
Groups Geom. Dyn. 7 (2013), 523–534
DOI 10.4171/GGD/194

Groups, Geometry, and Dynamics
© European Mathematical Society

Quasi-isometric embeddings into diffeomorphism groups

Michael Brandenbursky and Jarek Kędra

Abstract. Let M be a smooth compact connected oriented manifold of dimension at least
two endowed with a volume form. Assuming certain conditions on the fundamental group
�1.M/ we construct quasi-isometric embeddings of either free Abelian or direct products of
non-Abelian free groups into the group of volume preserving diffeomorphisms ofM equipped
with the Lp metric induced by a Riemannian metric on M .
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1. Introduction

1.A. The Lp-metric. Let M be a compact connected and oriented Riemannian
manifold and let Diff.M;�/ denote the group of C r -diffeomorphisms of M acting
by the identity on a neighborhood of the boundary and preserving the volume form
� induced by the metric. Unless otherwise stated we assume that Diff.M;�/ is
equipped with the C k-topology for some fixed 1 � k � r � 1.

In the present paper we study the geometry of the identity component Diff0.M;�/

of the above group endowed with the right invariant Lp-metric. It is defined as
follows. Let

Lpfgtg WD
Z 1

0

dt

�Z
M

j Pgt .x/jp�
� 1

p

be the Lp-length of a smooth isotopy fgtgt2Œ0;1� � Diff0.M;�/, where j Pgt .x/j
denotes the length of the tangent vector Pgt .x/ 2 TxM induced by the Riemannian
metric. Observe that this length is right-invariant, that is, Lpfgt B f g D Lpfgtg for
any f 2 Diff.M;�/. It defines a right-invariant metric on Diff0.M;�/ by

dp.g0; g1/ WD inf
gt

Lpfgtg;

where the infimum is taken over all paths from g0 to g1.
Ifp D 2 then the group Diff0.M;�/ is in fact equipped with a Riemannian metric

inducing the above L2-length. The geodesics of this metric are the solutions of the
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equations of the flow of an incompressible fluid [1], which makes the p D 2 case the
most interesting. It is known that ifM is a simply connected Riemannian manifold of
dimension at least three then theL2-diameter of the group Diff0.M;�/ is finite [18].
On the other hand Eliashberg and Ratiu [10] proved that this diameter is infinite for
surfaces and for manifolds with positive first Betti number. See Arnol’d–Khesin [2]
and Khesin–Wendt [14], Section 3.6, for a detailed discussion.

Remark 1.1. The property of preserving the volume is essential to prove the right
invariance of the above metric. One can define theLp-metric by defining first a norm
of a diffeomorphism g by

kgkp WD inf
gt

Lpfgtg;
where the infimum is taken over all isotopies from the identity to g. Then the metric
dp.g; h/ WD kgh�1kp is right invariant by definition. However, in order to prove the
triangle inequality it is necessary to use the property of preserving the volume.

1.B. The main result. A map  W .X1; d1/ ! .X2; d2/ between metric spaces is
called large scale Lipschitz [17], Remark 1.9, if there exist constants A;B � 0 such
that

d2. .x/;  .y// � A � d1.x; y/C B:

Letm 2 M be a reference point. Let evm W Diff0.M;�/ ! M be the evaluation
map defined by evm.f / WD f .m/ and let G� � �1.M/ be the image of the homo-
morphism induced by evm. It is easy to prove that G� is contained in the center of
�1.M/. The subgroup G� is called the Gottlieb group associated with the volume
form � because the groups of similar origin were first studied by Gottlieb in [11].

Let Diff.M;�;m/ � Diff0.M;�/ be the isotropy of the reference point m. Let
us define a homomorphism

ˆ W Diff.M;�;m/ ! �1.M/=G�

as follows. Let g 2 Diff.M;�;m/ and let fgtg � Diff0.M;�/ be a smooth isotopy
from the identity to g. The value ˆ.g/ is represented by the loop fgt .m/g and it is
straightforward to show that ˆ is well defined.

Let B.m; r/ � M be a ball of radius r > 0 centered at a reference point
m 2 M . Let Diff.M;�;B.m; r// denote the subgroup of Diff0.M;�/ consisting
of diffeomorphisms preserving the ball B.m; r/ pointwise. The metric on the group
Diff.M;�;B.m; r// is induced from the Lp-metric on Diff0.M;�/. The following
is our main technical result which is proven in Section 2.

Theorem 1.2. Let M be a compact connected and oriented Riemannian manifold.
For all small enough r > 0 the homomorphism

ˆ W Diff.M;�;B.m; r// ! �1.M/=G�

is surjective and large scale Lipschitz with respect to the Lp-metric on the group
Diff.M;�;B.m; r// and the word metric on �1.M/=G�.
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Recall that the word norm on a group� generated by a symmetric finite set S � �

is defined by

j� jS WD minfk 2 N j � D s1 : : : sk where si 2 Sg:
The word metric is defined by dS .�1; �2/ WD j�1.�2/

�1jS . It is right-invariant and
it depends on the choice of a finite generating set up to a quasi-isometry (defined
below) [5], Example 8.17.

1.C. Applications. Let .X1; d1/ and .X2; d2/ be two metric spaces. A function
f W X1 ! X2 is a quasi-isometric embedding if there exist two constants A � 1 and
B � 0 such that

1

A
d1.x; y/ � B � d2.f .x/; f .y// � A d1.x; y/C B: (1)

In the case when .X1; d1/ and .X2; d2/ are metric groups, we require f to be an
injective homomorphism. We say that f is a quasi-isometry if, in addition to (1),
there exists a constant C � 0 such that for every u 2 X2 there exists x 2 X1 with
the property

d2.u; f .x// � C:

Let� be a group equipped with the word metric associated with a finite generating
set S � � . An element � is called undistorted in � if there exists a positive constant
C > 0 such that

j�njS � C � n:
Otherwise, � is called distorted. These properties do not depend on the choice of a
finite generating set.

Theorem 1.3. Let M be a compact connected and oriented Riemannian manifold
of dimension at least two. If �1.M/=G� contains an undistorted element then
.Diff0.M;�/;dp/ contains quasi-isometrically embedded free Abelian group of an
arbitrary rank. In particular, the metric group .Diff0.M;�/;dp/ has infinite diame-
ter.

This result generalizes a theorem of Eliashberg and Ratiu [10] where they prove
the infiniteness of the diameter under the assumption that the first Betti number
of M is positive and the center of the fundamental group is trivial. Notice that
there exist compact oriented manifolds with the fundamental group isomorphic to
an arbitrary finitely presented group. Such a group can be chosen to have finite
abelianization (hence the first Betti number is equal to zero) and usually groups have
undistorted elements. For example, SL.2;Z/ has finite abelianization. Moreover, if
g 2 SL.2;Z/ has an eigenvalue � such that j�j ¤ 1 then the cyclic group generated
by g is undistorted.
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In fact, no finitely presented group with all its elements distorted is known. On
the other hand, Osin [16] constructs an example of an infinite finitely generated
group with exactly two conjugacy classes. In particular, such a group does not have
undistorted elements.

Theorem 1.4. LetM be a compact connected and oriented Riemannian manifold of
dimension at least three. If �1.M/=G� contains quasi-isometrically embedded non-
Abelian free group then .Diff0.M;�/;dp/ contains quasi-isometrically embedded
direct product of any finite number of free groups of arbitrary ranks.

Essentially, the idea of the proof is to appropriately embed disjoint copies of
the figure eight into M and suitably apply Theorem 1.2. Thus the situation is a bit
different for surfaces, where we get the following slightly weaker statement.

Theorem 1.5. Let†g;k be a compact connected and oriented surface of genus g with
k boundary components. Then .Diff0.†g;k; �/;dp/ contains quasi-isometrically
embedded direct product of 2gC k � 2 copies of finitely generated non-Abelian free
groups of arbitrary ranks.

Remark 1.6. Let D2 be a unit Euclidean disc in R2, i.e. in our notation D2 is diffeo-
morphic to †0;1. In [3] Benaim and Gambaudo showed, using a different method,
that the group .Diff.D2; �/;dp/ contains quasi-isometrically embedded finitely gen-
erated free or free Abelian group of arbitrary rank. Crisp and Wiest proved the same
fact for planar right-angled Artin groups [7]. We also would like to mention that M.
Kapovich proved that any right-angled Artin group embeds into the group of Hamil-
tonian diffeomorphisms of any symplectic manifold .M;!/, see [12]. However, it
is not known whether the embedding he constructs in [12] is quasi-isometric with
respect to Lp-metric.

1.D. Examples

Example 1.7. Since the Artin pure braid group P3 on three strands is isomorphic to
F2 � Z (see the proof of Theorem 1.16 in [13]) it embeds quasi-isometrically into
.Diff0.M;�/;dp/, where the manifold M is as in Theorem 1.4.

Example 1.8. If a subgroup � of a direct product of n free groups has finitely gener-
ated homology up to degree n then � contains a finite index subgroup isomorphic to
a direct product of at most n free groups [6]. On the other hand, there are examples
of finitely presented subgroups of a direct product of free groups which have more
complicated finiteness properties. More concretely, the kernel � of the homomor-
phism .F2/

n ! Z sending each generator to one is of type FPn but not FPnC1. These
examples are known as Bieri–Stallings groups, see Bestvina–Brady [4], Example 6.3.

Suppose that � ! F2 � � � � � F2 is the inclusion of a finitely presented Bieri–
Stallings group. It follows from the proof of Theorem 11.7 of Dison’s thesis [9] that
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this inclusion is a quasi-isometric embedding. Indeed, since the quotient is isomorphic
to Z, its isoperimetric function is linear and hence, by Dison’s Lemma 9.5 in [9] the
distortion function of the above inclusion is linear. A more straightforward proof can
be found in Bridson–Haefliger [5], Exercise 5.12 (3).

Recall that if  W H ! G is an injective homomorphism of metric groups then
its distortion function � W RC ! RC is defined by

�.r/ WD maxfdH .1; h/ j dG.1;  .h// < rg:
Observe that the distortion function is linear if and only if  is a quasi-isometric
embedding.

Remark 1.9. Let M D T n be the n-dimensional torus equipped with a volume
form �. Neither the result of Eliashberg and Ratiu nor our Theorem 1.3 apply to
Diff.T n; �/ because G� D �1.T n/ and the whole group is central.

Example 1.10. LetM � R3 be a closed domain with free non-Abelian fundamental
group. The geometry of .Diff0.M;�/;dp/models the behavior of an incompressible
fluid filling a tank of the shape ofM . Theorem 1.4 describes a large scale complexity
of mixing such a fluid.

1.E. The symplectic case. If .M;!/ is a symplectic manifold, then the group
Diff0.M;�/ in all the results above can be replaced either by the group Symp0.M;!/

of symplectic diffeomorphisms isotopic to the identity, or by the group Ham.M;!/
of Hamiltonian diffeomorphisms, see Remark 2.2 in the proof of Theorem 1.2.

2. Proofs

2.A. An abstract lemma. Let .G; dG/ be a metric group with the identity element
1G . For g 2 G we set

kgkG WD dG.1G ; g/ and diam.G/ WD sup
g2G

kgkG :

Lemma 2.1. Let .G; dG/, .H; dH /, .K; dK/ be three metric groups, such that H is
finitely generated and dH is a word metric w.r.t. some finite generating setS . Suppose
that ˆ W G ! K is a large scale Lipschitz homomorphism. Let ‰ W H ! G be a
homomorphism, such that ˆ‰ W H ! K is a quasi-isometric embedding. Then ‰ is
a quasi-isometric embedding.

Proof. The homomorphism‰ is injective, becauseˆ‰ is injective. Let h 2 H . The
homomorphismˆ‰ is a quasi-isometric embedding, hence there exist two constants
A1 � 0 and B1 � 0 such that

A1khkH � B1 � kˆ‰.h/kK (2)
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The homomorphism ˆ is a large scale Lipschitz, hence there exist two constants
A2 > 0 and B2 > 0 such that

kˆ‰.h/kK � A2k‰.h/kG C B2: (3)

Combining inequalities (2) and (3) we get

A1

A2

khkH �
�
B1 C B2

A2

�
� k‰.h/kG : (4)

Let k be such that khkH D k. The group H is finitely generated, hence h D
h1 : : : hk , where hi 2 S for each 1 � i � k. Denote by

M‰ WD maxfk‰.h1/kG ; : : : ; k‰.hk/kGg:
It follows that

k‰.h/kG D k‰.h1/ : : : ‰.h1/kG �
kX

iD1

k‰.hi /kG � M‰ � k D M‰khkH : (5)

Inequalities (4) and (5) conclude the proof of the lemma.

In the proofs below we make use of the fact that the metric on the groups
Diff.M;�;B.m; r// and Diff.M;�;tiB.mi ; r// (this group is defined in the proof
of Theorem 1.3) is induced from the Lp-metric on the whole group Diff.M;�/.

2.B. Proof of Theorem 1.2. In the first part we prove the surjectivity of the homo-
morphism ˆ W Diff.M;�;B.m; r// ! �1.M/=G�.

Let S 0 WD fŒ�1�; : : : ; Œ�k�g � �1.M/ be a symmetric generating set of the funda-
mental group ofM such that each representative �i is a simple closed curve. It follows
from the tubular neighborhood theorem that for each �i there exists ri > 0, the stan-
dard .n�1/-dimensional ballBn�1

ri
� Rn of radius ri > 0, and a volume-preserving

embedding
embi W Bn�1

ri
� S1 ,! M;

such that embi jf0g�S1 is the curve �i and ri D dM .�i ; embi j@Bn�1
ri

�S1/. The volume

form on the product Bn�1
r1

� S1 is the standard Euclidean volume and dM denotes
the distance on M induced by the Riemannian metric.

Let r D min1�i�k ri . Then embi W Bn�1
r � S1 ,! M is volume-preserving for

each i and embi j0�S1 D �i . It is straightforward to construct a smooth isotopy of
volume-preserving diffeomorphisms

gt W Bn�1
r � S1 ! Bn�1

r � S1

between g0 D Id and g1 such that:
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� For each t 2 Œ0; 1� the diffeomorphism gt equals to the identity in the neigh-
borhood of @Bn�1

r � S1, and the time-one map g1 is equal to the identity on
Bn�1

r 0 � S1, where 0 < r 0 < r .

� Each diffeomorphism gt preserves the foliation of Bn�1
r � S1 by the circles

fxg � S1 and for every x 2 Bn�1
r 0 the restriction gt W fxg � S1 ! fxg � S1 is

the rotation by 2� t . It follows that the time-one map g1 equals the identity on
Bn�1

r 0 � S1.

We identify Bn�1
r � S1 with its image with respect to the embedding embi . Then

we extend each isotopy gt by the identity on M n Bn�1
r � S1 obtaining smooth

isotopies gt;i 2 Diff0.M;�/. This shows that every representative �i of a generator
of the fundamental group ofM arises as simple closed curve fgt;i .m/g and hence the
homomorphism

ˆ W Diff.M;�;B.m; r// ! �1.M/=G�

is surjective.

Remark 2.2. Notice that ifM is a symplectic manifold then the above isotopies can
be constructed to be Hamiltonian.

Let … W �1.M/ ! �1.M/=G� be the projection homomorphism. Consequently
S WD ….S 0/ is a finite generating set for the quotient �1.M/=G�. Let …M W M� !
M be the Riemannian covering associated with …. This means that the metric on
M� is induced from the Riemannian metric on M . The corresponding distance will
be denoted by d�.

Now we shall prove that ˆ is a large scale Lipschitz map. That is, we show that
there exist positive constants A and B independent of g such that

A � kgkp C B � kˆ.g/kS ;

where kgkp WD dp.g; Id/ is the Lp-norm of the diffeomorphism g.
Let g 2 Diff.M;�;B.m; r// and let fgtgt2Œ0;1� 2 Diff0.M;�/ be an isotopy

from the identity to g. It follows from the Hölder inequality that kgkp � Cp � kgk1,
where Cp is some positive constant independent of g. Hence it is enough to prove
the statement for p D 1.

Let m� 2 …�1
M .m/, and let fg�;t .m�/g be the lift of fgt .m/g starting at the point

m�. The manifold M is compact, hence by the LSvarc–Milnor lemma [5], [15], the
inclusion of the orbit ofm� with respect to the deck transformation group�1.M/=G�

defines a quasi-isometry

�1.M/=G�

q.i.' .M�; d�/:

In particular, it means that there exist positive constants A0, B 0 such that

d�.m�; g�;1.m�// � A0kˆ.g/kS � B 0: (6)
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Let x 2 B.m; r/ � M . We claim that the length of the flow-line gt .x/ is bounded
by the distance d�.m�; g�;1.m�// up to the diameter of the ball. To see this, consider
the lift of each flow-line gt .x/ starting at a ball of radius r inM� centered atm� and
observe that such a lift ends in a ball of radius r centered at g�;1.m�/. Indeed, let
˛ W Œ0; 1� ! B.m; r/ be a path between x and m. Then the map

H W Œ0; 1� � Œ0; 1� ! M;

defined by H.t; s/ D gt .˛.s//, is a homotopy from fgt .m/g to fgt .x/g. Lifting this
homotopy shows that the lift of fgt .x/g ends at the ball B.g�;1.m�/; r/. Finally, we
obtain that

Length.gt .x// WD
Z 1

0

j Pgt .x/jdt � d�.m�; g�;1.m�// � 2r: (7)

as claimed. Combining inequalities (6) and (7) we get that

Length.gt .x// � A0kˆ.g/kS � .B 0 C 2r/

for every x 2 B.m; r/. Hence by Fubini theorem and the above inequality we have

L1.fgtg/ D
Z 1

0

dt

�Z
M

j Pgt .x/j�
�

D
Z

M

�

�Z 1

0

j Pgt .x/jdt
�

� vol.B.m; r// � min
x2B.m;r/

Length.gt .x//

� vol.B.m; r// � A0kˆ.g/kS � vol.B.m; r// � .B 0 C 2r/:

Since the above inequalities hold for any isotopy fgtgt2Œ0;1� between the identity and
g, we obtain that

kˆ.g/kS � A � kgkp C B;

where A D .Cp � vol.B.m; r//�1 � A0 and B D B0C2r
A0

and this concludes the proof.

2.C. Proof of Theorem 1.3. Let n 2 N be a positive integer. Recall that we need to
prove that there exists a quasi-isometric embedding of a free Abelian group of rank
n into Diff0.M;�/.

Assume first that the dimension ofM is at least three. Letm1; : : : ; mn be distinct
points in the interior of M and let r > 0 be such that the balls B.mi ; r/ of radius r
centered atmi are pairwise disjoint. Let �i;j be simple closed curves representing the
generators of �1.M;mi /. We also assume that �i1;j1

is disjoint from �i2;j2
whenever

i1 ¤ i2. We choose r small enough such that the tubular neighborhood of radius r
of the above generators are disjoint.
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We denote byGi � �1.M;mi / be the corresponding Gottlieb group. The groups
�1.M;mi /=Gi are pairwise isomorphic. Let �i 2 �1.M;mi /=Gi be an undistorted
element which exists according to the hypothesis. Let

h W Zn ! �1.M;m1/=G1 � � � � � �1.M;mn/=Gn

be the homomorphism defined by

h.k1; : : : ; kn/ WD .�
k1

1 ; : : : ; �kn
n /:

It immediately follows from the fact that each �i is undistorted that h is a quasi-
isometric embedding. Let Diff.M;�;tiB.mi ; r// � Diff0.M;�/ be the subgroup
consisting of diffeomorphisms preserving the disjoint union of balls B.mi ; r/ point-
wise. Let

ˆi W Diff.M;�;B.mi ; r// ! �1.M;mi /=Gi

be the homomorphism defined in Theorem 1.2. Consider a homomorphism

ẑ W Diff.M;�;tiB.mi ; r// ! �1.M;m1/=G1 � � � � � �1.M;mn/=Gn

which is the composition of the (diagonal) inclusion

	 W Diff.M;�;tiB.mi ; r// ,!
Y

i

Diff.M;�;B.mi ; r//

followed by the product homomorphism
Y

i

ˆi W
Y

i

Diff.M;�;B.mi ; r// !
Y

i

�1.M;mi /=Gi :

Since the inclusion 	 is an isometric embedding and the
Q

i ˆi is large scale Lipschitz,
according to Theorem 1.2, we obtain that ẑ is a large scale Lipschitz homomorphism.

Let gi 2 Diff.M;�;B.mi ; r// be an element such that ˆi .gi / D �i and gi is
supported in the union of the tubular neighborhoods of the loops representing the
generators of �1.M;mi / constructed in the beginning of the proof. It follows that
the supports of gi and gj are disjoint if i ¤ j . The existence of gi follows from the
proof of Theorem 1.2. Let

‰ W Zn ! Diff.M;�;tiB.mi ; r// � Diff0.M;�/

be defined by
‰.k1; : : : ; kn/ WD g

k1

1 B � � � B gkn
n :

It is well defined because gi have pair-wise disjoint supports. Recall that we have
that

h D ẑ B‰ W Zn !
Y

i

�1.M;mi /=Gi
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and we know that h is a quasi-isometric embedding and ẑ is large scale Lipschitz.
Consequently the map ‰ is a quasi-isometric embedding according to Lemma 2.1.

Let us now consider the two-dimensional case. Let M D †g;k be a compact
oriented surface of genusgwithk boundary components. Observe that�1.†g;k/=G�

is trivial if either g D 0 and k � 2 or g D 1 and k D 0. Otherwise it is either free
non-Abelian group or the fundamental group of a closed oriented surface. In each
case it is straightforward to define an embedding

emb W S1 � Œ0; 2n� ! M

in such a way that each loop emb.S1 � ftg/ represents an undistorted element in
�1.M; emb.1; t//. Let gi W M ! M , for i D 1; : : : ; n be an area preserving diffeo-
morphism satisfying each of the following conditions:

� it is supported in emb.S1 � .2i � 2; 2i//;
� it preserves the ball emb.Bi /, where Bi � S1 � Œ0; 2n� is a ball of diameter one

centered at .1; 2i � 1/;
� it is the time one map of an isotopy from the identity which acts as the full

rotation on the loop emb.S1 � f2i � 1g/.
As in the previous part the homomorphism ‰ W Zn ! Diff0.M;�/ defined by

‰.k1; : : : ; kn/ WD g
k1

1 B � � � B gkn
n is the required quasi-isometric embedding.

2.D. Proof ofTheorem 1.4. This proof is a modification of the proof of Theorem 1.3
for three dimensionalM where the cyclic group Z is replaced by a non-Abelian free
group F2 on two generators. More precisely, let fi ; gi 2 Diff0.M;�/ be diffeomor-
phisms satisfying each of the following conditions (we use here the notation of the
proof of Theorem 1.3):

� the support of fi and gi is contained in the neighborhood of the union of the
loops �i;j ;

� the free non-Abelian group in �1.M;mi /=Gi is generated by the imagesˆi .fi /

and ˆi .gi /.

Such diffeomorphisms can be constructed in a similar way as gi ’s in the proof of
Theorem 1.3.

Let w 2 F2 be a reduced word and given two elements f; g 2 Diff.M;�/ let
w.f; g/ denote the induced diffeomorphism of M . Let

‰ W F2 � � � � � F2 ! Diff.M;�;tiB.mi ; r// � Diff0.M;�/

be defined by ‰.w1; : : : ; wn/ WD w1.f1; g1/ B : : : B wn.fn; gn/. As before ‰ is
a quasi-isometric embedding of a product of free groups on two generators into
Diff0.M;�/. Since F2 contains quasi-isometrically embedded a non-Abelian free
group of an arbitrary finite rank [8] the proof is finished.
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2.E. Proof of Theorem 1.5. The proof of the two dimensional case of Theorem 1.3
amounts to constructing a number of disjoint simple closed curves representing an
undistorted element in the fundamental group of M . The present proof is analogous
in the sense that we need to construct an embedding of the disjoint union of 2gCk�2
copies of the figure eight intoM such that each embedding induces a quasi-isometric
embedding F2 ! �1.M;mi / for i D 1; : : : ; 2gCk�2. We leave this straightforward
construction as an exercise to the reader.

The rest of the proof is similar to the other proofs. That is, we construct relevant
diffeomorphisms fi , gi and observe that the map

‰ W F2 � � � � � F2 ! Diff.†g;k; �;tiB.mi ; r// � Diff0.†g;k; �/

defined by ‰.w1; : : : ; wn/ WD w1.f1; g1/ B : : : B wn.fn; gn/ is a quasi-isometric
embedding.
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