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Rigidity for equivalence relations on homogeneous spaces

Adrian Ioana and Yehuda Shalom�

Abstract. We study Popa’s notion of rigidity for equivalence relations induced by actions
on homogeneous spaces. For any lattices � and ƒ in a semisimple Lie group G with finite
center and no compact factors we prove that the action � Õ G=ƒ is rigid. If in addition G
has property (T) then we derive that the von Neumann algebra L1.G=ƒ/ Ì � has property
(T). We also show that if the stabilizer of any non-zero point in the Lie algebra of G under
the adjoint action of G is amenable (e.g., if G D SL2.R/), then any ergodic subequivalence
relation of the orbit equivalence relation of the action � Õ G=ƒ is either hyperfinite or rigid.
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1. Introduction and statement of main results

In [Po06], S. Popa introduced the notion of relative property (T ) for inclusions of
finite separable von Neumann algebras B � M – it has since been at the heart
of his deformation/rigidity theory. When applied to inclusions arising from actions
and equivalence relations, this concept suggested two new properties for actions and
equivalence relations:

� A probability measure preserving (pmp) action� Õ .X;�/ of a countable group
� is rigid if the inclusion ofL1.X/ in the crossed-product algebraL1.X/Ì�
([MvN36]) has the relative property (T) in the sense of [Po06], Definition 4.2.1.

� A countable pmp equivalence relation R on .X;�/ is rigid if the inclusion
of L1.X/ in the von Neumann algebra L.R/ of R ([FM77]) has the relative
property (T).

Note that for free actions, rigidity is a property of their equivalence relations:
a free pmp action � Õ .X;�/ is rigid if and only if its orbit equivalence relation
(x � y if �x D �y) is.

�First author supported by a Clay Research Fellowship. Second author supported by NSF grants DMS
0701639 and 1007227.
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In the last decade these notions of rigidity have led to several remarkable ap-
plications, most notably, to calculations of invariants of von Neumann algebras and
equivalence relations ([Po06], [PV10], [Ga11]) and to constructions of non-orbit
equivalent actions of non-amenable groups ([GP05], [Io11]).

Yet, while rigidity was successfully exploited in applications, the theoretical as-
pects of its study (e.g., finding new constructions of rigid equivalence relations and a
more manageable definition of rigidity – avoiding the use of von Neumann algebras)
were neglected. In fact, until recently all known examples of rigid actions and equiva-
lence relations ([Po06], [Ga11]) relied on the following group theoretic construction.
Let A be a countable abelian group together with an action of a countable group � .
Then the pair .� Ë A;A/ has the relative property (T) of Kazhdan–Margulis if and
only if the (Haar) measure preserving action � Õ yA and its orbit equivalence relation
are rigid ([Po06]). In particular, since the pair (SLn.Z/ Ë Zn;Zn/ has the relative
property (T) ([Ka67], [Ma82]), it follows that the natural action of SLn.Z/ on the
n-torus T n is rigid for all n > 2.

The situation improved with the finding of an ergodic theoretic criterion for rigidity
of pmp actions and equivalence relations ([Io10], see the next section). The criterion
was then used to produce the first examples of rigid equivalence relations not built
from a pair of groups with relative property (T): if S denotes the orbit equivalence
relation of the action SL2.Z/ Õ T 2, then any ergodic non-hyperfinite subequivalence
relation R � S is rigid ([Io10], Theorem 0.1). Although this result provides new
instances of rigidity, it has the disadvantage of being limited to a specific action.

In this paper, we work in the general framework of actions on homogeneous spaces
and prove rigidity for the induced (sub)equivalence relations under fairly general
assumptions. More precisely, we consider actions of countable subgroups � < G on
the homogeneous space .G=ƒ;mG=ƒ/, where G is a real algebraic group, ƒ < G is
a lattice and mG=ƒ is the unique G-invariant probability measure on G=ƒ.

Our first result asserts that, under mild assumptions onG, the action of any lattice
� < G on G=ƒ is rigid.

Theorem A. Let G be a real algebraic group with finite center, no proper normal
co-compact algebraic subgroups, and no non-trivial algebraic homomorphism into
R�.

If �;ƒ < G are lattices, then the pmp action � Õ .G=ƒ;mG=ƒ/ is rigid.
Moreover, if G has property (T ) (e.g., if G is a connected semisimple Lie group

with finite center whose simple factors have real-rank > 2), then L1.G=ƒ/Ì� has
property (T ).

Property (T) for von Neumann algebras M was introduced by Connes and Jones
in [CJ85]. For a crossed-product algebra L1.X/ Ì � coming from a pmp action,
it is equivalent to having both that � is a property (T) group and that the action
� Õ .X;�/ is rigid. Because lattices inherit property (T) ([Ka67]), this indicates
how to deduce the last line of Theorem A.
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Theorem A implies that for any n > 3, the crossed product von Neumann algebra
L1.SLn.R/=SLn.Z// Ì SLn.Z/ has property (T). This provides new examples of
property (T) von Neumann algebras that are not constructed from countable property
(T) groups. For other such examples, coming from discrete quantum groups, see
[Fi10].

As a consequence of Theorem A we also derive:

Corollary B. Let G be as in Theorem A and �;ƒ < G be lattices. Let I be a
countable set on which � acts with infinite orbits and X0 be some probability space.
Endow X D XI

0 with the corresponding generalized Bernoulli �-action.
Then for any pmp�-space Y , any measurable quotient�-mapp W X�Y ! G=ƒ

depends a.e. on the second coordinate only.

The main result of [Io10] shows that the orbit equivalence relation S of the ac-
tion SL2.Z/ Õ T 2 satisfies the following “global” dichotomy: any ergodic sube-
quivalence relation R � S is either hyperfinite or rigid. Our second result estab-
lishes this dichotomy for many other actions, including the action of SL2.Z/ on
SL2.R/=SL2.Z/:

Theorem C. LetG be any of the groups SL2.R/, SL2.C/, SL2.R/ËR2 or SL2.C/Ë
C2. Let � < G be a countable discrete subgroup and ƒ < G be a lattice. Denote
by S the orbit equivalence relation of the action � Õ .G=ƒ;mG=ƒ/.

Then any ergodic subequivalence relation R � S is either hyperfinite or rigid.
Moreover, for any subequivalence relation R � S , we can find a measurable

partitionG=ƒ D X0 [X1 such thatX0; X1 areR-invariant,RjX0
is hyperfinite and

RjX1
is rigid.

The rest of the paper consists of two sections. In the next one, we recall two
ergodic theoretic criteria for rigidity of actions and equivalence relations. In the last
section, we use these criteria to prove Theorems A and C, and their more general
versions, Theorems D and E.

Acknowledgment. We would like to express our deep gratitude to Gregory Margulis
who made a crucial contribution to the paper during his distinguished lecture series
visit at UCLA.

2. A criterion for rigidity

Theorem 4.4 in [Io10] gives an ergodic theoretic formulation of rigidity for free
ergodic actions. Also, Proposition 2.2 in [Io10] provides an ergodic theoretic criterion
for rigidity of ergodic equivalence relations. In this section, we note that appropriate
versions of these results – implicitly proved but not stated in [Io10] – hold without
the freeness and the ergodicity assumptions.
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Throughout the paper, for a standard Borel space X , we denote by B.X/ the
algebra of complex-valued bounded Borel functions on X and by M.X/ the space
of Borel probability measures on X .

Proposition 1 (Equivalent formulation of rigidity for actions). A pmp action � Õ
.X;�/ of a countable group � on a probability space .X;�/ is rigid if and only if for
any sequence of Borel probability measures �n on X �X satisfying

(1) pi��n D � for all n and i D 1; 2, where pi W X �X ! X denotes the projection
onto the i -th coordinate,

(2)
R
X�X

f .x/g.y/d�n.x; y/ ! R
X
f .x/g.x/d�.x/ for all f; g 2 B.X/,

(3) k.� � �/��n � �nk ! 0 for every � 2 � ,

we have that �n.�/ ! 1 (where � � X �X denotes the diagonal).

Here, for a bounded signed Borel measure � on X �X , the norm k�k is obtained
by viewing � as a linear functional on B.X �X/.

Proposition 2 (Criterion for rigidity of equivalence relations). Let R be a countable
pmp equivalence relation on a probability space .X;�/. Assume that for any sequence
of Borel probability measures �n on X �X satisfying (1), (2) and

(30) k.���/��n ��nk ! 0 for every � belonging to the group ŒR� of automorphisms
of .X;�/ whose graph is contained in R,

we have that �n.�/ ! 1.
Then R is rigid.

Before indicating how these propositions follow from [Io10], let us recall the
notion of relative property (T) for von Neumann algebras.

Definition ([Po06], Definition 4.2.1). Let .M; 	/ be a von Neumann algebra with a
normal faithful tracial state 	 and B � M a von Neumann subalgebra.

We say that B � M has relative property (T ) if whenever H is a Hilbert M -
bimodule and 
n 2 H is a sequence of unit vectors satisfying

� hx
n; 
ni D h
nx; 
ni D 	.x/ for all x 2 M and every n > 1 (tracial),
� kx
n � 
nxk ! 0 for all x 2 M (almost central),

we can find �n 2 H such that b�n D �nb for all b 2 B and every n > 1, and
k�n � 
nk ! 0.

Proof of Proposition 1. The proof of the “only if part” is identical to that of “(a) H)
(c)” in [Io10], Theorem 4.4 (which does not actually use the freeness and ergodicity
assumptions).

The proof of the “if part” is implicitly contained in[Io10], Section 2, but for
completeness, we give full details. Let � Õ .X;�/ be an action such that for any
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sequence of probability measures �n satisfying (1)–(3), we must have �n.�/ ! 1.
Denote M D L1.X/ Ì � and let fu�g�2� be the canonical unitaries. To prove that
the action is rigid, let H be a HilbertM -bimodule and 
n 2 H a sequence of tracial,
almost central vectors.

Since .X;�/ is a standard probability space, we may assume that X is a compact
metric space. We denote by C.X/ the algebra of complex-valued continuous func-
tions on X . The left-right actions of C.X/ on H induce a C�-algebra representation
of C.X � X/ ' C.X/ x̋ max C.X/ into B.H /. Let E W � ! P .H / be the spectral
measure giving this representation, where � is the Borel  -algebra of X � X and
P .H / denotes the set of projections in B.H / (see e.g. [Co99], Theorem 9.8). Thus,
if � W B.X �X/ ! B.H / is defined by �.f / D R

X�X
fdE for all f 2 B.X �X/,

then
�.f1 ˝ f2/.
/ D f1
f2 for all f1; f2 2 C.X/ and all 
 2 H : (a)

Next, let �n 2 M.X � X/ be given by the formula
R
X�X

fd�n D h�.f /
n; 
ni
for all f 2 B.X � X/. Since 
n is tracial, equation (a) implies that �n satisfies (1)
for all n > 1.

Now, by approximating Borel functions with continuous functions (using e.g.
Lemma 9.7 of [Co99]), we have that (a) holds for every f1; f2 2 B.X/. Thus,

ˇ̌
ˇ
Z

X�X

f1.x/f2.y/d�n.x; y/ �
Z

X

f1.x/f2.x/d�.x/
ˇ̌
ˇ

D jhf1
nf2; 
ni � hf1f2
n; 
nij 6 kf1k1 kf2
n � 
nf2k;
for all f1; f2 2 B.X/. Since 
n are almost central it follows that �n satisfy (2).

Finally, let us show that �n satisfy (3). Fix � 2 � and recall thatu�f u
�
� D f B��1

for all f 2 L1.X;�/. Then (a) gives that for every f1; f2 2 C.X/ we have that
Z

X�X

Œ.f1 ˝ f2/ B .� � �/�1�d�n D
Z

X�X

Œ.f1 B ��1/˝ .f2 ˝ ��1/�d�n

D h.f1 B ��1/
n.f2 B ��1/; 
ni
D hu�f1u

�
�
nu�f2u

�
� ; 
ni

D hf1.u
�
�
nu� /f2; u

�
�
nu� i

D h�.f1 ˝ f2/.u
�
�
nu� /; u

�
�
nu� i:

By approximating Borel functions with continuous functions we derive that
Z

X�X

f B.���/�1d�n D h�.f /.u�
�
nu� /; u

�
�
nu� i for all f 2 B.X�X/: (b)

Since k�.f /k 6 kf k1 for all f 2 B.X � X/, and ku�
�
nu� � 
nk ! 0,

equation (b) implies that �n also satisfy condition (3).
Thus, we must have �n.�/ ! 1. Define �n ´ �.1�/.
n/ 2 H . Since f �n D

�nf for all f 2 L1.X/, and k�n � 
nk2 D p
1 � �n.�/ ! 0, we are done.
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Proof of Proposition 2. This is the same as the proof of the “if part” of Proposition 1,
where we replace M by L.R/ and the unitaries fu�g�2� by the unitaries fu�g�2ŒR�.

3. Proofs

We begin by stating more general versions of Theorems A and C.

Theorem D. Let G be a real algebraic group and ƒ � G be a lattice. Let � � G

be a countable subgroup and denote by H its Zariski closure. Assume that H has
no proper normal co-compact algebraic subgroup and no non-trivial homomorphism
into R�. Let � be a �-invariant probability measure on G=ƒ.

If the centralizer of � (equivalently, of H ) in G is finite, then the pmp action
� Õ .G=ƒ; �/ is rigid.

In the case � D mG=ƒ, the converse is true: if the action � Õ .G=ƒ; �/ is rigid,
then the centralizer of � in G is finite.

Remark. Theorem D implies that for � D F2 � Z actions of the form � Õ
.G=ƒ;mG=ƒ/ are never rigid. It would be interesting to decide whether � admits
a free ergodic rigid action at all. Note in this respect that the general question of
characterizing non-amenable groups which admit free ergodic rigid actions ([Po06],
Problem 5.10.2) remains open (see [Ga11] for a partial result).

Theorem E. Let G be a real algebraic group, fix a Haar measure m D mG of G
and on .G;m/ consider the left-right multiplication action of G �G W .g1; g2/ � g D
g1gg

�1
2 .

Let �;ƒ < G be two countable discrete subgroups and denote by H , K their
Zariski closures. Assume that the stabilizer of any non-zero point in the Lie algebra
of G under the adjoint actions ofH and K is amenable.

Denote by S the orbit equivalence relation of the action � � ƒ Õ .G;m/, i.e.,
S D f.x; y/ 2 G �G j x 2 �yƒg. Let X � G be a Borel set with 0 < m.X/ < 1.

Then, for any subequivalence relation R � S jX D S \ .X �X/, we can find an
R-invariant measurable partition X D X0 [ X1 such that RjX0

is hyperfinite and
RjX1

is rigid.

Remark. The assumption that �;ƒ < G are discrete is essential. To see this, let
G be a simple connected compact Lie group together with two countable subgroups
�;ƒ. Suppose that � < G is dense and non-amenable. These assumptions imply
that the action � � ƒ Õ .G;m/ is free ergodic and its equivalence relation S is
ergodic and non-hyperfinite.

We claim that S is not rigid. Let d be a G � G-invariant metric on G defining
the topology. For n > 1, let An D f.x; y/ 2 G � G j d.x; y/ < 1

n
g and set
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�n D .m�m/jAn

.m�m/.An/
2 M.G�G/. Then �n is invariant under the diagonal product action

of G � G on G � G: .g1; g2/ � .h; k/ D .g1hg
�1
2 ; g1kg

�1
2 / and its projection onto

both coordinates is equal to m. Moreover, we have
R

G�G
f1.h/f2.k/d�n.h; k/ !R

G
f1.h/f2.h/dm.h/ for all f1; f2 2 B.G/ (this is clear when f1 is a continuous

function; in general, use Lusin’s theorem to approximate f1 and the fact that the
projection of �n onto the first coordinate is equal to m). Since �n.f.h; h/ j h 2
Gg/ D 0 for all n, Proposition 1 shows that the free action � � ƒ Õ .G;m/ is not
rigid. By [Po06] it follows that S is not rigid, which shows that the conclusion of
Theorem E fails in this case.

Next, we introduce some notation that we will use in the proofs of Theorems D
and E. Fix an unimodular real algebraic group G and a Haar measure m D mG .

� Denote by g the Lie algebra of G and by P .g/ D .g n f0g/=R� the associated
projective variety together with the map p W g n f0g ! P .g/.
We endow g and P .g/ with the adjoint G-action.

� Let q W G ! g be a Borel map which is equal to the logarithm in some neigh-
borhood U of 1 2 G.

� Next, define r W G �G ! G by r.x; y/ D xy�1.
� We can now set� D pBqBr W .G�G/n� ! P .g/, where� D f.x; x/ j x 2 Gg.
� Finally, we let� W .G�G/n� ! G�P .g/ be given by�.x; y/ D .x; �.x; y//.

Given a Borel subset X � G we denote �X D � \ .X �X/ and the projection
onto the i -th coordinate by pi W X �X ! X .

LemmaF. LetX � G be aBorel subset endowedwith a Borel probabilitymeasure �.
Let c > 0. Suppose that �n 2 M.X � X/ is a sequence satisfying p1��n 6 c�,

�n.�X / D 0 for all n > 1, and �n.A � .X n A// ! 0 for any Borel set A � X .
Let† � G be a countable subgroup and �1; �2 W X ! † be two Borel maps. De-

note byD the set of .x; y/ 2 .X�X/n�X such that�.�1.x/x�2.x/; �1.y/y�2.y// D
Ad.�1.x//.�.x; y//.

Then limn!1 �n.D/ D 1:

Proof. We first claim that �n.
S1

iD1.Bi �Bi // ! 1 for any Borel partition fBig1
iD1

of X . For k > 1, set Xk D Sk
iD1Bi . Note that .X � X/ n S1

iD1.Bi � Bi / �Sk
iD1.Bi � .X n Bi // [ ..X n Xk/ � X/. Since �n.Bi � .X n Bi // ! 0 for all i

and p1��n 6 c�, we deduce that

lim sup�n..X �X/ n
1[

iD1

.Bi � Bi // 6 c�.X nXk/ for all k > 1:

Since fBig1
iD1 is a partition of X , we obtain that �.Xk/ ! 1, which proves our

claim.
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Towards proving that �n.D/ ! 1, let " > 0. We can find a finite subset F of
† such that �.fx 2 X j �1.x/ 2 F g/ > 1 � "

c
: Since p1��n 6 c� it follows that

A D f.x; y/ 2 X �X j �1.x/ 2 F g satisfies �n.A/ > 1 � "; for all n > 1.
Next, since q.x/ D log.x/ for x in a neighborhood of 1 2 G, we obtain that

for all x in a, possibly smaller, neighborhood V of 1 we have that q.�x��1/ D
Ad.�/.q.x// for every � 2 F . Let B D f.x; y/ 2 X � X j xy�1 2 V g. Let W be
a neighborhood of 1 2 G such that WW �1 � V and h1; h2; :: 2 G be a sequence
such that G D S1

iD1W hi . For i > 1, define Bi D .W hi n .Si�1
j D1W hj // \ X .

Since fBig1
iD1 is a partition of X and

S1
iD1.Bi � Bi / � B , the above claim yields

that �n.B/ ! 1.
Finally, let us show thatC D f.x; y/ 2 X�X j �1.x/ D �1.y/; �2.x/ D �2.y/g

satisfies �n.C / ! 1. This also follows from the above claim, after noticing that the
sets C�1;�2

D fx 2 X j �1.x/ D �1; �2.x/ D �2g, with �1; �2 2 †, form a partition
of X and satisfy C D S

�1;�22�.C�1;�2
� C�1;�2

/. Finally, it is easy to see that
A\B \C � D[�X . Since lim inf �n.A\B \C/ > 1� " and " > 0 is arbitrary,
the proof is complete.

Proof of Theorem D. Suppose first that the centralizer ofH inG is finite. LetX � G

be a fundamental domain for the right ƒ-action. Identify G=ƒ with X via the map
G=ƒ 3 xƒ ! xƒ \ X 2 X . Under this identification, the corresponding �-action
on X is given by � � x D �xw.�; x/ for all x 2 X and � 2 � , where � D w.�; x/ is
the unique element of ƒ such that �x� 2 X .

Let �n be a sequence of Borel probability measures on X �X satisfying

(1) pi��n D � for all n and i D 1; 2.
(2)

R
X�X

f .x/g.y/d�n.x; y/ ! R
X
fgd� for all f; g 2 B.X/.

(3) k.� � �/��n � �nk ! 0 for all � 2 � .

By Proposition 1, to conclude that the action � Õ .X; �/ is rigid, it suffices to
argue that �n.�X / ! 1.

If this is false, then after passing to a subsequence we may assume that cn D 1�
�n.�X / verify c D inf cn > 0. Define�n 2 M.X�X/ by�n.A/ D c�1

n �n.An�X /

for any Borel setA � X�X . Then conditions (1) and (2) imply thatp1��n 6 c�1� for
all n, and �n.A� .X nA// ! 0 for any Borel setA � X . By applying Lemma F (to
the subgroup† < G generated by � andƒ), we obtain�n.f.x; y/ 2 .X �X/n�X j
�.� � x; � � y/ D Ad.�/.�.x; y//g/ ! 1.

Also, condition (3) gives that k.� � �/��n ��nk ! 0 for all � 2 � . Combining
the last two facts yields that the probability measures �n D ���n on P .g/ satisfy
k Ad.�/��n � �nk ! 0 for all � 2 � . Since P .g/ is a compact metric space,
the space M.P .g//, endowed with the weak-� topology induced by the embedding
M.P .g// � C.P .g//�, is compact metrizable. Let � 2 M.P .g// be a weak-� limit
point of f�ngn>1. Since � acts on P .g/ by homeomorphisms, we deduce that � is
invariant under the adjoint action of � .
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Since the connected component of H in the Zariski topology is a normal co-
compact algebraic subgroup, the hypothesis implies that H is connected as an alge-
braic group.

By applying [Sh99], Theorem 3.11 (which uses the fact thatH is connected as an
algebraic group) we get that � is invariant under the adjoint action of H and that H
has a normal co-compact subgroup which fixes every point in the support of �. Now,
the hypothesis forces thatH fixes every point in the support of �. In particular, there
exists Y 2 g n f0g and a homomorphism � W H ! R� such that Ad.�/.Y / D �.�/Y

for all � 2 H . Since every such � is trivial, we deduce that Y is invariant under the
adjoint action of H . Hence, for all n, we have that yn D exp.Y

n
/ 2 G commutes

withH . Since Y 6D 0, this contradicts the assumption that the centralizer ofH in G
is finite.

For the converse, suppose that � D mG=ƒ and that the action � Õ .G=ƒ; �/

is rigid. By way of contradiction, if the centralizer of H in G is infinite, we can
find a sequence of elements xn 2 G n f1g which commute with H and converge
to 1. For every n, let �n be the pushforward of � through the map G=ƒ 3 gƒ !
.gƒ; xngƒ/ 2 G=ƒ � G=ƒ. Since xn and � commute, �n is invariant under the
diagonal �-action. It is also clear that the projection of �n onto both coordinates is
equal to �.

Now, let f1; f2 be bounded Borel functions on G=ƒ. Since xn ! 1, it is easy to
see that

R
G=ƒ

jf2.xnx/ � f2.x/jd�.x/ ! 0. This implies that

Z
G=ƒ�G=ƒ

f1.x/f2.y/d�n.x; y/ D
Z

G=ƒ

f1.x/f2.xnx/d�.x/

!
Z

G=ƒ

f1.x/f2.x/d�.x/:

Since the action � Õ .G=ƒ; �/ is rigid, we conclude that �n.�/ ! 1. Equiva-
lently, m.f.g 2 X j g�1xng … ƒg/ ! 0 for every Borel set X � G with m.X/ <
1. On the other hand, as xn ! 1, we have m.f.g 2 X j g�1xng … U g/ ! 0 for
any neighborhood U of 1 in G. Since ƒ is discrete, we deduce that xn D 1 for n
large enough, a contradiction.

Proof of Theorem E. We claim that it is sufficient to show that wheneverX � G is a
Borel set with m.X/ 2 .0;1/ and R � S jX is a non-rigid subequivalence relation,
there exists an R-invariant Borel subset X0 � X such that m.X0/ > 0 and RjX0

is
hyperfinite.

Assuming this is true, letR � S jX be a subequivalence relation. LetX0 � X be a
Borel subset of maximal measure such that RjX0

is hyperfinite. Then the conclusion
of Theorem E is equivalent to the equivalence relation R0 ´ RjXnX0

being rigid. If
R0 is not rigid, then since R0 � S jXnX0

, we could find X1 � X n X0 Borel with
m.X1/ > 0 such that RjX1

D R0jX1
is hyperfinite. This however would contradict

the maximality of X0.
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So, letR � S jX be a non-rigid equivalence relation. Let � D m.X/�1mjX be the
probability measure on X obtained by normalizing the restriction of m to X . Since
R is not rigid, Proposition 2 gives a sequence �n 2 M.X �X/ such that

(1) pi��n D � for all n and i D 1; 2.
(2)

R
X�X

f .x/g.y/d�n.x; y/ ! R
X
fgd� for all f; g 2 B.X/.

(3) k.� � �/��n � �nk ! 0 for every � 2 ŒR�.
(4) �n.�X / 6! 1.

After passing to a subsequence we can assume that cn D 1 � �n.�X / satisfy
c D inf cn > 0. Define �n 2 M.X � X/ by �n.A/ D c�1

n �n.A n �X / for every
Borel set A � X �X . We have that

(10) pi��n 6 c�1� for all n and i D 1; 2.
(20) �n.A � .X n A// ! 0 for any Borel set A � X .
(30) k.� � �/��n � �nk ! 0 for every � 2 ŒR�.
(40) �n.�X / D 0 for all n.

Let � 2 ŒR�. After modifying � on a null set, we can assume that �.x/ 2 �xƒ for
all x 2 X . This allows us to definew� D .w1

�
; w2

�
/ W X ! ��ƒ through the formula

�.x/ D w� .x/ � x D w1
�
.x/xw2

�
.x/�1 for every x 2 X . Using w1

�
we construct a

Borel isomorphism O� of X�P .g) by letting O�.x; Y / D .�.x/;Ad.w1
�
.x//.Y //.

We split the rest of the proof into several steps.

Step 1. There exists � 2 M.X� P .g)) such that O��� D � for all � 2 ŒR�.
Proof of Step 1. For every n, let �n D ���n. Let � 2 ŒR�. To prove this step we first
show that �n are “almost O� -invariant” and then argue that any limit point � of f�ngn>1

satisfies the conclusion. We first claim that

k O���n � �nk ! 0: (c)

By Lemma F (which applies as (10), (20) and (40) hold true), the setD of .x; y/ 2
X �X such that �.�.x/; �.y// D Ad.w1

�
.x//.�.x; y// satisfies �n.D/ ! 1. Since

.x; y/ 2 D if and only if . O� B�/.x; y/ D .� B .� ��//.x; y/, condition (30) gives (c).
Now, since �n are Borel probability measures on the locally compact metrizable

space X�P .g), we can view them as elements of C0.X � P .g//� (the dual of the
algebra of continuous complex-valued functions onX�P .g/which vanish at infinity).
Since the unit ball of C0.X � P .g//� is compact metrizable in the weak-� topology,
by Riesz’ representation theorem we can find a subsequence f�nk

gk>1 and a positive
Borel measure � on X � P .g/ such that

R
X�P.g/

fd�nk
! R

X�P.g/
fd� for every

f 2 C0.X�P .g)).
Towards showing that � satisfies the conclusion, note first that 0 6 �.X�P .g// 6

1. Let " > 0. Since X � P .g/ is a metrizable space, by Lusin’s theorem we can
find a closed subset X0 � X such that �.X n X0/ 6 " and w� jX0

W X0 ! � �ƒ is
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continuous. Condition (10) implies that �n..X nX0/�P .g// D �n..X nX0/�X/ 6
c�1�.X n X0/ 6 c�1" for every n. Thus �n.X0 � P .g// > 1 � c�1" and since
X0 � P .g/ closed, we deduce that �.X0 � P .g// > 1 � c�1". As " > 0 is arbitrary,
this proves that � is a probability measure.

By (c), in order to prove that O��� D � it suffices to show that
R
.f B O�/d�nk

!R
.f B O�/d� for everyf 2 C0.X�P .g//with kf k1 6 1. Note that the restriction of O�

toX0�P .g/ continuous. Leth 2 C0.X�P .g// such that khk1 6 1 andhjX0�P.g/ D
.f B O�/jX0�P.g/. Since �..X nX0/�P .g// 6 c�1" and �n..X nX0/�P .g// 6 c�1",
we have that

ˇ̌
ˇ̌
Z

X�P.g/

.f B O�/d�nk
�

Z
X�P.g/

.f B O�/d�
ˇ̌
ˇ̌

6 4c�1"C j
Z

X�P.g/

hd�nk
�

Z
X�P.g/

hd�j:

Since
R
X�P.g/

hd�nk
! R

X�P.g/
hd� and " > 0 is arbitrary, this concludes the proof

of Step 1.

Next, by disintegrating �, we derive the following:

Step 2. There exist an R-invariant Borel set X0 � X with �.X0/ > 0 and a
Borel function � W X0 ! M.P .g// such that for all � 2 ŒR� we have �.�.x// D
Ad.w1

�
.x//��.x/ for �-a.e. x 2 X0.

Proof of Step 2. Since p1��n 6 c�1� and �.x; y/ D .x; �.x; y//, we deduce that
the push forward of �n onto the X -coordinate is 6 c�1�. Thus, the push forward of
� onto the X -coordinate, denoted Q�, satisfies Q� 6 c�1�. By using Step 1, we obtain
that Q� is R-invariant. Disintegrate � D R

X
�.x/d Q�.x/, where �.x/ 2 M.P .g// for

all x 2 X (see e.g. [KM04], Theorem 3.3). By using Step 1 and the fact that Q� is
R-invariant, the uniqueness of the disintegration implies that

�.�.x// D Ad.w1
� .x//��.x/ for Q�-a.e. x 2 X and all � 2 ŒR�:

Denote by X0 � X the support of Q� and notice that it is R-invariant. Since
Q� 6 c�1� we obtain that �.X0/ > 0 and the conclusion follows.

In the second half of the proof, we use Step 2 (and an analogous identity for w2
�
)

to deduce that RjX0
is hyperfinite. We first do this under the additional assumption

that RjX0
is ergodic with respect to � and then treat the general case (see the end of

the proof).
By using the fact that the action H Õ M.P .g// is smooth, we further obtain:

Step 3. There exist an amenable subgroupP < H and a Borel function � W X0 !
H=P such that for all � 2 ŒR� we have �.�.x// D w1

�
.x/�.x/ for �-a.e. x 2 X0.
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Proof of Step 3. Since the adjoint action of H on g is linear, by [Zi84], Corol-
lary 3.2.12, the action of H on M.P .g// is smooth (recall from [Zi84], Defini-
tion 2.1.9, that a Borel action H Õ Z is smooth if there exists a sequence of Borel
setsWn � Z=H which separate points). SinceRjX0

is ergodic, by Step 2 we deduce
that �x lies in a singleH -orbit, on a co-null subset ofX0. In other words, there exists

 2 M.P .g// such that �x 2 H
 for �-almost every x 2 X0. Identify H
 with
H=P , where P denotes the stabilizer of 
 in H .

We claim that P is amenable. By [Sh99], Theorem 3.11, P has a normal co-
compact subgroupP0 which fixes every point in the support of 
 . Thus, if Y 2 gnf0g
is such that p.Y / 2 P .g/ is in the support of 
 , then there exists a homomorphism
� W P0 ! R� such that Ad.�/.Y / D �.�/Y for all � 2 P0. Now, P1 D ker.�/
stabilizes Y and our assumption implies that P1 is amenable. Since � is continuous
and R� is amenable, we deduce that P0 is amenable. Finally, as P0 is co-compact in
P , it follows that P is amenable and the conclusion follows.

Now, define r 0 W G �G ! G as r 0.x; y/ D x�1y. Let �0 D p B q B r 0 W .G �G/ n
� ! P .g/ and � 0 W .G �G/ n� ! G � P .g/ be given by � 0.x; y/ D .x; �0.x; y//.
Repeating the above argument with r 0; �0; � 0 instead of r; �; � yields an amenable
subgroup Q < K and a Borel function  W X0 ! K=Q and such that  .�.x// D
w2

�
.x/ .x/ for almost every x 2 X0, for all � 2 ŒR� (note that Q� is the weak-� limit

of p�
1�nk

, so its support, X0, does not depend on the definition of r).
SetZ D H=P �K=Q and 	 ´ .�;  / W X0 ! Z. Then 	.�.x// D w� .x/	.x/

for almost every x 2 X0, for all � 2 ŒR�. Here on Z D .H � K/=.P � Q/ we
consider the left multiplication action of � �ƒ. Since P �Q is amenable and � �ƒ
is discrete, this action is topologically amenable, in the sense of [An02] (see the proof
of [BO08], Theorem 5.4.1). This fact allows us to derive the following:

Step 4. RjX0
is hyperfinite.

Proof of Step 4. This is a consequence of Proposition 3.6 in [Io10]. For the reader’s
convenience we provide a self-contained argument. Fix a sequence f�igi>1 � ŒR�

such that R D S
i�1f.�i .x/; x/ j x 2 Xg. Define w W R ! � � ƒ by w.x; y/ D

w�i
.y/, where i is the least integer with x D �i .y/. Then 	 W X0 ! Z satisfies

	.x/ D w.x; y/	.y/ for �-almost every .x; y/ 2 RjX0
: (d)

Since the action � � ƒ Õ Z is topologically amenable, by Connes–Feldman–
Weiss’ theorem ([CFW81]), its orbit equivalence relation T is hyperfinite with respect
to any measure onZ. Let �jX0

be the measure onX0 given by �jX0
.A/ D �.A\X0/.

Then we can find an increasing sequence Tn of finite equivalence relations onZ such
that T D S

n>1 Tn, up to 	�.�jX0
/-null sets.

For every n > 1, set Rn D f.x; y/ 2 RjX0
j .	.x/; 	.y// 2 Tng. Then Rn is

an increasing sequence of subequivalence relations of RjX0
. By (d) we have thatS

n>1Rn D RjX0
, up to �-null sets. Thus, to show that RjX0

is hyperfinite, it is
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enough to argue that Rn is hyperfinite for all n > 1. Now, if R0 D f.x; y/ 2 RjX0
j

	.x/ D 	.y/g, thenR0 has finite index in eachRn. Therefore, we can further reduce
to proving that R0 is hyperfinite.

Let us first prove this under the additional assumption that R0 is ergodic. Then
we can find 	 2 Z such that 	.x/ D 	 for almost every x 2 X0. Denote by L the
stabilizer of 	 in � �ƒ and by S0 the orbit equivalence relation of the actionL Õ G

(recall that � � ƒ acts on G by left-right multiplication). By using (d) we derive
that w.x; y/ 2 L for almost every .x; y/ 2 R0. Thus, R0 � S0jX0

. On the other
hand, since P an Q are amenable, it follows that L is amenable. Thus, S0 and R0

are hyperfinite ([CFW81]).
If R0 is not necessarily ergodic, we consider its ergodic decomposition. Let M

be the set of ergodic R0-invariant probability measures on X0 (viewed as a Borel
subset as M.X0/). Then there is an R0-invariant Borel map m W X0 ! M such that
�jX0

D R
X0
m.z/d�jX0

.z/. Equation (d) implies that the set of z 2 X0 such that
	.x/ D w.x; y/	.y/; for m.z/-almost every .x; y/ 2 R0, has full measure. Since
m.z/ isR0-ergodic, arguing as in the previous paragraph yields thatR0 is hyperfinite
with respect to m.z/ for �-almost every z 2 X0. Since �jX0

D R
X0
m.z/d�jX0

.z/,
we conclude that R0 is hyperfinite.

Finally, ifRjX0
is not ergodic, then one proceeds as in the last paragraph. Consider

the ergodic decomposition �jX0
D R

X0
m.z/d�jX0

.z/, wherem.z/ are ergodicRjX0
-

invariant probability measures. Then the identity from Step 2 (and the analogous
identity for w2

�
obtained by replacing � with �0) holds when � is replaced with m.z/

for almost every z 2 X0. Now, for such z, the above proof yields that RjX0
is

m.z/-hyperfinite. Finally, this gives that RjX0
is �jX0

-hyperfinite.

We are now ready to prove the results announced in the introduction.

Proof of Theorem A. The first part is immediate by Theorem D. For the moreover
part, recall Kazhdan’s result: any connected semisimple Lie group G with finite
center whose simple factors have real-rank > 2 has property (T) ([Ka67], see [Zi84],
Theorem 7.4.2).

Proof of Corollary B. Denote by � the probability measure on X . Let .Y; �/ be a
pmp �-space and p W X � Y ! G=ƒ be a measurable, quotient �-map. If A ´
f.x1; x2; y/ 2 X �X � Y j p.x1; y/ D p.x2; y/g, then the conclusion is equivalent
to .���� �/.A/ D 1. This implies that we may assume that the action � Õ .Y; �/

is ergodic.
Now, the action � Õ .G=ƒ;mG=ƒ/ is rigid by Theorem A. By [Io09], Proposi-

tion 3.3, we obtain thatA has positive measure. Since � � i is infinite for all i 2 I , the
action � Õ .X;�/ is weakly mixing. Hence, the product action of � on X �X � Y
is ergodic. Since A is invariant under this action, the conclusion follows.
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Remark. In the case Y is a single point space, Corollary B has been first proved
by Furman in [Fu07], Remark 1.15 (2), by using entropy. When � has property (T),
this also follows from [Fu07], Theorem 1.14, by using Popa’s cocycle superrigidity
theorem.

Proof of Theorem C. LetX � G be a fundamental set for the rightƒ-action endowed
with the probability measure m.X/�1mjX . Set T D f.x; y/ 2 X � X j x 2 �yƒg.
Since the stabilizers under the adjoint action ofG of non-zero points in its Lie algebra
g are amenable, Theorem E implies that any subequivalence relation R � T , admits
an R-invariant measurable partition X D X0 [ X1 such that RjX0

is hyperfinite
and RjX1

is rigid. Since � W G=ƒ 3 xƒ ! xƒ \ X 2 X is a measure preserving
isomorphism with �.S/ D T , we are done.
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