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Abstract. By examining commensurators of virtually cyclic groups, we show that for each
natural number n, any locally finite-by-virtually cyclic group of cardinality @n admits a finite
dimensional classifying space with virtually cyclic stabilizers of dimension n C 3. As a
corollary, we prove that every elementary amenable group of finite Hirsch length and cardinality
@n admits a finite dimensional classifying space with virtually cyclic stabilizers.
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1. Introduction

A classifying space of a discrete group G for a family of subgroups F is a terminal
object in the homotopy category of G-CW complexes with stabilizers in F (see
[18]). Such a space is also called a model for EFG. Even though a model for
EFG always exists, it need not be finite dimensional. When F is the family of
virtually cyclic subgroups of G, EFG is denoted by EG. Questions concerning
finiteness properties of EG, such as whether for a given type of group G there exists
a finite dimensional model for EG, have been particularly motivated by Farell–Jones
Isomorphism conjecture (see [6] and [2]). More recently, this area has gathered
interest on its own.

Finite dimensional models for EG are known to exists for several interesting
classes of groups: e.g. word-hyperbolic groups (Juan-Pineda, Leary, [9]), relative
hyperbolic groups (Lafont, Ortiz, [10]), virtually polycyclic groups (Lück, Weier-
mann, [16]) and CAT.0/-groups (Farley, [5], Lück, [14]).

In a recent paper [7], Fluch and Nucinkis ask whether an elementary amenable
group � of finite Hirsch length has a finite dimensional model for E� . They give
a positive answer to this question in the case where � has a bound on the order of
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its finite subgroups. From the structural results of Hillman and Linnel (see [8]) and
Wehrfritz (see [19]) it follows that every elementary amenable group of finite Hirsch
length � is locally finite-by-virtually solvable where the virtually solvable group has
a further decomposition. Using this structure, Fluch and Nucinkis reduce the problem
to torsion-free nilpotent-by-torsion-free abelian groups, and prove that these groups
admit finite dimensional classifying spaces with virtually cyclic stabilizers.

In order to solve the problem for arbitrary elementary amenable groups of finite
Hirsch length, one needs to show the existence of finite dimensional models for
classifying spaces with virtually cyclic stabilizers of locally finite-by-virtually cyclic
groups.

Let us denote the minimal dimension of a model for EG by gd.G/. We prove

TheoremA. Let � be a group of cardinality @n, for some natural number n. Suppose
� is an extension of a locally finite group by a virtually cyclic group. Then

gd.�/ � n C 3:

The proof of this theorem relies on a push-out construction of Lück andWeiermann
and a careful analysis of the structure of commensurators of virtually cyclic subgroups
inside torsion-by-infinite cyclic groups.

By applying Theorem A together with the cited results on torsion-free nilpotent-
by-torsion-free abelian groups and elementary amenable groups of finite Hirsch
length, we obtain

Theorem B. For any given natural numbers n and h, there exists a natural number N

such that every elementary amenable group � of finite Hirsch length h and cardinality
@n admits an N -dimensional model for E� .

In a forthcoming paper ([3]) the authors will show that the upper bound of Theo-
rem A can be attained and that the number N from Theorem B can be taken to be
n C h C 2.

2. Preliminaries

Let G be a discrete group and let F be a family of subgroups of G, i.e., a collection of
subgroups of G that is closed under conjugation and taking subgroups. A classifying
space of G for the family F is a G-CW-complex X defined by the properties that
XH D ; when H … F and XH is contractible for every H 2 F.

A classifying space of G for the family F is also called a model for EFG. It can
be shown that a model X always exists and that it satisfies the following universal
property: if Y is a G-CW-complex such that all its stabilizer groups are contained in
F, then there exists a G-equivariant map Y ! X that is unique up to G-homotopy
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(e.g. see [13], [18]). Note that this universal property implies that X is unique up to
G-homotopy. Equivalently, one could also say that a classifying space of a discrete
group G for a family of subgroups F is a terminal object in the homotopy category
of G-CW complexes with stabilizers in F (e.g. see [15]).

The smallest possible dimension of a model for EFG is called the geometric
dimension of G for the family F and denoted by gdF.G/. When a finite dimensional
model does not exist, then gdF.G/ is said to be infinite.

If K is a subgroup of G, we can consider the family

F \ K D fK \ H j H 2 Fg
of subgroups of K. By restricting the action to K, any model for EFG becomes a
model for EF\KK. This implies that gdF\K.K/ � gdF.G/. When K is a finite
index subgroup of G, there is a coinduction construction of Lück that entails the
following

Theorem 2.1 ([12], 2.4). Let F be either the family of finite subgroups of G or the
family of virtually cyclic subgroups of G. If K is a subgroup of G with finite index
ŒG W K�, then

gdF.G/ � ŒG W K�gdF\K.K/:

A general scheme to construct a model for EFG is to start with a model for EHG

where H is a subfamily of F, and then try to adapt this model to obtain a model for
EFG. A nice example of such an approach is a construction of Lück and Weiermann
(see [16], §2), which we will use here.

Let G be a discrete group and let F and H be families of subgroups of G such that
H � F and such that there exists an equivalence relation � on the set � D F X H
that satisfies the following properties:

for all H; K 2 � : H � K H) H � K;
for all H; K 2 � and all x 2 G: H � K () H x � Kx .
An equivalence relation that satisfying these properties will be called a strong

equivalence relation.
Let ŒH � be an equivalence class represented by H 2 � and denote the set of

equivalence classes by Œ� �. G acts on Œ� � via conjugation, and the stabilizer group of
an equivalence class ŒH � is

NG ŒH � D fx 2 � j H x � H g:
Note that NG ŒH � contains H as a subgroup. Let � be a complete set of representatives
ŒH � of the orbits of the conjugation action of G on Œ� �. For each ŒH � 2 �, define the
family of subgroups of NG ŒH �

FŒH � D fK � NG ŒH � j K 2 � ; K � H g [ .NG ŒH � \ H/:
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Theorem 2.2 ([16]). Let H � F be two families of subgroups of a group G such
that � D F X H is equipped with a strong equivalence relation. Denote the set of
equivalence classes by Œ� � and let � be a complete set of representatives ŒH � of the
orbits of the conjugation action of G on Œ� �. If there exists a natural number n such
that, for each ŒH � 2 �, gdH\NG ŒH�.NG ŒH �/ � n � 1, gdFŒH�.NG ŒH �/ � n, and
such that gdHG � n, then gdFG � n.

An important algebraic tool to study the equivariant cohomology and finiteness
properties of classifying spaces for families of subgroups is Bredon cohomology.
Bredon cohomology was introduced by Bredon in [1] for finite groups and has been
generalized to arbitrary groups by Lück (see [11]). Let us recall some basics of the
theory.

Let G be a discrete group and let F be a family of subgroups of G. The orbit
category OFG is a category defined by the objects that are the left cosets G=H for
all H 2 F and the morphisms are all G-equivariant maps between the objects. An
OFG-module is a contravariant functor M W OFG ! Z-mod. The category of OFG-
modules is denoted by Mod-OFG and is defined by the objects that are all the OFG-
modules and the morphisms are all the natural transformations between the objects.
It can be shown that Mod-OFG contains enough projective and injective objects to
construct projective and injective resolutions. Hence, one can construct bi-functors
Extn

OFG.�; �/ that have all the usual properties. The n-th Bredon cohomology of G

with coefficients M 2 Mod-OFG is by definition

Hn
F.G; M/ D Extn

OFG.Z; M/;

where Z is the constant functor. There is also a notion of cohomological dimension
of G for the family F, denoted by cdF.G/ and defined by

cdF.G/ D supfn 2 N j there exists M 2 Mod-OFG such that Hn
F.G; M/ ¤ 0g:

Since the augmented cellular chain complex of any model for EFG yields a projective
resolution of Z that can be used to compute H�

F.G; �/, it follows that cdF.G/ �
gdF.G/. In fact, Lück and Meintrup show that an even stronger result holds.

Theorem 2.3 ([15], 0.1). Let G be a group and let F be a family of subgroups, then

cdF.G/ � gdF.G/ � maxf3; cdF.G/g:

Hence, to show that there exist a finite dimensional model for EFG, it suffices to
show that the Bredon cohomological dimension of G for the family F is finite.

We finish this section with some notational conventions.

Notation. If a1; a2; : : : ; an are elements of some group G, then
Qn

iD1 ai denotes
the product a1a2 : : : an in that specific order.



Commensurators and classifying spaces with virtually cyclic stabilizers 547

By N1, we denote the set of natural numbers without the number zero.
If t is an element of some group G, then hti is the cyclic subgroup of G generated

by t . All infinite cyclic groups will be written multiplicatively with unit 1. The unit
element of a group that is not infinite cyclic will be denoted by e.

If G is a group and C D hti is an infinite cyclic group generated by t , we say that
a semi-direct product G Ì C is determined by ' 2 Aut.G/ when

.e; t/.g; 1/.e; t�1/ D .'.g/; 1/ 2 G Ì C

for all g 2 G and denote it by G Ì' C .
Let G be a group and let F be a family of subgroups. If F is the family of finite

(virtually cyclic) subgroups then EFG, gdFG and cdFG be will denoted by EG

(EG), gdG (gdG) and cdG (cdG), respectively.

3. The structure of commensurators

In this section, we shall describe the structure of commensurators of infinite virtually
cyclic groups in torsion-by-Z groups. We start with the following elementary but for
our purposes indispensable property of infinite virtually cyclic groups.

Lemma 3.1. Let H be an infinite virtually cyclic group and let L1 and L2 be two
infinite virtually cyclic subgroups of H . Then L1 \ L2 is infinite.

Proof. By definition H has an infinite cyclic subgroup C of finite index. Let t be
a generator for C and let fx1; : : : ; xng be a set of coset representatives of H=C .
Because L1 is infinite virtually cyclic, it has an element x of infinite order. It is clear
that for each p 2 N1, there exists an integer jp and an element xip 2 fx1; : : : ; xng
such that xp D xip tjp . Because there are only finitely many possibilities for ip , there
exist m; n 2 N1 such that n > m and in D im. It follows that xnt�jn D xmt�jm ,
and hence xn�m D tjn�jm . This implies that L1 has an infinite cyclic subgroup
C1 D hxn�mi contained in C . Similarly L2 has an infinite cyclic subgroup C2

contained in C . But it is clear that the intersection of two infinite subgroups in an
infinite cyclic group is always infinite, hence C1 \ C2 is infinite and contained in
L1 \ L2. This completes the proof.

The commensurator of a subgroup H of a group � is by definition the group

Comm� ŒH � D fx 2 � j ŒH W H \ H x� < 1 and ŒH x W H \ H x� < 1g:
However, when H is an infinite virtually cyclic subgroup of � then one can verify
that

Comm� ŒH � D fx 2 � j jH \ H xj D 1g:
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Let � be a torsion-by-Z group. Then � has a torsion normal subgroup G such
that �=G is infinite cyclic. Hence, we have a split short exact sequence

1 ! G ! �
��! hti ! 1

such that multiplication in � is given by .a; tn/.b; tm/ D .a'n.b/; tnCm/, for some
fixed ' 2 Aut.G/. This splitting of � into a semi-direct product will be referred to
as the t -splitting of � .

Let us denote the set of infinite virtually cyclic subgroups of � by � . As in
Definition 2.2 of [16], we say that two infinite virtually cyclic subgroups H and K

of � are equivalent, denoted H � K, if jH \ Kj D 1. Using Lemma 3.1, it is not
difficult to check that this indeed defines an equivalence relation on � . One can also
easily verify that this equivalence relation is a strong equivalence relation.

Now suppose that H is an infinite virtually cyclic subgroup of � . We are interested
in the structure of Comm� ŒH �. The following simple lemma shows that H can be
assumed to be infinite cyclic.

Lemma 3.2. If H and K are two equivalent infinite virtually cyclic subgroups of � ,
then their commensurators coincide. In particular, the commensurator of an infinite
virtually cyclic subgroup H of � is the commensurator of any infinite cyclic subgroup
of H .

Proof. Suppose H and K are two infinite virtually cyclic subgroups of � such that
H � K. If x 2 Comm� ŒH �, then by definition H � H x . Since H � K, we have
H x � Kx and therefore K � Kx . This implies that Comm� ŒH � D Comm� ŒK�.
The second statement follows from this by noting that any element of � is equivalent
to any of its infinite cyclic subgroups.

The next lemma describes the structure of commensurators of infinite cyclic
groups inside torsion-by-Z groups.

Lemma 3.3. If H is an infinite cyclic subgroup of � , then Comm� ŒH � contains an
infinite cyclic subgroup K D h.a; tk/i of � such that H � K and such that there is
a commutative diagram with split exact rows

1 �� G �� �
� �� hti �� 1

1 �� T

��

�� Comm� ŒH �

��

� �� htki

��

�� 1,

where the vertical maps are inclusions,

T D fg 2 G j there exists n 2 N1 with 'nk.g/ D ˛�1
n;kg˛n;kg;

and ˛n;k D Qn�1
iD0 'ik.a/.
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Proof. Let us view Comm� ŒH � as a subgroup of � where � is given by the t -
splitting. Clearly, �.Comm� ŒH �/ D htki for some k 2 N1 and the kernel of
�j Comm� ŒH� is a torsion group, which we denote by T . Now consider an element
.a; tk/ 2 Comm� ŒH � � � and denote it by s. Then Comm� ŒH � can be written
as a semi-direct product T Ì hsi determined by some � 2 Aut.T /. The splitting
of Comm� ŒH � into this particular semi-direct product will be referred to as the s-
splitting of Comm� ŒH �.

By considering the s-splitting of Comm� ŒH � and recalling that H is a subgroup
of Comm� ŒH �, it follows that H is generated by some .h; sm/ 2 Comm� ŒH �. Since
.e; s/ 2 Comm� ŒH �, we must have that h.e;s/.h; sm/i � h.h; sm/i. This implies that
there exists n 2 N1 such that

.e; s/.h; sm/n.e; s�1/ D .h; sm/n:

Denoting ˇn;m D Qn�1
iD0 � im.h/, the equation above implies that �.ˇn;m/ D ˇn;m.

From this it follows that .ˇn;m; smn/k D .ˇk
n;m; smnk/ for each k 2 N1. Since ˇn;m

has finite order, there exists r 2 N1 such that .ˇn;m; smn/r D .e; smnr/. We conclude
that

h.h; sm/i � h.h; sm/nri � h.e; s/mnri � h.e; s/i;
hence H D h.h; sm/i � h.e; s/i ´ K. As a subgroup of � , K is generated by
.a; tk/. Thus, we have found a infinite cyclic subgroup K D h.a; tk/i of � such that
H � K and such that

1 �� G �� �
� �� hti �� 1

1 �� T

��

�� Comm� ŒH �

��

� �� htki

��

�� 1

commutes and has split exact rows. Also, by Lemma 3.2, we have Comm� ŒH � D
Comm� ŒK�. It remains to determine T .

It is clear from the diagram that T D G \ Comm� ŒH �. Since Comm� ŒH � D
Comm� ŒK�, it follows that T D G \ Comm� Œh.a; tk/i�. By considering the t -
splitting of � and recalling that K D h.a; tk/i under this splitting, we find that given
g 2 G, then g 2 T if and only if .g; 1/.a; tk/n.g�1; 1/ D .a; tk/n for some n 2 N1.
Since .a; tk/n D .˛n;k; tkn/ for ˛n;k D Qn�1

iD0 'ik.a/, it follows that given g 2 G,
then g 2 T if and only if 'nk.g/ D ˛�1

n;k
g˛n;k . So,

T D fg 2 G j there exists n 2 N1 with 'nk.g/ D ˛�1
n;kg˛n;kg:

Proposition 3.4. Let � D G Ì Z, where G a torsion group and let H be an infinite
virtually cyclic subgroup of � . Then the following hold.

(a) There exists a subgroup T of G such that Comm� ŒH � Š T Ì� Z and such that
for each g 2 T there is n 2 N1 for which �n.g/ D g.
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(b) Every infinite virtually cyclic subgroup of Comm� ŒH � is equivalent to H .

Proof. Let C be an infinite cyclic subgroup of H . It follows from Lemma 3.2 that
Comm� ŒH � D Comm� ŒC �. Moreover, any infinite virtually cyclic subgroup of
Comm� ŒH � that is equivalent to H is also equivalent to C , and vice versa.

Let us view � as a semi-direct product G Ì' hti, i.e., fix a t -splitting for � .
It follows from Lemma 3.3 that Comm� ŒH � contains an infinite cyclic subgroup
K D h.a; tk/i of � such that K � C � H and such that there is a commutative
diagram with split exact rows

1 �� G �� �
� �� hti �� 1

1 �� T

��

�� Comm� ŒH �

��

� �� htki

��

�� 1,

where the vertical maps are inclusions and

T D fg 2 G j there exists n 2 N1 with 'nk.g/ D ˛�1
n;kg˛n;kg;

and ˛n;k D Qn�1
iD0 'ik.a/. Now let us consider the group Comm� ŒH � in the diagram

above, and view it as a semi-direct product via the s-splitting determined by the
element s ´ .a; tk/. It follows that Comm� ŒH � Š T Ì� hsi, where � W T ! T ,
g 7! a'k.g/a�1. One easily verifies that

T D fg 2 G j there exists n 2 N1 with �n.g/ D gg:
This proves part (a) of the proposition.

Suppose V is an infinite virtually cyclic subgroup of Comm� ŒH � and let S be
an infinite cyclic subgroup of V . We want to show that V � H . By Lemma 3.2
and the fact that H � K, this is equivalent to showing that S � K. Under the s-
splitting of Comm� ŒH �, S is generated by some element .g; sm/ and K is generated
by .e; s/. By part (a), there exists n 2 N1 such that �n.g/ D g. Denote b DQn�1

iD0 � im.g/ and let p 2 N1 such that bp D e in G. It now follows that .g; sm/np D
.
Qnp�1

iD0 � im.g/; smnp/ D .bp; smnp/ D .e; smnp/. This implies that S � K and
finishes the proof of part (b).

4. Proofs of Theorems A and B

Throughout this section let n be a fixed nonnegative integer. We begin by determining
an upper bound for gd.�/.

Lemma 4.1. Let � be a locally finite-by-virtually cyclic group of cardinality @n.
Then gd.�/ � n C 2.
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Proof. We have a short exact sequence

1 ! G ! �
��! V ! 1

where G is locally finite of cardinality @n and V is virtually cyclic. Let us denote by
F the family of finite subgroups of � , and denote by V the family of finite subgroups
of V . Now we define the family

H D fK � � j K � ��1.F / for some F 2 Vg
of subgroups of � . Note that F � H. Let X be a model for EVV . By letting � act on
X via � , it follows that X is also a model for EH� . This, together with Proposition 4
of [9], implies that gdH.�/ � gdV.V / � 1.

Note that each group in H is locally finite of cardinality at most @n. It therefore
follows from Theorem 2.6 of [4] that gdF\H .H/ D gd.H/ � n C 1 for all H 2 H.
Proposition 5.1 (i) of [16] now shows that gd.�/ � n C 2.

Definition 4.2. We say that a semi-direct product group G Ì' Z is locally bounded
if for each g 2 G, there exists some n 2 N1 such that 'n.g/ D g.

The following proposition determines gd.G Ì' Z/, when G Ì' Z is locally

bounded.

Proposition 4.3. Let G be a locally finite group of cardinality @n and assume that
G Ì' Z is locally bounded. If a group � contains G Ì' Z as a subgroup of finite
index, then � is a directed union of its virtually cyclic subgroups and gd.�/ � n C 1.

Proof. We will first show that GÌ' Z is a directed union of virtually cyclic subgroups.
Let Pfin.G/ be the set of finite subsets of G and consider an arbitrary subset S D

fx1; : : : ; xsg 2 Pfin.G/. Since G Ì' Z is locally bounded, for each i 2 f1; : : : ; sg,
there exists an integer ni 2 N1 such that 'ni .xi / D xi . Let FS be the subgroup of
G generated by the set of elements

f'ji .xi / j i 2 f1; : : : ; sg and ji 2 f1; : : : ; nigg:
Since G is locally finite, FS is a finite group for each S 2 Pfin.G/. One also easily
verifies that '.FS / D FS for each S 2 Pfin.G/, and that FS � FS 0 if S � S 0. It
follows that we can use ' to construct the semi-direct products HS ´ FS Ì Z for
all S 2 Pfin.G/, such that

1 �� FS

��

�� HS

��

�� Z

Id

��

�� 0

1 �� G �� G Ì' Z �� Z �� 0
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commutes and the vertical maps are inclusions. The set fHS j S 2 Pfin.G/g ordered
by inclusion is a directed set of virtually cyclic subgroup of G Ì' Z, because HS1

and
HS2

are both contained in HS1[S2
. Since every element of G Ì' Z is contained in

some HS , it follows that GÌ' Z is the directed union of the virtually cyclic groups HS

for all S 2 Pfin.G/. One can therefore conclude that the family of finitely generated
subgroups of G Ì' Z coincides with the family of virtually cyclic subgroups. So, by
Theorem 5.31 of [16], we have that gd.G Ì' Z/ � n C 1.

Finally, let us suppose that a group � contains G Ì' Z as a subgroup of finite
index. We will show that � is locally virtually cyclic. This is equivalent with � being
a directed union of virtually cyclic subgroups and implies that gd.�/ � n C 1, as

before.
Let K be a finitely generated subgroup of � . It follows that K0 D K \ .G Ì' Z/

is a finite index subgroup of K and is therefore also finitely generated. But then K0 is
virtually cyclic because GÌ' Z is locally virtually cyclic. Since K is a finite extension
of K0 it is also virtually cyclic. This shows that � is locally virtually cyclic.

We are now ready to prove Theorem A.

Proof of Theorem A. Recall that every virtually cyclic group is either finite, finite-by-
infinite cyclic or finite-by-infinite dihedral. Hence, there exists a locally finite group
G of cardinality @n such that � is either G, G-by-infinite cyclic or G-by-infinite
dihedral. If � is locally finite, then by Theorem 2.6 of [4], gd.�/ D gd.�/ � n C 1.

Now let us assume that � is not locally finite. Let � be the set of infinite virtually
cyclic subgroups of � and equip � with the equivalence relation � discussed in Sec-
tion 3. Recall that this is a strong equivalence relation. Denote the equivalence class
represented by H 2 � by ŒH �, and denote the set of equivalence classes by Œ� �. Note
that � acts on Œ� � via conjugation and the stabilizer subgroup of an equivalence class
ŒH � under this action is exactly the commensurator Comm� ŒH � of any representative
H , i.e., N� ŒH � D Comm� ŒH �. Denote by � a complete set of representatives ŒH �

of the �-orbits of Œ� � and define for each ŒH � 2 � the following family of subgroups
of Comm� ŒH �:

FŒH � D fK � Comm� ŒH � j K 2 � ; K � H g [ fK � Comm� ŒH � j jKj < 1g:
We claim that there exists a model for EFŒH�.Comm� ŒH �/ of dimension at most

n C 1, for each ŒH � 2 �. To prove this, first let us assume that � is locally finite-by-
infinite cyclic. It follows from Proposition 3.4 (a) that for each ŒH � 2 �, Comm� ŒH �

is isomorphic to some semi-direct product T Ì Z that is locally bounded, with T

locally finite of cardinality at most @n. It follows from Proposition 3.4 (b) that the
family FŒH � coincides with the family of virtually cyclic subgroups of Comm� ŒH �.
Therefore, Proposition 4.3 implies that there exists a model for EFŒH�.Comm� ŒH �/

of dimension n C 1, for each ŒH � 2 �.
If � is not locally finite-by-infinite cyclic, then � must have an index 2 subgroup

�0 that is locally finite-by-infinite cyclic. Note that in this case, each ŒH � 2 � can
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be represented by an infinite virtually cyclic subgroup H contained in �0, and that
Comm�0

ŒH � D Comm� ŒH � \ �0. This implies that Comm�0
ŒH � is a subgroup of

Comm� ŒH � of index at most 2. We leave it to the reader to check, using Propo-
sition 3.4 (b) and the observations above, that the family FŒH � coincides with the
family of virtually cyclic subgroups of Comm� ŒH �. It now follows from Proposi-
tion 3.4 (a) and Proposition 4.3 that there exists a model for EFŒH�.Comm� ŒH �/ of
dimension at most n C 1, for each ŒH � 2 �. This proves the claim.

By Lemma 4.1, there is model for E� of dimension n C 2. This is also a model
for E Comm� ŒH � for each ŒH � 2 �. Applying Theorem 2.2, yields a model for EG

of dimension n C 3.

Corollary 4.4. Suppose that we have a group extension

1 ! G ! �
��! Q ! 1

such that G is locally finite of cardinality @n. Then

gd.�/ � n C 3 C cd.Q/:

Proof. The statement follows by combining Corollary 5.2 of [17], Theorem A and
Theorem 2.3.

We can now prove Theorem B.

Proof of Theorem B. It follows from statement (g) of [19] (see also [8]) that there
exist characteristic subgroups ƒ.�/ � N � M of � and a function j W N ! N such
that

ƒ.�/ is the unique maximal normal locally finite subgroup of � , i.e., the locally
finite radical;

N=ƒ.�/ is torsion-free nilpotent;
M=N is free abelian of finite rank;
Œ� W M � � j.h/.
By Theorem 2.1, it suffices to prove that gd.M/ is bounded above by an integer

valued function of h. Also by the above, we have a short exact sequence

1 ! N=ƒ.�/ ! M=ƒ.�/ ! M=N ! 1:

Since the nilpotency class of any torsion-free nilpotent group is at most its Hirsch
length, a close inspection of the proof of Theorem 6.2 of [7] immediately implies that
cd.M=ƒ.�// � g.h/ for some function g W N0 ! N0.

Now let us consider the short exact sequence

1 ! ƒ.�/ ! M ! M=ƒ.�/ ! 1:

Since ƒ.�/ is a locally finite group of cardinality at most @n, it follows from Corol-
lary 4.4 that gd.M/ � n C 3 C g.h/. This finishes the proof.



554 D. Degrijse and N. Petrosyan

Acknowledgments. The authors wish to thank Brita Nucinkis for introducing them
to the problems discussed in this paper and Martin Fluch for his helpful comments.

References

[1] G. E. Bredon, Equivariant cohomology theories. Lecture Notes in Math. 34, Springer-
Verlag, Berlin 1967. Zbl 0162.27202 MR 0214062

[2] J. F. Davis and W. Lück, Spaces over a category and assembly maps in isomor-
phism conjectures in K- and L-theory. K-Theory 15 (1998), 201–252. Zbl 0921.19003
MR 1659969

[3] D. Degrijse and N. Petrosyan, Geometric dimension of groups for the family of virtually
cyclic subgroups. Preprint 2012, arXiv:1204.3482v2.

[4] W. Dicks, P. H. Kropholler, I. J. Leary, and S. Thomas, Classifying spaces for proper
actions of locally finite groups. J. Group Theory 5 (2002), 453–480. Zbl 1060.20035
MR 1931370

[5] D. Farley, Constructions of EVC and EFBC for groups acting on CAT.0/ spaces. Algebr.
Geom. Topol. 10 (2010), 2229–2250. Zbl 1251.20038 MR 2745670

[6] F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic K-theory. J. Amer.
Math. Soc. 6 (1993), 249–297. Zbl 0798.57018 MR 1179537

[7] M. Fluch and B. E. A. Nucinkis, On the classifying space for the family of virtually cyclic
subgroups for elementary amenable groups. Proc. Amer. Math. Soc., to appear.

[8] J. A. Hillman and P. A. Linnell, Elementary amenable groups of finite Hirsch length are
locally-finite by virtually-solvable. J. Austral. Math. Soc. Ser. A 52 (1992), 237–241.
Zbl 0772.20010 MR 1143191

[9] D. Juan-Pineda and I. J. Leary, On classifying spaces for the family of virtually cyclic
subgroups. In Recent developments in algebraic topology, Contemp. Math. 407, Amer.
Math. Soc., Providence, RI, 2006, 135–145. Zbl 1107.19001 MR 2248975

[10] J.-F. Lafont and I. J. Ortiz, Relative hyperbolicity, classifying spaces, and lower algebraic
K-theory. Topology 46 (2007), 527–553. Zbl 1132.19001 MR 2363244

[11] W. Lück, Transformation groups and algebraic K-theory. Lecture Notes in Math. 1408,
Springer-Verlag, Berlin 1989. Zbl 0679.57022 MR 1027600

[12] W. Lück, The type of the classifying space for a family of subgroups. J. Pure Appl.
Algebra 149 (2000), 177–203. Zbl 0955.55009 MR 1757730

[13] W. Lück, Survey on classifying spaces for families of subgroups. In Infinite groups:
geometric, combinatorial and dynamical aspects, Progr. Math. 248, Birkhäuser, Basel
2005, 269–322. Zbl 1117.55013 MR 2195456

[14] W. Lück, On the classifying space of the family of virtually cyclic subgroups for CAT.0/-
groups. Münster J. Math. 2 (2009), 201–214. Zbl 1196.55020 MR 2545612

[15] W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy.
In Geometry and topology: Aarhus, Contemp. Math. 258, Amer. Math. Soc., Providence,
RI, 2000, 293–305. Zbl 0979.55010 MR 1778113

http://www.emis.de/MATH-item?0162.27202
http://www.ams.org/mathscinet-getitem?mr=0214062
http://www.emis.de/MATH-item?0921.19003
http://www.ams.org/mathscinet-getitem?mr=1659969
http://arxiv.org/abs/1204.3482v2
http://www.emis.de/MATH-item?1060.20035
http://www.ams.org/mathscinet-getitem?mr=1931370
http://www.emis.de/MATH-item?1251.20038
http://www.ams.org/mathscinet-getitem?mr=2745670
http://www.emis.de/MATH-item?0798.57018
http://www.ams.org/mathscinet-getitem?mr=1179537
http://www.emis.de/MATH-item?0772.20010
http://www.ams.org/mathscinet-getitem?mr=1143191
http://www.emis.de/MATH-item?1107.19001
http://www.ams.org/mathscinet-getitem?mr=2248975
http://www.emis.de/MATH-item?1132.19001
http://www.ams.org/mathscinet-getitem?mr=2363244
http://www.emis.de/MATH-item?0679.57022
http://www.ams.org/mathscinet-getitem?mr=1027600
http://www.emis.de/MATH-item?0955.55009
http://www.ams.org/mathscinet-getitem?mr=1757730
http://www.emis.de/MATH-item?1117.55013
http://www.ams.org/mathscinet-getitem?mr=2195456
http://www.emis.de/MATH-item?1196.55020
http://www.ams.org/mathscinet-getitem?mr=2545612
http://www.emis.de/MATH-item?0979.55010
http://www.ams.org/mathscinet-getitem?mr=1778113


Commensurators and classifying spaces with virtually cyclic stabilizers 555

[16] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic
subgroups. Pure Appl. Math. Q. 8 (2012), 497–555. Zbl 1258.55011 MR 2900176

[17] C. Martínez-Pérez, A spectral sequence in Bredon (co)homology. J. Pure Appl. Algebra
176 (2002), 161–173. Zbl 1017.18009 MR 1933713

[18] T. tom Dieck, Transformation groups. de Gruyter Stud. Math. 8, Walter de Gruyter &
Co., Berlin 1987. Zbl 0611.57002 MR 889050

[19] B. A. F. Wehrfritz, On elementary amenable groups of finite Hirsch number. J. Austral.
Math. Soc. Ser. A 58 (1995), 219–221. Zbl 0860.20028 MR 1323993

Received September 6, 2011; revised November 23, 2011

D. Degrijse, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan
200B, 3001 Leuven, Belgium

E-mail: Dieter.Degrijse@kuleuven-kortrijk.be

N. Petrosyan, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan
200B, 3001 Leuven, Belgium

E-mail: Nansen.Petrosyan@kuleuven-kortrijk.be

http://www.emis.de/MATH-item?1258.55011
http://www.ams.org/mathscinet-getitem?mr=2900176
http://www.emis.de/MATH-item?1017.18009
http://www.ams.org/mathscinet-getitem?mr=1933713
http://www.emis.de/MATH-item?0611.57002
http://www.ams.org/mathscinet-getitem?mr=889050
http://www.emis.de/MATH-item?0860.20028
http://www.ams.org/mathscinet-getitem?mr=1323993

	Introduction
	Preliminaries
	The structure of commensurators
	Proofs of Theorems A and B
	References

