
Groups Geom. Dyn. 7 (2013), 497–522
DOI 10.4171/GGD/193

Groups, Geometry, and Dynamics
© European Mathematical Society

Sharp quantitative nonembeddability of the Heisenberg group
into superreflexive Banach spaces

Tim Austin1, Assaf Naor2 and Romain Tessera

Abstract. Let H denote the discrete Heisenberg group, equipped with a word metric dW

associated to some finite symmetric generating set. We show that if .X; k � k/ is a p-convex
Banach space then for any Lipschitz function f W H ! X there exist x; y 2 H with dW .x; y/

arbitrarily large and

kf .x/ � f .y/k
dW .x; y/

.
�

log log dW .x; y/

log dW .x; y/

�1=p

: (1)

We also show that any embedding into X of a ball of radius R � 4 in H incurs bi-Lipschitz
distortion that grows at least as a constant multiple of

�
logR

log logR

�1=p

: (2)

Both (1) and (2) are sharp up to the iterated logarithm terms. When X is Hilbert space we
obtain a representation-theoretic proof yielding bounds corresponding to (1) and (2) which are
sharp up to a universal constant.
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1. Introduction

Let H
defD ˝

a; b j aba�1b�1 is central
˛

denote the discrete Heisenberg group, with
canonical generators a; b 2 H. We let dW .�; �/ denote the left-invariant word metric

on H associated to the symmetric generating set S
defD fa; b; a�1; b�1g.

A Banach space .X; k � kX / is superreflexive if it admits an equivalent uniformly
convex norm, i.e., a norm k � k satisfying ˛kxkX � kxk � ˇkxkX for some ˛; ˇ > 0

1First author partially supported by a fellowship from Microsoft Corporation.
2Second author supported by NSF grants CCF-0635078 and CCF-0832795, BSF grant 2006009, and

the Packard Foundation.
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and all x 2 X , such that for all " 2 .0; 1/ there exists ı > 0 for which we have

kxk D kyk D 1 ^ kx � yk D " H) kx C yk � 2 � ı: (3)

Here we prove the following result:

Theorem 1.1. Let .X; k � kX / be a superreflexive Banach space. Then there exist
c; C > 0 such that for every f W H ! X which is 1-Lipschitz with respect to the
metric dW , there are x; y 2 X with dW .x; y/ arbitrarily large and

kf .x/ � f .y/kX

dW .x; y/
� C

.log dW .x; y//
c :

The fact that H does not admit a bi-Lipschitz embedding into any superreflexive
Banach space was proved in [18], [6]. These proofs use an argument of Semmes [25],
based on a natural extension of Pansu’s differentiability theorem [22].

A natural way to quantify the extent to which H does not admit a bi-Lipschitz em-
bedding into .X; k�kX / is via Gromov’s notion [13], Section 7.3, of compression rate,
defined for a Lipschitz function f W H ! X as the largest function !f W .0;1/ !
Œ0;1/ such that for allx; y 2 H we have kf .x/�f .y/kX � !f .dW .x; y//. The fact
that H does not admit a bi-Lipschitz embedding into a superreflexive Banach space
X means that lim inf t!1 !f .t/=t D 0 for all Lipschitz functions f W H ! X .
The differentiability-based proof of this nonembeddability result involves a limit-
ing argument that does not give information on the rate at which !f .t/=t vanishes.
Theorem 1.1 supplies such information, via an approach which is different from the
arguments in [18], [6].

Cheeger and Kleiner proved [7] that H does not admit a bi-Lipschitz embedding
into L1. In [8] it was shown that there exists c > 0 such that for any Lipschitz
function f W H ! L1 we have !f .t/=t � 1=.log t /c for arbitrarily large t . This
result covers Theorem 1.1 when the superreflexive Banach space X admits a bi-
Lipschitz embedding into L1: such spaces include Lp for p 2 .1; 2�. Theorem 1.1
is new even for spaces such as Lp for p 2 .2;1/, which do not admit a bi-Lipschitz
embedding into L1 (see [3]). Moreover, our method yields sharp results, while the
constant c obtained in [8] is far from sharp.

In order to state our sharp version of Theorem 1.1, we recall the following impor-
tant theorem of Pisier [23] ([Theorem 3.1]): if X is superreflexive then it admits an
equivalent norm k � k for which there exist p � 2 andK > 0 satisfying the following
improvement of (3):

����x C y

2

����
p

� kxkp C kykp

2
� 1

Kp

����x � y
2

����
p

for all x; y 2 X . (4)

A Banach space admitting an equivalent norm satisfying (4) is said to be p-convex.
If .X; k � k/ satisfies (4) then the infimum over those K > 0 satisfying (4) is denoted



Nonembeddability of the Heisenberg group 499

Kp.X/. For concreteness, when p 2 .1; 2� we have K2.Lp/ � 1=
p
p � 1 and for

p � 2 we have Kp.Lp/ � 1 (see [2]).
The following theorem is a refinement of Theorem 1.1.

Theorem 1.2. Assume that the Banach space .X; k � k/ satisfies (4). Let f W H ! X

be a 1-Lipschitz function. Then for every t � 3 there exists an integer t � n � t2

such that1

!f .n/

n
. Kp.X/

�
log logn

logn

�1=p

: (5)

The estimate (5) is sharp up to the iterated logarithm term. Indeed,Lp isp-convex
when p 2 Œ2;1/, and in [27], [26] it was shown that there exists f W H ! Lp

satisfying
!f .n/

n
& 1

.logn/1=p log logn

for all n � 3 (we refer to [26] for a more refined result of this type).
Our proof of Theorem 1.2 circumvents the difficulties involved with proving quan-

titative variants of differentiability results by avoiding the need to reason about arbi-
trary Lipschitz mappings. Instead, we start by using a simple result from [21] which
reduces the problem to equivariant mappings. Specifically, in [21], Theorem 9.1, it
is shown that if X satisfies (4) and f W H ! X is 1-Lipschitz, then there exists a
Banach space Y that also satisfies (4), with Kp.Y / D Kp.X/ (in fact, Y is finitely
representable in p̀.X/), an action � of H on Y by linear isometric automorphisms,
and a 1-cocycle F W H ! Y (i.e., F.xy/ D �.x/F.y/ C F.x/ for all x; y 2 H)
with !F D !f . Thus, in proving Theorem 1.2 it suffices to assume that f itself is a
1-cocycle. We note that if X is Hilbert space then Y is also Hilbert space; this is an
older result of Gromov (see [10]). More generally, when X D Lp then it is shown
in [21] that we can take Y D Lp .

Having reduced the problem to1-cocycles, our starting point is a (non-quantitative)
proof, explained in Section 2, showing that if X is an ergodic Banach space, then
for every 1-cocycle f W H ! X we have lim inf t!1 !f .t/=t D 0. It turns out that
the ideas of this proof, which crucially use the fact that f is a 1-cocycle, can be
(nontrivially) adapted to yield Theorem 1.2.

Recall thatX is ergodic if for every linear isometry T W X ! X and every x 2 X
the sequence

˚
1
n

Pn�1
j D0 T

jx
�1

nD1
converges in norm. Reflexive spaces, and hence

also superreflexive spaces, are ergodic (see [11], p. 662). If a Banach spaceX has the
property that all Banach spaces that are finitely representable in X are ergodic, then
X must be superreflexive [4]. Thus, when using the reduction to 1-cocyles based on
the result of [21], the class of Banach spaces to which it naturally applies is the class
of superreflexive spaces.

1In (5), and in the rest of this paper, the notation .; & denotes the corresponding inequalities up to a
universal multiplicative factor. The notation A � B stands for A . B ^ B . A.
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1.1. Bi-Lipschitz distortion of balls. For R � 1 let BR D fx 2 H W dW .e; x/ �
Rg denote the ball of radius R centered at the identity element e 2 H. The bi-
Lipschitz distortion of .BR; dW / in .X; k � k/, denoted cX .BR/, is the infimum over
those D � 1 such that there exists f W BR ! X satisfying

dW .x; y/ � kf .x/ � f .y/k � DdW .x; y/ for all x; y 2 BR. (6)

Another way to measure the extent to which H does not admit a bi-Lipschitz
embedding into X is via the rate at which cX .BR/ grows to 1 with R. In [8] it was
shown that

cL1
.BR/ & .logR/c (7)

for some universal constant c > 0. This result is of importance due to an application
to theoretical computer science; see [9], [8], [20] for a detailed discussion. Evaluating
the supremum over those c > 0 satisfying (7) remains an important open problem.
Theorem 1.2 implies the following sharp bound on the bi-Lipschitz distortion of BR

into a p-convex Banach space:

Theorem 1.3. If a Banach space .X; k � k/ satisfies (4) then for everyR � 4 we have

cX .BR/ & 1

Kp.X/

� logR

log logR

�1=p

:

Thus in particular for p 2 .1; 2� we have cLp
.BR/ &

p
p � 1 � .logR/

1
2 �o.1/ and

for p � 2 we have cLp
.BR/ & .logR/

1
p �o.1/. Theorem 1.3 is a formal consequence

of Theorem 1.2. The simple deduction of Theorem 1.3 from Theorem 1.2 is presented
in Section 6. It follows from the results of [1], [24] (see the explanation in [15], [26])
that for every p � 2 we have cLp

.BR/ . .logR/1=p . Thus Theorem 1.3 is sharp up
to iterated logarithms.

1.2. The case of Hilbert space. In Section 7 we prove the following Poincaré-type
inequality for functions on H taking value in Hilbert space:

Theorem 1.4. For every f W H ! L2 and every R 2 N we have

X
x2BR

R2X
kD1

��f .xck/ � f .x/��2

2

k2
.

X
x2B22R

�kf .xa/ � f .x/k2
2 C kf .xb/ � f .x/k2

2

�
:

(8)

This result has the following two sharp consequences. First, assume that
� W .0;1/ ! Œ0;1/ is nondecreasing, and that � � !f for some 1-Lipschitz
f W H ! L2. Then since jB22Rj � jBRj and dW .c

k; e/ � p
k for all k 2 N,
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inequality (8) implies that

1

2

Z 1

1

� .t/2

t3
dt D

Z 1

1

�
�p
s
�2

s2
ds .

1X
kD1

�
�p
k

�2

k2
. 1: (9)

Combined with Theorem 1 of [27], we obtain

Corollary 1.5. A nondecreasing function � W .0;1/ ! Œ0;1/ satisfies � � !f for
some Lipschitz function f W H ! L2 if and only if

Z 1

1

�
�.t/

t

�2dt

t
< 1: (10)

A second corollary of Theorem 1.4 yields a sharp bound (up to universal constants)
on cL2

.BR/. Indeed, fix R � 2 and assume that f W BR ! L2 satisfies dW .x; y/ �
kf .x/ � f .y/k � DdW .x; y/ for all x; y 2 BR. Let f � W H ! L2 have Lipschitz
constant at most 2D and coincide with f on BR=2 (see equation (41) for an explicit
formula defining such an extension f �). It follows from (8) applied to f � that
D2 &

PR
kD1

1
k

& logR. Thus cL2
.BR/ &

p
logR. In conjunction with the

previously quoted upper bound on cL2
.BR/, we have

Corollary 1.6. For every R � 2 we have cL2
.BR/ � p

logR.

Roughly speaking, the proof of Theorem 1.4 proceeds via a reduction to the case
of 1-cocycles corresponding to the irreducible representations of H (see Section 7).
But actually, since the representation theory of the continuous Heisenberg group is
simpler than the representation theory of the discrete Heisenberg group H, we first
apply a discretization argument which reduces Theorem 1.4 to an inequality on the
real Heisenberg group. Then an averaging argument reduces the proof to an inequal-
ity on cocycles. Every unitary representation of the continuous Heisenberg group
decomposes as a direct integral of irreducibles, and cocycles themselves can be de-
composed accordingly. Since the desired inequality involves a sum of squares of
norms, it suffices to prove it for cocycles corresponding to irreducible representa-
tions (that is, for each direct integrand separately). The computation for irreducible
representations is carried out in Section 7.1.

2. Sublinear growth of Heisenberg cocycles in ergodic spaces

Write c
defD Œa; b� D aba�1b�1. Thus c lies in the center of H and for every n 2 N

we have dW

�
cn2
; eH

� D 4n (in fact cn2 D Œan; bn� D anbna�nb�n).
Let .X; k � k/ be a Banach space and � W G ! Aut.X/ be an action of H on X

by linear isometric automorphisms. In addition let f 2 Z1.�/ be a 1-cocycle, so
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f W H ! X and for all x; y 2 H we have f .xy/ D �.x/f .y/Cf .x/. We assume in
what follows that f is 1-Lipschitz, or equivalently that maxfkf .a/k; kf .b/kg D 1.

In this section we quickly show that if X is an ergodic Banach space then
lim inf t!1 !f .t/=t D 0, but without obtaining any quantitative bounds.

If X is ergodic then the operator on X defined by

Px
defD lim

N !1
1

N

N �1X
nD0

�.c/nx

is a contraction onto the subspace X0 � X of �.c/-invariant vectors, and since
Px D x for any x 2 X0 it follows at once that P is idempotent. Also, since c is
central in H, the projection P commutes with �.g/ for all g 2 H, and hence the
maps g 7! Pf .g/ and g 7! .I � P /f .g/ are both still members of Z1.�/. Since
P and I � P are bounded, these cocycles are both still Lipschitz functions from H
to X .

We complete the proof by showing that for any " > 0 we have��f �
cN 2��� � 2"dW

�
eH; c

N 2� � 8"N (11)

for all sufficiently large N . To prove this we consider the two cocycles Pf and
.I � P /f separately. On the one hand, Pf takes values among the �.c/-invariant
vectors, and hence the cocycle identity implies that

Pf .cN / D
N �1X
nD0

�.c/nPf .c/ D NPf .c/;

and therefore kPf .cN /k D N kPf .c/k. However, kPf .cN /k � dW .eH; c
N / .p

N , so these relations are compatible only if Pf .c/ D 0.

On the other hand, let Qf defD .I � P /f and for each K � 1,

vK
defD � 1

K

KX
kD1

f .ck/:

Observe from the cocycle identity and the centrality of c that

��.g/vK C Qf .g/ D 1

K

KX
kD1

�
�.g/ Qf .ck/C Qf .g/� D 1

K

KX
kD1

Qf .gck/

D 1

K

KX
kD1

Qf .ckg/ D 1

K

KX
kD1

�.ck/ Qf .g/ � vK :

(12)

Re-arranging (12) gives

Qf .g/ D �.g/vK � vK C 1

K

KX
kD1

�.c/k Qf .g/: (13)



Nonembeddability of the Heisenberg group 503

For any fixed g 2 H the last term of this right-hand side of (13) converges to
P.I � P /f .g/ D 0 (using again that X is ergodic), and so in particular once K is
sufficiently large we obtain that for all g 2 H we have,

max
˚�� Qf �

a˙1
� � �

�
�
a˙1

�
vK � vK

���; �� Qf �
b˙1

� � �
�

�
b˙1

�
vK � vK

���� � ":

Having obtained this approximation to Qf by a coboundary, let cN 2 D s1s2 � � � s4N

be an expression for cN 2
as a word in S , and observe from another appeal to the

cocycle identity that

Qf �
cN 2� D

4N �1X
iD0

� .s1s2 � � � si / Qf .siC1/

D
4N �1X
iD0

� .s1s2 � � � si / .� .siC1/ vK � vK/CRN

D �.s1s2 � � � s4N /vK � vK CRN

for some remainder RN which is a sum of 4N terms all of norm at most ". Since the
action � is isometric and we may let N grow independently of K we obtain

�� Qf �
cN 2��� � 2kvKk C kRN k � 8"N

for all sufficiently large N . Since " was arbitrary and Qf .cN 2
/ D f .cN 2

/ by our
analysis of Pf above, this completes the proof of (11).

3. A uniform convexity lemma for ergodic averages

We prove here a simple lemma on the behavior of ergodic averages in p-convex
Banach spaces.

Lemma 3.1. Assume that .X; k�k/ satisfies (4). Fix z 2 X and an operator T W X !
X with kT k � 1. For every integer n � 0 write

sn
defD 1

2n

2n�1X
j D0

T j z:

Then for every ` 2 N we have

1X
iD0

1

2`

2`�1X
j D0

��s.iC1/` � T j 2i`

si`

��p � .2K/pkzkp: (14)
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Proof. A consequence of (4) is that for every x1; : : : ; xn 2 X we have

1

n

nX
iD1

����xi � 1

n

nX
j D1

xj

����
p

� .2K/p
�
1

n

nX
iD1

kxikp �
����1
n

nX
iD1

xi

����
p�
: (15)

For the derivation of (15) from (4) see [19], Lemma 3.1.
Due to the identity

s.iC1/` D 1

2`

2`�1X
j D0

T j 2i`

si`;

inequality (15) implies that

1

2`

2`�1X
j D0

��T j 2i`

si` � s.iC1/`

��p � .2K/p
�
1

2`

2`�1X
j D0

��T j 2i`

si`

��p � ks.iC1/`kp

�

� .2K/p
�ksi`kp � ks.iC1/`kp

�
:

(16)

The desired inequality (14) now follows by summing (16) over i 2 f0; 1; : : :g.

4. Estimates for Heisenberg cocycles

Let � W H ! Aut.X/ and f 2 Z1.�/ be as in Section 2. For every n 2 N define a
linear operator Pn W X ! X by

Pn
defD 1

2n

2n�1X
j D0

�.c/j :

Thus kPnk � 1.

Lemma 4.1. Assume that .X; k � k/ satisfies (4). Then for every `; k;m 2 N there
exist integers i 2 Œk C 1; k Cm� and j 2 Œ0; 2` � 1� satisfying for all n 2 N,

����
c�j 2i`�

P.iC1/`f
�
cn2� � Pi`f

�
cn2��� � 16Kn

m1=p
: (17)

Proof. Consider the Banach space Y D X ˚X , equipped with the norm

k.x; y/kY D .kxkp C kykp/
1=p

:

We also define T W Y ! Y by T .x; y/ D .�.c/x; �.c/y/. Then kT k � 1. Since
.Y; k �kY / satisfies (4) we may apply Lemma 3.1 to z D .f .a/; f .b// 2 Y , obtaining
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the following estimate:

.4K/p �
kCmX

iDkC1

1

2`

2`�1X
j D0

���P.iC1/`f .a/ � ��
cj 2i`�

Pi`f .a/
��p

C ��P.iC1/`f .b/ � ��
cj 2i`�

Pi`f .b/
��p�

D
kCmX

iDkC1

1

2`

2`�1X
j D0

�����
c�j 2i`�

P.iC1/`f .a/ � Pi`f .a/
��p

C ����
c�j 2i`�

P.iC1/`f .b/ � Pi`f .b/
��p�

� m min
kC1�i�kCm

0�j �2`�1

�����
c�j 2i`�

P.iC1/`f .a/ � Pi`f .a/
��p

C ����
c�j 2i`�

P.iC1/`f .b/ � Pi`f .b/
��p�

:

It follows that there exist integers i 2 Œk C 1; k Cm�, j 2 Œ0; 2` � 1� such that

max
˚����

c�j 2i`�
P.iC1/`f .a/ � Pi`f .a/

��;
����

c�j 2i`�
P.iC1/`f .b/ � Pi`f .b/

��� � 4K

m1=p
:

(18)

Consider the operator

Qn
defD 1

n

n�1X
iD0

�.a/i :

The cocycle identity implies that f .an/ D nQnf .a/. Thus

�
�
c�j 2i`�

P.iC1/`f .a
n/ � Pi`f .a

n/

D n
�
�

�
c�j 2i`�

P.iC1/` � Pi`

�
Qnf .a/

D nQn

�
�

�
c�j 2i`�

P.iC1/` � Pi`

�
f .a/;

(19)

where the last equality in (19) holds since c is in the center of H, and therefore Qn

commutes with all of fPrg1
rD0. Since kQnk � 1, it follows from (19) and (18) that

����
c�j 2i`�

P.iC1/`f .a
n/ � Pi`f .a

n/
�� � 4Kn

m1=p
: (20)

Since f .a�n/ D ��.a/�nf .an/, and �.a/ commutes with �.c/, and hence with all
of fPrg1

rD0, it follows that also

����
c�j 2i`�

P.iC1/`f .a
�n/ � Pi`f .a

�n/
�� � 4Kn

m1=p
: (21)
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An identical argument implies the analogous bounds with a replaced by b:

����
c�j 2i`�

P.iC1/`f .b
n/ � Pi`f .b

n/
�� � 4Kn

m1=p
(22)

and ����
c�j 2i`�

P.iC1/`f .b
�n/ � Pi`f .b

�n/
�� � 4Kn

m1=p
: (23)

The cocycle identity implies that for all n 2 N,

f
�
cn2� D f .Œan; bn�/

D �.anbna�n/f .b�n/C �.anbn/f .a�n/C �.an/f .bn/C f .an/:

Thus, using (20), (21), (22) and (23), we conclude the validity of (17).

Lemma 4.2. For every m; n 2 N we have

��Pmf
�
cn2��� . n5=3

2m=3
: (24)

Proof. Note that for every k 2 N we have

Pm � �.ck/Pm D 1

2m

k�1X
j D0

�.c/j � 1

2m

2mCk�1X
j D2m

�.c/j :

Thus, ��Pm � �.ck/Pm

�� � 2k

2m
: (25)

The cocycle identity implies that

f
�
c.kn/2� D

k2�1X
j D0

�
�
cjn2�

f
�
cn2�

: (26)

Using the fact that f is 1-Lipschitz, kPmk � 1 and dW .eH; c
.kn/2

/ � 4kn, we
deduce from (26) that

4kn � ��Pmf
�
c.kn/2���

�
k2�1X
j D0

���Pmf
�
cn2��� � ��Pm � ��

cjn2�
Pm

�� � ��f �
cn2����

(25)� k2
��Pmf

�
cn2��� �

k2�1X
j D0

2jn2

2m
� 4n � k2

��Pmf
�
cn2��� � 4n3k4

2m
:
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Thus, ��Pmf
�
cn2��� � 4n

k
C 4n3k2

2m
: (27)

Choosing k D ˙
.2m�1=n2/1=3

�
in (27) (roughly the optimal choice of k), we ob-

tain (24).

Lemma 4.3. For every m; n 2 N we have
��f �

cn2� � Pmf
�
cn2��� � 2m=3n1=3: (28)

Proof. In this proof the relation to Section 2 becomes clear. Define Qf W H ! X by

Qf .h/ defD f .h/ � Pmf .h/ D .I � Pm/f .h/:

Note that Qf 2 Z1.�/. Fix an integer k � 1 that will be determined later. Consider
the vector v 2 X defined by

v
defD � 1

k

k�1X
j D0

Qf .cj /:

Then

kvk . 1

k

k�1X
j D0

p
j .

p
k: (29)

Since c is in the center of H, we have the following identity for every h 2 H:

��.h/v C Qf .h/ D 1

k

k�1X
j D0

�
�.h/ Qf .cj /C Qf .h/�

D 1

k

k�1X
j D0

Qf .hcj / D 1

k

k�1X
j D0

Qf .cjh/

D 1

k

k�1X
j D0

�
�.cj / Qf .h/C Qf .cj /

� D 1

k

k�1X
j D0

�.cj / Qf .h/ � v:

(30)

Note that

1

k

k�1X
j D0

�.cj / Qf .h/ D 1

k

k�1X
j D0

	
�.cj /f .h/ � 1

2m

2m�1X
iD0

�.cj Ci /f .h/



D 1

2m

2m�1X
iD0

�
1

k

k�1X
j D0

�.cj / � 1

k

iCk�1X
j Di

�.cj /

�
f .h/:
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Hence,

���� 1
k

k�1X
j D0

�.cj / Qf .h/
���� � dW .h; eH/

2m

2m�1X
iD0

2i

k
� 2m

k
dW .h; eH/: (31)

Combining (30) and (31), we see that Qf is close to a coboundary in the following
sense:

k Qf .h/ � .�.h/v � v/ k � 2m

k
dW .h; eH/: (32)

If we now write cn2 D h1h2 � � � h4n for h1; : : : ; h4n 2 fa; a�1; b; b�1g, then the
cocycle identity for Qf implies the following bound:

�� Qf �
cn2��� D

���
4n�1X
iD0

�.h1 � � � h4n�i�1/ Qf .h4n�i /
���

(32)�
���

4n�1X
iD0

�.h1 � � � h4n�i�1/.�.h4n�i /v � v/
��� C 4n2m

k

D ���.cn2

/v � v�� C 4n2m

k
(29)
.

p
k C n2m

k
:

(33)

The optimal choice for k in (33) is k � n2=322m=3. For this choice of k, (33) becomes
the desired bound (28).

5. Proof of Theorem 1.2

As explained in the introduction, using Theorem 9.1 of [21] we may assume without
loss of generality that f 2 Z1.�/ for some action � of H on X by linear isometric
automorphisms. We may also assume that t � 8p . Let m be the largest integer such
that

mm �
�
t

4

�p=3

: (34)

Having defined m, let k be the smallest integer such that

m
3

2p C 3.kC1/
p � t; (35)

and set

`
defD

�
6

p
log2m

�
: (36)
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By Lemma 4.1 there exist integers i 2 Œk C 1; k Cm� and j 2 Œ0; 2` � 1� satisfying
for all n 2 N,

����
c�j 2i`�

P.iC1/`f
�
cn2� � Pi`f

�
cn2��� � 16Kn

m1=p
: (37)

Choose

n
defD 1

4

l
m

3
2p 2

i`
2

m
; (38)

We may write

f
�
cn2� D �

�
c�j 2i`�

P.iC1/`f
�
cn2� C �

Pi`f
�
cn2�

� ��
c�j 2i`�

P.iC1/`f
�
cn2�� C �

f
�
cn2� � Pi`f

�
cn2��

:

Hence, by Lemma 4.2, inequality (37), and Lemma 4.3, we obtain the following
bound:

!f .4n/ D !f

�
dW

�
cn2

; eH

�� � ��f �
cn2���

. n5=3

2.iC1/`=3
C 8Kn

m1=p
C 2i`=3n1=3

(38)^(36)
. Kn

m1=p
:

(39)

Observe that

4n
(38)� m

3
2p 2

i`
2 � m

3
2p 2

.kC1/`
2

(36)� m
3

2p C 3.kC1/
p

(35)� t:

At the same time,

4n
(38)� 2m

3
2p 2

i`
2 � 2m

3
2p 2

.kCm/`
2

(36)� 4m
3

2p C 3k
p �m 3m

p
(35)
< 4tm

3m
p

(34)� t2:

Hence t � 4n � t2. The definition ofm implies thatm & p
3

log n
log log n

, and therefore (39)
becomes:

!f .4n/

n
. K

�
log logn

logn

�1=p

:

The proof of Theorem 1.2 is complete.

6. Deduction of Theorem 1.3 from Theorem 1.2

Fix R � 4 and a function f W BR ! X satisfying

dW .x; y/ � kf .x/ � f .y/k � DdW .x; y/ for all x; y 2 BR. (40)
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Our goal is to boundD from below. Without loss of generality assume that f .e/ D 0.
Define f � W H ! X by

f �.x/ D

8̂<
:̂
f .x/; x 2 BR=2;

2
�
1 � dW .x;e/

R

�
f .x/; x 2 BR X BR=2;

0; x 2 H X BR:

(41)

Then f � is 2D-Lipschitz and coincides with f on BR=2. Let N � H be a
maximal 3R-separated subset of H. Thus the function f �� W H ! X given by

f ��.x/ defD P
y2N f �.y�1x/ (only one summand is nonzero for any given x) is also

2D-Lipschitz.
Fix a free ultrafilter U on N. Consider the semi-normed space

Y D .`1.H; X/; k � kY / ;

where

k kY
defD lim

M!U

�
1

jBM j
X

z2BM

k .z/kp

�1=p

:

Note that since X satisfies (4), so does Y . Y is a semi-normed space rather than
a normed space, so we should formally deal below with the quotient Y=ff 2
`1.H; X/ W kf kY D 0g, but we will ignore this inessential formality in what
follows. (Complete details are as in the proof of Theorem 9.1 in [21]. Alternatively
one can note that our proof of Theorem 1.2 carries over without change to the class
of semi-normed spaces.)

Define F W H ! Y by F.x/.z/
defD f ��.zx/ � f ��.z/. This is well defined

since the metric dW is left-invariant, and therefore kF.x/kY � 2DdW .x; eH/ for
all x 2 H. Moreover, by left-invariance, F is 2D-Lipschitz. Theorem 1.2 therefore
implies that there exist x; y 2 H such that

p
R=4 � dW .x; y/ � R=4 and

lim
M !U

�
1

jBM j
X

z2BM

�kf ��.zx/ � f ��.zy/k
dW .x; y/

�p�1=p

. DKp.X/

�
log logR

logR

�1=p

:

(42)
Fix an integerM > 2dW .x; e/C4R and writem D M �2dW .x; e/�4R. Since

N is a maximal 3R-separated subset of H, we have Bmx � S
w2M wB3R, where

M
defD fw 2 N W wB3R \ Bmx ¤ ;g. Hence, since for r � 1 we have jBr j � r4,

we can bound the cardinality of M as follows:

jMj &
�
M � 2dW .x; e/ � 4R

3R

�4

: (43)

If w 2 M then there exists z 2 Bm and g 2 B3R such that zx D wg. Hence, for
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every h 2 BR=4 we have

dW .whx
�1; e/ D dW .zxg

�1hx�1; e/

� dW .z; e/C 2dW .x; e/C dW .g; e/C dW .h; e/

< M:

Thus the sets fwBR=4x
�1gw2M are disjoint and contained in BM . Moreover, if

w 2 M and z 2 wBR=4x
�1 then dW .zx;w/ � R=4, and hence also dW .zy;w/ �

dW .zy; zx/ C dW .zx;w/ � R=2. By the definition of f ��, this implies that
f ��.zx/ D f .w�1zx/ and f ��.zy/ D f .w�1zy/.

Hence,

X
z2BM

�kf ��.zx/ � f ��.zy/k
dW .x; y/

�p

�
X

w2M

X
z2wBR=4x�1

�kf .w�1zx/ � .w�1zy/k
dW .x; y/

�p

(40)� jMj � jBR=4j
(43)
&

�
1 � 2dW .x; e/C 4R

M

�4

jBM j:

(44)

Theorem 1.3 now follows from (42) and (44).

7. Embeddings into Hilbert space

In this section, we prove Theorem 1.4. We will deduce it from an inequality on
cocycles for the real Heisenberg group. We switch to the real Heisenberg group
because its representation theory is simpler. However, this comes at the cost of
adding a (straightforward) discretization step to the proof. The upshot is that we
obtain as a byproduct a smooth Poincaré inequality on H.R/ of independent interest;
see Theorem 7.5.

The real Heisenberg group H.R/ is defined as the matrix group

H.R/
defD

8<
:

0
@1 u w

0 1 v

0 0 1

1
A W u; v; w 2 R

9=
; :

The discrete Heisenberg group H sits inside H.R/ as the cocompact discrete subgroup
consisting of unipotent matrices with integer coefficients. We equip the group H.R/
with the word metric dSR associated with the compact symmetric generating set
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SR D fau; bv; cw I juj; jvj; jwj � 1g, where

au D
0
@1 u 0

0 1 0

0 0 1

1
A ; bv D

0
@1 0 0

0 1 v

0 0 1

1
A ; cw D

0
@1 0 w

0 1 0

0 0 1

1
A :

Let � denote a Haar measure on H.R/, which coincides with Lebesgue measure
under the natural identification of H.R/ with R3.

Theorem 7.1. For every continuous unitary representation � of H.R/, any contin-
uous cocycle � 2 Z1.�/ satisfies the inequality

Z 1

1

��� �
ct

���2

t2
dt .

Z 1

�1

�k�.au/k2 C k�.bu/k2
�
du: (45)

Section 7.1 is devoted to the proof of Theorem 7.1. It is clearly enough to check
inequality (45) when the representation � is irreducible. The proof therefore boils
down to a quantitative study of 1-cocycles with values in an irreducible representation
of H.R/. In the next three subsections we deduce Theorem 1.4 from Theorem 7.1
by a succession of reductions. Finally, in the last subsection, we state a smooth
Poincaré inequality on the real Heisenberg group, whose proof, being very similar to
the discrete one, is explained in a few sentences.

7.1. Proof of Theorem 7.1. By the Stone–von Neumann theorem (see for example
Chapter 2 in [12]), irreducible representations of H.R/ are of two types: those that
factor through the center, and, for every � 2 RXf0g, the representation �� onL2.R/
satisfying

��.a
ubvcw/.h/.x/

defD e2�i�vxh.x C u/e2�i�w for all h 2 L2.R/. (46)

Note that if a nontrivial irreducible representation� factors through the center then
any 1-cocycle � 2 Z1.�/must vanish on the center. Indeed, �.cw/ is invariant under
�.H/ for every w 2 R, which, since the representation is supposed to be irreducible
and nontrivial, implies that �.cw/ D 0. Therefore, in proving Theorem 7.1 we may
assume that � D �� for some � ¤ 0.

By Theorem 7 of [14] all 1-cocycles � 2 Z1.��/ can be approximated uniformly
on compact sets by coboundaries. Hence, it is enough to consider the case where � is
of the form �.x/ D ��.x/h�h, for some h 2 L2.R/. We may assume that khk D 1.
By the definition (46), for every w 2 R we have k�.cw/k2 D 4 sin2.��w/; from
which we deduce that
Z 1

1

k�.cw/k2

w2
dw .

Z 1

1

sin2.��w/

w2
dw D j�j

Z 1

j�j
sin2.�w/

w2
dw . minfj�j; 1g:

(47)
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Also,Z 1

�1

�k�.au/k2 C k�.bu/k2
�
du

D
Z 1

�1

Z
R

�jh.x C u/ � h.x/j2 C 2jh.x/j2 .1 � cos.2��ux//
�
dxdu

�
Z 1

�1

Z
R

jh.x C u/ � h.x/j2dxduC
Z

R
jh.x/j2 minf�2x2; 1gdx:

(48)

Since R D .R X Œ�juj; juj�/[ .uC .R X Œ�juj; juj�//[ .�uC .R X Œ�juj; juj�//
for every u 2 R, we can bound khk2 D 1 from above as follows.

1 �
Z

RXŒ�juj;juj�
�jh.x C u/j2 C jh.x � u/j2 C jh.x/j2�

dx

.
Z

R

�jh.x C u/ � h.x/j2 C jh.x/ � h.x � u/j2�
dx C

Z
RXŒ�juj;juj�

jh.x/j2dx

�
Z

R

�jh.x C u/ � h.x/j2 C jh.x/ � h.x � u/j2�
dx

C 1

minf�2u2; 1g
Z

R
jh.x/j2 minf�2x2; 1gdx: (49)

Write k D ˙
1=

pj�j �
. By applying (49) with u D kv, and integrating over v 2

Œ�1;�1=2� [ Œ1=2; 1�, we see thatZ 1

1

k�.cw/k2

w2
dw

(47)
. minfj�j; 1g

(49)
. minfj�j; 1g

Z 1

�1

Z
R

jh.x C kv/ � h.x/j2dxdv

C minfj�j; 1g
min

˚
�2

˙
1=

pj�j �2
; 1

�
Z

R
jh.x/j2 minf�2x2; 1gdx

. minfj�j; 1gk
kX

j D1

Z 1

�1

Z
R

jh.x C jv/ � h.x C .j � 1/v/j2dxdv

C
Z

R
jh.x/j2 minf�2x2; 1gdx

D minfj�j; 1gk2

Z 1

�1

Z
R

jh.x C u/ � h.x/j2dxduC
Z

R
jh.x/j2 minf�2x2; 1gdx

(48)
.

Z 1

�1

�k�.au/k2 C k�.bu/k2
�
du:

The proof of Theorem 7.1 is complete.
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7.2. Reduction to finitely supported functions

Claim 7.2. Inequality (8) is a consequence of the following statement. For every
finitely supported � W H ! L2, we have

X
x2H

1X
kD1

���.xck/ � �.x/��2

2

k2
.

X
x2H

�k�.xa/ � �.x/k2
2 C k�.xb/ � �.x/k2

2

�
:

(50)

Proof. Fix R 2 N and f W H ! L2. Note that since (8) is not sensitive to adding a
constant to the function f , we can assume without loss of generality that the average
of f over B7R is zero.

Define a cutoff function 	 W H ! Œ0; 1� by

	.x/
defD

8̂<
:̂
1; x 2 B5R;

6 � dW .x;e/
R

; x 2 B6R X B5R;

0; x 2 H X B6R;

and let �
defD 	f . Then � is supported on B6R. Since 	 is 1=R-Lipschitz and takes

values in Œ0; 1�, for all x 2 H and s 2 S ,

k�.x/ � �.xs/k2
2 . j	.x/ � 	.xs/j2 � kf .x/k2

2 C j	.xs/j2 � kf .x/ � f .xs/k2
2

� 1

R2
kf .x/k2 C kf .x/ � f .xs/k2

2:

(51)

Note that if k 2 f1; : : : ; R2g then dW .e; c
k/ � 4R, and hence for x 2 BR we have

xck 2 B5R. Therefore, an application of (50) to � yields the estimate

X
x2BR

R2X
kD1

kf .xck/ � f .x/k2
2

k2

�
X
x2H

1X
kD1

k�.xck/ � �.x/k2
2

k2

.
X
x2H

max
s2S

k�.xs/ � �.x/k2
2

D
X

x2B7R

max
s2S

k�.xs/ � �.x/k2
2

(51)� 1

R2

X
x2B7R

kf .x/k2
2 C

X
x2B7R

max
s2S

kf .xs/ � f .x/k2
2:

(52)
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By [17], Theorem 2.2 (a discrete version of the classical Heisenberg local Poincaré
inequality [16]),

1

R2

X
x2B7R

kf .x/k2
2 .

X
x2B22R

�kf .xa/ � f .x/k2
2 C kf .xb/ � f .x/k2

2

�
; (53)

where we used the fact that the average of f on B7R vanishes. The desired inequal-
ity (8) is now a consequence of (52) and (53).

7.3. Reduction to an inequality on the real Heisenberg group

Claim 7.3. Inequality (50) is a consequence of the following statement. For every
continuous and compactly supported function  W H.R/ ! L2, we haveZ

H.R/

Z 1

1

k .xct / �  .x/k2
2

t2
dtd�.x/ .

Z
H.R/

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/:

(54)

Proof. For r > 0 let BR
r � H.R/ denote the ball of radius r with respect to the

metric dSR . Note that H.R/ D S
g2H gB

R
2 . Let 
 W H.R/ ! Œ0; 1� be a continuous

nonnegative function, which equals 1 onBR
2 and 0 outside ofBR

3 . Let Q
 D P
g2H 
g ,

where 
g.x/ D 
.g�1x/. For all x 2 H.R/ we have 1 � Q
.x/ � C for some
C 2 .0;1/. Writing ˇ D 
= Q
 and ˇg.x/ D ˇ.g�1x/, we see that fˇggg2H is a
continuous partition of unity for H.R/ satisfying

sup
x2H.R/

X
g2H

sup
s2SR

jˇg.xs/ � ˇg.x/j < 1: (55)

Throughout the ensuing argument we will use repeatedly the fact that for every
x 2 H.R/ the number of elements g 2 H for which ˇg.x/ > 0 is bounded by a
constant independent of x, and that

P
g2H 1gB2

� 1H.R/.
Let � W H ! L2 be a finitely supported function on the discrete Heisenberg group

H. Define a function on the real Heisenberg group H.R/ by

 .x/ D
X
g2H

�.g/ˇg.x/:

Then is compactly supported. We will eventually apply (54) to , but before doing
so we will need some preparatory estimates.

The metric dSR restricted to H � H.R/ is bi-Lipschitz equivalent to dW [5],
Theorem 8.3.19. It follows that for all g0 2 H, if x 2 g0B

R
3 then the sum  .x/ �

�.g0/ D P
g2H ˇg.x/.�.g/��.g0// is supported on elements of the form g D g0h,

with dW .h; e/ � K, for some universal constant K 2 N. Thus, using (55) we see
that for all x 2 g0B

R
2 ,

sup
s2SR

k .xs/ �  .x/k2
2 .

X
h2BK

k�.g0h/ � �.g0/k2
2: (56)
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Integrating (56) over g0B
R
2 gives the following inequality:

Z
g0BR

2

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/ .

X
h2BK

k�.g0h/ � �.g0/k2
2: (57)

By summing (57) over g0 2 H we see that
Z

H.R/

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/ .

X
g2H

max
s2S

k�.g/ � �.gs/k2
2; (58)

where we used the bound
X

g02H

X
h2BK

k�.g0h/ � �.g0/k2
2 .

X
g2H

max
s2S

k�.g/ � �.gs/k2
2; (59)

which follows by writing each h 2 BK as a product of at mostK elements of S , and
using the triangle inequality.

In order to deduce from (54) a corresponding bound on �, we need to bound � in
terms of  . To this end, note that for all g0 2 H,

 .g0/ D �.g0/C
X
g2H

ˇ.g�1g0/.�.g/ � �.g0//

D �.g0/C
X

h2BK

ˇ.h�1/.�.g0h/ � �.g0//:

It follows that for all g0; g1 2 H we have

k�.g0/ � �.g1/k2
2

. k .g0/ �  .g1/k2
2 C

X
h2BK

�k�.g0/ � �.g0h/k2
2 C k�.g1/ � �.g1h/k2

2

�
:

(60)

If x; y 2 H.R/ satisfy maxfdSR.x; g0/; dSR.y; g1/g � 2, then using (56) we deduce
from (60) that

k�.g0/ � �.g1/k2
2

. k .x/ �  .y/k2
2 C

X
h2BK

�k�.g0/ � �.g0h/k2
2 C k�.g1/ � �.g1h/k2

2

�
:

(61)

Fix g0 2 H, x 2 g0B
R
1 , k 2 N and t 2 Œk; k C 1�. Writing g1 D g0c

k and
y D xct , we have dSR.x; g0/ � 1 and dSR.y; g1/ D dSR.c

�kg�1
0 xct ; e/ D
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dSR.g
�1
0 xct�k; e/ � dSR.g

�1
0 x; e/ C dSR.c

t�k; e/ � 2. We may therefore ap-
ply (61) and deduce that for all g0 2 H, x 2 g0B

R
1 and k 2 N,

k�.g0c
k/ � �.g0/k2

2

. k .xct / �  .x/k2
2

C
X

h2BK

� k�.g0/ � �.g0h/k2
2 C k�.g0c

k/ � �.g0c
kh/k2

2

�
:

(62)

Integrating (62) over x 2 g0B
R
1 and t 2 Œk; k C 1�, we see that

k�.g0c
k/ � �.g0/k2

2

k2

.
Z

g0BR
1

Z kC1

k

k .xct / �  .x/k2
2

t2
dtd�.x/

C 1

k2

X
h2BK

�k�.g0/ � �.g0h/k2
2 C k�.g0c

k/ � �.g0c
kh/k2

2

�
:

(63)

Since g0B
R
1 and g0

0B
R
1 intersect at a set of measure zero if g0 ¤ g0

0, by summing (63)
over g0 2 H and k 2 N, we see that

X
g02H

1X
kD1

k�.g0c
k/ � �.g0/k2

2

k2

.
Z

H.R/

Z 1

1

k .xct / �  .x/k2
2

t2
dtd�.x/C

X
g02H

X
h2BK

k�.g0/ � �.g0h/k2
2

(59)
.

Z
H.R/

Z 1

1

k .xct / �  .x/k2
2

t2
dtd�.x/C

X
g2H

max
s2S

k�.g/ � �.gs/k2
2

(54)
.

Z
H.R/

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/C

X
g2H

max
s2S

k�.g/ � �.gs/k2
2

(58)
.

X
g2H

max
s2S

k�.g/ � �.gs/k2
2: �

7.4. Reduction to a 1-cocycle on H.R/

Claim 7.4. Inequality (54) follows from Theorem 7.1.

Proof. Let W H.R/ ! L2 be continuous and supported inBR
r for some r � 1. Take

a maximal family
˚
xiB

R
10r

�1
iD1

of disjoint balls of radius 10r . Define' W H.R/ ! L2
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by '.g/ D P1
iD1  .x

�1
i g/. Note that since dSR.c

r2
; e/ � 4r , for each i 2 N we

have

Z
H.R/

Z 1

1

�� .xct / �  .x/��2

2

t2
dtd�.x/

D
Z

xi BR
5r

Z r2

1

��'.xct / � '.x/��2

2

t2
dtd�.x/:

(64)

Similarly,
Z

H.R/

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/ D

Z
xi BR

2r

�
sup

s2SR

k'.xs/ � '.x/k2
2

�
d�.x/:

(65)
Let X be the space of all finitely supported complex-valued functions on H.R/.

We denote by� the action of H.R/ onX given by�.x/ıy
defD ıxy , where ız W H.R/ !

C denotes the function which equals 1 at z 2 H.R/ and equals 0 elsewhere. Let U

be a free ultrafilter on N. Define a scalar product Œ�; �� on X by:

Œıx; ıy �
defD lim

n!U

1

�.BR
n /

Z
BR

n

h'.zx/; '.zy/id�.z/; (66)

where h�; �i denotes the scalar product on L2.
Since fBng1

nD1 is a Følner sequence for H.R/, a limit along a free ultrafilter of
averages over Bn when n ! 1 is an invariant mean on H.R/. It follows that the
scalar product defined in (66) is�.H.R//-invariant. Thus� is a unitary representation
of H.R/ (formally we should first pass to the completion of the quotient of X by the
subspace consisting of norm-zero elements, but we will ignore this inessential point
in what follows). We note that � is also continuous in the strong operator topology.
Indeed, since  is continuous and compactly supported, ' is uniformly continuous.

Thus, writing kf k2
X

defD Œf; f � for f 2 X , we have for every y 2 H.R/,

lim
x!e

k�.x/ıy � ıyk2
X D lim

x!e
lim

n!U

1

�.BR
n /

Z
BR

n

k'.gxy/ � '.gy/k2
2d�.g/

� lim
x!e

sup
g2H.R/

k'.gxy/ � '.gy/k2
2 D 0;

(67)

implying the strong continuity of � .
Let � W H.R/ ! X be given by �.x/ D ıx � ıe . Then � 2 Z1.�/ and for all

x 2 X ,

k�.x/k2
X D lim

n!U

1

�.BR
n /

Z
BR

n

k'.gx/ � '.g/k2
2d�.g/: (68)

Arguing as in (67), the uniform continuity of ' and (68) imply that � is a continuous
1-cocycle.



Nonembeddability of the Heisenberg group 519

Fix n > 100r large enough so as to ensure that we have �.Bn X Bn�100r/ �
�.Bn/=2. Define I D fi 2 N W xiB

R
5r � Bng and write � D S

i2I xiB
R
5r and

�0 D S
i2I xiB

R
10r . By the maximality of

˚
xiB

R
10r

�1
iD1

we have �0 � Bn�100r .
Hence �.�0/ � �.Bn/=2. Since H.R/ is doubling, �.�0/ . �.�/, and therefore
jI j�.BR

5r/ � �.�/ & �.Bn/. Note that if g 2 xiB
R
5r for some i 2 N then for every

t 2 Œ1; r2� we have gct 2 xiB10r . Hence,

1

�.BR
n /

Z
BR

n

k'.gct / � '.g/k2
2d�.g/

� 1

�.BR
n /

X
i2I

Z
xi BR

5r

k'.gct / � '.g/k2
2d�.g/

jI j
�.BR

n /

Z
BR

5r

k .xct / �  .x/k2
2d�.x/

& 1

�.BR
5r/

Z
BR

5r

k .xct / �  .x/k2
2d�.x/:

(69)

It follows from (68) and (69) that

1

�.BR
5r/

Z
BR

5r

Z r2

1

k .xct / �  .x/k2
2

t2
d�.x/

.
Z r2

1

k�.ct /k2
X

t2
dt

(45)
. sup

s2SR

k�.s/k2
X

(68)D sup
s2SR

lim
n!U

1

�.BR
n /

Z
BR

n

k'.gs/ � '.g/k2
2d�.g/:

(70)

Let J � N denote the set of i 2 N such that Bn \ xiB2r ¤ ;. Then jJ j�.BR
2r/ �

�.BR
nC4r/. It follows that for all s 2 SR,

Z
BR

n

k'.gs/ � '.g/k2
2d�.g/ �

X
i2J

Z
xi B2r

k'.gs/ � '.g/k2
2d�.g/

D jJ j
Z

B2r

k .xs/ �  .x/k2
2d�.x/

� �.BR
nC4r/

�.BR
2r/

Z
B2r

k .xs/ �  .x/k2
2d�.x/:

(71)
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Substituting (71) into (70) we conclude that
Z

H.R/

Z 1

1

�� .xct / �  .x/��2

2

t2
dtd�.x/

(64)D
Z

BR
5r

Z r2

1

k .xct / �  .x/k2
2

t2
d�.x/

(70)^(71)
. �.BR

5r/

�.BR
2r/

sup
s2SR

lim
n!U

�.BR
nC4r/

�.BR
n /

Z
B2r

k .xs/ �  .x/k2
2d�.x/

(65)
.

Z
H.R/

�
sup

s2SR

k .xs/ �  .x/k2
2

�
d�.x/

This completes the proof of Claim 7.4, and therefore also the proof of Theorem 1.4.

7.5. A smooth Poincaré inequality on H.R/. Equip H.R/ with the left-invariant
Riemannian metric given by du2 C dv2 C .dw � udv/2. In what follows, given a
smooth function f W H.R/ ! R we let rHf denote its gradient with respect to this
Riemannian structure.

Theorem 7.5. For every smooth function f W H.R/ ! R, and all R > 0,
Z

BR
R

Z R2

1

ˇ̌
f .xct / � f .x/ˇ̌2

t2
dtd�.x/ .

Z
BR

CR

jrHf .x/j2 d�.x/;

where C > 0 is a universal constant.

The proof of this Poincaré inequality can be obtained from Theorem 7.1 in a
way similar, and actually even shorter than its discrete counterpart. Indeed, the
discretization step of Claim 7.3 is not needed here. The other difference lies in the
first step, where instead of the discrete Poincaré inequality (53), we use the following
smooth version, which is due to [16]. For all R > 0, and for all smooth functions
f W H.R/ ! R whose integral over BR

R is zero,

1

R2

Z
BR

R

jf .g/j2d�.g/ .
Z

BR
cR

jrHf .g/j2d�.g/;

where c > 0 is a universal constant.
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