## Regular elements in CAT(0) groups

Pierre-Emmanuel Caprace<sup>1</sup> and Gašper Zadnik<sup>2</sup>

**Abstract.** Let X be a locally compact geodesically complete CAT(0) space and  $\Gamma$  be a discrete group acting properly and cocompactly on X. We show that  $\Gamma$  contains an element acting as a hyperbolic isometry on each indecomposable de Rham factor of X. It follows that if X is a product of d factors, then  $\Gamma$  contains  $\mathbb{Z}^d$ .

Mathematics Subject Classification (2010). 20F65.

**Keywords.** CAT(0) group, regular elements, flat closing conjecture.

Let X be a proper CAT(0) space and  $\Gamma$  be a discrete group acting properly and cocompactly by isometries on X. The *flat closing conjecture* predicts that if X contains a d-dimensional flat, then  $\Gamma$  contains a copy of  $\mathbb{Z}^d$  (see [Gro93], Section 6.B<sub>3</sub>). In the special case d=2, this would imply that  $\Gamma$  is hyperbolic if and only if it does not contain a copy of  $\mathbb{Z}^2$ . This notorious conjecture remains however open as of today. It holds when X is a real analytic manifold of non-positive sectional curvature by the main result of [BS91]. In the classical case when X is a non-positively curved symmetric space, it can be established with the following simpler and well known argument: by [BL93], Appendix, the group  $\Gamma$  must contain a so called  $\mathbb{R}$ -regular semisimple element, i.e., a hyperbolic isometry  $\gamma$  whose axes are contained in a unique maximal flat of X. By a lemma of Selberg [Sel60], the centraliser  $Z_{\Gamma}(\gamma)$  is a lattice in the centraliser  $Z_{\text{Isom}(X)}(\gamma)$ . Since the latter centraliser is virtually  $\mathbb{R}^d$  with d = rank(X), one concludes that  $\Gamma$  contains  $\mathbb{Z}^d$ , as desired.

It is tempting to try and mimic that strategy of proof in the case of a general CAT(0) space X: if one shows that  $\Gamma$  contains a hyperbolic isometry  $\gamma$  which is maximally regular in the sense that its axes are contained in a unique flat of maximal possible dimension among all flats of X, then the flat closing conjecture will follow as above. The main result of this note provides hyperbolic isometries satisfying a weaker notion of regularity.

<sup>&</sup>lt;sup>1</sup>F.R.S.-FNRS Research Associate, supported in part by FNRS (grant F.4520.11) and the European Research Council (grant #278469).

<sup>&</sup>lt;sup>2</sup>Supported by the Slovenian Research Agency and in part by the Slovene Human Resources Development and Scholarship Fund.

**Theorem.** Assume that X is geodesically complete.

Then  $\Gamma$  contains a hyperbolic element which acts as a hyperbolic isometry on each indecomposable de Rham factor of X.

Every CAT(0) space X as in the theorem admits a canonical de Rham decomposition, see [CM09a], Corollary 5.3 (ii). Notice that the number of indecomposable de Rham factors of X is a lower bound on the dimension of all maximal flats in X, although two such maximal flats need not have the same dimension in general. As expected, we deduce a corresponding lower bound on the maximal rank of free abelian subgroups of  $\Gamma$ .

**Corollary 1.** If X is a product of d factors, then  $\Gamma$  contains a copy of  $\mathbb{Z}^d$ .

We believe that those results should hold without the assumption of geodesic completeness; in case X is a CAT(0) cube complex, this is indeed so, see [CS11], § 1.3.

The proof of the theorem and its corollary relies in an essential way on results from [CM09a] and [CM09b]. The first step consists in applying [CM09a], Theorem 1.1, which ensures that X splits as

$$X \cong \mathbb{R}^d \times M \times Y_1 \times \cdots \times Y_q$$

where M is a symmetric space of non-compact type and the factors  $Y_i$  are geodesically complete indecomposable CAT(0) spaces whose full isometry group is totally disconnected. Moreover this decomposition is canonical, hence preserved by a finite index subgroup of Isom(X) (and thus of  $\Gamma$ ). The next essential point is that, by [CM09b], Theorem 3.8, the group  $\Gamma$  virtually splits as  $\mathbb{Z}^d \times \Gamma'$ , and the factor  $\Gamma'$  (resp.  $\mathbb{Z}^d$ ) acts properly and cocompactly on  $M \times Y_1 \times \cdots \times Y_q$  (resp.  $\mathbb{R}^d$ ). Therefore, our main theorem is a consequence of the following.

**Proposition 2.** Let  $X = M \times Y_1 \times \cdots \times Y_q$ , where M is a symmetric space of non-compact type and  $Y_i$  is a geodesically complete locally compact CAT(0) space with totally disconnected isometry group.

Any discrete cocompact group of isometries of X contains an element acting as an  $\mathbb{R}$ -regular hyperbolic element on M, and as a hyperbolic element on  $Y_i$  for all i.

As before, this yields a lower bound on the rank of maximal free abelian subgroups of  $\Gamma$ , from which Corollary 1 follows.

**Corollary 3.** Let  $X = M \times Y_1 \times \cdots \times Y_q$  be as in the proposition. Then any discrete cocompact group of isometries of X contains a copy of  $\mathbb{Z}^{\operatorname{rank}(M)+q}$ .

*Proof.* Let  $\Gamma < \mathrm{Isom}(X)$  be a discrete subgroup acting cocompactly. Upon replacing  $\Gamma$  by a subgroup of finite index, we may assume that  $\Gamma$  preserves the given product

decomposition of X (see [CM09a], Corollary 5.3 (ii)). Let  $\gamma \in \Gamma$  be as in Proposition 2 and let  $\gamma_M$  (resp.  $\gamma_i$ ) be its projection to Isom(M) (resp. Isom( $Y_i$ )). Then  $\text{Min}(\gamma_M) = \mathbb{R}^{\text{rank}(M)}$  and for all i we have  $\text{Min}(\gamma_i) \cong \mathbb{R} \times C_i$  for some CAT(0) space  $C_i$ , by [BH99], Theorem II.6.8 (5). Hence the desired conclusion follows from the following lemma.

**Lemma 4.** Let  $X = X_1 \times \cdots \times X_p$  be a proper CAT(0) space and  $\Gamma$  a discrete group acting properly cocompactly on X. Let also  $\gamma \in \Gamma$  be an element preserving some  $d_i$ -dimensional flat in  $X_i$  on which it acts by translation, for all i.

Then  $\Gamma$  contains a free abelian group of rank  $d_1 + \cdots + d_p$ .

*Proof.* By assumption  $\gamma$  preserves the given product decomposition of X. We let  $\gamma_i$  denote the projection of  $\gamma$  on  $Isom(X_i)$ . Observe that

$$Min(\gamma) = Min(\gamma_1) \times \cdots \times Min(\gamma_p).$$

By hypothesis, we have  $Min(\gamma_i) \cong \mathbb{R}^{d_i} \times C_i$  for some CAT(0) space  $C_i$ . Therefore  $Min(\gamma) \cong \mathbb{R}^{d_1+\cdots+d_p} \times C_1 \times \cdots \times C_p$ . By [Rua01], Theorem 3.2, the centraliser  $\mathcal{Z}_{\Gamma}(\gamma)$  acts cocompactly (and of course properly) on  $Min(\gamma)$ . Therefore, in view of [CM09b], Theorem 3.8, we infer that  $\mathcal{Z}_{\Gamma}(\gamma)$  contains a subgroup isomorphic to  $\mathbb{Z}^{d_1+\cdots+d_p}$ .

It remains to prove Proposition 2. We proceed in three steps. The first one provides an element  $\gamma_Y \in \Gamma$  acting as a hyperbolic isometry on each  $Y_i$ . This combines an argument of E. Swenson [Swe99], Theorem 11, with the phenomenon of *Alexandrov angle rigidity*, described in [CM09a], Proposition 6.8, and recalled below. The latter requires the hypothesis of geodesic completeness. The second step uses that  $\Gamma$  has subgroups acting properly cocompactly on M, and thus contains an element  $\gamma_M$  acting as an  $\mathbb{R}$ -regular isometry of M by [BL93]. The last step uses a result from [PR72] ensuring that for all elements  $\delta'$  in some Zariski open subset of Isom(M) and all sufficiently large n > 0, the product  $\gamma_M^n \delta'$  is  $\mathbb{R}$ -regular. Invoking the Borel density theorem, we finally find an appropriate element  $\delta \in \Gamma$  such that the product  $\gamma_M^n \delta \gamma_M$  has the requested properties. We now proceed to the details.

**Proposition** (Alexandrov angle rigidity). Let Y be a locally compact geodesically complete CAT(0) space and G be a totally disconnected locally compact group acting continuously, properly and cocompactly on Y by isometries.

Then there is  $\varepsilon > 0$  such that for any elliptic isometry  $g \in G$  and any  $x \in X$  not fixed by g, we have  $\angle_c(gx, x) \ge \varepsilon$ , where c denotes the projection of x on the set of g-fixed points.

*Proof.* See [CM09a], Proposition 6.8.

**Proposition 5.** Let  $Y = Y_1 \times \cdots \times Y_q$ , where  $Y_i$  is a geodesically complete locally compact CAT(0) space with totally disconnected isometry group, and G be a locally compact group acting continuously, properly and cocompactly by isometries on Y. Then G contains an element acting on  $Y_i$  as a hyperbolic isometry for all i.

*Proof.* Upon replacing G by a finite index subgroup, we may assume that G preserves the given product decomposition of Y, see [CM09a], Corollary 5.3 (ii). Let  $\rho: [0, \infty) \to Y$  be a geodesic ray which is *regular*, in the sense that its projection to each  $Y_i$  is a ray (in other words the end point  $\rho(\infty)$  does not belong to the boundary of a subproduct).

Since G is cocompact, we can find a sequence  $(g_n)$  in G and a strictly increasing sequence  $(t_n)$  in  $\mathbb{Z}_+$  such that the sequence of maps

$$\rho_n: [-t_n, \infty) \to Y, \quad t \mapsto g_n \cdot \rho(t + t_n),$$

converges uniformly on compact subsets of  $\mathbb{R}$  to a geodesic line  $\ell \colon \mathbb{R} \to Y$ . Set  $h_{i,j} = g_i^{-1}g_j \in G$  and consider the angle

$$\theta = \angle_{\rho(t_i)}(h_{i,j}^{-1} \cdot \rho(t_i), h_{i,j} \cdot \rho(t_i)).$$

As in [Swe99], Theorem 11, observe that  $\theta$  is arbitrarily close to  $\pi$  for i < j large enough.

We shall prove that for all i < j large enough, the isometry  $h_{i,j}$  is regular hyperbolic, in the sense that its projection to each factor  $Y_k$  is hyperbolic. We argue by contradiction and assume that this is not the case. Notice that  $\operatorname{Isom}(Y_k)$  does not contain any parabolic isometry by  $[\operatorname{CM09a}]$ , Corollary 6.3 (iii). Therefore, upon extracting and reordering the factors, we may then assume that there is some  $s \leq q$  such that for all i < j, the projection of  $h_{i,j}$  on  $\operatorname{Isom}(Y_1), \ldots, \operatorname{Isom}(Y_s)$  is elliptic, and the projection of  $h_{i,j}$  on  $\operatorname{Isom}(Y_{s+1}), \ldots, \operatorname{Isom}(Y_q)$  is hyperbolic. We set  $Y' = Y_1 \times \cdots \times Y_s$  and  $Y'' = Y_{s+1} \times \cdots \times Y_q$ . We shall prove that for i < j large enough, the projections of  $(h_{i,j})$  on  $\operatorname{Isom}(Y')$  forms a sequence of elliptic isometries which contradict Alexandrov angle rigidity.

Fix some small  $\delta > 0$ . Let  $x_i$  (resp.  $y_i$ ) be the point at distance  $\delta$  from  $\rho(t_i)$  and lying on the geodesic segment  $[h_{i,j}^{-1},\rho(t_i),\rho(t_i)]$  (resp.  $[\rho(t_i),h_{i,j},\rho(t_i)]$ ). By construction, for i < j large enough, the union of the two geodesic segments  $[x_i,\rho(t_i)] \cup [\rho(t_i),y_i]$  lies in an arbitrary small tubular neighbourhood of the geodesic ray  $\rho$ . Since the projection  $Y \to Y'$  is 1-Lipschitz, it follows that the Y'-component of  $[x_i,\rho(t_i)] \cup [\rho(t_i),y_i]$ , which we denote by  $[x_i',\rho'(t_i)] \cup [\rho'(t_i),y_i']$ , is uniformly close to the Y'-component of  $\rho$ , say  $\rho'$ . Since  $\rho$  is a regular ray, its projection  $\rho'$  is also a geodesic ray. Therefore, the angle

$$\theta' = \angle_{\rho'(t_i)}(x_i', y_i')$$

is arbitrarily close to  $\pi$  for i < j large enough. Pick i < j so large that  $\theta' > \pi - \varepsilon$ , where  $\varepsilon > 0$  is the constant from Alexandrov angle rigidity for Y'. Set  $h = h_{i,j}$  and

let h' be the projection of h on Isom(Y'). By assumption h' is elliptic. Let c denote the projection of  $\rho'(t_i)$  on the set of h'-fixed points. Then the isosceles triangles  $\Delta(c, (h')^{-1} \cdot \rho'(t_i), \rho'(t_i))$  and  $\Delta(c, \rho'(t_i), h' \cdot \rho'(t_i))$  are congruent, and we deduce

$$\angle_{c}(\rho'(t_{i}), h' \cdot \rho'(t_{i})) \leq \pi - \angle_{\rho'(t_{i})}(c, h' \cdot \rho'(t_{i})) - \angle_{\rho'(t_{i})}(c, (h')^{-1} \cdot \rho'(t_{i}))$$

$$\leq \pi - \angle_{\rho'(t_{i})}((h')^{-1} \cdot \rho'(t_{i}), h' \cdot \rho'(t_{i}))$$

$$= \pi - \theta'$$

$$< \varepsilon.$$

This contradicts Alexandrov angle rigidity.

*Proof of Proposition* 2. Let  $\Gamma$  be a discrete group acting properly and cocompactly on X. First observe that (after passing to a finite index subgroup) we may assume that  $\Gamma$  preserves the given product decomposition of X, see [CM09a], Corollary 5.3 (ii).

Let G be the closure of the projection of  $\Gamma$  to  $\mathrm{Isom}(Y_1) \times \cdots \times \mathrm{Isom}(Y_q)$ . Then G acts properly cocompactly on  $Y = Y_1 \times \cdots \times Y_q$ . Therefore it contains an element g acting as a hyperbolic isometry on  $Y_i$  for all i by Proposition 5. Since  $\Gamma$  maps densely to G and since the stabiliser of each point of Y in G is open by  $[\mathsf{CM09a}]$ , Theorem 1.2, it follows that  $\Gamma$ -orbits on  $Y \times Y$  coincide with the G-orbits. In particular, given  $y \in \mathsf{Min}(g)$ , we can find  $\gamma_Y \in \Gamma$  such that  $\gamma_Y(y, g^{-1}y) = (gy, y)$ . Since  $\angle_y(\gamma_Y^{-1}y, \gamma_Y y) = \angle_y(g^{-1}y, gy) = \pi$ , we infer that  $\gamma_Y$  is hyperbolic and has an axis containing the segment  $[g^{-1}y, gy]$ . In particular  $\gamma_Y$  acts as a hyperbolic isometry on  $Y_i$  for all i.

Let  $\gamma_Y = (\alpha, h)$  be the decomposition of  $\gamma_Y$  along the splitting Isom $(X) = \text{Isom}(M) \times \text{Isom}(Y)$ . By construction h acts as a hyperbolic isometry on  $Y_i$  for all i.

Let  $U \leq \text{Isom}(Y)$  be the pointwise stabiliser of a ball containing y,  $\gamma_Y y$  and  $\gamma_Y^{-1} y$ . Notice that every element of Isom(Y) contained in the coset Uh maps y to hy and  $h^{-1}y$  to y, and therefore acts also as a hyperbolic isometry on  $Y_i$  for all i.

On the other hand U is a compact open subgroup of  $\operatorname{Isom}(Y)$  by  $[\operatorname{CM09a}]$ , Theorem 1.2. Set  $\Gamma_U = \Gamma \cap (\operatorname{Isom}(M) \times U)$ . Notice that  $\Gamma_U$  acts properly and cocompactly on M by  $[\operatorname{CM09b}]$ , Lemma 3.2. In other words the projection of  $\Gamma_U$  to  $\operatorname{Isom}(M)$  is a cocompact lattice. Abusing notation slightly, we shall denote this projection equally by  $\Gamma_U$ .

By the appendix from [BL93] (see also [Pra94] for an alternative argument), the group  $\Gamma_U$  contains an element  $\gamma_M$  acting as an  $\mathbb{R}$ -regular element on M. By [PR72], Lemma 3.5, there is a Zariski open set  $V = V(\gamma_M)$  in  $\mathrm{Isom}(M)$  with the following property. For any  $\delta \in V$  there exists  $n_\delta$  such that an element  $\gamma_M^n \delta$  is  $\mathbb{R}$ -regular for any  $n \geq n_\delta$ . By the Borel density theorem, the intersection  $\Gamma_U \cap V\alpha^{-1}$  is nonempty. Pick an element  $\delta \in \Gamma_U \cap V\alpha^{-1}$ . Then  $\delta \alpha \in V$  which means by definition that  $\gamma_M^n \delta \alpha$  is  $\mathbb{R}$ -regular for all  $n \geq n_0$  for some integer  $n_0$ .

Pick an element  $\gamma_M' \in \Gamma$  (resp.  $\delta' \in \Gamma$ ) which lifts  $\gamma_M$  (resp.  $\delta$ ). Set

$$\gamma = (\gamma_M')^{n_0} \delta' \gamma_Y \in \Gamma_U.$$

The projection of  $\gamma$  to Isom(M) is  $\gamma_M^{n_0}\delta\alpha$  and is thus  $\mathbb{R}$ -regular. The projection of  $\gamma$  to Isom(Y) belongs to the coset Uh, and therefore acts as a hyperbolic isometry on  $Y_i$  for all i.

## References

- [BS91] V. Bangert and V. Schroeder, Existence of flat tori in analytic manifolds of nonpositive curvature. Ann. Sci. École Norm. Sup. (4) 24 (1991), 605–634. Zbl 0760.53032 MR 1132759
- [BL93] Y. Benoist and F. Labourie, Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables. *Invent. Math.* 111 (1993), 285–308. Zbl 0777.58029 MR 1198811
- [BH99] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin 1999. Zbl 0988.53001 MR 1744486
- [CM09a] P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: structure theory. J. Topol. 2 (2009), 661–700. Zbl 1209.53060 MR 2574740
- [CM09b] P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups. J. Topol. 2 (2009), 701–746. Zbl 1187.53037 MR 2574741
- [CS11] P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal. 21 (2011), 851–891. Zbl 1266,20054 MR 2827012
- [Gro93] M. Gromov, Geometric group theory (Sussex, 1991), vol. 2: Asymptotic invariants of infinite groups. London Math. Soc. Lecture Note Ser. 182, Cambridge University Press, Cambridge 1993. Zbl 0841.20039 MR 1253544
- [Kle99] B. Kleiner, The local structure of length spaces with curvature bounded above. Math. Z. 231 (1999), 409–456. Zbl 0940.53024 MR 1704987
- [Pra94] G. Prasad, R-regular elements in Zariski-dense subgroups. Quart. J. Math. Oxford Ser. (2) 45 (1994), 541–545. Zbl 0828.22010 MR 1315463
- [PR72] G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups. *Ann. of Math.* (2) **96** (1972), 296–317. Zbl 0245.22013 MR 0302822
- [Rua01] K. E. Ruane, Dynamics of the action of a CAT(0) group on the boundary. Geom. Dedicata 84 (2001), 81–99. Zbl 0984.20027 MR 1825346
- [Sel60] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces. In Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay 1960, 147–164. Zbl 0201.36603 MR 0130324
- [Swe99] E. L. Swenson, A cut point theorem for CAT(0) groups. J. Differential Geom. 53 (1999), 327–358. Zbl 1038.20029 MR 1802725

P.-E. Caprace, Université catholique de Louvain, IRMP, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

E-mail: pe.caprace@uclouvain.be

G. Zadnik, Inštitut za matematiko, fiziko in mehaniko, Jadranska ulica 19, SI-1111 Ljubljana, Slovenia

E-mail: zadnik@fmf.uni-lj.si