � and � 0 be relative graphs. A
continuous map ' W � ! � 0 is a morphism of relative graphs if elements of Verts.�/
are mapped to elements of Verts.� 0/, and interiors of edges of � are mapped homeo-
morphically to interiors of edges of � 0.

Denote by �=Verts.�/ the (ordinary) graph obtained by collapsing all elements
of Verts.�/ to points.

Definition 3.3. The complexity of a relative graph is the pair

�fd.�/ ´ .��.�=Verts.�//; j Ell.�/j/:

Pick a (empty or nonempty) vertex v. Take a copy of v, and for each oriented
edge e of � with terminal endpoint in v attach a copy of e at the corresponding point
to obtain the star of v, St.v/. There is a natural map St.v/ ! � .

Definition 3.4 (Immersion/binding ties [9]). Let ' W � 0 ! � be a morphism of
relative graphs. We say that ' is an immersion if, for each vertex v of � and each
connected components w of '�1.v/,

�1.'w/ W �1.St.w/; @St.w// ! �1.St.v/; @St.v//

is injective.

Let ' W � ! � 0 be a morphism of graphs. We say that ' is a Stallings fold if
' simply identifies a pair of edges having a common endpoint. Any morphism of
graphs factors through a sequence of Stallings folds followed by an immersion. We
define a family of moves on relative graphs which are inspired by Dunwoody’s folding
sequences [2].

� Enlarging a subcomplex: Replace an element of Verts.�/by a larger subcomplex
of � .

� Collapsing to a point: Replace Y 2 Verts.�/ by a point.
� If v is a tree vertex of � and � ! � 0 is a morphism of relative graphs, let
b1; : : : ; bn be the 0-cells of � contained in v which intersect an edge of � . Let
v0 be a reduced tree with n boundary components b0

1; : : : ; b
0
n, and let � 00 be the

relative graph obtained by replacing v by v0, gluing the edges of � attached to
v at bi to b0

i . There are maps � 00 ! � ! � 0 such that � 00 ! � 0 is the identity
away from v and v0, and an isomorphism of fundamental groups.

� Attaching 2-cells: Let � be a relative graph. If Y 2 Ell.�/ attach 2-cells to Y .
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� Folding: See Figure 3. Let � be a relative graph, let v be a vertex of � , and
let e and f be distinct edges with terminal endpoints in v. Let D be a square,
and attach three consecutive sides of D to � by a path ep Nf , where p is a path
in v. (Recall that v may have nontrivial fundamental group.) Collapse D by
collapsing the face attached to f to the remaining three sides, and if the fourth
side ofD connects two 0-cells of � crush the fourth side to a point to obtain � 0.
The vertices of� 0 are obtained from those of� by taking connected components
of the image of Verts.�/ and the fourth side of D. If v is an ordinary vertex
then the path p is trivial and a fold is just a Stallings fold. If either w or w0 is in
Ell.�/, or if w D w0, we add w [ h [ w0 to Ell.� 0/.

p

e

f

v

w

w0

h
v

e

f

D

w

w0

v

e

w [ h [ w0
z

g

,�!

,�!�!

�!

����!
Figure 3. Folding.

The following lemma is the analogue for relative graphs of Stallings’ theorem
that morphisms of graphs factor through sequences of Stallings folds. The way
�fd behaves is similar to the complexity used in Weidmann’s proof of acylindrical
accessibility [12].

Lemma 3.5 (cf. [10]). If ' W � ! � 0 is combinatorial, then there is a relative graph
x� , �fd.x�/ 	 �fd.�/, a �1-onto map F W � ! x� , and an immersion N' W x� ! � 0,
such that N' B F is homotopic to ', and F is a composition of folds. Immersions are
injective on fundamental groups.

The proof of Lemma 3.5 is an easy variation on Stallings/Dunwoody folding
sequences.

Proof. If, at any point, ' maps a nonempty vertex to a point, collapse the vertex to
a point. The complexity strictly decreases if the vertex is in Ell.�/. More generally,
if ' is not injective on �1.Y / for some Y 2 Ell.�/ attach enough two-cells to Y so
the restriction is injective on (ordinary) fundamental group. If the fundamental group
becomes trivial remove Y from Ell.�/ and replace it by a tree.
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If ' is not an immersion there is a vertex v0 of � 0 and a connected component v
of '�1.v0/ such that the induced map of fundamental groups of stars is not injective.
The map extends to � [ D, as in Figure 3, mapping the fourth side h to a vertex.
Now fold. If the fourth edge h connects distinct elements of Ell.�/ the complexity
decreases, and if the fourth edge h connects a vertex w to itself add w [ h to Ell.�/.
In this case ��.�=Verts.�// decreases. (Though j Ell j may increase.)

The last claim follows from the outermost arc argument.

Let � be a relative graph. A basic rectangle in � is a map Œ0; 1� � Œ0; 1� ! �

such that f0g � Œ0; 1� and f1g � Œ0; 1� are mapped to 0-cells meeting edges in � , and
with image either completely contained in an element of Ell.�/ or such that the sets
.0; 1/ � fyg are mapped homeomorphically to interiors of edges of � . A rectangle
in � is either a rectangle of the second type or a map of a square Œ0; 3� � Œ0; 1� ! �

such that Œ0; 1�� Œ0; 1� ! � and Œ2; 3�� Œ0; 1� ! � are basic rectangles of the second
type and Œ1; 2� � Œ0; 1� ! � is a basic rectangle of the first type. If R is a rectangle
define @L.R/ D f0g � Œ0; 1�, @R.R/ D f1g � Œ0; 1�, and @C.R/ D Œ0; 1� � f1g and
@�.R/ D Œ0; 1� � f0g.

An edge path in a relative graph is a morphism of a subdivided interval. An edge
path which is also an immersion is reduced. Any edge path is homotopic, relative
to its endpoints, to a reduced edge path, and any two reduced edge paths homotopic
relative to endpoints are homotopic through reduced edge paths, i.e., they differ by
reparametrization of the interval and a homotopy supported on subsegments mapping
to elements of Verts.�/. See Figure 4. A homotopy between two reduced edge paths
is a concatenation of basic rectangles.

projection

projection

homotopy

e

f

Y 2 Ell.�/

Figure 4. Homotopy between reduced edge paths is a concatenation of rectangles. Here are
three basic rectangles whose concatenation is a rectangle.

The following lemma also follows from the innermost disc/outermost arc argu-
ment.
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Lemma 3.6. Let � be a relative graph, let p0; p1 W S1 ! � be two homotopic
reduced edge paths, and let P W A ! � be a map of an annulus A D S1 � I such
that P jS1�fig D pi . Then there is a map Q W A ! � which restricts to p0 and p1

on the boundary and is a cycle of basic rectangles.

A map of an annulus as in the lemma is admissible. An admissible annulus is a
homotopy between two cyclically reduced paths through cyclically reduced paths.

One important property of immersions of relative graphs is that if p is a reduced
edge path then the composition of p and an immersion is also a reduced edge path.
More generally, compositions of immersions are immersions.

3.2. Graphs of graphs II. The objective of this section is to prove Theorem 1.3,
which we reduce to an analysis of graphs of graphs arising by adjoining roots to free
groups.

For the remainder of this section, fix an inclusion � W G ,! H of finitely generated
groups which lifts to an epimorphism � W G0 � H . We may assume, without
loss of generality, that for all H 0 such that if G0 � H factors though H 0 then
�fd.H

0/ D �fd.H/. By Lemma 3.5:

Lemma 3.7. LetH 0 � H be as above. Then

�fd.H
0/ � �fd.H/:

If a freely indecomposable free factor of H 0 has trivial image in H then the
inequality is strict.

We represent � as an immersion ' W �G ! �H and construct a space X , similar
to a graph of graphs, with fundamental groupG

�
ki
p
�i ;

lj

p
ıj

�
. This space has a nice

map to �H representing � . Furthermore, by resolving, as in the case of a free group,
X may be given a graph of spaces structure “transverse” to the old one. After adjusting
X and analyzing the structure of vertex spaces we reduce the proof of Theorem 1.3
to Theorem 2.1.

Choose an relative graph �H with fundamental group H , and whose compo-
nents Y1; : : : ; Yp 2 Ell.�H / have freely indecomposable fundamental groups. By
Lemma 3.5 there is a relative graph �G with fundamental groupG, and an immersion
' W �G # �H representing �. Choose, for each �i , ıj , immersions �i W S1 # �G ,
ıj W S1 # �G , representing the conjugacy classes Œ�i �, Œıj �. Each immersion
�i W S1 ! �G has image in the connected component of Ell.�G/ representing Gi .

LetMj be the mapping cylinder of the lj fold coverS1
j ! S1, and let rj be the core

ofMj . Now glue theMj along S1
j to �G using the immersions ıj as attaching maps

to form a space X . For each rj , choose an immersion lj

p
ıj W rj ! �H representing

the conjugacy class of lj

p
ıj 2 H . The map ' W �G # �H lifts to a continuous

map � W X ! �H agreeing with the immersions rj and '. Each mapping cylinder
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Mj is a quotient space of an annulus Aj , and by Lemma 3.6 we may assume that �
induces admissible maps of annuli. Set �.X/ D �G t F

rj ; �G.X/ plays the role
that �1.X/ does in the free case.

A relative graph � is admissible if it is bipartite (elements of Verts.�/ can be
divided into two classes such that each edge connects an element of one class to
an element of the other class), all elements of one class of vertices are empty and
valence two (the inessential vertices), and stars of elements of the other class of
vertices (the essential vertices) embed. If S is a star of an essential vertex then we
give S the structure of a relative graph with boundary by setting @S D .� n S/\ S .
An admissible relative graph is recovered by identifying boundary components of
stars of essential vertices in pairs. Let N .�/ be the collection of all stars of essential
vertices.

If ' W � ! � 0 is an immersion of relative graphs and � 0 is admissible, S � � 0 a
star of an essential vertex, then the connected components of '�1.S/ are (embedded!)
stars of vertices of � .

LetX be as above. Let Z be the collection of connected components of ��1.N /,
N 2 N .�H /, and let B be the collection of connected components of the preimages
of inessential vertices. Since each mapping cylinder induces an admissible map of
the associated annulus, the elements of B are two-sided graphs contained in X . For
eachB 2 B there are two embeddings ofB into elements of Z. Since �i is conjugate
into some Gj the associated mapping cylinder Mi is contained in some Z 2 Z. The
boundary of Z 2 Z is the set B \ Z, and coincides with the set of points of Z
mapping to inessential vertices of �H .

Each mapping cylinder is either completely contained in some Z 2 Z or has
nontrivial intersection with B. If M has nontrivial intersection with B then r \ Z

(recall that r is the core curve of M ) is a collection of closed intervals, and the
preimage B slices an annulus A 2 A into rectangles.

The connected components of the intersections of the relative graph �.X/ and
elements of Z are relative graphs S with distinguished valence one vertices S \ B.
Let �.Z/ be the collection of connected components of �.X/ \ Z. If S 2 � set
@S D S \ B. For each Z 2 Z let R.Z/ be the rectangles contained in Z.

The boundary of each rectangle R is composed of two types of arcs, @˙R D
R \ �.X/ and @LjRR D R \ B. The former are horizontal boundary arcs and the
latter are vertical boundary arcs. For each rectangle R let 'Ṙ W @˙R ! S.R;˙/
be the attaching map for the horizontal/vertical boundary arc of R. Then Z is the
quotient space

�.Z/ t R.Z/=.x � 'C
R .x/; y � '�

R.y//:

The boundary of Z is the union of vertical boundary arcs of the rectangles com-
prising it, along with all valence one vertices of @�.Z/ not contained in some vertical
boundary arc of a rectangle.

Let N 2 N .�H / be such that Z is a connected component of '�1.N /. Let
fb1; : : : ; bkg be the valence one vertices comprising @N , with incident edges ei � N
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 �1.b/
 �1.e/

Z xZ

 �1.b/

Figure 5. Crushing collars of boundary components.

so that 
.ei / D bi . If  W Z ! N is the restriction of � then  �1.ei / is a collar
neighborhood of  �1.bi / 2 B, a boundary component of Z. The restriction  
factors through the map which projects each collar onto the I factor. Call the resulting
quotient space xZ.

The map � W X ! �H factors through the graph of spaces �K obtained by
assembling the collection f xZ j Z 2 Zg along images of boundary components: if
B � Z1; Z2, then identify the images xB 2 xZ1 and xB 2 xZ2. Let K D �1.�K/.

Lemma 3.8. Each space xZ has freely indecomposable or trivial fundamental group.

Proof. If some xZ had freely decomposable fundamental group then�fd.K/>�fd.H/,
contradicting our choice of H .

If qH D qG , then no S 2 �.Z/ has fundamental group with nontrivial free
part. In particular, elements of �.Z/ are all relative trees. Let G D G.Z/ be the
graph with vertex set �.Z/ and edge set R.Z/. The endpoints of an edge R are the
boundary components @˙R, and an endpoint @˙R is attached to S if the image of
'Ṙ is contained in S . Let T be a maximal tree inG and letZT be the space obtained
by restricting to T .

Since no S 2 �.Z/ has nontrivial free part and G embeds in H , the components
Z 2 Z fall into three classes:

(1) Z1 D fZ j �1. xZ/ is trivialg.
(2) Z2 D fZ j �1. xZ/ is nontrivial and Z contains no Y 2 Ell.�G/g.
(3) Z3 D fZ j �1. xZ/ is nontrivial and Z contains some Y 2 Ell.�G/g.

Since G ,! H , if Z 2 Z1, then Z contains no Y 2 Ell.�G/.
We again reduce the computation �fd.H/ 	 �fd.G/ to a version of the combina-

torial Gauss–Bonnet Theorem.

Definition 3.9 (q-excess/deficiency). For each Z, let

��
q .Z/ D 1

2

�
#@ZT � #@ xZ�

;
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for Z 2 Z3 let

�C
q .Z/ D 1

2
b1.@ZT /

and for Z 2 Z1 [ Z2 set
�C

q .Z/ D 0:

If S is a relative graph with no loops (no contribution to qG), set �.S; @S/ D
1
2

#@S � 1,

Definition 3.10 (p-excess/deficiency). IfZ 2 Z1 then define�C
p .Z/D��

p .Z/ D 0.
If Z 2 Z2 then define �C

p .Z/ D 1 and ��
p .Z/ D 0. If Z 2 Z3 and Y0; : : : ; Yk are

the components of Ell.�G/ contained inZ, then define��
p .Z/ D k and�C

p .Z/ D 0.

Lemma 3.11.

�. xZ; @ xZ/ �
X

S2�.Z/

�.S; @S/ D �C
q .Z/ ���

q .Z/:

Proof. We need to show that

1

2
#@ZT � 1 D

X
S2�.Z/

�
1

2
#@S � 1

�
C�C

q .Z/:

Let T � G.Z/ be a maximal tree, and let S1; : : : ; Sk be an enumeration of �.Z/

such that SiC1 is connected to S0 [R0 [S1 [R1 : : : Si by an edgeRi � T . Assume
thatRi is oriented so that @CRi is attached to SiC1. LetZi be the union of S1; : : : ; Si

and R1; : : : ; Ri�1.
The boundary of @C=�Ri consists of two components. Suppose that for at least

one of C or �, the image @@Cj�Ri is contained in two distinct boundary components
of at least one of Zi or SiC1. If this is the case then

�.ZiC1; @ZiC1/ D 1

2
#@ZiC1 � 1

D 1

2
.#@Zi C #@SiC1 � 2/ � 1

D �.Zi ; @Zi /C �.SiC1; @SiC1/:

If both @@CRi and @@�Ri have image in the same boundary component of SiC1,
Zi , respectively, thenZi contains at least b1.@Zi /C1 elements of Ell.�G/ and SiC1

must contain a new element of Ell.�G/. We then have

�.ZiC1; @ZiC1/ D 1

2
#@ZiC1 � 1

D 1

2
.#@Zi C #@SiC1 � 1/ � 1

D �.Zi ; @Zi /C �.SiC1; @SiC1/C 1

2
:
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Each such rectangle makes a contribution of C1 to b1.@ZT /, C1=2 to �C
q , and only

such rectangles make such contributions, thus

�.ZT ; @ZT / D
X

S2�.Z/

�.S; @S/C�C
q .Z/:

Lemma 3.12. If Z 2 Z3 then ��
p .Z/ � b1.@ZT / D 2�C

q .Z/.

Consider Figure 6. The tree T in this example is a tripod, there is one boundary
component of ZT , and ��

p D 2. A similar example with only two elements in �.Z/

would have ��
p D 1. We argue that each independent loop in @ZT must contribute

at least 1 to ��
p .

R

@�R

@CR

@LR

@RR

S

Figure 6. Illustration for Lemma 3.12. If b1.@ZT / ¤ 0 then ZT contains too many elements
of Ell.�G/, which will force �fd to decrease.

Proof of Lemma 3.12. Argue as in Lemma 3.11. If @@˙R maps to a single boundary
component of S 2 �.Z/ then, since @˙R ! S is an immersion, S must have
nontrivial fundamental group, and since the free part of S is trivial, it must contain
some element Y of Ell.�G/.

Choose the exhaustion of T so that S0 has an incident edge R, @�R ! S0 such
that @@�R maps to a single boundary vertex of S0. Let Ri1 ; : : : ; Rib1.@ZT /

be the
rectangles such that @@CRij maps to a single boundary component of Sij C1. Then
each Sij C1 contains some element Yj 2 Ell.�G/. Since the Sij are distinct, Z
contains at least b1.@ZT /C 1 elements of Ell.�G/, i.e., ��

p .Z/ � b1.@ZT /.

Lemma 3.13. If Z 2 Z2 then ��
q .Z/ � 1

2
. If equality holds then �1. xZ/ Š Z2.
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Proof. Suppose that��
q .Z/ > 0. Then��

q .Z/ � 1
2

. Suppose that��
q .Z/ is 1

2
. Let

ZT be as before, and attach a rectangle R to ZT such that #@ZT [ R D #@ZT � 1.
Let R1; : : : ; Rn, S˙ be a path in T connecting the endpoints of R. Then R and the
Ri must form a Möbius strip, as in Figure 7. Adding rectangles while maintaining
��

q .Z/ D 1
2

does not change the fundamental group of xZ, which is clearly Z2.

Z

xZ Š RP2 _ I

D

[

Figure 7. Collapsing a collar neighborhood of a Möbius strip to build a projective plane.

Lemma 3.14. �fd.H/ 	 �fd.G/. If equality holds then for allZ 2 Z2,��
q .Z/ D 1

2
.

In particular, every such xZ has fundamental group Z2.
If H has no Z2 free factors and equality holds then Z2 is empty, all members of

Z3 contain exactly one element of Ell.�G/, and �˙
pjq.Z/ D 0 for all Z.

Proof. By Gauss–Bonnet,

X
Z2Z

X
S2�.Z/

�.S; @S/ D qG � 1

and, since the maps xZ ! H do not factor through free products, again by Gauss–
Bonnet, X

Z2Z

�. xZ; @ xZ/ D qH � 1:

By homology, qH � 1 	 qG � 1, and if qH � 1 D qG � 1, then by Lemma 3.11,

X
Z2Z3

�C
q .Z/ D

X
Z2Z

��
q .Z/;
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and we compute

pG D jZ3j C
X

Z2Z3

��
p .Z/ (Definition)

� jZ3j C 2
X

Z2Z3

�C
q .Z/ (Lemma 3.12)

D jZ3j C 2
X
Z2Z

��
q .Z/ (Lemma 3.11)

D jZ3j C 2
X

Z2Z2

��
q .Z/ (obvious)

� jZ3j C jZ2j (Lemma 3.13)

D pH : (Lemma 3.8)

Each Z 2 Z3 is a union of stars of vertices of �.X/, rectangles from mapping
cylinders representing roots adjoined to elements ıj , and mapping cylinders repre-
senting roots adjoined to elements �i which are conjugate into freely indecomposable
free factors ofG. Let Y.Z/ be the only element of Ell.�G/ contained inZ, let S0.Z/

be the element of �.Z/ containing Y.G/, and let M.Z/ be the collection of mapping
cylinders attached to Y.Z/. Let R.Z/ again stand for the rectangles contained in
Z. For each attaching map p W @˙R ! .S; @S/ we choose a fixed reduced edge path
Op W .Ip; @Ip ! .S; @S/ such that if Œp� D Œp0� 2 �1..S; @S// then there are maps
q W @˙R ! .I; @I / and q0 W @˙R0 ! .I; @I / such that Opq D p and Opq0 D p0.

Define an equivalence relation � on the collection of rectangles R by R � R0
if Œ@˙R ! .S; @S/� D Œ@˙R0 ! .S; @S/� and R and R0 are not separated by a
cutpoint in G.Z/.

The following is the analog of Lemma 2.4 for the vertex spaces Z 2 Z3.

Lemma 3.15. Let Z 2 Z3 and suppose that

� Si 2 �.Z/ is a tree unless i D 0,
� the fundamental group of S0 embeds under the map Z ! Z=@Z.

Then

� If S 2 � is not a cutpoint in G.Z/ then there is only one homotopy class of
attaching map associated to S .

� The � equivalence classes are exactly the maximal cut-point-free subgraphs of
G.Z/.

Proof. Consider a chain of rectangles R0; : : : ; Rn�1 forming an embedded cycle
in G.Z/, and orient the edges of G.Z/ so that, for each i , @CRi and @�RiC1 are
mapped to the same vertex space Si . If @CRi and @�RiC1 are attached to the same
Sji

, ji ¤ 0, then the maps must agree up to reversal of orientation since��
q .Z/ D 0.
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VZ

Z �.VZ/

�U .VZ/

NZ

Figure 8. VZ and all the rest.

Orient all rectangles so that Œ@CRi ! Sji
� D Œ@�RiC1 ! Sji

� agree. Then the
concatenation of rectangles, inZ=@Z represents a homotopy between Œ@CR0 ! Sj0

�

and Œ@�Rn�1 ! Sj0
�. Since �1.S0/ embeds under Z ! Z=@Z, the attaching maps

are equal.

If S is not a cutpoint then every pair of edges adjacent to S is contained in an
embedded cycle inG.Z/. Any maximal cutpoint-free subgraph contains an embedded
loop passing through any pair of edges, hence the second bullet holds as well.

Let Z 2 Z3 be as above. Let Bi be the maximal cut-point-free subgraphs of
G.Z/. For each class of attaching map p W @˙R ! .S; @S/ let Ip be an interval
as before, and let Zi be the graph of spaces obtained by replacing each S 2 Bi by
Ip . Let p1; : : : ; pk be the attaching maps for rectangles adjacent to S0 D St.Y.Z//,
where Y.Z/ is the element of Ell.�G/ contained in S0. Let e1; : : : ; el be the oriented
edges of X terminating in Y . Each path pi is a concatenation of paths ea.i/ri Neb.i/.
Construct a new graph S 0

0 by identifying the initial and terminal segments of Ipi

mapping to the same edges of St.Y /. We recover S0 by attaching S 0
0 to Y.Z/ by

gluing the subgraph DZ of S 0
0 associated to the middle segments of the Ip along

the paths ri . There is a natural map Ip ! S 0
0. Define a related space VZ by taking

�.VZ/ D fS 0
0; S1; : : : ; Sng as vertex spaces and attaching the rectangles from R.Z/

to �.VZ/ with the induced attaching maps. ThenZ is recovered by gluing the image
ofDZ in VZ to Y along the map Z W DZ ! Y.Z/ induced by the ri and reattaching
the mapping cylinders in M.Z/ to Y .

EachZi is homeomorphic to a product Bi � I . Give Bi � I the foliation induced
by projection to the I coordinate, and give eachS 2 �.VZ/ the foliation whose leaves
are simply the points of S . Then define F.Z/ to be the foliation on VZ induced by
the foliations on Bi � I and S . Define �U .VZ/ to be the leaf space of F.Z/, and
denote the quotient map by �Z . Let @�U .VZ/ be the image of the boundary of Z.
The following lemma is obvious from the construction.
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If � is a graph with boundary @� , define

�.�; @�/ D ��.�/C 1

2
#@�:

Lemma 3.16. The following hold for �U .VZ/:

� �U .VZ/ is a graph.
� �.�U .VZ/; @�U .VZ// D P

S2�.VZ/ �.S; @S/

� Each boundary component of �U .VZ/ is the image of exactly one boundary
component of Z0.

� Point preimages under �Z are connected and the natural maps .S; @S/ !
.�U .VZ/; @�U .VZ// are immersions.

The following extension property also holds. Let f W Z ! A be a continuous
map to an aspherical space A, mapping each boundary component of Z to a point.
Then there exists f 0 W �U .VZ/ ! A such that f 0 B �Z and f are homotopic rel @Z.
In particular, they induce the same map on �1.Z; @Z/.

Let NZ be the space obtained by attaching �U .VZ/ and all mapping cylinders
in M.Z/ to Y.Z/, and let N be the collection of all such NZ . The space X is the
pushout of the diagram B ,! Z. The map B ,! Z factors through the natural map
B ,! V , and the map X ! �H factors through the map crushing all elements of
B to points. By Lemma 3.16 xB ! xZ factors through the natural map xB ! N ,
and by Van Kampen, X ! �H then factors, up to homotopy, through the pushout of
xB ! N .

Define a new graph of graphs X 0 as the pushout of B ! V . The underlying
graph of X 0 is obtained as the pushout xB ! F

�U .VZ/. Then �.X 0/ is the pushout
B0 ! F

�.VZ/.
It is clear that �.X 0/ and �U .X

0/ are graphs, and, since point preimages of
VZ ! �U .VZ/ are connected, �1.X

0/ ! �1.�U .X
0// is onto. The attaching

maps M ! �G factor through the inclusion �1.X 0/ ,! X 0, and we have X D
�1.X/

S
ıj

fMj g.
We recoverX in the same way as we recoverZ: by gluing eachDZ � �.VZ/ to

Y.Z/ via the map Y . Since each�.VZ/ immerses in�Z under�Z �.X/ ! �U .X/

is an immersion.

Lemma 3.17. �.�.X 0// D �.�U .X
0//.

Proof. The proof is the straightforward computation. By Lemma 3.16 and definition,

��.�.X 0// D
X
Z2Z

X
S2�.VZ/

�.S; @S/

D
X
Z2Z

�.�U .VZ/; @�U .VZ// D ��.�U .X
0//:
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The images of the DZ are disjoint under the map X 0 ! �U .X
0/. We now prove

Theorem 1.3.

Proof of Theorem 1.3. It suffices to show that G splits as G0 � hıd1

1 i � � � � � hıdm
m i.

By Theorem 2.1 and connectivity of point preimages under VZ ! �U .VZ/, edge
spaces of X 0 are trees. Since the images of the DZ are disjoint under the map
X 0 ! �U .X

0/ and the ıj are not supported onDZ , there is an edge of�1.X 0/n[DZ

crossed by exactly one ıj , and ıj is therefore conjugate to a primitive element of G
relative toGi and conjugates of the remaining ıj 0 , j 0 ¤ j . Removing this edge from
�1.X 0/, along with the core curve of the mapping cylinder corresponding to ıj and
all rectangles adjacent to the core curve gives a graph of spaces of the same form.

Remark 3.18. Simply knowing that some ıj is a primitive element of �1.�.X// is
not sufficient to imply that hıj i is a free factor of G, thus Theorem 1.3, even in the
case m D 1, cannot be deduced from Baumslag’s theorem.
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