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Chain recurrence in ˇ-compactifications of topological groups
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Abstract. Let G be a topological group. In this paper limit behavior in the Stone–Čech com-
pactification ˇG is studied. It depends on a family of translates of a reversible subsemigroup S .
The notion of semitotal subsemigroup is introduced. It is shown that the semitotality property
is equivalent to the existence of only two maximal chain transitive sets in ˇG whenever S is
centric. This result links an algebraic property to a dynamical property. The concept of a chain
recurrent function is also introduced and characterized via the compactification ˇG. Applica-
tions of chain recurrent function to linear differential systems and transformation groups are
done.
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1. Introduction

The Stone–Čech compactification ˇG of a topological group G is an interesting tool
in topological dynamics since each minimal left ideal of ˇG is a universal minimal
set. Many studies in topological dynamics go into the investigation of minimal sets
of transformation groups (as reference sources we mention J. Auslander et al. [1],
[2], R. Ellis et al. [8], [10], and J. de Vries [17]). Minimal sets have usually been
the basic objects of studying dynamics of semigroup actions (see, for instance, [10]).
Recently, other dynamical objects were defined for semigroup actions on topological
spaces ([3], [4]). Abstract concepts of attractor and chain recurrence are defined in
terms of a family of subsets of the semigroup that establishes a direction for limit
behavior. In the present paper we use the topological methodology of [3] to study
the action of G on ˇG and determine its chain transitive sets.

Regarding the group of the real numbers R, we could imagine the chain recurrence
of the dynamical system .R; ˇR/ occurs in two distinct places of ˇR. In Section 3, we
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go into a general demonstration of this conjecture. We consider a transformation group
.G; ˇG/ with the assumption that G admits a generating reversible subsemigroup S ,
that is, S � G is a reversible subsemigroup such that G D S�1S . The limit behavior
in ˇG is directed by S in the sense that it depends on the family of translatesF D
fSt W t 2 Sg (see Section 2.1 ). For example, if G D Rn and u1, …, un is an ordered
basis, the limit behavior in ˇRn directed by the cone Si D f.x1; : : : ; xn/ W xi � 0g
means the limit behavior directed by the vector ui . If S is weakly centric, we verify
that the chain recurrence of .G; ˇG/ occurs in the limit sets of the identity in G

whenever S is semitotal, which means the existence of an element s 2 S such that
s�1S [ sS�1 D G. Moreover, if S is just centric, we show in Theorem 3.9 that the
limit sets of the identity are the maximal chain transitive sets in ˇG if and only if S

is semitotal.
In Section 4 we go into the analysis of chain recurrence in hulls of functions. We

introduce the concept of a chain recurrent function, which is a generalization of a
recurrent (or minimal) function studied by Ellis et al. [8], [9], and R. Johnson [11].
For a group G, a reversible subsemigroup S � G, and a compact space M , we say
that a uniformly continuous function f W G ! M is chain recurrent if its hull H.f /

is chain recurrent. Our approach is to investigate the chain recurrence in H.f / from
the chain recurrence in ˇG, since H.f / is a quotient space of ˇG. If S is centric and
semitotal, we show in Theorem 4.4 that a function f W G ! M is chain recurrent
if and only if the projections of the maximal chain transitive sets from ˇG intersect
each other in H.f /. It follows that either H.f / is chain recurrent or it has exactly
two distinct maximal chain transitive sets.

The concept of a chain recurrent function is implicit in the theories of differential
systems and topological dynamics. The initial idea involved a linear differential
equation

Px D A.t/x .t 2 R; x 2 V /;

where A W R ! L.V / is uniformly bounded and uniformly continuous, V D Rn or
Cn, L.V / is the space of linear self-maps of V , with the intention of studying chain
recurrence in the hull H.A/. Ellis and Johnson [9] found out .1/ could be profitably
studied by using the theory of cocycles and cocycle flows whenever A is recurrent,
that is, whenever H.A/ is minimal. Furthermore, Johnson [12] has utilized chain
recurrence to study the spectrum of the linear skew-product flow in V � H.A/, and
R. J. Sacker and G. R. Sell [15] investigated the gradient-like structure of the flow
in H.A/. We give some applications to those theories. In Section 5, we present
a different way to determine precisely the possibilities of gradient-like structure in
H.A/. We also show that the chain recurrence for a certain class of transformation
groups can be characterized from chain recurrent functions, since each chain recurrent
point is associated to a chain recurrent function.
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2. Preliminaries

In this section the basic definitions and results are given which enable the study of
limit behavior for transformation groups.

Definition 2.1. Let M be a topological space and let G be a topological group with
identity e. A left transformation group .G; M/ is defined by a jointly continuous in
each variable separately map � W G �M ! M : .g; x/ 7! gx, satisfying ( i) ex D x,
and ( ii) .gh/x D g.hx/, for all g; h 2 G and x 2 M . A right transformation group
.M; G/ is defined by a separately continuous (that is, continuous in each variable
separately) map � W M � G ! M : .x; g/ 7! xg, satisfying ( i) xe D x, and ( ii)
x.gh/ D .xg/h, for all x 2 M and g; h 2 G.

Let .G; M; �/ be a left transformation group. For each g 2 G and x 2 M ,
we denote by �g W M ! M the map defined as �g.x/ D gx, and we denote by
�x W G ! M the map defined as �x.g/ D gx. The map �g is a homeomorphism
of M and �x is continuous, since � is continuous in each variable separately. For a
point x 2 M , the orbit of x is the set Gx D fgx W g 2 Gg. A set X � M is said
to be invariant if Gx � X whenever x 2 X . The set X is said to be minimal if X

is nonempty, closed and invariant, and X has no proper subset with these properties.
A closed invariant set X is said to be isolated if there is a neighborhood N of X

with the following property: if Y � N is any invariant set, then Y � X . One also
defines restricted invariance, as follows. A set X � M is said to be invariant by a
subsemigroup S � G (or simply S -invariant) if Sx � X whenever x 2 X .

A subsemigroup S � G is right reversible if Ss \St ¤ ; for all s; t 2 S ; and it is
left reversible if sS \ tS ¤ ; for all s; t 2 S . The semigroup is reversible if it is right
and left reversible. If S is a subsemigroup that generates G, then G D S�1S if and
only if S is right reversible. This is well known as Ore’s conditions (see, for instance,
[5]). In this case, a subset X � M is invariant if and only if it is S -invariant and
S�1-invariant. The semigroup S is weakly left centric if given any principal left ideal
Ss, there is t 2 S such that tS � Ss; it is weakly right centric if given any principal
right ideal sS , there is t 2 S such that St � sS . The semigroup is weakly centric
if it is weakly left centric and weakly right centric. The subsemigroup is centric if
sS D Ss for all s 2 S . Note that S is right reversible if it is weakly left centric,
and it is left reversible if it is weakly right centric. Summarily, one has the following
diagram:

centric ! weakly centric ! reversible.

Example 2.2. Let G be the group of affine transformations of the real line of the
form t 7! at C b, where a > 0, and let S be all those such that 0 < a � 1 and
0 � b � 1 � a. Then S is a weakly left centric semigroup.

Definition 2.3. A homomorphism of the transformation group .G; M/ into the trans-
formation group .G; N / is a continuous map � W M ! N such that �.gx/ D g�.x/
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for all x 2 M and g 2 G. If a homomorphism � is also a homeomorphism of M

onto N , it is an isomorphism of .G; M/ onto .G; N /.

Definition 2.4. A pointed transformation group .G; X; x0/ is a transformation group,
with X compact Hausdorff, together with a distinguished point x0 2 X such that the
orbit closure cls.Gx0/ D X .

Note that a transformation group .G; X/ is minimal if and only if .G; X; x/ is a
pointed transformation group, for all x 2 X .

2.1. Limit sets and chain recurrence. Now we introduce the notions of limit sets,
attractors, and chain recurrence for transformation groups. We refer to papers [3],
[4] for unexplained dynamical concepts for semigroup actions. Throughout, there
is a fixed transformation group .G; M/, with M compact, and a fixed generating
reversible subsemigroup S � G.

Definition 2.5. The following relation in S is defined:

for t; s 2 S let t > s if and only if t D s or t 2 Ss:

The relation > is the reverse of the well-known Green’s L-preorder of semigroup
theory: t �L s if and only if t D s or t 2 Ss ([5]). Since S is right reversible, the
preorder > is directed. We consider the limit behavior of .G; M/ in this direction. It
means the family of translates F D fSt W t 2 Sg may be used to define dynamical
concepts. We start by defining limit sets. For all X � M and A � G we set
AX D fax W x 2 X; a 2 Ag.

Definition 2.6. The !-limit set of X � M is defined as

!.X/ D
\

t2S

cls.StX/;

and the !�-limit set of X as

!�.X/ D
\

t2S

cls.t�1S�1X/:

The !-limit set and the !�-limit set of X are called limit sets of X .

Definition 2.6 generalizes limit sets for classical dynamical systems. In fact, for
a dynamical system � W T � M ! M , where T denotes the real numbers R or the
integers Z, the limit sets of X � M are defined by

!.X/ D
\

t�0

cls.�.fT C C tg � X// and !�.X/ D
\

t�0

cls.�.fT � � tg � X//:
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By the right reversibility property, the family of translates F D fSt W t 2 Sg is a
filter basis on the subsets of S (that is, ; … F and given A; B 2 F there is C 2 F

with C � A \ B), and it satisfies the following hypotheses:

(1) For all s 2 S and A 2 F there exists B 2 F such that sB � A.
(2) For all s 2 S and A 2 F there exists B 2 F such that Bs � A.
(3) For all s 2 S and A 2 F there exists B 2 F such that B � As.

Hypothesis .1/ derives from left reversibility, while .2/ and .3/ from right re-
versibility. These hypotheses have been considered in [3] and [4]. Thus, we can refer
back to their results. The next one is proved in [3], Propositions 2.10 and 2.12.

Proposition 2.7. Let X � M be a nonempty subset. The limit sets !.X/ and !�.X/

are nonempty and compact; !.X/ is S -invariant and !�.X/ is invariant.

An immediate consequence of Proposition 2.7 is that a subset X � M is minimal
if and only if X D !�.x/ for all x 2 X , since !�.x/ is compact and invariant.

The next result is proved in [4], Theorem 3.1. It presents a preservation property
of limit sets under equivariant maps.

Proposition 2.8. Let .G; M/ and .G; N / be two transformation groups. Suppose
that � W M ! N is a homomorphism. For a subset X in M , one has

�.!.X// D !.�.X//:

Now we define an attractor and a repeller.

Definition 2.9. An attractor for a transformation group .G; M/ is a set A which
admits a neighborhood V such that !.V / D A. A repeller is a set R that has
a neighborhood U with !�.U / D R. The neighborhoods V and U are called
attractor neighborhood of A and repeller neighborhood of R, respectively. We
consider the empty set and M as attractors and repellers.

Note that attractors are compact S -invariant sets and repellers are compact invari-
ant sets. Attractors are invariant if S is a centric subsemigroup of G.

For an attractor A, we define

A� D Mnfx 2 M W !.x/ � Ag:
The set A� is a repeller ([3], Section 3) called the complementary repeller of A,
and .A; A�/ is called an attractor-repeller pair. Each repeller is a complementary
repeller of some attractor (see [3], Proposition 3.5). The next result is proved in [3],
Proposition 3.6, which is the main property of an attractor-repeller pair.

Proposition 2.10. Let A be an attractor and assume that x … A [ A�. Then
!�.x/ � A� and !.x/ � A.
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Now we define the concept of chain recurrence.

Definition 2.11. For x; y 2 M , an open covering U of M and t 2 S , we define
a .U; t /-chain from x to y as a sequence x0 D x; x1; : : : ; xn D y in M , elements
t0; : : : ; tn�1 > t and open sets U0; : : : ; Un�1 2 U, such that tixi ; xiC1 2 Ui , for
i D 0; : : : ; n � 1.

Definition 2.12. Let O be the family of all open coverings of M . The �-chain limit
set of X is defined as

�.X/ D
\

U2O;t2S

�.X; U; t /;

where �.X; U; t / D fy 2 M W there is a point x 2 X and a .U; t /-chain from
x to yg, and the ��-chain limit set of X is defined as

��.X/ D
\

U2O;t2S

��.X; U; t /;

where ��.X; U; t / D fy 2 M W there is a point x 2 X and a .U; t /-chain from
y to xg. The �-chain limit set and the ��-chain limit set of X are called chain limit
sets of X . A point x 2 M is chain recurrent if x 2 �.x/. A subset Y � M is
chain recurrent if all the points in Y are chain recurrent. A subset Y � M is chain
transitive if Y � �.x/ for all x 2 Y . We denote by R the chain recurrence set, that
is, the set of all chain recurrent points of .G; M/.

Remark 2.13. The maximal chain transitive sets (with respect to set inclusion) are
the sets

Ex D �.x/ \ ��.x/;

with x 2 R. Indeed, let E be a maximal chain transitive set and take x; y 2 E.
Then y 2 �.x/ and x 2 �.y/, that is, y 2 �.x/ and y 2 ��.x/. Hence, E �
�.x/ \ ��.x/. On the other hand, for y; z 2 �.x/ \ ��.x/, we have y 2 �.x/

and x 2 �.z/, hence y 2 �.z/. This means that �.x/ \ ��.x/ is chain transitive.
Since E is maximal satisfying chain transitivity, it follows that E D �.x/ \ ��.x/.

Proposition 2.14. The minimal subsets of .G; M/ are chain transitive.

Proof. Let X � M be a minimal subset. For x; y 2 X , U 2 O and t 2 S , choose
t0 > t and U0; U1 2 U such that t0x 2 U0 and y 2 U1. Since X D !�.x/, we have
s�1x 2 U1 for some s 2 S . Since s�1x; t0x 2 X , we have t0x 2 !�.s�1x/, hence,
t�1
1 s�1x 2 U0 for some t1 > t . Then t1.t�1

1 s�1x/ D s�1x 2 U1. Thus, the points
x; t�1

1 s�1x; y 2 X , the elements t0; t1 > t , and the open sets U0; U1 2 U, define a
.U; t /-chain from x to y.

Note that a set is chain recurrent if it is chain transitive. On the other hand, a chain
recurrent set is chain transitive if it is compact and connected. This result is proved
in [4], Proposition 4.5.
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Proposition 2.15. Suppose that N � M is connected, compact and chain recurrent.
Then N is chain transitive.

The next theorem, which is proved in [3], Propositions 4.3 and 4.7, and [4],
Proposition 4.2, relates the limit sets to the chain limit sets.

Proposition 2.16. For every x 2 M , the limit set !.x/ is chain transitive. The chain
limit set �.x/ is the intersection of all attractors containing !.x/, and the chain limit
set ��.x/ is the intersection of all repellers A� such that x … A.

In particular, both chain limit sets �.x/ and ��.x/ are compact sets; �.x/ is
S -invariant and ��.x/ is invariant, for all x 2 M . We note that �.x/ is invariant if
S is a centric subsemigroup of G.

Proposition 2.17. Assume that S is centric. The limit set !�.x/ is chain transitive.

Proof. For y; z 2 !�.x/, t 2 S , and U 2 O, take t0 > t and U0; U1 2 U such that
t0y 2 U0 and z 2 U1. Then s�1x 2 U1 for some s 2 S . Since t0y 2 !�.x/, we
have t�1s�1S�1x \ U0 ¤ ;. Since s�1S�1 D S�1s�1, there is t1 > t such that
t�1
1 s�1x 2 U0 and t1.t�1

1 s�1x/ D s�1x 2 U1. Thus, the points y; t�1
1 s�1x; z 2 M ,

the elements t0; t1 > t , and the open sets U0; U1 2 U define a .U; t /-chain from y

to z.

The following theorem is proved in [3], Theorem 4.1. It extends the well-known
Conley theorem in dynamical systems that characterizes the chain recurrence set in
terms of attractors

Proposition 2.18. The chain recurrent set R is the set

\
fA [ A� W A is an attractorg:

3. Stone–Čech compactification

This section contains the main results of the paper. We study the action of a topological
group G on its Stone–Čech compactification ˇG. In order to determine the chain
transitive sets, we investigate a specific attractor-repeller pair of .G; ˇG/. We refer
to [18] for the ultrafilter version of the Stone–Čech compactification.

Let G be a noncompact T4 topological group. The Stone–Čech compactification
ˇG can be described as the set of closed ultrafilters on G provided with the hull-kernel
topology. For a closed subset A � G, the set hc.A/ D fu 2 ˇG W A 2 ug is a basic
closed subset of ˇG, and for an open subset U � G, the set ho.U / D fu 2 ˇG W
there is A 2 u with A � U g is a basic open subset of ˇG.
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For each g 2 G, we have the ultrafilter ug D fA � G W g 2 Ag. The mapping
g ! ug is an embedding of G into ˇG. Thus, we might consider G � ˇG. Given
a subset B � G, we have clsˇG.B/ D hc.clsG.B//. The group G acts on the left
on ˇG, as follows. For .g; u/ 2 G � ˇG, we denote gu D fgA W A 2 ug. Since
cls.Gue/ D ˇG, the transformation group .G; ˇG; ue/ is pointed. If .G; X; x0/ is
another pointed transformation group, there is an epimorphism � of ˇG onto X such
that �.ue/ D x0. Similarly, G acts on the right on ˇG by ug D fAg W A 2 ug.

Remark 3.1. Let A � G be a closed set and U � G an open set. It is easily seen
that ghc.A/ D hc.gA/ and gho.U / D ho.gU / for all g 2 G.

Let S � G be a proper generating weakly centric subsemigroup, and assume
that it is closed and has nonempty interior. The next proposition presents interesting
attractors and repellers of .G; ˇG/.

Proposition 3.2. For each g 2 G, the set !.hc.Sg// is an attractor and the set
!�.hc.S

�1g// is a repeller in ˇG.

Proof. For s 2 int.S/, we have Ssg � int.Sg/ and hc.Ssg/ � int.hc.Sg//. Since
S is weakly (left) centric, there is � 2 S such that �S � Ss. From Remark 3.1, we
have

S�hc.Sg/ D
[

t2S

t�hc.Sg/ D
[

t2S

hc.t�Sg/ � hc.Ssg/ � int.hc.Sg//:

Hence,

!.hc.Sg// D
\

t2S

cls.Sthc.Sg// � cls.S�hc.Sg// � int.hc.Sg//:

Thus, !.hc.Sg// is an attractor with attractor neighborhood hc.Sg/. Similarly, we
have hc.s

�1S�1g/ � int.hc.S
�1g//. Hence,

!�.hc.S
�1g// D

\

t2S

cls.t�1S�1hc.S
�1g// � cls.s�1S�1hc.Sg//

� hc.s
�1S�1g/ � int.hc.S

�1g//:

Thus, !�.hc.S
�1g// is a repeller with repeller neighborhood hc.S

�1g/.

Let e 2 G be the identity. The following consequence of Proposition 3.2 presents
specific properties of the limit sets of ue .

Corollary 3.3. The limit set !�.ue/ is a repeller, and the limit set !.ue/ is an
intersection of attractors.
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Proof. Note that !�.ue/ D !�.hc.S
�1//, hence, !�.ue/ is a repeller. For all s; t 2

S , we have !.ue/ � hc.Stss/ � Sthc.Ss/. Hence, !.ue/ � T
s2S!.hc.Ss//: On

the other hand, for all t 2 S , we have
\

s2S

!.hc.Ss// � !.hc.St// � hc.St/:

Thus,
T

s2S

!.hc.Ss// � !.ue/ and !.ue/ D T
s2S

!.hc.Ss//.

We can relate the repeller !�.hc.S
�1// to the complementary repeller !.hc.S//�

of !.hc.S//. In general, we have !�.hc.S
�1// � !.hc.S//�. Indeed, since S is a

proper subsemigroup of G, there is an element t 2 S such that t … S�1. Hence,
hc.S/ \ hc.t

�1S�1/ D ;, and !.hc.S// \ !�.hc.S
�1// D ;. Since !�.hc.S

�1// is
compact and invariant, it follows that !�.hc.S

�1// � !.hc.S//�. Nevertheless, the
equality !�.hc.S

�1// D !.hc.S//� does not hold unless S is a semitotal subsemi-
group, as follows.

Definition 3.4. A subsemigroup H of G is called semitotal if there is an element
h 2 H such that h�1H [ hH �1 D G.

A subsemigroup H of G is called total if H [ H �1 D G. It is well known that
a maximal subsemigroup of a nilpotent group is total (and centric), and a maximal
subsemigroup with nonempty interior of a finite dimensional connected solvable Lie
group is total (see [13], Theorem 8.3 and Corollary 11.2). Definition 3.4 introduces
a semigroup property that is more general than the totality property. Note that total
subsemigroups contain the identity of G. Thus, a total subsemigroup is semitotal. On
the other hand, there are semitotal subsemigroups which are not total. For instance,
let G D GL.n; R/C be the group of the real matrices with positive determinant and
take a real number b � 1. The subset Sb D fg 2 G W det g � bg is a centric semitotal
subsemigroup of G, and Sb is not total if b > 1.

Theorem 3.5. The subsemigroup S is semitotal if and only if !�.hc.S
�1// D

!.hc.S//�.

Proof. Suppose that S is semitotal and let u 2 ˇGn!�.hc.S
�1//. There is an element

� 2 S such that u … hc.�
�1S�1/. Hence, there is A 2 u with A � G n ��1S�1.

Take s 2 S such that s�1S [ sS�1 D G. We have ��1s�2S [ ��1S�1 D G, hence,
G n ��1S�1 � ��1s�2S . Thus, u 2 hc.�

�1s�2S/ and Ss2�u � hc.S/. Since
!.hc.S//� is invariant and !.hc.S//� \ hc.S/ D ;, we have u 2 ˇG n !.hc.S//�.
Hence, !.hc.S//� � !�.hc.S

�1//, and since !�.hc.S
�1// � !.hc.S//�, we have

!.hc.S//� D !�.hc.S
�1//. Conversely, suppose that !�.hc.S

�1// D !.hc.S//�.
If u … !.hc.S// [ !�.hc.S

�1//, Proposition 2.10 says that !.u/ � !.hc.S// and
!�.u/ � !�.hc.S

�1//. Suppose by contradiction that S is not semitotal, that is,
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t�1S [ tS�1 ¤ G for every t 2 S . This implies the set

F D
\

t2S

hc.G n .int.t�1S/ [ int.tS�1///

is nonempty and invariant. In fact, take the family of compact subsets in ˇG

F D fhc.G n .int.t�1S/ [ int.tS�1/// W t 2 Sg:
Since S is reversible, for a finite sequence of elements t1; : : : ; tn 2 S , we can take
t 2 t1St1 \ � � � \ tnStn. Then t�1

i S � t�1S and tiS
�1 � tS�1, for i D 1; : : : ; n. It

follows that
n[

iD1

int.t�1
i S/ [ int.tiS

�1/ � t�1S [ tS�1:

Since t�1S [ tS�1 ¤ G, the set G n Sn
iD1 int.t�1

i S/ [ int.tiS�1/ is not empty, that
is,

n\

iD1

G n int.t�1
i S/ [ int.tiS

�1/ ¤ ;:

Hence,
Tn

iD1hc.G n int.t�1
i S/ [ int.tiS�1// is a nonempty subset of ˇG. Since ˇG

is compact Hausdorff, it follows that F is nonempty and compact. For showing the
invariance of F , let u 2 F and s 2 S . For t 2 S , take s1; s2 2 S such that ss1 D ts2.
Then

G n .int.s�1t�1s�1
1 S/ [ int.s1tsS�1// 2 u;

and

G n .int.t�1s�1
1 S/ [ int.ts2tsS�1// 2 su:

Since t�1S � t�1s�1
1 S and tS�1 � ts2tsS�1, we have

G n .int.t�1s�1
1 S/ [ int.ts2tsS�1// � G n .int.t�1S/ [ int.tS�1//:

Thus, G n .int.t�1S/ [ int.tS�1// 2 su. Since t is arbitrary, it follows that su 2 F .
Now, take s1; s2 2 S such that s1s D s2t . Then

G n .int.s�1
1 t�1s�1S/ [ int.sts1S�1// 2 u;

and

G n .int.t�1s�1
2 t�1s�1S/ [ int.ts1S�1// 2 s�1u:

Hence, G n .int.t�1S/ [ int.tS�1// 2 s�1u, and s�1u 2 F . Thus, F is invariant by
S and S�1, whence the invariance of F . Finally, for t 2 int.S/, we have tS � int.S/

and t�1S�1 � int.S�1/. Since

F � hc.G n .int.S/ [ int.S�1///

D hc..G n int.S// \ .G n int.S�1///

D hc.G n int.S// \ hc.G n int.S�1//;
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we have F \ .!.hc.S// [ !�.hc.S
�1/// D ;, which is a contradiction since an

attractor-repeller pair intersects all invariant closed sets (in contrast with Proposi-
tion 2.10). Therefore, S is semitotal.

3.1. Chain recurrence. Now we go into the investigation of the chain transitive sets
in ˇG. Let O be the family of all open coverings of ˇG:

Proposition 3.6. The limit set !.ue/ is a maximal chain transitive set in ˇG. If S is
centric, the limit set !�.ue/ is a maximal chain transitive set in ˇG.

Proof. For all u 2 !.ue/, we have !.u/ � !.ue/. Since !.ue/ is an intersection
of attractors and it is chain transitive, Proposition 2.16 says that �.u/ � !.ue/

and �.u/ \ ��.u/ D !.ue/, whence !.ue/ is a maximal chain transitive set. By
assuming that S is centric, Proposition 2.17 says that !�.ue/ is chain transitive. Since
!�.ue/ is a repeller, Proposition 2.18 guarantees that it is a maximal chain transitive
set.

Since !.ue/ ¤ G, we have the following consequence.

Corollary 3.7. The transformation group .G; ˇG/ is not chain transitive.

The next result shows that every point in the maximal chain transitive set !.ue/

is chain attainable from any point in ˇG . If S is centric, every point of ˇG is chain
attainable from any point of the limit set !�.ue/.

Proposition 3.8. For all u 2 !.ue/, one has ��.u/ D ˇG and �.u/ D !.ue/. If S

is centric, then �.v/ D ˇG and ��.v/ D !�.ue/ for all v 2 !�.ue/.

Proof. Let v 2 ˇG, U 2 O and t 2 S . Let fho.U1/; : : : ; ho.Un/g be a refinement
covering of U given by open sets of the topology basis. For a point u 2 !.ue/, take
ho.Ui /; ho.Uj / 2 U and t0 > t such that u 2 ho.Ui / and t0v 2 ho.Uj /. Choose
g 2 Uj : We have

t0v; ug 2 ho.Uj /:

By writing g D s�1
1 s2, with s1; s2 2 S , take s 2 St \ Ss1. Then sg 2 S . Since

!.ue/ D T
t2S hc.St/, it follows that Ssg 2 u, and Ssg \ Ui ¤ ;. Hence, there is

t1 > t such that t1g 2 Ui . Thus, we have

t1ug ; u 2 ho.Ui /:

Take V0; V1 2 U such that ho.Uj / � V0 and ho.Ui / � V1. The points v; ug ; u 2 ˇG,
the elements t0; t1 > t , and the open sets V0; V1 2 U, define a .U; t /-chain from v to
u. Therefore, ˇG D ��.u/. The equality �.u/ D !.ue/ follows from Proposition
3.6. The proof of the second part of the proposition is similar. Suppose that S is
centric. Let z 2 ˇG, U 2 O, and t 2 S . Let fho.U1/; : : : ; ho.Un/g be a refinement
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covering of U given by open sets of the topology basis. For v 2 !�.ue/, take
ho.Ui /; ho.Uj / 2 U and t0 > t such that t0v 2 ho.Ui / and z 2 ho.Uj /. Choose
g 2 Uj : By the invariance of S , there is s > t such that s�1g 2 S�1t�1. Since
!�.ue/ D T

t2S hc.S
�1t�1/, we have S�1t�1

0 s�1g 2 v. Hence, S�1s�1g 2 t0v

and S�1s�1g \ Ui ¤ ;. It implies that there are t1 > t and g1 2 Ui such that
t1g1 D g. Thus, we have

t0v; ug1
2 ho.Ui / and t1ug1

; z 2 ho.Uj /:

Take V0; V1 2 U such that ho.Ui / � V0 and ho.Uj / � V1. The points v; ug1
; z 2 ˇG,

the elements t0; t1 > t , and the open sets V0; V1 2 U, define a .U; t /-chain from v to
z. Therefore, ˇG D �.v/. Since !�.ue/ is a maximal chain transitive set, we have
the equality ��.u/ D !�.ue/.

The main result can now be proved. Note that u 2 !.hf.S//� whenever u 2
Rn!.ue/. Hence, we have R � !.ue/[!.hf.S//�. Since !�.ue/ D !�.hf.S

�1//,
Theorem 3.5 means the subsemigroup S is semitotal if and only if R � !.ue/ [
!�.ue/. If !�.ue/ is chain transitive, it follows that S is semitotal if and only if
R D !.ue/ [ !�.ue/. The main theorem is completed from Proposition 2.17, as
follows.

Theorem 3.9. Assume that S is centric. Then S is semitotal if and only if !.ue/ and
!�.ue/ are the maximal chain transitive sets in ˇG. Equivalently, S is semitotal if
and only if .!.ue/; !�.ue// is the only nontrivial attractor-repeller pair in ˇG.

3.2. Nonuniversality. The universality is the main property of a minimal left ideal
M � ˇG. For each minimal transformation group .G; X/, there is an epimorphism
M ! X . Naturally, we have thought about an aspect of universality of a maximal
chain transitive set E � ˇG. We have conjectured that, for each chain transitive
transformation group .G; X/, there is an epimorphism E ! X . Nevertheless, from
simple argument, we show that E does not have such a property. Indeed, let X be a
connected compact space with card.X/ > card.ˇG/. As an example of such a space,
take the family Y D P .ˇG/ of all subsets of ˇG provided with a topology. We
have card.Y / > card.ˇG/. The pathwise connectification X of ˇY is a connected
compact space and card.X/ > card.ˇG/. Consider the trivial action of G on X ,
that is, G fixes the points in X . Each point in X is a minimal subset, and X is chain
recurrent. By Proposition 2.15, it follows that X is chain transitive. But, there is not
any surjective function of ˇG onto X , since card.X/ > card.ˇG/. In particular, an
epimorphism E ! X does not exist.

4. Chain recurrent functions

In this section we start the second part of the paper. We introduce the notion of a
chain recurrent function. Let G be a T4 compactly generated group provided with the
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left uniformity. Fix a proper generating weakly centric subsemigroup S � G, and
assume that it is closed and it has nonempty interior. Let M be a compact Hausdorff
space. We denote by C.G; M/ the space of all continuous functions of G into M

provided with the compact-open topology.

Definition 4.1. Let f W G ! M be a uniformly continuous function. The hull of f ,
H.f /, is the subspace clsff � g W g 2 Gg � C.G; M/, where f � g.h/ D f .gh/ for
all g; h 2 G.

The triple .H.f /; G; f / is a pointed transformation group. By Ascoli’s theorem,
it follows that H.f / is compact. It assures H.f / is isomorphic with a quotient space
of ˇG.

Definition 4.2. Let f W G ! M be a uniformly continuous function and let Qf W ˇG !
M be the extension of f . Then f defines an equivalence relation .f / in ˇG, as fol-
lows. Let u 	 v if and only if Qf .ug/ D Qf .vg/ for all g 2 G. The quotient space
ˇG�.f / is denoted by sp.f /, and called space of f .

The action of G on ˇG induces an action on sp.f / via the quotient map � W ˇG !
sp.f /. The triple .sp.f /; G; �.ue// is a pointed transformation group. Then the map
ˆ W f � g ! �.ug/ extends to an isomorphism of .H.f /; G/ onto .sp.f /; G/.

Definition 4.3. A uniformly continuous function f W G ! M is called chain recur-
rent if H.f / is chain recurrent.

A uniformly continuous function f W G ! M is chain recurrent if and only if
H.f / is chain transitive. Indeed, we have f �g 2 ��.f �g/ for all g 2 G if f is chain
recurrent. Since ��.f �g/ is compact and invariant, it follows that H.f / D ��.f �g/

for all g 2 G. Thus, H.f / is chain transitive.
The following theorem characterizes the chain recurrent functions.

Theorem 4.4. Assume that S is centric and semitotal. A uniformly continuous func-
tion f W G ! M is chain recurrent if and only if !.f / \ !�.f / ¤ ; in H.f /.
Equivalently, the function f is not chain recurrent if and only if !.f / and !�.f /

are the maximal chain transitive sets in H.f /.

Proof. Suppose that f is chain recurrent and let � W ˇG ! sp.f / be the quotient
map. Suppose by contradiction that !.f / \ !�.f / D ; in H.f /. Then !.�.ue// \
!�.�.ue// D ; in sp.f /. Hence,

\

t;s2S

cls.�.ue/St/ \ cls.�.ue/S�1s�1/ D ;:

Since hc.St/ D cls.St/, we have �.hc.St// � cls.�.St//. On the other hand, since
St � hc.St/, we have �.St/ � �.hc.St//. The compactness of �.hc.St// implies
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that cls.�.St// � �.hc.St//. Hence, �.hc.St// D cls.�.St// D cls.�.ue/St/.
Analogously, �.hc.S

�1t�1// D cls.�.ue/S�1t�1/. Thus, we have
\

t;s2S

�.hc.St// \ �.hc.S
�1s�1// D ;:

Since sp.f / is compact and Hausdorff, it follows that the family of closed sets

F D f�.hc.St// \ �.hc.S
�1s�1// W t; s 2 Sg

does not satisfy the property of finite intersection. It means there are elements
t1; : : : ; tn; s1; : : : ; sn 2 S such that

�.hc.St1// \ �.hc.S
�1s�1

1 // \ � � � \ �.hc.Stn// \ �.hc.S
�1s�1

n // D ;:

Take t0 2 St1 \ � � � \ Stn and s0 2 Ss1 \ � � � \ Ssn. We have

�.hc.St0// �
n\

iD1

�.hc.Sti // and �.hc.S
�1s�1

0 // �
n\

iD1

�.hc.S
�1s�1

i //:

It follows that �.hc.St0// \ �.hc.S
�1s�1

0 // D ;. By the semitotality property, there
is s 2 S such that G D Ss�2 [ S�1. Then G D Ss�2s�1

0 [ S�1s�1
0 and ˇG D

hc.Ss�2s�1
0 / [ hc.S

�1s�1
0 /. Hence, sp.f / D �.hc.Ss�2s�1

0 // [ �.hc.S
�1s�1

0 //.
Since �.hc.S

�1s�1
0 // is compact, the set sp.f / n �.hc.S

�1s�1
0 // is open and it is

contained in �.hc.Ss�2s�1
0 //. Moreover, �.hc.St0// � sp.f / n �.hc.S

�1s�1
0 //.

Hence, �.hc.St0// � int.�.hc.Ss�2s�1
0 ///, and �.hc.St0s0s2// � int.�.hc.S///.

By Proposition 2.8, we have !.�.hc.S/// D �.!.hc.S///. Hence,

!
�
�.hc.S//

� D �
� \

t;s2S

cls.hc.S/St/
� � �.hc.St0s0s2// � int.�.hc.S///;

which means !.�.hc.S/// is an attractor with attractor neighborhood �.hc.S//. Sim-
ilarly, we show that !.�.hc.Ss/// is an attractor for all s 2 S . By Proposition 2.18,
the chain transitivity of sp.f / implies that !.�.hc.Ss/// D sp.f / for all s 2 S . Since
!.ue/ D T

s2S!.hc.Ss//, we have !.�.ue// D T
s2S!.�.hc.Ss/// D sp.f /, and

!.f / D H.f /. Thus, !�.f / D ;, which contradicts the Proposition 2.7. Therefore,
!.f / \ !�.f / ¤ ;. For showing the converse, it is enough to show that, if f is not
chain recurrence, then !.f / and !�.f / are the maximal chain transitive sets in H.f /.
Suppose that f is not chain recurrent. Let z 2 sp.f / n .!.�.ue// [ !�.�.ue///.
Then z … �.!.ue// [ �.!�.ue// since �.!.ue// � !.�.ue// and �.!�.ue// �
!�.�.ue//. Hence, z D �.u/ for some u 2 ˇG n .!.ue/ [ !�.ue//. Since
!.u/ � !.ue/ and !�.u/ � !�.ue/, we have

!.z/ \ !.�.ue// ¤ ; and !�.z/ \ !�.�.ue// ¤ ;:

Hence, z is chain recurrent if the union !.�.ue// [ !�.�.ue// is chain transitive.
Since sp.f / is not chain recurrent, it follows that the union !.�.ue// [ !�.�.ue//
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is not chain transitive. Thus, !.�.ue// � E and !�.�.ue// � E�, where E and E�
are distinct maximal chain transitive sets in sp.f /. Now, let z 2 sp.f / n .E [ E�/.
Then z … �.!.ue// [ �.!�.ue//, hence, !.z/ � E and !�.z/ � E� since !.z/ \
!.�.ue// ¤ ; and !�.z/ \ !�.�.ue// ¤ ;. Thus, E and E� are the only maximal
chain transitive sets in sp.f /. Finally, for w 2 E, we have !.w/; !�.w/ � E, which
implies w 2 �.!.ue//. Therefore, E D !.�.ue//. Similarly, for w0 2 E�, we have
w0 2 �.!�.ue//, and E� D !�.�.ue//. The theorem is proved.

Note that if S is centric and semitotal, a function f W G ! M is not chain
recurrent if and only if the transformation group .sp.f /; G/ has the same dynamical
behavior as .ˇG; G/. In other words, the function f is not chain recurrent if and
only if the structure of the transformation group .ˇG; G/ does not change under the
quotient map on sp.f /. Thus, we have only two alternatives for chain recurrence in
H.f /, as follows.

Corollary 4.5. Assume that the subsemigroup S is centric and semitotal. Either
H.f / is chain transitive or !.f / and !�.f / are the only maximal chain transitive
sets in H.f /.

Let us see a consequence of Theorem 4.4 that justifies our intention of generalizing
recurrent function. A uniformly continuous function f W G ! M is recurrent if and
only if H.f / is minimal (contrast with [1], [8], [11]). Since a minimal set is chain
transitive, the function f is chain recurrent if it is recurrent. Nevertheless, there are
chain recurrent functions which are not recurrent functions, as shown by the next
result.

Corollary 4.6. Let f W G ! M be a uniformly continuous function and consider
the two nets .f .t//t2S and .f .t�1//t2S directed by >. Assume that the two limits

L1 D lim
t2S

f .t�1/ and L2 D lim
t2S

f .t/

exist. Then f is chain recurrent if and only if L1 D L2.

Proof. It is enough to observe that L1 and L2 define constant functions in H.f /,
where !�.f / D fL1g, and !.f / D fL2g. The proof follows from Theorem 4.4.

An asymptotic chain recurrent function f like in Corollary 4.6 is not recurrent,
except if it is constant. Indeed, if L D limt2S f .t/, then cls.L � G/ D fLg. If f is
not constant, it follows that cls.L � G/ ¤ H.f /, and H.f / is not minimal. Thus, the
class of chain recurrent functions is really larger than the class of recurrent functions.



490 J.A. Souza

5. Applications

In this last section we apply the results of the present paper to linear differential
systems and to topological dynamics.

5.1. Linear differential systems. For an n � n matrix-valued function A.t/ �
L.V /, we consider its linear skew-product flow on V � H.A/, and formulate an
alternative theorem for the main result of Sacker–Seel [15].

Let V be the space Rn or Cn and let L.V / be the space of linear self maps of
V . Assume that A W R ! L.V / is uniformly bounded and uniformly continuous.
Consider the linear differential equation

Px D A.t/x .t 2 R; x 2 V /:

We define zA W H.A/ ! L.V / by zA.�/ D �.0/, and consider the collection of ODEs

Px D zA.� � t /x .� 2 H.A//:

The solution of the initial value problem Px D zA.� � t /x, x.0/ D x, is denoted by
'.x; �; t/. The linear skew-product flow in V � H.A/ is defined by

�.x; �; t/ D .'.x; �; t/; � � t /:

The main result of [15] discusses the gradient-like structure of the flow in H.A/

from the skew-product flow in V � H.A/. To explain it we need some definitions.
The bounded set B, the stable set S, and the unstable set U, are defined as

B D f.x; �/ 2 V � H.A/ W k'.x; �; t/k is uniformly bounded in tg;
S D f.x; �/ 2 V � H.A/ W k'.x; �; t/k ! 0 as t ! C1g;
U D f.x; �/ 2 V � H.A/ W k'.x; �; t/k ! 0 as t ! �1g;

where k � k denotes a norm on V . For every � 2 H.A/, the sections S.�/, U.�/ are
defined by

S.�/ D fx 2 V W .x; �/ 2 Sg;
U.�/ D fx 2 V W .x; �/ 2 Ug;

which are linear subspaces of V . For n D dim V and k D 0; 1; : : : ; n, we define

Yk D f� 2 H.A/ W dim S.�/ D k and dim U.�/ D n � kg:
The sets Y1, …, Yn are isolated and pairwise disjoin (see [15], Lemmas 10 and 13).
The main results of [15] are done under the Standing Hypotheses, which means here
the hypothesis B D f0g � H.A/. Two cases are distinguished:

(1) There is precisely one nonempty Yk . In this case, H.A/ D Yk for some k (see
[15], Theorem 2).
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(2) There are at least two nonempty Yk . In this case, define

Q D maxfk W Yk is nonemptyg and q D minfk W Yk is nonemptyg:
Then Yq is an attractor and YQ is a repeller in H.A/, with H.A/ ¤ Yq . More-
over, every point � 2 H.A/ has its limit sets in some Yk (see [15], Theorem 3).

Note that if there are at least two nonempty Yk , the flow in H.A/ has a nontriv-
ial Morse decomposition. However, there are only two possibilities for dynamical
behavior in H.A/: either H.A/ is chain transitive or there is only one nontrivial
attractor-repeller pair in H.A/, which is .!.A/; !�.A// (Corollary 4.5). Hence,
the attractor-repeller pair .!.A/; !�.A// is the only nontrivial Morse decomposition
in H.A/. Therefore, we can establish an alternative theorem for the result of [15]
mentioned above.

Theorem 5.1. Assume that B D f0g � H.A/. There are only two alternatives on
.H.A/; R/:

(1) There is precisely one nonempty Yk , which is H.A/. It occurs if and only if A

is a chain recurrent function.

(2) There are precisely two nonempty Yk , which are Yq D !.A/ and YQ D !�.A/.
It occurs if and only if A is not a chain recurrent function.

We have another comment. Assume that there are constant matrices A� and AC
such that

lim
t!�1 A.t/ D A� and lim

t!1 A.t/ D AC:

Then !.A/ D AC and !�.A/ D A�. Furthermore, the number of eigenvalues having
negative real parts of AC and A� are dim S.AC/ and dim S.A�/, respectively. We
assume that none of the eigenvalues of A� and AC have zero real parts. The following
assertions are proved in [15], Theorem 4, and [14], Theorem 6.2, respectively:

(1) The equation Px D A.t/x has at least k linearly independent bounded solutions
where

k D dim S.AC/ � dim S.A�/:

(2) If dim S.AC/ D dim S.A�/ D d and the equation Px D A.t/x has no bounded
solutions (except x 	 0), then dim S.�/ D d , dim U.�/ D n � d and S.�/ ˚
U.�/ D V at every � 2 H.A/.

Statement (1) above follows because the Standing Hypotheses must fail. If A

is chain recurrent, we have A� D AC, hence statement (1) does not guarantee the
existence of linearly independent bounded solution. On the other hand, if A is a
chain recurrent function, we do not know if the equation Px D A.t/x has no bounded
solution. However, by assuming that A is chain recurrent and the equation Px D A.t/x

has no bounded solutions, we apply the statement (2) above to conclude that the
Standing Hypotheses hold and S.�/ ˚ U.�/ D V at every � 2 H.A/.
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5.2. General transformation groups. Now we present a characterization of the
chain recurrence in other transformation groups. Let .M; G; �/ be a transforma-
tion group, where M is a compact Hausdorff space. Assume that �x W G ! M is
uniformly continuous, for all x 2 M . We can characterize the hull H.�x/, as follows.

Proposition 5.2. For each x 2 M , the hull H.�x/ is isomorphic with cls.xG/, and

H.�x/ D f�y W y 2 cls.xG/g:

Proof. Let � 2 H.�x/ and take a net .�x � gi /i2I such that � D limi .�x � gi /. By
taking a subnet if necessary, we can assume that the net .xgi / converges in M . Hence,

�.e/ D lim
i

�x.gi / D lim
i

xgi 2 cls.xG/:

For all g 2 G, we have

�.g/ D lim
i

�g.xgi / D �g.lim
i

xgi / D �g.�.e// D ��.e/.g/:

Hence, � D ��.e/, with �.e/ 2 cls.xG/. On the other hand, if y 2 cls.xG/, we use
the inverse process for obtaining �y 2 H.�x/. Thus, H.�x/ D f�y W y 2 cls.xG/g.
An isomorphism of H.�x/ onto cls.xG/ is given by � 2 H.�x/ ! �.e/ 2 cls.xG/.

We obtain the following relationship between the chain recurrent points in M and
the chain recurrent functions.

Corollary 5.3. A point x 2 M is chain recurrent if and only if the function �x W G !
M is chain recurrent.

Proof. A point x 2 M is chain recurrent if and only if cls.xG/ is a chain transitive
set. The proof follows from the previous proposition.
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