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Fast growth in the Følner function for Thompson’s group F
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Abstract. The purpose of this note is to prove a lower bound on the growth of Følner functions
for Richard Thompson’s group F . Specifically I will prove that, for any finite generating set
� � F , there is a constant C such that FølF;�.C n/ � expn.0/.
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1. Introduction

In this paper we will study the Følner function for Richard Thompson’s group F .
Recall that a finite subset A of a finitely generated group G is "-Følner (with respect
to a finite generating set � � G) if

X
�2�

j.A � �/ 4 Aj < "jAj

where 4 denotes symmetric difference. The Følner function of G (with respect to
�) is defined by

FølG;�.n/ D minfjAj W A � G is 1
n

-Følner with respect to �g
with

FølG;�.n/ D 1
if there is no 1=n-Følner set with respect to � . By Følner’s criterion, a group G is
amenable if and only if its Følner function (with respect to any finite generating set
�) is finite valued.

Thompson’s group F has many equivalent definitions; we will use the formulation
in terms of tree diagrams defined below. The standard presentation of F is infinite,
with generators xi .i 2 N/ satisfying x�1

i xnxi D xnC1 for all i < n. It is well
known, however, that F admits the finite presentation

hA; B j ŒAB�1; A�1BA� D ŒAB�1; A�2BA2� D idi
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(see [2]). Geoghegan conjectured that F is not amenable [5], p. 549, and at present
this problem remains open.1 The goal of this paper is to establish the following lower
bound on the Følner function for F .

Theorem 1.1. For every finite symmetric generating set � � F there is a constant
C > 1 such that if A � F is a C �n-Følner set with respect to � , then A contains
at least expn.0/ elements. In particular FølF;� is not eventually dominated expp.n/

for any finite p.

Here expp.n/ is the p-fold composition of the exponential function defined by
exp0.n/ D n and exppC1.n/ D 2expp.n/. If it turns out that F is amenable, then
Theorem 1.1 would be a step toward answering (negatively) the following question
of Gromov [7], p. 578.

Question 1.2. Is there a primitive recursive function which eventually dominates
every Følner function of an amenable finitely presented group?

While it is known that the Følner functions of amenable finitely generated groups
can grow arbitrarily fast [4], this is not the case for finitely presented groups (since
there are only countably many such groups). See [3] for what can be accomplished
via wreath products of Z.

This note is organized as follows. In Section 2, I will review some of the basic
definitions associated with F and fix some notational conventions. In Section 3,
I will introduce the notion of a marginal set and prove some basic lemmas about
them. These are sets which must have small intersections with Følner sets. They
play a central role in the proof of the main result of the paper. Section 4 recasts
the amenability of F in terms of its partial right action on the finite rooted ordered
binary trees T . Section 5 defines an operation on elements of T which exponentially
decreases their size and commutes with the partial right action of F . It is shown that
the trees which are trivialized by this operation are marginal and it is this that allows
the proof of Theorem 1.1.

Acknowledgements. I would like to thank Matt Brin for his careful reading of drafts
of this paper, catching errors, and suggesting improvements. In particular, the current
formulation of Lemma 3.9 was suggested by him (the original formulation provided
a weaker estimate). I would also like to thank the anonymous referee for their very
careful reading and helpful comments and suggestions. This research was supported
in part by NSF grant DMS–0757507.

1In fact Thompson himself had studied the question of the amenablity of F already by the early 1970s
[9], although the question was not well known until it was independently considered and popularized by
Geoghegan.
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2. Notation and background

I will use [2] as a general reference for Thompson’s group F , although the reader is
warned that the notation in the present paper will differ somewhat from that of [2]. Let
T denote the collection of all finite rooted ordered binary trees. For concreteness, we
will view elements T of T as finite sets of binary sequences which have the following
property: for every infinite binary sequence x, there is a unique element of T which
is an initial part of x. Thus an element T of T is a record of the addresses of the
leaves of the tree which it represents. The trivial tree is the set which consists only
of the sequence of length 0.

The collection of finite binary sequences is equipped with the operation of con-
catenation (denoted by uˆv), the partial order � of extension (defined by u � uˆv),
and the lexicographic order (denoted by u <lex v). Note that u extends v includes the
possibility that u D v. I will use h i to denote the sequence of length 0. T can also
be characterized as being those nonempty finite sets T of binary sequences such that

� no element of T is an initial part of another element of T , and
� if u is a binary sequence, then uˆ0 has an extension in T if and only if uˆ1 has

an extension in T .

If U and V are in T , then we will say that U is dominated by V if every element
of U has a extension in V . If T is in T and u a finite binary sequence, define

T=u D fs W uˆs 2 T g:
If this set is non-empty, then it is again a member of T (in which case T=u is the tree
of descendants of u). Elements of T come with a canonical ordering provided by
<lex and phrases such as the i -th element and the minimum element will always refer
to the <lex-order in this context. In this paper N contains 0 and in particular counting
will always start at 0. The letters i , j , k, and l will always be used to denote natural
numbers.

A tree diagram is a pair .L; R/ of elements of T such that jLj D jRj. We view a
tree diagram as describing a map of sequences defined by

si ˆx 7! ti ˆx

where si and ti are the i -th elements of L and R respectively and x is any binary
sequence. This map is defined not only on all infinite length binary sequences but
also on all but finitely many finite binary sequences. The value of the associated map
f at a sequence t will be denoted t � f when it is defined. If t is a finite sequence,
then we will say that f acts properly on t if t � f is defined and the final digit of t � f
agrees with that of t . Notice that f acts properly on t unless s � f is undefined for
every proper initial part s of t . In particular, if f acts properly on t , it acts properly
on any extension of t .

If two tree diagrams define the same map on infinite sequences, then they are said
to be equivalent. Every tree diagram is equivalent to a unique minimal tree diagram;
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such a tree diagram is said to be reduced. Furthermore a tree diagram .S; T / is
reduced if and only if whenever i < jS j � 1 it is not the case that both si and ti end
with 0 and siC1 and tiC1 end with 1 (where si and ti are the i -th elements of S and
T respectively). See [2] for details.

Thompson’s group F is the collection of reduced tree diagrams with the operation
defined by f �g D g Bf (i.e., “f followed by g”). F is generated by fx0; x1g, where
x0 and x1 are specified by

x0 D

8̂
<
:̂

00 7! 0;

01 7! 10;

1 7! 11;

x1 D

8̂
ˆ̂<
ˆ̂̂:

0 7! 0;

100 7! 10;

101 7! 110;

11 7! 111:

In our discussion of F “generator” will mean an element of the set

� D fx0; x1; x�1
0 ; x�1

1 g

(this is really only relevant in Lemma 5.10). This includes the usage of Følner in
Sections 4 and 5. If xn is defined by xnC1 D x�n

0 x1xn
0 for n � 1, then we obtain the

generators which yield the infinite presentation of F mentioned in the introduction.
Notice that the existence of constant C satisfying the conclusion of Theorem 1.1

for � implies the main theorem for all finite generating sets. This is because if � 0 is
any other finite generating set, there is a constant K > 0 such that any set which is
"-Følner with respect to � 0 is K"-Følner with respect to � .

I will also identify elements of F with the corresponding maps on sequences. If
T is in T and f is in F with f defined on all of T , then T � f is the pointwise image
of T under f . It is easily checked that this results in an element of T and hence this
defines a partial right action of F on T . If T is in T and f is in F , then f acts
properly on T if it acts properly on the elements of T . If � is a subset of F , then �

acts properly on T if each element of � acts properly on T . Observe that if .S; T / is
a reduced tree diagram which represents g and f acts properly on T , then .S; T � f /

is reduced and represents f B g. If f is in F , I will write .Lf ; Rf / to denote the
reduced tree diagram for f .

3. Marginal sets

In this section we will introduce the notion of a marginal set and collect some basic
lemmas which we will use in Sections 4 and 5. Throughout this section “right” in
an implicit adjective whenever applicable, although all statements have their corre-
sponding “left” analogs. Fix, for the duration of the section, a group G with a finite
symmetric generating set � .
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Definition 3.1. A partial action of G on a set S is a partial function � W S � G ! S

such that

� x � e D x for all x 2 S ;
� x � g D y if and only if x D y � g�1 for all g 2 G and x; y 2 S ;
� x � .gh/ D .x � g/ � h for all g; h 2 G and all x 2 S for which all computations

involving � are defined.

If E � S and g is in G, I will write E � g to denote fx � g W x 2 Eg.

Remark3.2. Since the exponentiation is defined in G, it is entirely possible in general
for x � gi to be undefined while x � gj is defined for some i < j .

Definition 3.3. A weighted "-Følner set with respect to � is a function � from a finite
subset of S into .0; 1/ which satisfies

X
�2�

X
s2S

j�.s � �/ � �.s/j < "
X
s2S

�.s/;

where we adopt with the conventions that �.s/ D 0 if s is not in the domain of � and
�.s �g/ D 0 if s �g is undefined. The set fs 2 S W �.s/ > 0g will be referred to as the
support of �. The function � induces a finitely supported measure on S , also denoted
�, defined by �.A/ D P

s2A �.s/. In the remainder of the paper, the generating set
will always be clear from the context and we will often suppress mention of it.

Notice that an "-Følner set is a set A � S such that the characteristic function
1A is a weighted "-Følner set. I will use � � A to denote � � 1A. We will need
the following property of weighted Følner sets, which is what justifies their added
generality in the present paper.

Lemma 3.4. Suppose that G acts partially on sets S and T and that � is a weighted "-
Følner set with respect to the action on S . If h W S ! T satisfies that h.s ��/ D h.s/��
(with both quantities defined) whenever �.s/ C �.s � �/ > 0 and � 2 � , then
�.t/ D P

h.s/Dt �.s/ (s ranges over S ) defines a weighted "-Følner set (with respect
to the action on T ).

Proof. Let G, S , T , �, and � be as in the statement of the lemma. We need to verify
that X

�2�

X
t2T

j�.t � �/ � �.t/j < "�.T /:

Let � 2 � and t 2 T be fixed for the moment. First observe that if j�.t ��/��.t/j > 0,
then t � � is defined. This is because otherwise it must be the case that �.t/ > 0 and
hence there must be an s such that h.s/ D t and �.s/ > 0. In particular, this implies
t � � is defined.
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Next we have that
X

h.u/Dt ��
�.u/ D

X

h.u/���1Dt

�.u/ D
X

h.u���1/Dt

�.u/ D
X

h.s/Dt

�.s � �/:

The first equality is justified by the properties of a partial action; the second equality
is justified by our assumption that �.u/ > 0 implies h.u � ��1/ D h.u/ � ��1 with
both quantities defined; the third equality is justified by the properties of a partial
action and our assumption that �.u/ > 0 implies u � ��1 is defined. Now it follows
that

X
�2�

X
t2T

j�.t � �/ � �.t/j D
X
�2�

X
t2T

j
X

h.s/Dt

�.s � �/ � �.s/j

�
X
�2�

X
s2S

j�.s � �/ � �.s/j < "�.S/ D "�.T /:

Fix a partial action of G on a set S for the duration of this section. If g is in G,
let dg be the minimum length of a word in � which evaluates to g. We will need the
following lemma.

Lemma 3.5. If " > 0, � is a weighted "-Følner set and g is in G, then
X
s2S

j�.s � g/ � �.s/j < 2"dg�.S/:

Proof. Let �i .i < dg/ be elements of � such that g D Q
i<dg

�i . Let gj D Q
i<j �i .

X
s2S

j�.s � g/ � �.s/j �
X
s2S

X
i<dg

j�.s � giC1/ � �.s � gi /j:

Notice that it may be that s � giC1 is defined even though s � gi is not. If this is the
case, however, then

j�.s � giC1/ � �.s � gi /j D j�..s � giC1/ � ��1
i / � �.s � giC1/j:

It follows that
X
i<dg

X
s2S

j�.s � giC1/ � �.s � gi /j �
X
i<dg

X
�D˙1

X
s2S

j�.s � ��
i / � �.s/j;

which is less than 2"dg�.S/.

We will be interested in the following notion which ensures that a set has small
intersection with any Følner set. The definition is motivated by the following simple
observation. If � is a finitely additive invariant probability measure on a group G

and E � G satisfies that, for some g 2 G, fE � gi W i 2 Ng is a pairwise disjoint
family, then �.E/ D 0.
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Definition 3.6. If g 2 G, I � S , and E � S , then g marginalizes E off I if for
every x 2 E if x � gk 2 E and k > 0, then there is an i < k such that x � gi is in I

or is undefined. If I is the empty set, then I will write g marginalizes E.

Definition 3.7. The k-marginal sets for the partial action of G on S are defined
recursively as follows. The empty set is 0-marginal. If there is a decomposition
E D S

i<l Ei � S and for each i < l , there is a gi 2 G and a k-marginal set Ii

such that gi marginalizes Ei off Ii , then E is .k C 1/-marginal. E � S is marginal
if it is k-marginal for some k < 1.

Remark 3.8. For a fixed partial action of a group G on a set S , it is immediate from
the definition that a finite union of marginal sets is marginal and that a subset of a
marginal set is marginal. Additionally, if E � S and g is in G, then g�1 marginalizes
E n .E � g/ off E. In particular, if E is marginal, then so is E � g.

We will need the following lemma which shows that marginal sets have small
intersections with Følner sets.

Lemma 3.9. Suppose that " > 0 and � is a weighted "-Følner set with support A.
If E � S and g marginalizes E off S n A, then �.E/ < 2"dg�.S/.

Proof. For each x 2 E \ A, let ˆ.x/ denote the set of all x � gi such that

� x � gj is defined and in the support of � for all j � i and
� �.x � giC1/ < �.x � gj / for all j � i .

Observe that each ˆ.x/ is finite and non-empty. Because E is marginalized off S nA

by g, fˆ.x/ W x 2 Eg is a pairwise disjoint family. Observe that, for a fixed x 2 E,

�.x/ �
X

y2ˆ.x/

�.y/ � �.y � g/ D
X

y2ˆ.x/

j�.y � g/ � �.y/j:

Summing over x 2 E and applying Lemma 3.5 now gives the desired estimate.

Lemma 3.10. If E � S is marginal, then there is a constant C such that if " > 0

and � is a weighted "-Følner set, then �.E/ < C "�.S/.

Proof. I will prove by induction on k that if E is k-marginal, then the conclusion of
the lemma holds. If k D 0, then E is in fact empty and �.E/ D 0. Next suppose
that E is .k C 1/-marginal. Let Ii .i < l/, gi .i < l/, and Ei .i < l/ be such that

� for each i < l , gi is in G and marginalizes Ei off Ii ;
� for each i < l , Ii is k-marginal;
� E D S

i<l Ei .
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By our inductive assumption, there are Ci .i < l/ such that if � is a weighted "-
Følner set, then �.Ii / < Ci"�.S/. Set C D P

i<l Ci C2dgi
. Now if � is a weighted

"-Følner set, then by applying Lemma 3.9 to the restriction of � to S n S
i2I Ii we

obtain

�.E/ D �.
S
i<l

Ii /C�.
S
i<l

Ei n S
i<l

Ii / � P
i<l

Ci"�.S/C2dgi
"�.S/ D C "�.S/:

Lemma 3.11. If � is a weighted "-Følner set and � is a function from a finite subset
of S into Œ0; 1/ with � � � pointwise and �.S/ � .1 � ı/�.S/ for some ı satisfying
0 < ı < 1, then � is a weighted ." C 2j�jı/=.1 � ı/-Følner set.

Proof. Let � and � be given as in the statement of the lemma. Fix an s 2 S and
� 2 � . If �.s � �/ � �.s/, then

j�.s � �/ � �.s/j � �.s � �/ � �.s/ C �.s/ � �.s/:

If �.s � �/ � �.s/, then

j�.s � �/ � �.s/j � �.s/ � �.s � �/ C �.s � �/ � �.s � �/:

In either case, we have

j�.s � �/ � �.s/j � j�.s � �/ � �.s/j C �.s/ � �.s/ C �.s � �/ � �.s � �/:

Summing over s 2 S and � 2 � and combining this with our hypotheses we obtain:

X
�2�

X
s2S

j�.s � �/ � �.s/j < "�.S/ C 2j�jı�.S/ � " C 2j�jı
1 � ı

�.S/:

Lemma 3.12. If E � S is marginal and S n E is non-empty, then there is a constant
C such that if � is a weighted "-Følner set and C " � 1, then � � .S n E/ is a
weighted C "-Følner (and in particular the support of � � .S n E/ is non-empty).

Proof. Let E be marginal and let C0 be such that if " > 0 and � is a weighted
"-Følner set, then �.E/ < C0"�.S/ and hence �.S n E/ > .1 � C0�/�.S/. Set
C D 2.1C2C0j�j/ and suppose that " > 0 satisfies C " � 1 and that � is a weighted
"-Følner set. It follows that C0" � 1=2 and hence

" C 2j�jC0"

1 � C0"
� 2.1 C 2j�jC0/":

Observe that the support of � is not contained in E since �.E/ < C0"�.S/ < �.S/.
Hence by applying Lemma 3.11 with ı D C0" and � D � � .S n E/, we obtain that
� � .S n E/ is C "-Følner.
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Definition 3.13. A subset A � G is �-connected if whenever x and y are in A, there
are �i .i < l/ in � such that, setting x0 D x and xiC1 D xi � �i , then xi is defined
for each i � l and y D xl . A maximal �-connected subset of a given B � G is said
to be a �-connected component of B .

Lemma 3.14. If " > 0 and � is a weighted "-Følner set, then the support of �

contains a �-connected component A such that � � A is "-Følner.

Proof. Let Ai .i < l/ enumerate the �-connected components of the support of �.
Then since X

i<l

X
�2�

X
s2Ai

j�.s � �/ � �.s/j < "
X
i<l

�.Ai /;

there must exist an i < l such that
X
�2�

X
s2Ai

j�.s � �/ � �.s/j < "�.Ai /:

Since Ai is a �-connected component, �.s � �/ D � � Ai .s � �/ whenever s is in Ai

and therefore Ai is "-Følner.

This lemma has the following useful consequence.

Lemma 3.15. Let G be a group with a finite generating set � , acting on itself from
the right. If A � G is a "-Følner set, then there is a B � G which is an "-Følner set
such that B is �-connected, B contains the identity, and jBj � jAj.
Proof. Fix an "-Følner set A and let C be a �-connected component of A which is
"-Følner. Let g be any element of C and define B D g�1C . It is easily verified that
C is still �-connected and (right) "-Følner.

4. Følner sets of trees

Rather than studying Følner sets in F directly, it will be easier to deal with weighted
Følner sets in the partial right action of F on T which I will refer to as weighted
Følner sets of trees. These are essentially weighted right Følner sets consisting of
positive elements of F (positive with respect to the infinite presentation mentioned
above). The reformulation of the amenability problem for F in terms of the existence
of Følner sets of positive elements is well known [6] and part of a more general
phenomenon (see [8], 1.28), but we will need the more precise analytic consequences
of the following lemmas.

Lemma 4.1. For every finite binary sequence u, the set Eu of all f 2 F such that u

is not extended by an element of Rf is marginal with respect to the right action of F

on itself.
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Proof. Let u be fixed and let g be the element of F which is the identity on sequences
which do not extend u and which satisfies

.uˆv/ � g D uˆ.v � x0/

for all sequences v for which v � x0 is defined.
Now let f be an element of Eu and let t be the initial part of u which is in Rf

(such a t exists by our assumption that u does not have an extension in Rf ). Let
s D t � f �1. That is, s is the element of Lf such that

jfa 2 Lf W a <lex sgj D jfb 2 Rf W b <lex tgj:
Observe that f � gn can be represented by the tree diagram .A; B/ defined by:

A D .Lf n fsg/ [ fsˆv W sˆv 2 Lgng;

B D .Rf n ftg/ [ ft ˆv W t ˆv 2 Rgng:
That .A; B/ is a reduced tree diagram follows from the characterization mentioned
in Section 2 and the following facts:

� .Lf ; Rf / and .Lgn ; Rgn/ are reduced;
� jfa 2 A W a <lex sgj D jfb 2 B W b <lex tgj;
� the minimum (maximum) elements of the sets

fsˆv W t ˆv 2 Lgng and ft ˆv W t ˆv 2 Rgng
end in 0 (respectively 1).

Consequently u is extended by an element of Rf �gn for all n > 0 and hence g

marginalizes Eu.

Lemma 4.2. There is a constant C such that if A � F is a (right) "-Følner set, then
there is a weighted C "-Følner set of trees supported on a subset of fRf W f 2 Ag.

Proof. Let U consist of all binary sequences of length 4, noting that if T dominates
U , then every element of � acts properly on T . By Lemma 4.1, the set of f 2 F

such that U is not dominated by Rf is marginal. By Lemma 3.12, there is a constant
C > 1 such that if A is "-Følner and

A0 D ff 2 A W U is dominated by Rf g;
then A0 is C "-Følner. Observe that if � is a generator and f is in A0, then Lf �� D Lf

and R.f ��/ D .Rf / � � . We are now finished by Lemma 3.4 applied to h.f / D Rf

and � D 1A0
.
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5. An operation on elements of T

In this section I will define an operation @ on elements of T which reduces their size
logarithmically.

If T is in T , then the end points of T are the maximum and minimum elements
of T . All other elements of T are said to be interior.

Definition 5.1. Suppose that T is in T . @T is the maximum U 2 T (with respect
to the order of domination) which is dominated by T which satisfies the following
defining conditions:

(1) U contains extensions of both 01 and 10;

(2) one of the following holds:

� if u <lex v are interior elements of U , then 2jT=uj � jT=vj;
� if u <lex v are interior elements of U , then 2jT=vj � jT=uj;

(3) the minimum (respectively the maximum) interior element of U terminates with
a 1 (respectively with a 0).

If no such U exists, then @T is defined to be the trivial tree.

The following lemma justifies the use of maximum in the definition of @T .

Lemma 5.2. If there is a U satisfying the defining conditions for @T , then there is a
maximum such U with respect to the order of domination.

Remark 5.3. Condition (3) is necessary to ensure the uniqueness of maximal ele-
ments of T which satisfying the defining conditions for @T .

Proof. Suppose for contradiction that U and V are distinct maximal elements of T ,
each dominated by T , which satisfy the defining conditions of @T . First I claim that
condition (2) is satisfied in the same way for U and V . For this, it is sufficient to
show that if W is in T , contains extensions of both 01 and 10, and satisfies the
first (second) option of condition (2) for T , then jT=01j < jT=10j (respectively
jT=10j < jT=01j). Suppose that W satisfies the first option (the other case is
symmetric). Let w be the greatest element of W extending 01 and w0 be the least
element of W extending 10. Condition (2) implies that if ui .i � l/ are the elements
of W which extend 01, then

X
i<l

jT=ui j < jT=ul j D jT=wj

and hence jT=01j < 2jT=wj. It follows that

jT=01j < 2jT=wj � jT=w0j � jT=10j:
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By replacing U and V with their mirror images if necessary, we will assume that
the quantity jT=uj is increasing as u increases in U (or equivalently as u increases
in V ). Since U 4 V is non-empty, there is a minimum element of U which either
properly extends an element of V or is properly extended by an element of V . By
exchanging the roles of U with V if necessary, we may assume the former occurs.

First suppose that the minimum elements of U and V are the same. Let u be the
greatest element of U such that it and all of its <lex-predecessors extend an element
of V (this extension may not be proper in the case of the predecessors of u). Let v

be the element of V which u extends. Define

W D fw 2 U W w �lex ug [ fw 2 V W v <lex wg
and observe that W is in T . Notice that jT=uj � jT=vj. Also observe that since
U does not dominate V , u is not the maximum element of U and therefore if x is
an element of U such that x �lex u, then jT=xj � jT=uj. It follows that if x is an
interior element of W in fw 2 U W w �lex ug and y is an interior element of W in
fw 2 V W v <lex wg, then x �lex u and v <lex y which in turn implies

2jT=xj � 2jT=uj � 2jT=vj � jT=yj:
Since both U and V satisfy condition (2), if x <lex y are interior elements of W

and either both are in U or both are in V , then 2jT=xj � jT=yj. It follows that W

satisfies condition (2) as well. Since U and V have the same minimum element and
both satisfy condition (3), U and V have the same minimal interior element. Thus
the minimum interior element of U is also the minimum interior element of W . Also,
since V is not dominated by U , u is not the maximum element of W and v is not
the maximum element of V . Moreover, it can not be the case that v is the maximum
interior element of V . If this were the case, then v D xˆ0 for some x. It would then
follow that xˆ1 would be the maximum element of V and would have an extension
in U . This would imply that U dominates V , which we assumed was not the case. It
follows that the maximum interior element of W is the same as the maximum interior
element of V . Therefore W satisfies condition (3). But now W satisfies the defining
conditions for @T , contradicting the maximality of V .

Now suppose that the minimum elements of U and V differ. Let v be such that
vˆ0 is the minimum element of V , noting that vˆ1 is the minimum interior element
of V . Define

W D fw 2 U W vˆ0 � wg [ fw 2 V W vˆ0 <lex wg
and observe that W is in T . Since vˆ0 is not in U , it must be that both vˆ00 and
vˆ01 have extensions in U and in particular, the minimum interior element of W is
the same as the one of U . Since V is not dominated by U , v ¤ h i. Since vˆ0 is the
minimum element of V , the entries of v are all 0 and hence vˆ1 is not the maximum
element of V or of W . Since every element of W not extending vˆ0 is in V , it follows
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that the maximum interior element of W is the same as the maximum interior element
of V . Therefore W satisfies condition (3). Next suppose that x <lex y are interior
elements of W . If both x and y are in U or both are in V , then 2jT=xj � jT=yj
follows from the fact that U and V satisfy condition (2) and that the minimum interior
element of W is the same as that of U and that the maximum interior element of W

is the same as that of V . Next suppose that x is in fw 2 U W vˆ0 � wg and y is in
fw 2 V W vˆ0 <lex wg. Observe that either y D vˆ1 or vˆ1 <lex y. Since vˆ0 is
extended by an element of U , it must be that vˆ1 is also extended by an element w

of U which is in the interior of U . We now have

2jT=xj � jT=wj � jT=vˆ1j � jT=yj:
(This is where the crucial use of condition (3) occurs.) Thus W satisfies condition (2).
Again, W satisfies the defining conditions for @T , contradicting the maximality of V .

Lemma 5.4. If @T has n elements, then T has more than 2n�2 elements.

Proof. There are n � 2 interior elements of @T and thus by condition (2) the to-
tal number of elements of T which extend an interior element of @T is at leastPn�2

iD1 2i�1 D 2n�2 � 1. Since @T is dominated by T , there are at least two elements
of T remaining to be counted, putting the total greater than 2n�2.

Lemma5.5. If g is in F , T is in T , and g acts properly on @T , then @.T �g/ D .@T /�g.

Proof. First I will verify that if g and T are as in the statement of the lemma, then
.@T / � g is dominated by @.T � g/. Since the action of g on the elements of @T does
not change their final digit, .@T / � g satisfies condition (3). Since the action of g

preserves lexicographic order and extension of sequences, .@T / � g satisfies condi-
tion (2). Finally, since the action of g on @T is proper, @T � g satisfies condition (1).
It follows that .@T / � g is dominated by @.T � g/.

Next observe that if g acts properly on T , then g�1 acts properly on T � g. It
follows that @.T � g/ � g�1 is dominated by @.T � g � g�1/ D @T . Since g and g�1

are injections, it follows that @.T � g/ and .@T / � g have the same elements and hence
are equal.

Definition 5.6. Let E be the set of all T 2 T such that neither of the following
inequalities hold:

.C/ jT=001j < jT=01j < jT=10j;
.�/ jT=001j > jT=01j > jT=10j:

Define

T C D fT 2 T W jT=001j < jT=01j < jT=10jg;
T � D fT 2 T W jT=001j > jT=01j > jT=10jg:
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Lemma 5.7. E is marginal.

Proof. Define the following elements of F :

a D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

000 7! 000;

0010 7! 001;

0011 7! 0100;

01 7! 0101;

100 7! 011;

101 7! 10;

11 7! 11;

b D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

000 7! 000;

0010 7! 001;

0011 7! 01;

01 7! 100;

10 7! 101;

11 7! 11;

(i.e., a D x2
0x1x4x�2

2 x�2
0 and b D x2

0x1x�1
3 x�2

0 ). Define

Ea D fT 2 T W max.jT=001j; jT=10j/ D jT=01jg;
Eb D fT 2 T W max.jT=001j; jT=10j/ < jT=01jg:

Notice that T is in Emax D Ea [ Eb if and only if

jT=01j D max.jT=001j; jT=01j; jT=10j/:
Furthermore, if T is in E n Emax, then

jT=01j D min.jT=001j; jT=01j; jT=10j/:
Observe that for all T 2 T such that T � a is defined, we have

j.T � a/=001j D jT=0010j < jT=001j;
j.T � a/=01j D jT=0011j C jT=01j C jT=100j > jT=01j;
j.T � a/=10j D jT=101j < jT=10j:

Therefore if T � a is in .Ea [ Eb/ � a, then

max.j.T � a/=001j; j.T � a/=10j/ < j.T � a/=01j
and hence T � a is in Eb . Since Ea is disjoint from Eb , this shows that a marginalizes
Ea.

Observe that for all T 2 T such that T � b is defined, we have

j.T � b/=001j D jT=0010j < jT=001j;
j.T � b/=01j D jT=0011j < jT=001j;
j.T � b/=10j D jT=01j C jT=10j > jT=10j:

Define
R D fT 2 T W max.jT=001j; jT=01j/ < jT=10jg:
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The above inequalities show that .Eb [ R/ � b � R. Since Eb is disjoint from R,
this shows that b marginalizes Eb .

Clearly the elements of E n Emax lie in one of the following sets:

E1 D fT 2 T W jT=001j > jT=01j D jT=10jg;
E2 D fT 2 T W jT=01j < min.jT=001j; jT=10j/g;
E3 D fT 2 T W jT=001j D jT=01j < jT=10jg:

The proof will therefore be complete once it has been show that x0 marginalizes
E1 [ E2 off Emax and that x0 marginalizes E3 off Emax.

If T is in T , then

j.T � x0/=01j D jT=001j;
j.T � x0/=10j D jT=01j:

If T is in T � [ E1 [ E2, then jT=001j > jT=01j and thus

j.T � x0/=01j > j.T � x0/=10j:
This yields

.T � [ E1 [ E2/ � x0 � T � [ Emax:

If T is in E3, then jT=001j D jT=01j and thus

j.T � x0/=01j D j.T � x0/=10j:
This yields

E3 � x0 � E1 [ Emax:

This shows that x0 marginalizes E1 [ E3 off Emax and that x0 marginalizes E3 off
Emax.

Definition 5.8. Let E� be the set of all T 2 T such that neither of the following
inequalities hold:

.2�/ 2jT=001j � jT=01j � 1

2
jT=10j;

.1
2
�/

1

2
jT=001j � jT=01j � 2jT=10j:

Observe that if T is not in E� and T contains extensions of both 01 and 10,
then @T is not the trivial tree since f00; 01; 10; 11g is then an element of T which
satisfies the defining conditions for @T .

Lemma 5.9. If T satisfies .C/ and � is a generator, then either T �� is undefined, T ��
is in E , or else T �� satisfies .C/ (and similarly for .�/). In particular, if A � T nE�
is �-connected, then either all elements of A satisfy .2�/ or all elements of A satisfy
.1

2
�/.
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Proof. This follows from the following equalities which hold whenever the relevant
action is defined:

T=001 D .T � x0/=01;

T=01 D .T � x0/=10;

T=001 D .T � x1̇ /=001;

T=01 D .T � x1̇ /=01:

Lemma 5.10. E� is marginal.

Remark 5.11. Lemmas 5.9 and 5.10 have non trivial qualitative consequences for
F -invariant probability measures on T . If � is an F -invariant probability measure
on T , then �.E�/ D 0. Furthermore, �.T C 4 .T C � �// D 0 and therefore if �

is additionally ergodic, then it must be that � assigns measure 1 either to the set of
elements of T which satisfy .2�/ or else to the set of those which satisfy .1

2
�/.

Proof. Define the following elements of F :

c D

8̂
ˆ̂<
ˆ̂̂:

00 7! 0;

01 7! 100;

10 7! 101;

11 7! 11;

d D

8̂
ˆ̂<
ˆ̂̂:

000 7! 00;

001 7! 010;

01 7! 011;

1 7! 1;

(i.e., c D x0x�1
1 and d D x2

0x�1
1 x�1

0 ). Define

X D fT 2 T C W 2jT=01j � jT=10jg;
E4 D fT 2 T C W 2jT=01j > jT=10jg;
E5 D fT 2 T C W 2jT=001j > jT=01jg:

I first claim that .X [ E4/ � c � X [ E . To see this, suppose that T is in T C. Then

2j.T � c/=01j D 2jT=001j < jT=01j C jT=10j D j.T � c/=10j:
and hence if T � c is in T C, it is in X. Since T � c is not in T �, it is either in T C or in
E . This proves the claim. Since E4 is disjoint from X, it follows that c marginalizes
E4 off E and hence that E4 is marginal according to Lemma 5.7. Also, by Lemma 5.9,
E5 �x0 � E4 [E and therefore E5 is marginal because x0 marginalizes E5 off E4 [E .

Next define

Y D fT 2 T � W jT=01j � 2jT=10jg;
E6 D fT 2 T � W jT=01j < 2jT=10jg;
E7 D fT 2 T � W jT=001j < 2jT=01jg:
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Arguing as above, .Y [ E6/ � d � Y [ E and hence d marginalizes E6 off E .
Also E7 � x0 � E6 [ E and consequently both E6 and E7 are marginal. Since
E� D E [ S7

iD4 Ei , E� is marginal and the proof is complete.

Lemma 5.12. The set

fT 2 T W � does not act properly on @T g
is marginal.

Proof. First observe that

1iC10 � x�i
0 D 10; 1i0 � x�i

0 D 01:

Hence if T is in T and T � x�i
0 is defined, then

jT=1i0j D j.T � x�i
0 /=01j;

jT=1iC10j D j.T � x�i
0 /=10j:

By Lemma 5.10, E� is marginal. Also, it follows immediately from the definitions
that for each f in F , the set of all T 2 T for which T �f is undefined is marginalized
off the empty set by f . By Remark 3.8, it follows that

E�� D
16[

iD0

E� � xi
0 [ fT 2 T W 9i � 16 .T � x�i

0 is undefined/g

is marginal as well. Observe that if T is not in E��, then fT � x�i
0 W 0 � i � 16g is

a �-connected subset of T n E� and therefore by Lemma 5.9, one of the following
two assertions holds:

2jT=1i0j < jT=1iC10j for all i < 16;

2jT=1iC10j < jT=1i0j for all i < 16:

That is, the set of all T which satisfy neither of these assertions is marginal.
Now let U consist of all binary sequences of length 4, noting that U satisfies

conditions (1) and (3). Furthermore if T is an element of T such that @T dominates
U , then every element of � acts properly on @T . Set R D f1i0 W i < 14g [ f115g
and let g denote the element of F defined by the tree diagram .U; R/. If U fails to
satisfy condition (2) with respect to T , then U � g fails to satisfy condition (2) with
respect to T � g and, in particular, T � g must be in E��. Therefore the set of T such
that U does not satisfy the defining conditions for @T is marginalized by g off E��.

Lemma 5.13. There is a constant C such that if � is a weighted "-Følner set of trees
and C " � 1, then there is a weighted C "-Følner set of trees which is supported on a
subset of

f@T W .�.T / > 0/ ^ .@T is non trivial/ ^ .� acts properly on @T /g:
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Proof. By Lemmas 3.12 and 5.12, there is a C such that if � is a weighted "-Følner
set of trees and

A D fT 2 T W .�.T / > 0/ ^ .� acts properly on @T /g;
then � � A is C "-Følner. Now let such a � be given and define A as above. By
Lemma 5.5,

.@T / � � D @.T � �/

whenever � is a generator and T is in A. Applying Lemma 3.4 to � � A and h D @

gives the desired conclusion.

Now we are ready to complete the proof of Theorem 1.1. I will first prove the
following claim.

Claim 5.14. There exists a constant K > 1 such that if A � F is a K�n-Følner set,
then A contains an element with a tree diagram whose trees each contain at least
expn.0/ elements.

Proof. By Lemmas 4.2 and 5.13 there is a constant K > 1 such that

(1) if A � F is an "-Følner set and K" � 1, then there is a weighted K"-Følner set
of trees � with support contained in fRf W f 2 Ag;

(2) if � is a weighted "-Følner set of trees and K" � 1, then there is a weighted
K"-Følner set of trees � which is supported on a subset of

f@T W .�.T / > 0/ ^ .@T is non trivial/ ^ .� acts properly on T /g
Thus by (1), if A � F is K�.nC1/-Følner, then there is an A0 � A such that fRf W
f 2 A0g is an K�n-Følner set. By applying (2) n times and observing that weighted
Følner sets have non-empty supports, we have that there is an f 2 A such that @nRf

is non trivial. Let ki D j@n�iRf j and observe that by Lemma 5.4, k0 � 4 and
kiC1 > 2ki �2. It follows by induction that expi .0/ C 2 < ki and in particular that
Rf contains at least expn.0/ elements.

By Theorem 1 and Proposition 2 of [1], if f is in F , then the distance from f to
the identity is at least .k �2/=3, where k is the common cardinality of the trees in the
reduced tree diagram for f . In particular, if k is at least 3 – the minimum cardinality
of a tree in any diagram representing a non-identity element – then the distance is at
least k=16. It is easily verified that for all n > 0, 1

16
exp4n.0/ � expn.0/. If K is a

constant which satisfies the conclusion of Claim 5.14, then define C D K4.
I now claim that if A is C �n Følner, then jAj � expn.0/. To see this, let A � F

be C �n-Følner. By Lemma 3.15, there is a finite A0 � F which is �-connected,
C �n-Følner, and satisfies jA0j � jAj. Since A0 is K�4n-Følner, our choice of K

implies that A0 has an element a whose reduced tree diagram contains trees with at
least exp4n.0/ leaves. It follows that the distance from a to the identity is at least
1

16
exp4n.0/ � expn.0/. Since A0 is �-connected, it must contain at least expn.0/

elements and thus jAj � jA0j � expn.0/, establishing Theorem 1.1.
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