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Abstract. In this article, we study eigenvalue functions of varying transition probability matri-
ces on finite, vertex transitive graphs. We prove that the eigenvalue function of an eigenvalue
of fixed higher multiplicity has a critical point if and only if the corresponding spectral repre-
sentation is equilateral. We also show how the geometric realisation of a finite Coxeter group
as a reflection group can be used to obtain an explicit orthogonal system of eigenfunctions.
Combining both results, we describe the behaviour of the spectral representations of the sec-
ond highest eigenvalue function under the change of the transition probabilities in the case of
Archimedean solids.
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1. Introduction and statement of results

The main objects of interest in this paper are spectral representations associated to
random walks on finite graphs (see Sections 1.1 and 1.2 for the definitions). We
consider the particular case of vertex transitivity, which comprises the large class of
Cayley graphs. In our main result (Theorem 1.3 below), we prove a correspondence
between the critical points of an eigenvalue function (under the change of the invariant
transition probabilities) and the points where the associated spectral representation is
equilateral. In Sections 1.4 and 1.5, we specialise our considerations to finite Coxeter
groups and one-skeleta of Archimedean solids.

1.1. Basic graph theoretical notation. Let G D .V;E/ be a finite, simple (i.e., no
loops and multiple edges) graph with vertex set V D f1; : : : ; ng and set of undirected
edges E. An edge is represented by a set fi; j g � V with i ¤ j . A (time reversible)
random walk on G is given by a symmetric stochastic matrix P D .pij / 2 Rn�n,
where pij is the transition probability from vertex i to vertex j . For i ¤ j , we
require pij D 0 if fi; j g 62 E. Even though there are no loops in G, we allow the
diagonal elements pi i to be positive. (pi i represents the probability for the random
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walk to stay at the vertex i .) The set of all matrices P of the above type are a convex
subset of Rn�n, which we denote by …G . We think of a matrix P 2 …G as a linear
operator on the vector space l2.G/ of (real-valued) functions on the vertices, i.e.,

Pf .i/ D pi if .i/C
X
j �i

pijf .j /;

where j � i means that fi; j g 2 E. The inner product on l2.G/ is given by
hf; gi D Pn

iD1 f .i/g.i/. Let �.P / denote the spectrum of P with eigenvalues

1 D �0.P / � �1.P / � � � � � �n�1.P / � �1;
counted with multiplicity. Let f0.i/ D 1p

n
. The Rayleigh quotient representation of

the second highest eigenvalue function

�1.P / D sup
f ?f0jf ¤0

hPf; f i
kf k2

(1)

implies that �1 W …G ! Œ�1; 1� is convex (see the proof of Proposition 1.2 in Sec-
tion 2). The functions �i W …G ! Œ�1; 1� are continuous (see, e.g., [17], Theo-
rem (1,4)), but these functions fail to be analytic at those points where eigenvalues of
higher multiplicity bifurcate. We refer the reader to, e.g., Chapter 2 of [14], for more
information about these subtle regularity issues. The special operatorP D .pij /with
vanishing main diagonal (pi i D 0 for all i 2 V ), and for which all other transition
probabilities pij are equal to 1=deg.i/, is called the canonical Laplacian.

1.2. Spectral representations. The idea of a spectral representation is to use a
higher multiplicity eigenvalue of the matrix P to obtain a “geometric realisation” of
the combinatorial graphG in Euclidean space. Assume that� 2 �.P / is an eigenvalue
of P of multiplicity k, and �1; : : : ; �k is an orthonormal base of eigenfunctions of
the eigenspace E�.P /. The corresponding spectral representation is the map

ˆ D ˆP;� W V ! Rk; ˆ.i/ D .�1.i/; : : : ; �k.i//;

i.e., the simultaneous evaluation of all eigenfunctions at a given vertex. The spectral
representation depends on the choice of the orthonormal base only up to an orthonor-
mal transformation in Rk .

There are often striking geometric and spectral analogies between the discrete set-
ting of graphs and the smooth setting of Riemannian manifolds. In the context of Rie-
mannian manifolds, the simultaneous evaluation of eigenfunctions of the Laplacian
were considered, for example, in the so-called nice (minimal isometric) embeddings
of strongly harmonic manifolds into Euclidean spheres (see [5], Chapter 6G).

Definition 1.1. A spectral representation ˆ W V ! Rk is faithful if ˆ is injective. It
is equilateral if all images of edges have the same Euclidean length, i.e.,

kˆ.i1/ �ˆ.j1/k D kˆ.i2/ �ˆ.j2/k;
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for all pairs of edges fi1; j1g; fi2; j2g 2 E, where k � k denotes the Euclidean norm.

A particularly strong faithfulness result for 3-connected, planar graphs in the case
that the second highest eigenvalue has multiplicity three was obtained in [15].

1.3. Vertex transitive graphs. In this paper, we focus on finite vertex transitive
graphs, i.e., we assume that the automorphism group Aut.G/ acts transitively on
the vertex set V . Particular examples of vertex transitive graphs are Cayley graphs
of groups. Below, we introduce equivalence classes of edges and, to have enough
flexibility, we consider subgroups � � Aut.G/ which still act transitively on the
vertices. We define a �-action on the space …G of matrices as follows:

.�P /ij D p�i;�j for all P D .pij / 2 …G .

A random walk and its corresponding matrix P 2 …G is called �-invariant, if
�P D P for all � 2 � . Note that the main diagonal .p11; : : : ; pnn/ of every �-
invariant matrix P is constant. The large automorphism group of a vertex transitive
graph makes the occurrence of eigenvalues of higher multiplicities for �-invariant
matrices more likely, and it is natural to make use of connections between these
eigenvalues and the representation theory of � .

The group � induces an equivalence relation on the set of edges: fi; j g 2 E is
equivalent to all edges f�i; �j g with � 2 � . The multiplicity of an equivalence class
Œe� � E is the number of edges in Œe� meeting at the same vertex. Let Œe1�; : : : ; ŒeN �

be the� equivalence classes of edges andm1; : : : ; mN be its multiplicities. The set of
�-invariant matrices in…G with vanishing main diagonal is a convex subset, which
we identify with the simplex

�� D ˚
.x1; : : : ; xN / 2 Œ0; 1�N j P

j mjxj D 1
�
: (2)

The point X D .x1; : : : ; xN / 2 �� corresponds to the matrix PX D .pij /, given by

pij D
´
0 if i D j or ¹i; j º 62 E,

xk if ¹i; j º 2 Œek�.

For P D .pij / 2 …G , let GP D .V;EP / denote the subgraph of G with edges
EP D ffi; j g 2 E j pij > 0g. Then, for every interior point X 2 int.��/, we have
GPX

D G (since the entries pij associated to all edges fi; j g are strictly positive),
and the spectrum �.PX / is symmetric with respect to the origin if and only ifGPX

is
bipartite.

Let us now discuss the special case of Cayley graphs. A finite symmetric set
S � � of generators of a group � is called minimal if for every s 2 S , S �fs; s�1g is
no longer a set of generators. The Cayley graph of � with respect to S is denoted by
Cay.�; S/, its vertices are the group elements, i.e., V D � , and two vertices �; � 0 are
connected by an edge if and only if � 0 D �s for some s 2 S . If S D fs1; : : : ; srg is a
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minimal symmetric set of generators, we distinguish the generators of order 2 (since
they appear only once in S ) from the ones with higher order, by rewriting them as

S D fs1; : : : ; s� ; 	˙1
1 ; : : : ; 	˙1

� g; (3)

with 
 C 2� D r . Note that the edges fe; 	j g and fe; 	�1
j g are equivalent, and the

corresponding simplex �� is given by

�� D ˚
.x1; : : : ; x�C�/ 2 Œ0; 1�N j P�

j D1 xj C 2
P�

j D1 x�Cj D 1
�
: (4)

The following facts follow from the convexity of �1 W …G ! Œ�1; 1� (see Section 2
for the proof).

Proposition 1.2. Let G D .V;E/ be a finite, connected, simple graph and � �
Aut.G/be vertex transitive. Thenaglobalminimumof�1 W …G ! Œ�1; 1� is assumed
at a matrix in �� .

IfG D Cay.�; S/ is the Cayley graph of a finite group� with respect to a minimal
symmetric set S of generators, then we have

lim
n!1�1.PXn

/ D 1 (5)

for every sequenceXn ! @�� , and a global minimum of �1 is assumed at an interior
point of �� .

Note that the above result does not rule out that �1 may also have other global
minima at matrices P 2 …G ��� .

Our main general result is the following relation between critical points of eigen-
value functions and equilateral spectral representations:

Theorem 1.3. LetG D .V;E/ be a finite, connected, simple graph and � � Aut.G/
be vertex transitive. Let U � �� be an open set and � W U ! Œ�1; 1� be a smooth
function such that �.X/ WD �.PX / is an eigenvalue of PX with fixed multiplicity
k � 2 for all X 2 U . X0 2 U is a critical point of the function � if and only if the
spectral representation ˆ D ˆPX0

;�.X0/ W V ! Sk�1 is equilateral.

It is shown in Lemma 2.1 (see Section 2) that, for vertex transitive graphs, the
image of every �-invariant spectral representation ˆ D ˆPX ;� (with � 2 �.PX / of
multiplicity k) lies on an Euclidean sphere Sk�1 � Rk , and that equivalent edges
are mapped to segments with the same Euclidean length, i.e., kˆ.�i/ � ˆ.�j /k D
kˆ.i/ � ˆ.j /k. The above theorem states that at critical points of the eigenvalue
function all Euclidean images of edges have the same length (not only the equivalent
ones).

Remarks 1.4. (a) Special examples of critical points are minima of a smooth func-
tion. As another example for similarities between graphs and Riemannian manifolds,
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we like to mention the following result in Riemannian geometry: The first non-zero
Laplace-eigenvalue �1.M/ > 0 of a closed Riemannian manifold .M; g/ of dimen-
sion n with lower positive Ricci curvature is minimal if and only if M is isometric
to the n-dimensional round sphere (Obata’s theorem, see [18] or [4]). Here we also
have the phenomenon that a critical point of the eigenvalue function is assumed in
the case of a very symmetric geometry.

(b) For extremal eigenvalues of the Laplace matrix of general graphs, related
embedding interpretations arose, e.g., in [12], [11] in studying the semidefinite duals
of associated eigenvalue optimization problems. The relation of these results to the
vertex symmetric graphs studied here becomes more apparent when symmetry is
exploited in the corresponding optimization problems by the techniques described,
e.g., in [10], [3]. The precise nature of this relation, however, still needs to be explored
further.

Standard arguments in representation theory yield the following useful result:

Proposition 1.5. Let � be a finite group with a minimal symmetric set of genera-
tors S given by (3) and G D Cay.�; S/ be the associated Cayley graph with the
corresponding simplex �� as in (4).

Let � W � ! O.k/ be an irreducible representation, r W Rk ! R be the projec-
tion to the r-th coordinate and Sk�1 � Rk be the unit sphere. Let p 2 Sk�1, � 2 R,
and X D .x1; : : : ; x�C�/ 2 �� such that

�p D
�X

j D1

xj�.sj /p C
�X

j D1

x�Cj .�.	j /p C �.	�1
j /p/: (6)

Then the functions

�r W � ! R; �r.�/ WD r.�.�/p/; 1 � r � k;

are pairwise orthogonal eigenfunctions of PX for the eigenvalue � satisfying
k�rk2 D j�j

k
.

Remarks 1.6. (a) This result implies that if the eigenspace E�.PX / is an irre-
ducible representation of � (i.e., �1; : : : ; �k span the whole eigenspace E�.PX /),
then the associated spectral representation ˆ W � ! Sk�1 coincides with the orbit

map ˆ.�/ D �.�/p0 of the rescaled point p0 D
q

k
j�j p 2 Rk . Thus a natural

question is whether eigenspace representations are irreducible, or whether different
representations appear with the same eigenvalue.

(b) It can be shown, in the weaker case of a non-orthogonal irreducible represen-
tation � W � ! GL.k;R/, that the functions �r are still a family of linear independent
eigenfunctions of PX .
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1.4. Finite irreducible Coxeter groups. Let us now consider the special case of a
finite irreducible Coxeter group � D hS D fs1; : : : ; skg j .sisj /mij D ei of rank
rk.�/ D k with mij D mj i � 2 and mi i D 2, i.e., s2

i D e. It was suggested in [16],
Problem 10.8.7, to study the eigenvalues (or at least �1) of the canonical Laplacian for
Coxeter groups. Bacher [2] identified �1 of the canonical Laplacian for symmetric
groups. For the canonical Laplacian on arbitrary finite Coxeter groups, Akhiezer [1]
found an explicit set of eigenvalues and a lower bound on their multiplicity in case of
irreducibility. The spectral gap of the canonical Laplacian and the Kazdhan constant
of all finite Coxeter groups was explicitly derived by Kassabov in [13], Section 6.1.
For infinite Coxeter groups, it was proved in [6] that they do not have Kazdhan
property .T /. In this section we are concerned with Laplacians on finite, irreducible
Coxeter groups with variable weights.

Let � ,! O.k/ be the geometric realisation of � as finite reflection group. The
associated Cayley graph G D Cay.�; S/ is bipartite, since all relations of a Coxeter
group have even length. Let �j 2 O.k/ be the reflections corresponding to the
generators sj and n1; : : : ; nk be the associated simple roots. Let

pj D .�1/j �1n1 � � � � � bnj � � � � � nk; (7)

where v1 � � � � � vk�1 denotes the .k � 1/-ary analogue of the cross product in Rk ,
and the hat over nj in (7) means that this term is dropped. Then the open cone

F WD f˛1p1 C � � � C ˛kpk j ˛1; : : : ; ˛k > 0g � Rk;

is a fundamental domain of the �-action on Rk . � preserves the unit sphere Sk�1,
and a spherical fundamental domain is given by F0 D F \ Sk�1. Let V D
det.n1; : : : ; nk/. Without loss of generality, we can assume that V > 0, for otherwise
we simply permute the set of generators. The following result is a consequence of
Proposition 1.5.

Corollary 1.7. Let � be a finite, irreducible Coxeter group and F0 � Sk�1 and
� D �� be as above. Then there exists smooth maps ‰� W F0 ! int.�/ and
‰� W F0 ! .0; 1/, with ‰� bijective, such that, for every p D P

j̨pj 2 F0,
the functions �i .�/ WD i .�p/ are pairwise orthogonal eigenfunctions of PX on
Cay.�; S/ for the eigenvalue � D ‰�.p/, where X D ‰�.p/. Moreover, k�ik2 D
j�j
k

and the composition ‰� B ‰�1
� W int.�/ ! .0; 1/ is analytic. The simultaneous

evaluation

ˆ.�/ W � ! Sk�1; ˆ.�/ D .�1.�/; : : : ; �k.�// D �p

is faithful, and the Euclidean lengths of the images of equivalence classes of edges
under ˆ are given by

kp � �j .p/k D 2 j̨V:

Remark 1.8. The explicit description of the maps ‰�, ‰� and the composition
‰� B‰�1

� is given by the equations (16), (17), (18) and (20) in Section 3.
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The next result follows from a slight modification of a calculation given in Kass-
abov [13].

Proposition 1.9. Suppose that � , ‰� and‰� are as in Corollary 1.7. Then the map
‰� B ‰�1

� W int.�/ ! .0; 1/ coincides with the second highest eigenvalue function
�1 W int.�/ ! .0; 1/. Consequently, the second highest eigenvalue �1.X/ of PX has
always multiplicity � rk.�/.

The proof of the next result on the exact multiplicity of the second highest eigen-
value for particular Coxeter groups is based on elegant arguments of van der Holst [20].
He used these arguments to give a direct combinatorial proof of Colin de Verdierè’s
planarity characterisation “�.G/ � 3”.

Proposition 1.10. Let� be one of the Coxeter groupsA3,B3 orH3. Then the second
highest eigenvalue �1.X/ of PX has multiplicity equal to three for all X 2 int.�/.

Remark 1.11. (a) The heart of the proof of Proposition 1.10, namely van der Holst’s
argument, is geometric and depends on the planarity of the associated Cayley graphs.
It is likely that for every finite, irreducible Coxeter group � (not only A3, B3, H3)
the multiplicity of the second highest eigenvalue function is constant and equal to the
rank of � . The techniques in Kassabov’s paper [13] might be useful to prove this
general statement.

(b) The value of �1.X/ has a well known dynamical interpretation: Our Cayley
graphs are bipartite, i.e., we have a partition V D V0 [ V1. �1.X/ measures the
convergence rate of the corresponding random walk to the equidistribution (mixing
rate) on each set of vertices Vi under even time steps (even time steps are needed be-
cause of the bipartiteness). The validity of the multiplicity assumption in (a) together
with our main result (Theorem 1.3) would allow us to explicitly determine, for all
finite, irreducible Coxeter groups, the transition probabilities of a random walk with
the fastest mixing rate on the corresponding Cayley graphs. In fact, this is precisely
how we will prove Theorem 1.12 below.

1.5. Archimedean solids. The Cayley graph of the Coxeter groups A3, B3 andH3

(with respect to their set of standard generators fs1; s2; s3g) conincide, combinatori-
ally, with the one-skeleta of the Archimedean solids with the vertex configurations
.4; 6; 6/, .4; 6; 8/, and .4; 6; 10/, respectively.

Archimedean solids are polyhedra in R3 such that all faces are regular polygons,
and which have a symmetry group acting transitively on the vertices. (Note, however,
that the prisms, antiprisms and Platonic solids, which also have these properties, are
excluded). The 13Archimedean solids are classified via their vertex configurations:
The vertex configuration .m; n; k/ stands for the solid where an m-gon, an n-gon
and a k-gon (in this order) meet at every vertex. We will use this notation also for
Platonic solids (e.g., the icosahedron is denoted by .3; 3; 3; 3; 3/). The spectra of the
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canonical Laplacians (on the one-skeleta) of all Archimedean solids were explicitly
calculated in [19]. For all these graphs, the second highest eigenvalue of the canonical
Laplacian has multiplicity three. The corresponding spectral representation is faithful
and represents a polyhedron in R3 (this follows, e.g., from the general result in [15]),
but this polyhedron is generally not equilateral. It is natural to study the deformation
of this polyhedron under changes of the�-invariant transition probabilities (assuming
that the multiplicity of �1 does not change), and to find points at which the spectral
representation is equilateral.

We will carry this out in the case of the largest Archimedean solid, namely the
truncated icosidodecahedron .4; 6; 10/. We will also explain, how the corresponding
results read in the case of the Archimedean solids .4; 6; 8/ and .4; 6; 6/. The proofs
for these cases are completely analogous.

Let G D .V;E/ be the one-skeleton of the Archimedean solid .4; 6; 10/. The
automorphism group of G is the full icosahedral group and acts simply transitively
on the vertex set V , and is isomorphic to H3. Considering G as a planar graph, its
faces are 4-, 6- and 10-gons. G is 3-connected, has 120 vertices and every vertex has

degree three (see Figure 1 below). Let ' D 1Cp
5

2
D 2 cos �

5
be the golden ratio.

Our previous results imply the following facts for �1.

Theorem 1.12. Let G be the 1-skeleton of the Archimedean solid .4; 6; 10/ and
� D Aut.G/. The simplex of �-invariant transition probabilities is

� D �� D f.x; y; z/ j x; y; z � 0; x C y C z D 1g;
wherex ,y, z are the transition probabilities for the edge-equivalence classes separat-
ing 4- and 6-gons, 4- and 10-gons, and 6- and 10-gons, respectively. Then the restric-
tion of�1 W …G ! Œ�1; 1� to int.�/ � …G is analytic and strictly convex, and�1.X/

has multiplicity three for allX 2 int.�/. Moreover,X0 D 1
14C5'

.5; 3C3'; 6C2'/

is the unique point in � at which �1 assumes its global minimum with

�1.X0/ D 10C 7'

14C 5'
:

The corresponding spectral representationˆX0
W V ! S2 is faithful and equilateral.

Let us stress, again, that for X� D .1=3; 1=3; 1=3/ 2 �, the above theorem
implies that the spectral representation of PX�

for �1.X�/ does not reproduce the
Archimedean solid, one has to choose the point X0 2 � instead (see Figure 1).

Remark 1.13. There are analogous versions of Theorem 1.12 in the cases .4; 6; 8/
and .4; 6; 6/. The full symmetry group of both solids .4; 6; 8/ and .4; 6; 6/ is the
full octahedral group, but it is better to view .4; 6; 6/ as a polyhedron with the full
tetrahedral group (which is a subgroup of the full octahedral group) as its symmetry
group, by distinguishing its hexagonal faces with the help of two colours (say, yellow
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Figure 1. The 1-skeleton of the Archimedean solid .4; 6; 10/ and the (non-equilateral) spectral
representation of the canonical Laplacian for the second highest eigenvalue.

and blue), such that adjacent 6-gons have different colours. In this case the solid
.4; 6; 6/ is also called the omnitruncated tetrahedron and has three equivalence classes
of edges (separating 4-gons and yellow 6-gons, 4-gons and blue 6-gons, yellow and
blue 6-gons), just as the solid .4; 6; 8/ and .4; 6; 10/. The corresponding explicit
values for X0 and �1.X0/ are

X0 D 1

13C 6
p
2
.4C p

2; 3C 3
p
2; 6C 2

p
2/ and �1.X0/ D 11C 6

p
2

13C 6
p
2

in the case .4; 6; 8/ and

X0 D
�
3

10
;
3

10
;
2

5

�
and �1.X0/ D 4

5

in the case .4; 6; 6/.

Finally, we describe the behaviour of spectral representations ˆX W V ! S2, as
X 2 � moves towards the boundary @�.

Theorem 1.14. Let G;�;X0 be as in Theorem 1.12. Then there are three explicitly
given curves C1; C2; C3 � �, which meet in X0 and have the following property:
For every X 2 Ci , the lengths of two of the three equivalence classes of Euclidean
edges in the spectral representation of PX for the eigenvalue �1.X/ coincide.

AsXn converges to the corresponding vertex of the simplex� along the curve Ci ,
the spectral representations converge to equilateral realisations of the Archimedean
solids .3; 10; 10/, .5; 6; 6/ and .3; 4; 5; 4/, respectively.
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For any sequence Xn 2 int.�/ converging to an interior point of the bound-
ary edge of the simplex �, the spectral representations converge to the equilateral
realisations of one of the solids .3; 3; 3; 3; 3/, .5; 5; 5/ and .3; 5; 3; 5/.

(These convergence properties are illustrated in Figure 2.)

C1

C2

C3

.4; 6; 10/

.3; 3; 3; 3; 3/ .3; 5; 3; 5/

.3; 4; 5; 4/ .3; 10; 10/

.5; 6; 6/

.5; 5; 5/

Simplex ��

Figure 2. Convergence behaviour of ˆX as X ! @�.

Figure 3 shows the spectral representations of PX for three points X along the
curve C2, illustrating the transition from the dodecahedron .5; 5; 5/ to the buckeyball
.5; 6; 6/.

Figure 3. Spectral representations of PX (for points X along C2) for the second highest
eigenvalue.

Remark 1.15. The analogous versions of Theorem 1.14 for the Archimedean solids
.4; 6; 8/ and .4; 6; 6/ are illustrated in Figure 4 below. The common symmetry group
of all solids in the diagram containing .4; 6; 8/ is the full octahedral group. In the
diagram containing .4; 6; 6/, we need to colour the hexagons in the solid .4; 6; 6/with
two different colours (as described in Remark 1.13) and, similarly, we have to colour
the triangles of the solid .3; 4; 3; 4/ with two colours such that triangles meeting
in a vertex have different colours (and refer to .3; 4; 3; 4/ then as the cantellated
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tetrahedron), so that the common symmetry group of all solids in this diagram is the
full tetrahedral group.

C1C1

C2C2

C3C3

.4; 6; 8/

.3; 3; 3; 3/

.3; 4; 4; 4/ .3; 8; 8/.4; 4; 4/

.3; 3; 3/ .3; 3; 3/

.3; 3; 3/.3; 4; 3; 4/

.3; 4; 3; 4/

.3; 6; 6/

.3; 6; 6/

.4; 6; 6/

.4; 6; 6/

Figure 4. Boundary convergence behaviour in the cases .4; 6; 8/ and .4; 6; 6/.

1.6. Structure of the article. Section 2 provides the proofs of Propositions 1.2
and 1.5 and of our Main Theorem 1.3. In Sections 3 and 4, we prove Corollary 1.7
and Propositions 1.9 and 1.10. Finally, Section 5 presents the proofs of Theorems 1.12
and 1.14.

Acknowlegdements. We are grateful to Stefan Dantchev, Christoph Helmberg, Dirk
Schütz and Ivan Veselić for many helpful comments. Moreover, we like to express
our gratitude to the referee for providing us with the proof of Proposition 1.9, and for
many other useful comments which improved and simplified parts of our article.

2. Proofs of the general results

Let us start with a convexity proof of �1 W …G ! Œ�1; 1�, which is used to show that
�1 assumes a global minimum in �� .

Proof of Proposition 1.2. First note that, for P;P 0 2 …G and ˛ 2 Œ0; 1�,
h.˛P C .1 � ˛/P 0/f; f i

kf k2
D ˛

hPf; f i
kf k2

C .1 � ˛/hP
0f; f i

kf k2
;

which implies the convexity of �1 W …G ! Œ�1; 1� by taking supremums on both
sides and using the characterisation (1).

Note also that …G is compact, and the continuous function �1 W …G ! Œ�1; 1�
must have a global minimum at some point P 2 …G . If P 62 �� , then consider the
�-invariant matrix P 0 D 1

j�j
P

�2� �P 2 …G , and we conclude �1.P
0/ � �1.P /

by the convexity of �1. P 0 may have a non-vanishing (constant) main diagonal.
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Nevertheless, we can write P 0 D ˇId C .1 � ˇ/P 00 with appropriate P 00 2 �� and
ˇ � 0. This implies that

�1.P
0/ � �1.P

00/ D ˇ.1 � �1.P
00// � 0;

which shows that �1 assumes also a global minimum at P 00 2 �� .
Now, assume that G D Cay.�; S/ and that S is a minimal set of generators. The

minimality of S implies that, for every X 2 @�� , the graph GPX
consists of more

than one connected component and, therefore, �0.PX / D �1.PX / D 1. Then (5)
follows from the continuity of the function �1. For every interior point X 2 �� we
have �1.PX / < 1, since GPX

is connected.

Our next goal is the proof that�-invariant spectral representations map all vertices
onto a sphere and that equivalent edges are mapped to Euclidean segments of the same
length.

Lemma 2.1. Let G D .V;E/ be a simple finite graph and � � Aut.G/ be vertex
transitive with N equivalence classes of edges, and �� be as in (2). Let X 2 ��

and � 2 Œ�; 1; 1� be an eigenvalue of multiplicity k � 2 of the operator PX . Let
ˆ D ˆX;� W V ! Rk be the associated spectral representation. Then there exist
constants c > 0, c1; : : : ; cN � 0 such that

(a) for all vertices i 2 V , kˆ.i/k D c;

(b) for all edges fi; j g 2 E in the l-th equivalence class,

kˆ.i/ �ˆ.j /k D cl :

Proof. Let �1; : : : ; �k be the orthonormal basis of eigenfunctions defining ˆ D
.�1; : : : ; �k/

> (we consider ˆ.i/ as a column vector). Let � 2 � be fixed and  r D
�r B � W V ! R. One easily checks that  1; : : : ;  k are also an orthonormal basis
satisfying PX r D � r . Consequently, there exists a matrix C D .crs/ 2 O.k/

such that  r D Pk
sD1 crs�s . This implies ˆ.�i/ D Cˆ.i/ and

hˆ.�i/;ˆ.�j /i D hCˆ.i/; Cˆ.j /i D hˆ.i/;ˆ.j /i: (8)

(8) implies (a) by choosing i D j and using the vertex transitivity of � . (b) follows
from (a), (8) and

kˆ.i/ �ˆ.j /k2 D kˆ.i/k2 � 2hˆ.i/;ˆ.j /i C kˆ.j /k2:

Before entering into the proof of our main result, let us remark that the above
identity (8) can be rewritten as

kX
rD1

�r.i/�r.j / D
kX

rD1

�r.�i/�r.�j / for all i; j 2 V and � 2 �: (9)
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Moreover, observe that the following identity is an immediate consequence of the
vertex transitivity of � , the left coset decomposition � D �1�1 [ �2�1 [ � � � [ �n�1,
where �1 � � is the stabilizer of 1 2 V , and the relation j�j D nj�1j:

nX
iD1

f .i/ D n

j�j
X
�2�

f .�1/: (10)

Proof of Theorem 1.3. For simplicity, we discuss the key arguments for the special
choice of the first and second equivalence class of edges. The proof for two arbitrary
equivalence classes is completely analogous.

Let f1; i1g; : : : ; f1; ipg be all edges adjacent to 1 2 V in the first equivalence class
of edges (note that p D m1). Let f1; j1g; : : : ; f1; iqg be all edges adjacent to 1 2 V
in the second equivalence class of edges (note that q D m2). We conclude from (9)
that

kX
rD1

�r.1/�r.i1/ D
kX

rD1

�r.1/�r.i2/ D � � � D
kX

rD1

�r.1/�r.ip/; (11)

and the same identity holds for the edges in the second equivalence class.

Let X0 2 U an arbitrary point (not necessarily a critical point of �1), � D
. 1

p
;� 1

q
; 0; : : : ; 0/ 2 RN and Xt WD X0 C t� 2 U for t 2 .��; �/ and � > 0 suitably

small. For simplicity of notation, we introduce P.t/ WD PXt
, �.t/ D �.Xt /. Let

�1; : : : ; �k be an orthonormal basis of the eigenspace E�.0/.P.0//. Let Prt denote the
orthogonal projection of l2.G/ onto the eigenspace E�.t/.P.t// D ker.P.t/��.t//.
Since P.t/ and �.t/ depend smoothly on t , Prt is also smooth in t . By making � > 0
smaller, if needed, we can assume that Prt�1; : : : ;Prt�k is a basis of E�.t/.P.t//, for
all t 2 .��; �/. Applying Gram–Schmidt to these vectors, we obtain an orthonormal
basis �1;t ; : : : ; �k;t of the eigenspace E�.t/.P.t//, depending smoothly on t and
satisfying �r D �r;0. Note that P 0.0/ D .cij / with

c�1;�i D

8̂<̂
:

1
p

if i 2 fi1; : : : ; ipg;
� 1

q
if i 2 fj1; : : : ; jqg;

0 otherwise;

for all � 2 � and i 2 V .

Let r 2 f1; : : : ; kg. By the orthonormality of the functions �r , we have

h�r ;
@
@t

ˇ̌
tD0
�r;t

˛ D 0:

Using this and the symmetry of P.t/, by differentiating �.t/ D hP.t/�r;t ; �r;t i we
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obtain at t D 0:

�0.0/ D hP 0.0/�r ; �ri D
nX

iD1

�r.i/
� nX

j D1

cij�r.j /
�

D n

j�j
X
�2�

�r.�1/
� nX

j D1

c�1;�j�r.�j /
�

using (10)

D n

j�j
X
�2�

�r.�1/

�
1

p

pX
sD1

�r.�is/ � 1

q

qX
sD1

�r.�js/

�
:

On the other hand, we have

hˆ.1/;ˆ.i1/i D 1

p

pX
sD1

kX
rD1

�r.1/�r.is/ using (11)

D
kX

rD1

1

j�j
X
�2�

�r.�1/
1

p

pX
sD1

�r.�is/ using (9):

Combining both results, we obtain

hˆ.1/;ˆ.i1/i � hˆ.1/;ˆ.j1/i D k

n
�0.0/:

This implies that we have kˆ.1/�ˆ.i1/k D kˆ.1/�ˆ.j1/k if and only if�0.0/ D 0.
Since the above arguments hold for any choice of equivalence classes of edges, we

have c1 D � � � D cN in Lemma 2.1 above (i.e., an equilateral spectral representation)
if and only if the derivative of � at X0 vanishes in all directions of the simplex, i.e.,
if X0 2 U is a critical point of �.

The proof of Proposition 1.5 is based on the following lemma:

Lemma 2.2. Let � be a finite group, � W � ! O.k/ be an irreducible representation
and, as before, h�; �i be the standard inner product in Rk . For any non-zero vector
p 2 Rk there is a constant Cp > 0 such thatX

�2�

h�.�/p; vi h�.�/p;wi D Cphv;wi

for all v;w 2 Rk .

Proof. The expression

hv;wip WD
X
�2�

h�.�/p; vi h�.�/p;wi
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is obviously a symmetric bilinear form. The form is positive definite, since hv; vip D
0 implies that v is perpendicular (w.r.t. the standard inner product) to spanf�.�/p j
� 2 �g. Irreducibility of � implies that spanf�.�/p j � 2 �g D Rk , so v D 0.
Therefore, there exists a positive definite symmetric matrix A such that

hv;wip D hAv;wi:
Let �0 2 � . Then

h�.�0/v; �.�0/wip D
X
�2�

h�.��1
0 �/p; vih�.��1

0 �/p;wi D hv;wip;

i.e., h�; �ip is �.�/-invariant, and we have A�.�/ D �.�/A for all � 2 � . Since �
is irreducible, we conclude from Schur’s lemma that A is of the form Cp � Id with a
constant Cp > 0. This finishes the proof of the lemma.

Proof of Proposition 1.5. Note that the vertices of G D Cay.�; S/ are the group
elements, and that

PXf .�/ D
�X

j D1

xjf .�sj /C
�X

j D1

x�Cj .f .��j /C f .���1
j //:

This implies that

PX�r.�/ D
�X

j D1

xjr.�.�sj /p/C
�X

j D1

x�Cj .r.�.��j /p/C r.�.��
�1
j /p//

D r

�
�.�/

� �X
j D1

xj�.sj /p C
�X

j D1

x�Cj .�.�j /p C �.��1
j /p/

��
D �r.�.�/p/ D ��r.�/;

by using (6). This shows that �r is an eigenfunction of PX for the eigenvalue �. The
orthogonality of the functions �r is a straightforward application of Lemma 2.2:

h�r ; �si D
X
�2�

r.�.�/p/s.�.�/p/ D
X
�2�

h�.�/p; eri h�.�/p; esi D CP her ; esi;

where e1; : : : ; ek denotes the standard basis in Rk . Now let � D f�1; : : : ; �ng. Let
A be the .k � n/ matrix whose columns are the vectors �.�j /p 2 Sk�1. Then the
rows of A represent the functions �r , and we have

kX
rD1

k�rk2 D
nX

j D1

k�.�j /pk2 D n D j�j:

This shows that k�rk2 D j�j
k

.
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Remark 2.3. Assume that � in Proposition 1.5 is irreducible but not orthogonal, i.e.,
� W � ! GL.k;R/. The above proof still shows that the functions �r are eigenfunc-
tions. LetA be the .k�n/matrix as in the proof. Then the irreducibility of � implies
that the columns span all of Rk , i.e., the rank of A is k. But this means that the
functions �r (the k rows of A) must be linearly independent.

3. Proof of Corollary 1.7 and Proposition 1.9

Our first aim is to establish the geometric procedure for obtaining eigenfunctions of
PX on the Cayley graph of a Coxeter group, as well as explicit derivations of the
maps ‰� and ‰�.

Proof of Corollary 1.7. We start with a finite, irreducible Coxeter group. This implies
that the geometric realisation � ,! O.k/ is an irreducible, faithful representation.
Note that we have hni ; nj i D � cos �

mij
, where mij is the order of the element sisj .

Since � is a finite Coxeter group, M D .hni ; nj i/ is a positive definite, symmetric
matrix. Writing M D Id � C with a symmetric matrix C < Id (as quadratic forms)
whose entries are all non-negative, we obtain M�1 D P1

sD0 C
s . Irreducibility

implies that for every position 1 � i; j � k, there is an s � 0 such that .C s/ij > 0.
This implies that all entries of M�1 are strictly positive. Recall that

V WD det.n1; : : : ; nk/ D .detM/1=2 > 0:

We define, as in (7),

pj D .�1/j �1n1 � � � � � bnj � � � � � � � �nk :

The vectorspj may all have different Euclidean lengths. We have, by construction
hni ; pj i D V ıij . Let

� D �� D ˚
.x1; : : : ; xk/ j xj � 0;

P
j xj D 1

�
be the simplex associated to the Cayley graph Cay.�; S/.

Our aim is to construct the maps ‰� W F0 ! int.�/ and ‰� W F0 ! .0; 1/: Any
point p 2 F0 can be expressed uniquely as

p D ˛1p1 C � � � C ˛kpk;

with˛1; : : : ; ˛k > 0. We will show that there is a unique choice ofXD.x1; : : : ; xk/ 2
int.�/ and � 2 .0; 1/ such that

�p D
X

j

xj�j .p/: (12)
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We then define ‰�.p/ D X and ‰�.p/ D �. The construction will show that X
and � depend smoothly on the coordinates j̨ . Applying Proposition 1.5 yields the
results stated in the Corollary. It then only remains to prove that ‰� is bijective and
that the composition ‰� B‰�1

� is analytic.
Since �j .p/ D p � 2hp; nj inj D p � 2 j̨V nj , we immediately see that kp �

�j .p/k D 2 j̨V . Moreover, (12) translates into

�p D .x1 C � � � C xk/p � 2V
X

j

j̨xjnj : (13)

This means that we need to find a unique .x1; : : : ; xn/ 2 � and � 2 R such thatX
j

j̨xjnj D �
X

j

j̨pj ; (14)

and then set � D x1 C � � � C xk � 2V�. Taking inner products with the simple
roots n1; : : : ; nk , and bringing everything in a matrix equation, we end up with the
equivalent equation

M

0B@˛1x1

:::

˛kxk

1CA D �V

0B@˛1

:::

˛k

1CA : (15)

Obviously, this equation is homogeneous, i.e., if .x1; : : : ; xk; �/ is a solution then
so is .cx1; : : : ; cxk; c�/ for any constant c. We first seek for the unique solution
.x0

1; : : : ; x
0
k
/ of (15) for the choice � D 1. .x0

1; : : : ; x
0
k
/ will not be a point in�, and

we obtain the correct solution by way of rescaling. Using the fact thatM�1 D IdCD,
where all diagonal entries of D are non-negative and all off-diagonal are strictly
positive, we end up with the inequality0B@x

0
1
:::

x0
k

1CA D V

0B@˛1

: : :

˛k

1CA
�1

M�1

0B@˛1

: : :

˛k

1CA
0B@1:::
1

1CA > V

0B@1:::
1

1CA : (16)

This shows that any choice ˛1; : : : ; ˛k > 0 leads to a strictly positive vector

.x0
1; : : : ; x

0
k/;

and that
�0 WD x0

1 C � � � C x0
k � 2V > 0: (17)

For p D P
j j̨pj 2 F0, we first calculate x0

1; : : : ; x
0
k

, �0 > 0 via the equations (16)
and (17), and then apply the rescaling to obtain

‰�.p/ D 1P
j x

0
j

.x0
1; : : : ; x

0
k/ 2 int.�/; ‰�.p/ D �0P

j x
0
j

2 .0; 1/: (18)
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Next we show that ‰� W F0 ! int.�/ is bijective. Choose X D .x1; : : : ; xk/ 2
int�. An equivalent reformulation of (15) is0B@˛1

:::

˛k

1CA D �V x�1M�1

0B@˛1

:::

˛k

1CA ; (19)

where x D diag.x1; : : : ; xk/ denotes the diagonal matrix with the entries xj . Note
that V x�1M�1 is a matrix with all its entries strictly positive. Therefore, we can
apply Perron–Frobenius theory and conclude that there is a unique Perron–Frobenius
eigenvector .˛1; : : : ; ˛k/, scaled in such a way that p D P

j j̨pj 2 Sk�1. Since
j̨ > 0, we conclude that p 2 F0. This shows that every X 2 int.�/ has a unique

preimage under ‰�.
Further, note that��1 is the Perron–Frobenius eigenvalue of the matrixV x�1M�1

and that � D � P
j xj

� � 2V� D 1� 2V� in (13). This implies that the composition
‰� B‰�1

� W int.�/ ! .0; 1/ is given by

‰� B‰�1
� .X/ D 1 � 2ƒX ; (20)

whereƒX is the Perron–Frobenius eigenvalue of the positive matrix x�1M�1. Since
this eigenvalue has always multiplicity one, it depends analytically on the weights
x1; : : : ; xk , by the analytic version of the Implicit Function Theorem. This finishes
the proof of Corollary 1.7.

Next we modify arguments in Kassabov [13], p. 20, to prove Proposition 1.9.

Proof of Proposition 1.9. Let us first recall some of his notation of this source. Let
H D l2.G/ and  W � ! U.H / be the right-regular representation ..�/f /.�/ D
f .��/. Let

�X D Id � PX D
kX

iD1

xi .Id � .si //:

Let Vi D ff 2 H j f D .si /f g. Note that Id � .si / is equal to 2PrV ?

i
, i.e.,

twice the orthogonal projection to the orthogonal complement of the subspace Vi .
This implies that

h�Xf; f i D 2
X

i

xidVi
.f /2; (21)

where dV .f / D infg2V kf � gk D kPrV ?f k. Moreover, we have

k\
iD1

Vi D fconstant functions in l2.G/g:
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For f 2 H , let df denote the column vector with entries the distances dVi
.f /. We

conclude from Theorem 5.1 of [13] that, for any function f orthogonal to the constant
functions,

kf k2 � d>
f M

�1df D .x1=2df /
>x�1=2M�1x�1=2.x1=2df / � ƒXkx1=2df k2;

(22)
where ƒX is the Perron–Frobenius eigenvalue of x�1=2M�1x�1=2 (note that this
agrees with the Perron–Frobenius eigenvalue of x�1M�1). Combining (21) and
(22), we conclude that

h�Xf; f i � 2ƒXkf k2;

i.e., the second highest eigenvalue �1.X/ of PX is � 1 � 2ƒX . On the other hand,
(20) in the previous proof shows that ‰� B ‰�1

� .X/ D 1 � 2ƒX is a non-trivial
eigenvalue of PX (of multiplicity � k), and therefore we must have �1 D ‰� B‰�1

� .
This finishes the proof of Proposition 1.9.

4. Proof of Proposition 1.10

Our main goal is to prove Corollary 4.2 below. We follow closely the arguments
given by van der Holst [20]. We use the notation used there, but recall them for the
reader’s convenience. Let G D .V;E/ be an arbitrary connected graph with vertex
set V D f1; : : : ; ng. For a given subset V0 � V of vertices, we define hV0i � G to
be the subgraph induced by V0. For a function f 2 l2.G/, let supp.f / WD fi 2 V j
f .i/ ¤ 0g and supp˙.f / D fi 2 supp.f / j ˙f .i/ > 0g. We say that a non-zero
function f in a subspace E � l2.G/ has minimal support, if for every non-zero
function g 2 E with supp.g/ � supp.f / we have supp.g/ D supp.f /.

Let M.G/ be the set of all symmetric (not necessarily stochastic) matrices M D
.mij / with all non-diagonal entries mij > 0 if i � j and mij D 0 if i 6� j .
Note that we do not impose any sign conditions on the diagonal entries mi i . It
is a direct consequence of the connectedness of G and Perron–Frobenius that the
highest eigenvalue �0.M/ is simple. Colin de Verdière calls the matrices in M.G/

Schrödinger operators on the graph G (see [9]), and they play an important role
for his graph invariant �.G/ (see [8]). The following result can be considered as a
graph theoretical analogue of the Courant nodal domain for Riemannian manifolds
(see [7]):

Proposition 4.1 ([20]). LetG D .V;E/ be a finite connected graph andM 2 M.G/.
Let E D E�1.M/ be the eigenspace of the second highest eigenvalue of M . Let
f 2 E be a function of minimal support. Then hsuppC.f /i and hsupp�.f /i are
both connected graphs.

This fact allows us to prove the following special result:
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Corollary 4.2. Let � 2 fA3; B3;H3g and G be the associated Cayley graph with
respect to the canonical set S D fs1; s2; s3g of generators. LetX be an interior point
of �� . Then we have �1 D �1.X/ 2 Œ0; 1/, and the corresponding eigenspace has
dimension � 3.

Proof (following mainly [20]). Let E be the eigenspace of �1. SinceX 2 int.�/, we
have PX 2 M.G/. Note that the spectrum of PX is symmetric (since G is bipartite),
and therefore we must have �1 2 Œ0; 1/, since both eigenvalues �1, 1 are simple,
because GPX

D G is connected.
Recall that V D � and that G D .V;E/ is the one-skeleton of one of the solids

.4; 6; 6/, .4; 6; 8/ or .4; 6; 10/. In particular, G is a 3-connected finite planar graph
of constant vertex degree three. We think of the elements of G as being enumerated
and identify group elements with their corresponding integers. Thus, it makes sense
to write p�;� 0 for the matrix entries of PX .

Let �0 2 V be arbitrary and ‚�0
W E ! R3 be the map

‚�0
.f / D .f .�0s1/; f .�0s2/; f .�0s3//: (23)

We prove that this map is injective, which shows that dim E � 3. Assume that there
is a non-zero f 2 E with‚�0

.f / D 0, i.e., supp.f /\ �0S D ;. Choose a function
g 2 E with minimal support supp.g/ � supp.f /.

We first show that g.�0/ D 0. Assume that g.�0/ ¤ 0. Without loss of generality,
we can assume that �0 2 suppC.g/ (otherwise replace g by �g). Since

�1g.�0/ D
3X

j D1

p�0;�0sj
g.�0sj / D 0;

we must have�1 D 0. Since suppC.g/ is connected by Proposition 4.1 andg vanishes
on all neighbours of �0, we conclude that suppC.g/ D f�0g. Let Sn.�/ � V denote
the sphere of combinatorial radius n around � . Since for our graphs, all vertices in
S1.�0/ have two neighbours in S2.�0/ and g is an eigenfunction to the eigenvalue
zero, we must have f .� 0/ � 0 for all � 0 2 S2.�0/, and there exists a �1 2 S2.�0/

with f .�1/ < 0. Now, �1 cannot be a neighbour of all three vertices in S1.�0/, and
therefore must have a neighbour �2 with distance at least 2 to �0. Again, since g is an
eigenfunction to the eigenvalue zero, �2 must have a neighbour �3 with g.�3/ > 0.
Therefore, �3 2 suppC.g/nf�0g, which is a contradiction.

So we proved g.�0/ D 0. Let � 0 2 supp.g/. Since G is 3-connected, there
are three pairwise disjoint paths P1, P2, P3, connecting �0 with � 0. Without loss
of generality, we can assume that the path Pi contains the vertex �0si . Starting in
�0si and following the path Pi in direction � 0, let �i 2 Pi be the first vertex with
g.�i / D 0 and �i adjacent to supp.g/. Since g is an eigenfunction, �i must be
adjacent to both suppC.g/ and supp�.g/. Now, contract suppC.g/ and supp�.g/ to
single vertices, denoted by vC and v� (which is possible since both sets are connected,
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by Proposition 4.1) and contract also the parts of the paths P1, P2, P3 from �0 to �i ,
and remove all other vertices on which g vanishes. The resulting graph is planar and
contains K3;3 as a subgraph (where one set of vertices is f�1; �2; �3g and the other
set is f�0; vC; v�g), which is a contradiction.

Proposition 1.10 follows now immediately from Proposition 1.9 and Corollary 4.2.

Remark 4.3. Let X 2 int.�/, and E be the eigenspace of PX to the eigenvalue
�1.X/. The above arguments show that, for all � 2 � , the maps ‚� W E ! R3

(given by (23)) are bijective. This fact is equivalent to a particular transversality
property of PX , the so-called Strong Arnold Hypothesis (for the precise definition
see, e.g., [8] or [15]). The Strong Arnold Hypothesis played a crucial role in the
proof that Colin de Verdière’s graph invariant is monotone with respect to taking
minors.

5. Proofs of the results about the Archimedean solids

Before we present the proofs of Theorems 1.12 and 1.14, let us mention that the full
spectra of the canonical Laplacians of theArchimedean solids were calculated in [19].

Proof of Theorem 1.12. Let � 2 fA3; B3;H3g and G D .V;E/ be the Cayley graph
associated to� with respect to the canonical setS D fs1; s2; s3g of generators. Recall
thatG is the one-skeleton of the Archimedean solids .4; 6; 6/, .4; 6; 8/ and .4; 6; 10/,
respectively.

Then we have

M D
0@ 1 0 �1

2

0 1 �	
2�1

2
�	

2
1

1A ; M�1 D 1

�

0@1C � � 2

� 3 2�

2 2� 4

1A (24)

and V 2 D 

4

, where � and � are given as in the following table:

� A3 B3 H3

� 1
p
2 ' D 1Cp

5
2

� D 3 � �2 2 1 2 � '

Let p D ˛p1 Cˇp2 C�p3 be a general point in the spherical fundamental domain
F0 � S2. Choosing � D 1 and using (16) and (24), we obtain0@x0

y0
z0

1A D 1

2
p
�

0B@1C �C 	ˇC2�
˛

3C ˛C2�
ˇ
�

4C 2˛C2	ˇ
�

1CA (25)
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and �0 D x0 C y0 C z0 � p
�. ‰�.p/ and ‰�.p/ are then given by the expressions

in (18).
Since the lengths of the Euclidean edges are given by kp � �1.p/k D 2˛V ,

kp � �2.p/k D 2ˇV and kp � �3.p/k D 2�V (see Corollary 1.7), there is only one
point p0 2 F0 for which all edges are of equal length, namely the choice ˛ D ˇ D � .
Using (25) in this case and calculating .x; y; z/ D ‰�.p0/ and � D ‰�.p0/ with
the help of (18) yields

.x; y; z/ D 1

12C �C 6�
.3C�C�; 3C3�; 6C2�/ and � D 12C 6� � �

12C 6�C �
: (26)

By Theorem 1.3 and Proposition 1.10, this is the only critical point of �1 W int.�/ !
.0; 1/. By Proposition 1.2, �1 has a global minimum in int.�/, which must therefore
agree with (26).

From Corollary 1.7 and Proposition 1.10 we conclude that �1 W int.�/ ! .0; 1/

is analytic, and we know from the proof of Proposition 1.2 that �1 is convex. Assume
that �1 would not be strictly convex. Then there would exist three different collinear
points X1; X2; X3 2 int.�/ with �1.X1/ D �1.X2/ D �1.X3/. Convexity of �1

would force �1 to be constant on the line segment bounded by the two extremal points
of X1; X2; X3. Analyticity of �1 would imply that �1 is constant along the whole
line in � containing these three points. But this would lead to �1.X1/ D �1.X2/ D
�1.X3/ D 1, a contradiction to �1 < 1 on the interior of �.

In the case � D H3, i.e., .�; �/ D .'; 2 � '/, we obtain

X0 D .x; y; z/ D 1

14C 5'
.5; 3C 3'; 6C 2'/ and � D 10C 7'

14C 5'
:

The corresponding spectral representation ˆX0
agrees, up to the factor j�j

3
, with the

orbit map ˆ.�/ D �p0, by Corollary 1.7, and is therefore faithful.
Analogously, one easily checks that the choices .�; �/ D .1; 2/ and .�; �/ D

.
p
2; 1/ lead to the explicit values for .x; y; z/ and �, given in Remark 1.13.

Proof of Theorem 1.14. We only discuss the Archimedean solid .4; 6; 10/ (i.e., � D
H3), the other solids are treated analogously.

Note, by the construction of p1, p2, p3 in (7), that the orbit �p1 gives the vertices
of an icosahedron. Up to a scalar factor, p2 points to the centre of a face of this
icosahedron and p3 to the midpoint of an edge of the icosahedron, and the orbits �p2

and �p3 are the vertices of an dodecahedron .5; 5; 5/ and of an icosidodecahedron
.3; 5; 3; 5/, respectively. Moreover, it is easy to see that there are positive constants
0 < c0 < C0 such that˛p1Cˇp2C�p3 2 F0, ˛; ˇ; � � 0, implies c0 � ˛CˇC� �
C0.

Let Xn D .xn; yn; zn/ 2 int.�/ be a sequence converging to .x; 0; z/ 2 �

with x; z > 0. Then there are constants c1; c2 > 0 with c1xn < zn < c2xn. Let
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‰�1
� .Xn/ D qn D ˛np1 C ˇnp2 C �np3 2 F0. Our aim is to show ˛n; �n ! 0.

From (25) and (18), we deduce that

xn D 1

F.˛n; ˇn; �n/

�
3 � ' C 'ˇn C 2�n

˛n

�
;

yn D 1

ˇnF.˛n; ˇn; �n/
.3ˇn C .˛n C 2�n/'/;

zn D 1

F.˛n; ˇn; �n/

�
4C 2˛n C 2'ˇn

�n

�
;

with

F.˛; ˇ; �/ D 10 � ' C 'ˇ C 2�

˛
C ˛ C 2�

ˇ
' C 2˛ C 2'ˇ

�
:

Since yn ! 0 and c0 � 3ˇn C .˛n C 2�n/' � 4C0, we must have

ˇnF.˛n; ˇn; �n/ ! 1:

This necessarily implies ˛n�n ! 0. Assume ˛n converges to zero on a subsequence,
on which �n does not converge to zero. Then F.˛n; ˇn; �n/ ! 1 implies that zn

converges to zero on a finer subsequence and, since c1xn < zn, xn must also converge
to zero on this finer subsequence, contradicting to xn C yn C zn D 1. This shows
that both ˛n; �n ! 0, i.e., qn converges to a multiple of p2. By Corollary 1.7, the
corresponding spectral representations converge, up to a scalar factor, to the orbit
map ˆ.�/ D �p2, and �p2 are the vertices of a dodecahedron. This proves the
convergence behaviour asXn converges to an interior point of the bottom edge of the
simplex � in Figure 2. The converge behaviour to interior points of the other two
edges of � is proved analogously.

The curve C2 is characterised by the property ˛ D � . Using this fact and the
relation (25), and substituting t D ˛

ˇ
we obtain

C2 D
8<: 1

3't2 C .14 � '/t C 3'/

0@.5 � '/t C '

3't2 C 3t

6t C 2'

1A ˇ̌
t 2 .0;1/

9=; � �:

Note that t ! 1 implies ˇ ! 0, which means that the Euclidean edges between the
4-gons and the 10-gons shrink to zero and the corresponding spectral representations
converge to equilateral realisations of the buckeyball .5; 6; 6/ (see Figure 3). The
convergence behaviour along the other curves C1, C3 is proved analogously.
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