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Regular elements in CAT(0) groups

Pierre-Emmanuel Caprace! and Gasper Zadnik?

Abstract. Let X be alocally compact geodesically complete CAT (0) space and I be a discrete
group acting properly and cocompactly on X. We show that I" contains an element acting as
a hyperbolic isometry on each indecomposable de Rham factor of X. It follows that if X is a
product of d factors, then I' contains 74,
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Let X be a proper CAT(0) space and I" be a discrete group acting properly and co-
compactly by isometries on X . The flat closing conjecture predicts that if X contains
a d-dimensional flat, then " contains a copy of 74 (see [Gro93], Section 6.B3). In
the special case d = 2, this would imply that I" is hyperbolic if and only if it does not
contain a copy of Z2. This notorious conjecture remains however open as of today.
It holds when X is a real analytic manifold of non-positive sectional curvature by
the main result of [BS91]. In the classical case when X is a non-positively curved
symmetric space, it can be established with the following simpler and well known
argument: by [BL93], Appendix, the group I" must contain a so called R-regular
semisimple element, i.e., a hyperbolic isometry y whose axes are contained in a
unique maximal flat of X. By a lemma of Selberg [Sel60], the centraliser Zr(y) is a
lattice in the centraliser Zysom(x)(y). Since the latter centraliser is virtually R4 with
d = rank(X), one concludes that I" contains 74, as desired.

It is tempting to try and mimic that strategy of proof in the case of a general
CAT(0) space X: if one shows that I' contains a hyperbolic isometry y which is
maximally regular in the sense that its axes are contained in a unique flat of maximal
possible dimension among all flats of X, then the flat closing conjecture will follow
as above. The main result of this note provides hyperbolic isometries satisfying a
weaker notion of regularity.
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Theorem. Assume that X is geodesically complete.
Then T" contains a hyperbolic element which acts as a hyperbolic isometry on
each indecomposable de Rham factor of X .

Every CAT(0) space X as in the theorem admits a canonical de Rham decompo-
sition, see [CM09a], Corollary 5.3 (ii). Notice that the number of indecomposable
de Rham factors of X is a lower bound on the dimension of all maximal flats in
X, although two such maximal flats need not have the same dimension in general.
As expected, we deduce a corresponding lower bound on the maximal rank of free
abelian subgroups of I".

Corollary 1. If X is a product of d factors, then T' contains a copy of Z°.

We believe that those results should hold without the assumption of geodesic
completeness; in case X is a CAT(0) cube complex, this is indeed so, see [CS11],
§ 1.3.

The proof of the theorem and its corollary relies in an essential way on results from
[CM09a] and [CMO09b]. The first step consists in applying [CM09a], Theorem 1.1,
which ensures that X splits as

Xg]RidxMxle---qu,

where M is a symmetric space of non-compact type and the factors Y; are geodesi-
cally complete indecomposable CAT(0) spaces whose full isometry group is totally
disconnected. Moreover this decomposition is canonical, hence preserved by a finite
index subgroup of Isom(X) (and thus of I'). The next essential point is that, by
[CMO09b], Theorem 3.8, the group I' virtually splits as 74 x T, and the factor I’
(resp. Z%) acts properly and cocompactly on M x Y X - - - x Y, (resp. R%). Therefore,
our main theorem is a consequence of the following.

Proposition 2. Let X = M x Yy X --- X Yy, where M is a symmetric space of
non-compact type and Y; is a geodesically complete locally compact CAT(0) space
with totally disconnected isometry group.

Any discrete cocompact group of isometries of X contains an element acting as
an R-regular hyperbolic element on M, and as a hyperbolic element on Y; for all i.

As before, this yields a lower bound on the rank of maximal free abelian subgroups
of I, from which Corollary 1 follows.

Corollary 3. Let X = M x Y x---x Y, be as in the proposition. Then any discrete
cocompact group of isometries of X contains a copy of Z"*"x(M)+a_

Proof. LetI" < Isom(X) be adiscrete subgroup acting cocompactly. Upon replacing
I" by a subgroup of finite index, we may assume that I" preserves the given product
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decomposition of X (see [CM09a], Corollary 5.3 (ii)). Let y € T be as in Propo-
sition 2 and let yys (resp. y;) be its projection to Isom(M) (resp. Isom(Y;)). Then
Min(yy) = R™&M) and for all i we have Min(y;) = R x C; for some CAT(0)
space C;, by [BH99], Theorem I1.6.8 (5). Hence the desired conclusion follows from
the following lemma. O

Lemmad. Let X = X x---Xx X}, be a proper CAT(0) space and I" a discrete group
acting properly cocompactly on X. Let also y € T" be an element preserving some
d;-dimensional flat in X; on which it acts by translation, for all i.

Then I contains a free abelian group of rank dy + - - - + d,,.

Proof. By assumption y preserves the given product decomposition of X. We let y;
denote the projection of y on Isom(X;). Observe that

Min(y) = Min(y;) x -+ x Min(y,).

By hypothesis, we have Min(y;) = R% x C; for some CAT(0) space C;. Therefore
Min(y) = R4+ x C; x --- x C,. By [Rua0l], Theorem 3.2, the centraliser
Zr(y) acts cocompactly (and of course properly) on Min(y). Therefore, in view

of [CMO09b], Theorem 3.8, we infer that Zr(y) contains a subgroup isomorphic to
7,d1++dp 0

It remains to prove Proposition 2. We proceed in three steps. The first one provides
an element yy € I acting as a hyperbolic isometry on each Y;. This combines an
argument of E. Swenson [Swe99], Theorem 11, with the phenomenon of Alexandrov
angle rigidity, described in [CM09a], Proposition 6.8, and recalled below. The latter
requires the hypothesis of geodesic completeness. The second step uses that " has
subgroups acting properly cocompactly on M, and thus contains an element yps
acting as an R-regular isometry of M by [BL93]. The last step uses a result from
[PR72] ensuring that for all elements §’ in some Zariski open subset of Isom(M)
and all sufficiently large n > 0, the product yj, 6’ is R-regular. Invoking the Borel
density theorem, we finally find an appropriate element § € I' such that the product
Y = Vp0vy has the requested properties. We now proceed to the details.

Proposition (Alexandrov angle rigidity). Let Y be a locally compact geodesically
complete CAT(0) space and G be a totally disconnected locally compact group acting
continuously, properly and cocompactly on Y by isometries.

Then there is € > 0 such that for any elliptic isometry g € G and any x € X not
fixed by g, we have Z.(gx,x) > &, where ¢ denotes the projection of x on the set of
g-fixed points.

Proof. See [CM09a], Proposition 6.8. O
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Proposition S. Let Y = Y; x --- x Y, where Y; is a geodesically complete locally

compact CAT(0) space with totally disconnected isometry group, and G be a locally

compact group acting continuously, properly and cocompactly by isometries on Y .
Then G contains an element acting on Y; as a hyperbolic isometry for all i.

Proof. Upon replacing G by a finite index subgroup, we may assume that G pre-
serves the given product decomposition of Y, see [CM09a], Corollary 5.3 (ii). Let
0:[0,00) — Y be a geodesic ray which is regular, in the sense that its projection to
each Y; is a ray (in other words the end point p(co) does not belong to the boundary
of a subproduct).

Since G is cocompact, we can find a sequence (g, ) in G and a strictly increasing
sequence (#,) in Z 4 such that the sequence of maps

On: [—th,00) =Y, tr>gn-pt+ty),

converges uniformly on compact subsets of R to a geodesic line £: R — Y. Set
hi,; = gi_lgj € G and consider the angle

0 = Lo (hij - p(ti). hij - p(t)).

As in [Swe99], Theorem 11, observe that 6 is arbitrarily close to 7 fori < j large
enough.

We shall prove that for all i < j large enough, the isometry A; ; is regular
hyperbolic, in the sense that its projection to each factor Yj is hyperbolic. We argue
by contradiction and assume that this is not the case. Notice that Isom(Yy) does
not contain any parabolic isometry by [CM(09a], Corollary 6.3 (iii). Therefore, upon
extracting and reordering the factors, we may then assume that there is some s < ¢
such that for all i < j, the projection of /; ; on Isom(Y1), ..., Isom(Y}) is elliptic,
and the projection of /; j on Isom(Ys41). ..., Isom(Yy) is hyperbolic. We set Y’ =
Yix---xYgand V" = Yy1q x---x Y,. We shall prove that fori < j large enough,
the projections of (%;,;) on Isom(Y"’) forms a sequence of elliptic isometries which
contradict Alexandrov angle rigidity.

Fix some small § > 0. Let x; (resp. y;) be the point at distance § from p(t;)
and lying on the geodesic segment [hz}.p(ti),p(ti)] (resp. [p(t;), hi,j.p(t;)]). By
construction, for i < j large enough, the union of the two geodesic segments
[xi, p(t))]U[p(;), yi] lies in an arbitrary small tubular neighbourhood of the geodesic
ray p. Since the projection ¥ — Y’ is 1-Lipschitz, it follows that the Y’-component
of [x;, p(t;)] U [p(#), yi], which we denote by [x], p(#;)] U [0’ (#;), y/], is uniformly
close to the Y’-component of p, say p’. Since p is a regular ray, its projection o’ is
also a geodesic ray. Therefore, the angle

0" = Ly (i, y)

is arbitrarily close to 7 for i < j large enough. Pick i < j so large that 0’ > 7 — &,
where ¢ > 0 is the constant from Alexandrov angle rigidity for Y. Set h = h; ; and
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let 4’ be the projection of /2 on Isom(Y’). By assumption A’ is elliptic. Let ¢ denote
the projection of p’(f;) on the set of /’-fixed points. Then the isosceles triangles
Ale, (W71 p'(t;), p/(t;)) and A(c, p'(t;), h' - p'(t;)) are congruent, and we deduce
Le(p' (@), 0 p'(6)) < = Ly (e, b -0/ () = Ly (e, (W) p' (1)
<= Ly (W)™ p'(6). - p' (1)

=7—0
<e.
This contradicts Alexandrov angle rigidity. O

Proof of Proposition 2. Let I' be a discrete group acting properly and cocompactly
on X. First observe that (after passing to a finite index subgroup) we may assume that
I preserves the given product decomposition of X, see [CM09a], Corollary 5.3 (ii).

Let G be the closure of the projection of I" to Isom(Y7) X --- x Isom(Yy). Then
G acts properly cocompactly on Y = Y x---x ¥,. Therefore it contains an element
g acting as a hyperbolic isometry on Y; for all i by Proposition 5. Since I' maps
densely to G and since the stabiliser of each point of Y in G is open by [CM09a],
Theorem 1.2, it follows that I'-orbits on ¥ x Y coincide with the G-orbits. In
particular, given y € Min(g), we can find yy € I' such that yy (y,g7'y) = (g7, ).
Since Z, (y;ly, yry) = Zy(g 'y, gy) = =, we infer that yy is hyperbolic and
has an axis containing the segment [g~!y, gy]. In particular yy acts as a hyperbolic
isometry on Y; for all 7.

Let yy = (a, h) be the decomposition of yy along the splitting Isom(X) =
Isom(M) x Isom(Y). By construction / acts as a hyperbolic isometry on Y; for all i.

Let U < Isom(Y) be the pointwise stabiliser of a ball containing y, yyy and
Yy 1y, Notice that every element of Isom(Y) contained in the coset U maps y to
hy and A~y to y, and therefore acts also as a hyperbolic isometry on ¥; for all i.

On the other hand U is a compact open subgroup of Isom(Y') by [CM09a], Theo-
rem 1.2. Set 'y = I' N (Isom(M) x U). Notice that I'y acts properly and co-
compactly on M by [CMO09b], Lemma 3.2. In other words the projection of I'y
to Isom(M) is a cocompact lattice. Abusing notation slightly, we shall denote this
projection equally by I'yy.

By the appendix from [BL93] (see also [Pra94] for an alternative argument), the
group 'y contains an element yps acting as an R-regular element on M. By [PR72],
Lemma 3.5, there is a Zariski open set V' = V(yay) in Isom(M ) with the following
property. For any § € V there exists ns such that an element yy,§ is R-regular for
any n > ng. By the Borel density theorem, the intersection I'y N V™! is nonempty.
Pick anelement§ € I'y N Va™!. Then o € V which means by definition that y7, §o
is R-regular for all n > n¢ for some integer ny.

Pick an element y;, € T" (resp. ' € I') which lifts yps (resp. §). Set

Yy = ()08 vy € Iy
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The projection of y to Isom(M) is y;, 8 and is thus R-regular. The projection of y
to Isom(Y') belongs to the coset U &, and therefore acts as a hyperbolic isometry on
Y; foralli. ]
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