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1. Introduction

Let I' = (V,E) be a finite simplicial graph. The right-angled Artin group associated
to I' is the group Gr defined by the presentation:

Gr = (V | vw = wv forall {v,w} € E).

Note that if I is a discrete graph, then Gr is the free group F, on r generators
(where r = |V|), and if T" is a complete graph, then Gr is the free abelian group
Z" . Thus, right-angled Artin groups can be seen as interpolating between free groups
and free abelian groups. The rank of Gr is by definition the number of vertices of
I'. A special subgroup of Gr is a subgroup generated by a subset W of the set of
vertices V' of I" — it is naturally isomorphic to the right-angled Artin group Grw),
where I'(W) denotes the full subgraph of I" spanned by W. Let v be a vertex of I'.
The link of v, denoted by link(v), is the subset of V' consisting of all vertices that are
adjacent to v. The star of v, denoted by star(v), is link(v) U {v}. We refer to [C] for
a general survey of right-angled Artin groups.

Little is known about the automorphism groups of right-angled Artin groups. In
1989, Servatius conjectured a generating set for Aut(Gr) (see [Ser]). He proved his
conjecture in certain special cases, for example when the graph is a tree. Thereafter
Laurence proved the conjecture in the general case (see [L]). Charney and Vogtmann
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showed that Out(Gr) is virtually torsion-free and has finite virtual cohomological
dimension (see [CV1]). Day gave a finite presentation for Aut(Gr) (see [D1]). More
recently, Minasyan proved that Out(Gr) is residually finite (see [M]). This result was
obtained independently by Charney and Vogtmann in [CV2], where they also proved
that, for a large class of graphs, Out(Gr) satisfies the Tits alternative.

Let K be a class of group. A group G is said to be residually K if for all
g € G \ {1}, there exists a homomorphism ¢ from G to some group of K such that
¢(g) # 1. Note that if K is the class of all finite groups, this notion reduces to
residual finiteness.

Fora group G and for g, h € G, we use the notation g ~ 4 to mean that g and & are
conjugate. A group G is said to be conjugacy K -separable (or conjugacy separable
in the class K) if for all g,h € G, either g ~ h, or there exists a homomorphism ¢
from G to some group of K such that ¢(g) ~ ¢(h). Note that if K is the class of
all finite groups, this notion reduces to conjugacy separability. Clearly, if a group is
conjugacy K -separable, then it is residually XK.

Our focus here is on conjugacy separability in the class of finite p-groups. Let p
be a prime number. If K is the class of all finite p-groups, then, instead of saying
“G is residually K, we shall say that G is residually p-finite. Note that this implies
residually finite as well as residually nilpotent. Instead of saying “G is conjugacy
K -separable”, we shall say that G is conjugacy p-separable. Following Ivanova
(see [I]), we say that a subset S of a group G is finitely p-separable if for every
g € G\ S, there exists a homomorphism ¢ from G onto a finite p-group P such that
¢(g) ¢ ©(S). Note that G is conjugacy p-separable if and only if every conjugacy
class of G is finitely p-separable.

Examples of groups which are known to be conjugacy p-separable include free
groups (see, e.g. [LS]) and fundamental groups of oriented closed surfaces (see [P]).

There is a connection between these notions and a topology on G, the “pro-p
topology” on G. The pro- p topology on G is defined by taking the normal subgroups
of p-power index in G as a basis of neighbourhoods of 1 (see [RZ]). Equipped with
the pro- p topology, G becomes a topological group. Observe that G is Hausdorff if
and only if it is residually p-finite. One can show that a subset S of G is closed in the
pro-p topology on G if and only if it is finitely p-separable. Thus, G is conjugacy
p-separable if and only if every conjugacy class of G is closed in the pro- p topology
onG.

In [CZ], Chagas and Zalesskii constructed an example of a conjugacy separable
group possessing a non conjugacy separable subgroup of finite index. This led them
to introduce the notion of “hereditarily conjugacy separable group”. A group G is
said to be hereditarily conjugacy separable if every subgroup of finite index in G is
conjugacy separable.

Recall that a subnormal subgroup of a group G is a subgroup H of G such that
there exists a finite sequence of subgroups of G:

H=Hy<H <---< H, =G,
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such that H; is normal in H;q foralli € {0,...,n — 1}.

A subgroup H of a group G is open in the pro-p topology on G if and only if
it is subnormal of p-power index (see Lemma A.1). This leads us to the following
definition, which naturally generalizes that of [CZ]:

Definition 1.1. Let G be a group. We say that G is hereditarily conjugacy p-separable
if every subnormal subgroup of p-power index in G is conjugacy p-separable.

In [M], Minasyan proved that right-angled Artin groups are hereditarily conjugacy
separable. Our main theorem is the following:

Theorem 6.15. Every right-angled Artin group is hereditarily conjugacy p-separable.

We will now discuss some applications of Theorem 6.15. The first application
that we mention is an application of Theorem 6.15 to separability properties of Gr:

Corollary 7.1. Every right-angled Artin group is conjugacy separable in the class
of torsion-free nilpotent groups.

Let & be a group property. A group G is said to be virtually P if there exists a
finite index subgroup H < G such that H has Property 2. Combining Theorem 6.15
with a result of Paris (see [P]), we obtain the following:

Corollary 7.4. The outer automorphism group of a right-angled Artin group is vir-
tually residually p-finite.

On the other hand, combining Theorem 6.15 with a result of Myasnikov (see
[My]), we obtain the following:

Corollary 7.6. The outer automorphism group of a right-angled Artin group is resid-
ually K, where K is the class of all outer automorphism groups of finite p-groups.

The next application was suggested to the author by Ruth Charney and Luis Paris.

The natural action Aut(Gr) — GL,(Z) of Aut(Gr) on H,(Gr, Z) gives rise to
a homomorphism Out(Gr) — GL,(Z), whose kernel is called the Torelli group of
Gr - by analogy with the Torelli group of a mapping class group. In Section 7, we
combine well-known results of Bass—Lubotzky (see [BL]), and Duchamp—Krob (see
[DK1], [DK2]) with Theorem 6.15 to attain the following:

Theorem 7.14. The Torelli group of a right-angled Artin group is residually torsion-
free nilpotent.

Corollary 7.15. The Torelli group of a right-angled Artin group is residually p-finite.
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Recall that a group G is said to be bi-orderable if it can be endowed with a total
order < such thatif g < h,then kg < kh and gk < hk forall g,h,k € G.

Corollary 7.16. The Torelli group of a right-angled Artin group is bi-order-able.

Our proof follows closely that of Minasyan (see [M]). Both proofs proceed by
induction on the rank of Gr. The key observation is that a right-angled Artin group
of rank r can be written as an HNN extension of any of its special subgroups of rank
r — 1. After passing to an HNN extension of a finite group (which is known to be
virtually free), Minasyan applies a theorem of Dyer stating that virtually free groups
are conjugacy separable (see [Dy1]).

This paper is organized as follows. In Section 3, we introduce the p-centralizer
condition which is the analogue of the centralizer condition in [M], and we prove that
a group is hereditarily conjugacy p-separable if and only if it is conjugacy p-separable
and satisfies the p-centralizer condition. In Section 4, we prove the following ana-
logue of Dyer’s theorem for conjugacy p-separability:

Theorem 1.2. Every extension of a free group by a finite p-group is conjugacy p-
separable.

Section 5 deals with retractions that are key tools in the proof of our main theorem,
which is the object of Section 6.

My gratefulness goes to my Ph.D. thesis advisor, Luis Paris, for his trust, time and
advice. I am in debt to Ashot Minasyan for pointing out a mistake in an earlier draft
of this work, and for directing me to the paper of Aschenbrenner and Friedl [AF2]. 1
also wish to thank the referee for his (or her) many useful suggestions.

2. HNN extensions

In this section, we recall the definition and basic properties of HNN extensions (see
[LSD.
Let H be a group. Then by the notation

(H,s,...|r...)

we mean the group defined by the presentation whose generators are the generators
of H together with s, ... and the relators of H together with r, ....

Let H be a group, and let K be a subgroup of H. The HNN extension of H
relative to K is the group defined by the presentation

G = (H,t|t "%kt =kforallk € K).

Every element of G can be written as a word xof%!'x1 ...t%x, (n > 0, xg,...,X, €
H,ay,... a, € Z\ {0}). Following Minasyan (see [M]), we will say that the word
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Xot%'xy...t%xy is reduced if xo € H, x1,...,xp,—1 € H\ K, and x,, € H. Every
element of G can be written as a reduced word. Note that our definition of a reduced
word is stronger than the definition of a reduced word in [LS].

Lemma 2.1 (Britton’s Lemma). If a word xot*1x1 ...t%" x, is reduced with n > 1,
then xot%'xy ... t%x, # 1.

Proof. Proved in [LS] (see Theorem IV.2.1). ]
Lemma 2.2. [f xot%'xq...t%x, and yotb1y1 ... tbm Ym are reduced words such
that xot*'xq...t%x, = yotblyl...tb'”ym, then m = n and a; = b; for all
ief{l,...,n}

Proof. Proved in [LS] (see Lemma IV.2.3). ]

A cyclic permutation of the word t*1xy ...t% x, is a word
1% xp o 1 Xt xy L R

with k € {l,...,n}. A word t%x,...t%Xx, is said to be cyclically reduced if
any cyclic permutation of t%!xy ...t%" x, is reduced. Note that if %! x; ...t% x, is
reduced and n > 2, then t%*1x; ...t% x, is cyclically reduced if and only if x, €
H \ K. Every element of G is conjugate to a cyclically reduced word.

Lemma 2.3 (Collins’ Lemma). If the words g = t*1xy...t%x, (n > 1)and h =
th V1. . tbm Ym (m > 1) are cyclically reduced and conjugate, then there exists a
cyclic permutation h* of h and an element a € K such that g = ah*a™!.

Proof. Proved in [LS] (see Theorem IV.2.5). O

Remark 2.4. There exists a natural homomorphism f: G — H,defined by f(h) =
hforallh € H,and f(t) = 1.

Remark 2.5. Let P be a group and let ¢: H — P be a homomorphism. Let Q be
the HNN extension of P relative to ¢(K):

Q = (Pt |t k)t = g(k) forall k € K).

Then ¢ induces ahomomorphism §: G — Q, defined by @(h) = ¢(h) forallh € H,
and @(1) = 1.

Lemma 2.6. With the notations of Remark 2.5, ker(@) is the normal closure of ker(¢)
inG.

Proof. Proved in [M] (see Lemma 7.5). O
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The following observation is the key in the proof of our main theorem.

Remark 2.7. Let G be a right-angled Artin group of rank r (r > 1). Let H be
a special subgroup of G of rank r — 1. In other words, there is a partition of V,
V = W U {t} such that H = (W). Then G can be written as the HNN extension of
H relative to the special subgroup K = (link(z)) of H:

G = (H,t|t 'kt =k forall k € K).

3. Hereditary conjugacy p-separability and p-centralizer condition

We start with an observation that the reader has to keep in mind, because it will be
used repeatedly in the rest of the paper: if H and K are two normal subgroups of
p-power index in a group G, then H N K is a normal subgroup of p-power index
in G.

The centralizer condition was first introduced by Chagas and Zalesskii as a suffi-
cient condition for a conjugacy separable group to be hereditarily conjugacy separable
(see [CZ]). Thereafter Minasyan showed that this condition is also necessary; that
is, a group is hereditarily conjugacy separable if and only if it is conjugacy separable
and satisfies the centralizer condition (see [M]). We make the following definition,
which naturally generalizes that of [M]:

Definition 3.1. We say that G satisfies the p-centralizer condition (pCC) if, for every
normal subgroup H of p-power index in G, and for all g € G, there exists a normal
subgroup K of p-power index in G such that K < H and

Co/k(p(g)) C 9(Ca(g)H),

where ¢ : G — G/ K denotes the canonical projection.

We shall show that a group G is hereditarily conjugacy p-separable if and only
if it is conjugacy p-separable and satisfies the p-centralizer condition (see Proposi-
tion 3.6). If H isasubgroupof G,and g € G,wesetCgx(g) ={h € H | gh = hg}.
For technical reasons, we have to introduce the following definitions.

Definition 3.2. Let G be a group, H be a subgroup of G, and g € G. We say that
the pair (H, g) satisfies the p-centralizer condition in G (pCCy) if, for every normal
subgroup K of p-power index in G, there exists a normal subgroup L of p-power
index in G such that L < K, and

Com)(#(2)) C 9(Cr(g)K),

where ¢ : G — G/L denotes the canonical projection. We say that H satisfies the
p-centralizer condition in G (pCCg) if the pair (H, g) satisfies the p-centralizer
condition in G forall g € G.
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If G is a group, H is a subgroup of G, and g € G, we set g/ = {aga™! | €
H}. In order to prove Proposition 3.6, we need the following statements, which are
the analogues of some statements obtained in [M] (Lemma 3.4, Corollary 3.5, and
Lemma 3.7, respectively):

Lemma 3.3. Let G be a group, H be a subgroup of G, and g € G. Suppose that the
pair (G, g) satisfies pCCg, and that g is finitely p-separable in G. If Cg(g)H is
finitely p-separable in G, then g is also finitely p-separable in G.

Proof. Leth € G suchthath ¢ gH . If h ¢ g€, then, since g€ is finitely p-sepa-
rable in G, there exists a homomorphism ¢ from G onto a finite p-group P such
that (h) ¢ ¢(g%). In particular, p(h) ¢ ¢(g®). Thus we can assume that 1 € g©.
Let « € G be such that 7 = aga~!. Suppose that Cg(g) Na 'H # @. Let
ke Cg(g)Na ' H. Thenak € H,and h = aga™! = akg(ak)™' € g, which
is a contradiction. Thus Cg(g) Na™'H = @, ie,a” ! ¢ Cg(g)H. As Cg(g)H
is finitely p-separable in G, there exists a normal subgroup K of p-power index in
G such that ™! ¢ Cg(g) HK. Now the condition pCC; implies that there exists a
normal subgroup L of p-power index in G such that L < K and

Co/L(9(g)) C p(Ci(g)K),

where ¢ : G — G/ L denotes the canonical projection. We claim that (/) ¢ ¢(g).
Indeed, if there is B € H such that ¢(h) = ¢(BgB~!), then

o 'Be(g) = pla ' B)p(B~ hB) = pla™ ha)p(e ™' B) = p(g)p@™'B),

ie,p(a'B) e Cg/L(p(g)). Butthenp(a™) € Cg/r(¢())p(H) C 9(Cc(g)KH).
Hencea ™! € Cg(g)HKL = Cg(g) HK (because L < K), which is a contradiction.

O

Corollary 3.4. Let G be a conjugacy p-separable group satisfying pCC, and H be a
subgroup of G such that Cg (h) H is finitely p-separable in G forallh € H. Then H
is conjugacy p-separable. Moreover, hf is finitely p-separable in G forall h € H.

Proof. Leth € H. Since G satisfies pCC, the pair (G, h) satisfies pCCg. Since G
is conjugacy p-separable, 1 is finitely p-separable in G. Lemma 3.3 now implies
that 2 is finitely p-separable in G. Therefore h¥ is finitely p-separable in H. [

Lemma 3.5. Let G be a group, H be a subgroup of G, and g € G. Let K be a
normal subgroup of p-power index in G. If gf"K is finitely p-separable in G, then
there exists a normal subgroup L of p-power index in G such that L < K and

Comy (9(2)) C ¢(Cr(g)K),

where ¢ : G — G/ L denotes the canonical projection.
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Proof. Note that H N K is of finite index n in H. Actually, H N K is of p-power
index in H (because HI; 7 = % < %), but this is not needed here. There exist
ai, ...,y € Hsuchthat H = U?_, «; (H N K). Up to renumbering, we can assume
that there exists / € {0,...,n} such thato; ' ga; € gH"K foralli € {1,...,/} and
algo; ¢ gHMK foralli € {I + 1,...,n}. By the assumptions, there exists a
normal subgroup L of p-power index in G such that o 'go; ¢ gH KL for all
i €{l+1,...,n}. Up to replacing L by L N K, we can assume that L < K.

Let ¢: G — G/L be the canonical projection. Let & € Cy(m)(¢(g)). There exists
h € H such that h = @(h). There existi € {1,...,n}and k € H N K such that
h = a;k. We have p(h™'gh) = o(h) Yo(g)p(h) = ¢(g). Thus h~'gh € gL.
But then o 'go; = kh™'ghk™' € kgLk™! = kgk™'L C gH"K L. Therefore
i <1[. Then there exists § € H N K such that o; 'gor; = BgB~". This is to say that
@if € Cr(g), and then it = a;k = (i B)(B~"k) € Cu(g)(H N K) C Cu(g)K.
We have shown that Cy,(m)(¢(g)) C ¢(Cr (g)K). O

We are now ready to prove:

Proposition 3.6. A group is hereditarily conjugacy p-separable if and only if it is
conjugacy p-separable and satisfies pCC.

Proof. Suppose that G is conjugacy p-separable and satisfies pCC. Let H be a sub-
normal subgroup of p-power index in G. Thus H is closed in the pro- p topology on
G (because G \ H = | J{gH | g ¢ H}). Let h € H. The set Cg(h)H is a finite
union of left cosets modulo H and thus is closed in the pro- p topology on G. Corol-
lary 3.4 now implies that H is conjugacy p-separable. Therefore G is hereditarily
conjugacy p-separable. Suppose now that G is hereditarily conjugacy p-separable.
In particular, G is conjugacy p-separable. We shall show that G satisfies pCC. Let
g € G. Let K be a normal subgroup of p-power index in G. Let H = K(g). Since
K < H,|[G : H]is apower of p. As % is a finite p-group, every subgroup of it is
subnormal. Thus H is subnormal in G. Therefore H is conjugacy p-separable. Note
that g6NK = ¢K = ¢ < H. As g is closed in the pro-p topology on H, it is
closed in the pro- p topology on G, because the topology induced on H by the pro-p
topology on G coincides with the pro-p topology on H (see, for example, [RZ2],
Corollary 5.8). The result now follows from Lemma 3.5. O

4. Extensions of free groups by finite p-groups are conjugacy p-separable

We start with an observation that the reader has to keep in mind because it will be
used repeatedly in the proof of Theorem 4.2: if ¢ : G — H is a homomorphism from
a group G to a group H whose kernel is torsion-free, then the restriction of ¢ to any
finite subgroup of G is injective.

We need the following lemma.
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Lemma 4.1. Let G = Gy * --- x Gy, be a free product of n conjugacy p-separable
groups G, ..., Gu. Let g, h € G \ {1} be two non-trivial elements of finite order in
G such that g ~ h. There exists a homomorphism ¢ from G onto a finite p-group P
such that ¢(g) ~ ¢(h).

Proof. Since g is of finite order in G, there exists i € {1,...,n} such that g is
conjugate to an element of finite order in G;. Thus we may assume that g belongs to
G;. Similarly, we may assume that there exists j € {l,...,n} such that 2 belongs

to G;j. Suppose thati # j. Let ¢: G; — P be a homomorphism from G; onto a
finite p-group P such that ¢(g) # 1. Let @: G — P be the natural homomorphism
extending ¢. Then ¢(g) ~ @ (h). Supposethati = j. Then g and & are not conjugate
in G; — otherwise they would be conjugate in G. Since G; is conjugacy p-separable,
there exists a homomorphism ¢: G; — P from G; onto a finite p-group P such that
¢(g) ~ @(h). Let g: G — P be defined as above. We have ¢(g) ~ @(h). O

In Section 4, by a graph, we mean a unoriented graph, possibly with loops or
multiple edges.

Recall that a graph of groups is a connected graph I' = (V, E), together with a
function ¥ which assigns

* toeach vertex v € V a group G, and

* to each edge e = {v,w} € E a group G, together with two injective homo-
morphisms «.: G, — G, and B.: G — Gy — we are not assuming that
v # w.
(See [Se], see also [Dy1].) The groups G, (v € V) are called the vertex groups of
I, the groups G, (e € E) are called the edge groups of I'. The monomorphisms «,
and B, (e € E) are called the edge monomorphisms. The images of the edge groups
under the edge monomorphisms are called the edge subgroups.
Choose disjoint presentations G, = (X, | R, ) for the vertex groups of I". Choose
a maximal tree 7" in I". Assign a direction to each edge of I'. Let {t. | e € E} be
a set in one-to-one correspondence with the set of edges of I", and disjoint from the
Xy (v € V). The fundamental group of the above graph of groups I is the group Gr
defined by the presentation whose generators are

Xy (weV), t.(e€kE)
(called vertex and edge generators, respectively) and whose relations are
Ry(weV), te=1(eeT), teae(ge)te_1 = Be(ge) forall g, € G, (e € E)

(called vertex, tree, and edge relations, respectively). One can prove that this is well
defined, that is, independent of our choice of T, etc. Note that it suffices to write the
edge relations for g, in a set of generators for G,.

Convention. The groups G, (v € V)and G, (e € E)will beregarded as subgroups
of Gr.
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Let {I';};cs be a collection of connected and pairwise disjoint subgraphs of I".
We may define a graph of groups I'* from T" by contracting T'; to a point for all
i € I as follows. The graph I'* is obtained from I" by contracting T; to a point p;
forall i € I. The function §* is obtained from § by using the fundamental group of
I'; for the vertex group at p;, and by composing the edge monomorphisms of I" by
the natural inclusions of the vertex groups of I'; into the fundamental group of I, if
necessary. Clearly, Gr is isomorphic to the fundamental group Gr+ of I'*.

Ifr: Gr — H isahomomorphism from G to a group H , such that the restriction
of 7 to each edge subgroup of I is injective, then we may define a graph of groups
I'’ from T" by composing with 7 as follows. The vertex set of I' is V, and the edge
set of I'" is E. The vertex groups of I'” are the groups G, = n(G,) (v € V), and the
edge groups of I' are the groups G, = G, (e € E). The edge monomorphisms are
the monomorphisms «, = 7 o, and B, = 7 o B, (e € E). Present Gr and G
using the same symbols for edge generators and with the same choice of maximal
tree. There exist two homomorphisms, 7y : Gr — Gy and ng: Grr — H such
that the diagram

G[‘L>H
| 4

commutes, and that the restriction of g to each vertex group of Gy is injective. The
homomorphism 7y is given by

(mv)lg, = mlg, forallv eV,
my(te) = te foralle € E.

And the homomorphism 7 g is given by

(me)lg, = (idu)|g, forallveV,
g (te) = m(le) foralle € E.

In [Dyl], Dyer proved that every extension of a free group by a finite group is
conjugacy separable. The following theorem is the analogue of Dyer’s theorem for
conjugacy p-separability.

Theorem 4.2. Every extension of a free group by a finite p-group is conjugacy p-
separable.

Proof. Our proof is inspired by that of Dyer (see [Dy1]). Let G be an extension of a
free group by a finite p-group. In other words, there exists a short exact sequence

1—>F—>G£>P—>1,
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where F is a free group, and P is a finite p-group. Let g € G. Let h € G such that
g~ h.

Step 1. We show that we may assume that G satisfies a short exact sequence,

1> F—>G5Cp—1

where F is a free group, n > 1, Cpn denotes the cyclic group of order p”, and
n(g) = m(h).

Since G is an extension of a free group by a finite p-group, G is residually p-finite
by [G], Lemma 1.5. Therefore, if g = 1, then g% ={1}is finitely p-separable in
G. On the other hand, if g is of infinite order in G, then g€ is finitely p-separable
in G by [I], Proposition 5. Therefore we may assume that g # 1 and that g is of
finite order in G. Similarly, we may assume that # # 1 and that 4 is of finite order
in G. If w(g) and 7 (h) are not conjugate in P, we are done. Thus, up to replacing
h by a conjugate of itself, we may assume that 7(g) = (k). Since ker(w) = F is
torsion-free, g and / have the same order p” (n € N*). Let H = F (g). Note that H
is a subgroup of p-power index in G, and that g and / belong to H. As % =Pisa
finite p-group, every subgroup of it is subnormal. Thus H is subnormal in G. Then
we may replace G by H, by [I], Proposition 4!, so as to assume that G satisfies the
short exact sequence

1> F >G5 Cp — 1.

Now G is the fundamental group of a graph of groups I', whose vertex groups
are all finite groups, by [S], Theorem. As 7|g, is injective for all v € V, G, is
isomorphic to a subgroup of Cp» forall v € V. From now on, the groups G, (v € V)
will be regarded as subgroups of Cpn.

Step 2. We show that we may assume that all edge groups are non-trivial, that if
two different vertices are connected by an edge, then the corresponding edge group
is a proper subgroup of Cpn, and that g and / belong to two different vertex groups.

First, we show that we may assume that all edge groups are non-trivial. Indeed,
Let I'y be the subgraph of I whose vertices are all the vertices of I and whose edges
are the edges of I' for which the edge group is non-trivial. Let I'q, ..., I'; be the
connected components of I'g. Let I'* be the graph of groups obtained from I" by
contracting I'; to a point forall i € {1,...,r}. Let T be a maximal tree of I'*. Then
G 1is isomorphic to the fundamental group G* of I'*. Observe that G* is the free
product of the free group on {t, | ¢ € E \ T} and the fundamental groups of the T
(i €{l,...,r}). Thus, it suffices to consider the case where I' = I'; (i € {1,...,r}),
by Lemma4.1. Sinceeach I'; (i € {1,...,r})isagraph of groups whose edge groups
are all non-trivial, the first part of the assertion is proved.

IStrictly speaking, it follows from the proof of [I], Proposition 4, that if there exists a homomorphism
¢: H — P from H onto a finite p-group P such that ¢(g) = ¢(h), then there exists a homomorphism
Yv: G — Q from G onto a finite p-group Q such that ¥ (g) ~ ¥ (h). The exact statement of [I],
Proposition 4, is slightly different.
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Now we show that we may assume that if two different vertices are connected by
an edge, then the corresponding edge group is a proper subgroup of Cp,». Indeed, let
I'y be the subgraph of I whose vertices are all the vertices of I', and whose edges are
the edges of I" for which the edge group is isomorphic to Cpn. Let I'y, ..., I'; be the
connected components of I'g. Choose a maximal tree 7; in I'; for alli € {1,...,r}.
Let I'* be the graph of groups obtained from I" by contracting 7; to a point for all
i € {l,...,r}. Then G is isomorphic to the fundamental group G* of I'*. Note
that a vertex group of I'* is either a vertex group of I', or the fundamental group
of T;, for some i € {1,...,r}, in which case it is isomorphic to Cp» (because each
T; (i € {1,...,r})is a tree of groups whose vertex and edge groups are all equal
to Cpn). Thus, we may replace I' by I'*, so that the second part of the assertion is
proved.

Since g is of finite order in G, there exists a vertex v of ', an element g¢ of finite
order in the vertex group G, of v, and an element o of G such that g = agoa™!.
Similarly, there exists a vertex w of I', an element /¢ of finite order in the vertex
group Gy, of w, and an element B of G such thath = Bhof~!. As Cpn is abelian, we
have 7 (go) = 7 (ho). Thus, up to replacing g by g¢ and & by ko, we may assume that
g belongs to Gy, and & belongs to Gy,. Since 7|g, is injective, and 7(g) = n(h),
we have v # w.

Step 3. We show that we may assume that I" has exactly two vertices, and that all
edges join these two vertices.

Indeed, choose a maximal tree 7 in I'. There is a path P in T joining v to w.
Choose an edge e on this path. Then 7 \ {e} is the disjoint union of two trees, T},
and T,,, withv € T}, and w € Ty,. Let I'; be the full subgraph of I" generated by
the vertices of 75, and I'y, be the full subgraph of I generated by the vertices of Ty,.
Let I'* be the graph of groups obtained from T" by contracting I', to a point v* and
I'y to a point w*. Observe that I'* has exactly two vertices and that all edges join
these two vertices. The vertex groups of I'* are the fundamental groups of I', and
'y, respectively. The edge groups of I'* are non-trivial proper subgroups of Cpn.
And G is isomorphic to the fundamental group G* of I'*. Now, since the restriction
of 7 to each edge subgroup of I'* is injective, we may define a graph of groups I'’
from I'* by composing with 7, as described above. Denote by G’ the fundamental
group of I'’. There exist two homomorphisms, 7y : G — G’ and ng: G’ — Cpn,
such that the diagram

G%Cpn

oy

G/
commutes, and that the restriction of g to each vertex group of I'' is injective.
Consequently, ker(srg) is free by [Se], II, 2.6., Lemma 8.

Setg’ = ny(g)and ' = 7y (h). As g’ and A’ have order p”, the vertex groups of
I'” are equal to Cpn. The edge groups of I'” are non-trivial proper subgroups of Cpn.
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Observe that g’ and /' belong to two different vertex groups, and that g’ (resp. #’) is
not conjugate to an element of one of the edge groups. Let e be an edge of I'". Then
g’ and /' are not conjugate in G, xg;, G,, by [MKS], Theorem 4.6. Observe that
G' is an HNN extension (in the general sense) of G, x¢g, G,, with stable letters ¢,
(a € E\{e}), and associated subgroups «,,(G,) and B, (G,) (a € E\{e}). Therefore
g’ and &’ are not conjugate in G’ (see, for example, [Dy2], Theorem 3). Thus, we
may replace I by IV, G by G’, g by g’, and & by /', so as to assume that I has two
vertices and that all edges join these two vertices.

Step 4. We show that we may assume that I" has at most two edges.

Suppose that I' has more than two edges. Choose a maximal tree 7" in I, that
is, an edge of T'. Present G, = (g | g?" = 1), Gy = (h | h?" = 1), and G as
described above. Choose anedge e € £\ T.

The edge relations corresponding to e can be reduced to the following:

teae(ge)te_l = Be(ge):

where g, is a generator of G,. Let p® be the order of G, (s € {1,...,n —1}). Then
o (ge) generates a subgroup of order p* of G,,. But there exists a unique subgroup of
order p® in Gy; it is cyclic, generated by g? ", where r =n —s. Thus, up to replacing
ge by the preimage of g”r under «,, we may assume that o, (g.) = gpr. There exists
k € N such that p and k are coprime, and that B, (g.) = h*P". Therefore the edge
relation corresponding to e can be written

legprte_l = hkpr,

where r € {l,...,n — 1}, k € N, and p and k are coprime. Now since 7: G —
Cpn satisfies w(g) = m(h), we have n(g)?" = a(h)**" = 7 (g)*P", and then
7(g)*=DP" = 1 (in Cpn). As m(g) has order p" in Cpn, we deduce that p"~"
divides k — 1. There exists a € Z such that k = ap”™" 4+ 1. We conclude that the
edge relation corresponding to e can be written

Zegprte_l = hpr,

wherer € {1,...,n — 1}.
Let H be the normal subgroup of G generated by the elements

g. h, tg(aeE\{e}), t?.
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Then H has index p in G, and g and / belong to H. Thus we may replace G by H by
(1], Proposition 4. Let G be the fundamental group of the graph of groups I" \ {e}.
Set Go = (Xo | Ro), where the presentation is as fundamental group of the graph of
groups I' \ {e}. Set G; = 1}Got," = (X; | R;) foralli € {1,..., p —1}. Clearly
1, te,..., 1 _1} is a Schreier transversal for H in G. The Reidemeister—Schreier
method yields the presentation
H = (X(),Xl,...,Xp_l,u | R(),R],...,Rp_l, g{’ =l’l0p R gf =hf R
s & = hy oy ugd uT = hp),

whereu = tf,g; = tigt;7 (i €{0,...,p—1}),and h; = tlhty? (jelo,...,p—
1}). Replace g by go, and 1 by /. Observe that H is the fundamental group of a graph
of groups T as follows. The graph [ has 2p vertices, say Vg, Wo, V1, Wi,...,Up—1,
Wp—1,and p|E| edges. Let T'; be the full subgraph of ' generated by {v;, w; } for all
i €{0,..., p—1}. Then T} is isomorphic to T\ {e}. There is one edge joining wy
to v, one edge joining w; to vy, ..., one edge joining w,_» to v,—_1, and one edge
joining v to wp—1, and the edge groups associated to these egdes are isomorphic to
G.. Note that g belongs to the vertex group of vg and / belongs to the vertex group
of w;.

Vo U1 1% U3 Vg

Let I'* be the graph of groups obtained from r by contracting [itoa point for all
i €{l,..., p—1}. Then G is isomorphic to the fundamental group of I'*. The graph
I'* has p vertices, say Vo, ..., Up—1. There is one edge joining vy to v, one edge
joining vj to vy,..., one edge joining v, to v,_1, and one edge joining vo to Vp_1,
and the edge groups associated to these edges are all isomorphic to G,. Note that g
belongs to the vertex group of vg and & belongs to the vertex group of v;.

Vo U1 1%} U3 V4
~— o e e e

\—//

Let T be the maximal tree T =vgv1 ... Vp—2Vp—1. Then T\ {vgvy } is the disjoint union
of two trees: vg and vViv2 ... Vp_2Vp—1. Set ' =voand '} = viva... Vp_2Vp—1.
Let A be the graph of groups obtained from I'* by contracting I' to a point for all
i €{1,2}. Let A’ be the graph of groups obtained from A by composing with 7. As
in Step 3, we may replace I" by A’, so as to assume that " has two vertices and two
edges joining these two vertices.
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End of the proof. Present G, = (g | g?" = 1), Gy = (h | h?" = 1), and G as
described above. There are two cases:

Case 1. T has one edge.

In this case, G is an amalgamated product of two finite abelian p-groups. Since
G is residually p-finite, G is conjugacy p-separable by [I], Theorem 2. Thus, there
exists a homomorphism ¢ from G onto a finite p-group P such that ¢(g) ~ ¢(h).

Case 2. T has two edges.

We have

G = (g’h7t Igpn = 17 hpn = 1’ gpr = hprv tgpSt_l - hpS),
wherer € {1,...,n — 1}, s €{l,...,n—1}. Let
A= Cpn X Cps X +++ X Cps XChpr.
N e’
pr—1

Set m = p” 4+ 1. Present each factor of this product in the natural way, using
generators Xy, ..., X, respectively. Let o be the automorphism of A defined by

a(x1) = X1X2Xm,
a(xj) = xj4q foralli € {2,...,m — 2},
A(Xm-1) = (x2... Xm—1)"",
a(Xm) = Xm.
It is easily seen that o has order m — 1 = p”. We have
a®(x1) = x1,
' (x1) = X1 XX,
a®(x1) = X1X2X3X,,,
a™2(x1) = X1X2X3. .. xm_lx,",:_z.

Let B = A x () be the semidirect product of A by (). Note that B is a finite p-group.
Let ¢: G — B be the homomorphism defined by

p(g) = x1, @(h) = x1xm, @) =0.

Observe that the conjugacy class of ¢(g) in Bis ¢(g)® = {a*(x1) | k € {0,...,m—
2}}. Thus, ¢(g) and ¢(h) are not conjugate in B. O

Corollary 4.3. Let P be a finite p-group. Let A be a subgroup of P. Let Q be the
HNN extension of P relative to A:

Q = (P.t |t 'at =aforala e A).
Then Q is hereditarily conjugacy p-separable.
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Proof. Let R be an arbitrary subgroup of Q. Let f: Q — P be the natural homo-
morphism. We haveker( /)N P = {1}. Therefore ker( f') is free by [KS], Theorem 6.
That is, Q is an extension of a free group by a finite p-group. Thus R is itself an
extension of a free group by a finite p-group. Therefore R is conjugacy p-separable
by Theorem 4.2. O

Remark 4.4. Itis known that a fundamental group of a graph of groups, whose vertex
groups are all finite p-groups is residually p-finite if and only if it is an extension
of a free group by a finite p-group (see, for example, [AF1], Lemma 3.3). Thus, as
an immediate consequence of Theorem 4.2, we have that a fundamental group of a
graph of groups whose vertex groups are all finite p-groups is conjugacy p-separable
if and only if it is residually p-finite.

5. Retractions

In this section, we shall prove several results on retractions that will allow us to control
the growth of the intersection of Lemma 6.5 in finite p-group quotients of Gr-.

Definition 5.1. Let G be a group, and H be a subgroup of G. We say that H is a
retract of G if there exists a homomorphism pg: G — G such that pg(G) = H
and pg (h) = h for all h € H. The homomorphism pg is called a retraction of G
onto H.

Remark 5.2. If G is aright-angled Artin group, and H = (W) is a special subgroup
of G, then H is aretract of G. A retraction of G onto H is given by

v ifveW,

pr (V) = {1 ifveV\ W

Lemma 5.3. Let G be a group and H be a subgroup of G. Suppose that H is a
retract of G. Let pg be a retraction of G onto H. Let N be a normal subgroup of G
such that pgg (N) C N. Then py induces a retraction pg: G/N — G/N of G/N
onto the canonical image H of H in G/N, defined by pia(gN) = pu(g)N for all
gN € G/N.

Proof. Proved in [M] (see Lemma 4.1). ]

Remark 5.4. Let G be a group and let H, H' be two subgroups of G. Suppose
that H and H' are retracts of G and that the corresponding retractions, pg and pg-,
commute. Then pg (H’) = pg/(H)=H N H'. Moreover, H N H’ is a retract of G.
A retraction of G onto H N H' is given by pgnpg’ = pH © pe’ = PH’ © PH.
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Proposition 5.5. Let G be a group and H,, ..., H, be n subgroups of G. Suppose
that Hy, ..., H, are retracts of G and that the corresponding retractions pairwise
commute. Then, for every normal subgroup K of p-power index in G, there exists a
normal subgroup N of p-power index in G such that N < K and py;(N) C N for
alli € {1,...,n}. Consequently, foreveryi € {1,...,n}, the retraction py; induces
a retraction pg. of G/ N onto the canonical image H; of H; in G/ N.

Proof. Proved in [M] (see Proposition 4.3 and Remark 4.4). O

Lemma 5.6. Let G be a group and let H, H' be two subgroups of G. Suppose
that H and H' are retracts of G and that the corresponding retractions, py and
pr’, commute. Let N be a normal subgroup of G such that pg(N) C N and
oa'(N) C N. Then o(H N H') = o(H) N @(H’), where 9. G — G/N denotes
the canonical projection.

Proof. Proved in [M] (see Lemma 4.5). Ll

The next statement is the analogue of Lemma 4.6 in [M]:

Corollary 5.7. Let G be a group and Hy,...,H, be n subgroups of G. Suppose
that Hy, ..., Hy are retracts of G and that the corresponding retractions pg,, ...,
pH, pairwise commute. Then, for every normal subgroup K of p-power index in
G, there exists a normal subgroup N of p-power index in G such that N < K
and pg;(N) C N foralli € {1,...,n}. Moreover, if p: G — G/N denotes the
canonical projection, then ¢((\;—; Hi) = (i=; ¢(H,).

Proof. By Proposition 5.5, there exists a normal subgroup N of p-power index in
G such that N < K and pg,(N) C N foralli € {l,...,n}. We denote by

¢: G — G/N the canonical projection. We argue by induction on k € {1,...,n}

to prove that w(ﬂf-;l H;) = ﬂf-;l @(H;). If k = 1, then the result is trivial. Thus

we can assume that k > 2 and that the result has been proved for k — 1. We set
H' = ﬂf‘:—ll H;. By Remark 5.4, H' is a retract of G. A retraction of G onto H' is
given by pyr = pg, ©+++° pH,_,. We have

e (N) = pa, (... (P, (PH(_; (N))))
C pH, (... (pH_,(N))) C--- C pa(N) CN.

The retractions pg- and py, commute, so we can apply Lemma 5.6 to conclude that
o(H'NHy) = o(H")N@(Hy). By the induction hypothesis, o(H') = ﬂf:ll o(H;).

. k k
Finally o((\;2; Hi) = \i=; ¢(Hi). O
In the following lemmas, G is a group and A, B are two subgroups of G. We

assume that A and B are retracts of G and that the corresponding retractions, p4 and
0B, commute.
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Lemma 5.8. Let x,y € G. We set a = pa(pp(x)x~V)xpp(x~') (¢ AxB) and
B = palps(»)y Hypr(y~1) (€ AyB). Then the following are equivalent:

(1) y € AxB,

(2) BeadNB,

Proof. Proved in [M] (see Lemma 5.1). Ll

Lemma 5.9. Let x € G. We set o = pa(pp(x)x )xpp(x™') (€ AxB) and y =
p4(pp(x)x~1) (€ A). Then we have

ANxBx™!' =y 1Cynp(a)y.

Proof. Proved in [M] (see Lemma 5.2). Ll

The next five statements are the analogues of some statements in [M] (Lemma 5.3,
Corollary 5.4, Lemma 5.5, Lemma 5.6, and Lemma 5.7, respectively):

Lemma 5.10. Let x € G. We set: o = pg(pp(x)x~xpp(x~1) (¢ AxB). Ifa4"B
is finitely p-separable in G, then AxB is also finitely p-separable in G.

Proof. Let y € G suchthat y ¢ AxB. We set B = pa(p(y)y Dypp(y~!). By
Lemma 5.8, we have B ¢ a4"B. Since a4"B is finitely p-separable in G, there
exists a normal subgroup K of p-power index in G such that if ¥: G — G/K
denotes the canonical projection, we have ¥ () ¢ ¥ (a4"8) = y(a)¥ANB) By
Corollary 5.7, there exists a normal subgroup N of p-power index in G suchthat N <
K,p4(N) C N,pp(N) C N,andifp: G — G/N denotes the canonical projection,
then (AN B) = ¢(A) N@(B). Assume that () € p(a)?“"B) Letg € AN B be
such that ¢(B) = ¢(g)p(a)@(g)~'. Then B € gag ' N. Since N < K, we obtain
B € gag~'K. But this contradicts the fact that ¥ (8) ¢ v (a)¥ "B Therefore
we have ¢(8) ¢ ¢(@)?™"B) ie., p(B) ¢ @(a)?WNeB) We set A = ¢(A) and
B = ¢(B). By Lemma 5.3, p4 induces a retraction pz of G/N onto A and pp
induces a retraction pg of G/N onto B. Wesetx = @(x)and j = ¢(y). We
have g(a) = p4(pg (X)X Hxpg(x~") and 9(B) = p;(p5(7)y Hypzg(y"). By
Lemma 5.8, we have y ¢ AXB, i.e., o(y) ¢ ¢(AxB). O

Corollary 5.11. Let G be a group, and A, B be two subgroups of G. Suppose that
G is residually p-finite. If A and B are retracts of G such that the corresponding
retractions commute, then A B is finitely p-separable in G.

Proof. We apply Lemma 5.10to x = 1. O
Lemma 5.12. Let G be a group, and A be a subgroup of G. Suppose that G is

residually p-finite and that A is a retract of G. Then if a subset S of A is closed in
the pro-p topology on A, it is also closed in the pro-p topology on G.
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Proof. We denote by S the closure of S in G, equipped with the pro- p topology. We
shall show that S C §. By Corollary 5.11, A is closed in G. Therefore S C A.
Leta € G\ S. We can assume that a € A. There exists a homomorphism { from
A onto a finite p-group P such that ¢ (a) ¢ ¥ (S). We set ¢ = ¥ o p4. We have

p(a) = y(a) € ¥(S) = @(S). Thena ¢ . O

Lemma 5.13. Let x € G. We set @ = pa(pp(x)x Vxpp(x~1). Suppose that the
pair (A N B, a) satisfies the p-centralizer condition in G. Then, for every normal
subgroup K of p-power index in G, there exists a normal subgroup N of p-power
index in G such that N < K, pa4(N) C N, pp(N) C N, andif op: G — G/N
denotes the canonical projection, then ¢(A) N @(xBx™1) C p(A N xBx)p(K).

Proof. Suppose that K is a normal subgroup of p-power index in G. We set y =
pa(pp(x)x~ 1) € A. By Lemma 5.9, we have A N xBx~! = y~1Cynp(a)y. Since
the pair (4 N B, «) satisfies pCCy, there exists a normal subgroup L of p-power
index in G such that L < K and if ¥ : G — G/ L denotes the canonical projection,
Cyans)(¥(@)) C ¥(Canp(@)K). This is equivalent to ¥~ (Cy anm (¥ (@) C
Cang(2)K. Indeed, assume that g € ¥~ 1(Cyanp) (¥ (x))). We then have ¥ (g) €
Cyang) (¥ (@) C ¥ (Canp(®)K), and hence g € Cynp(@)KL C Canp(@)K
(because L < K).

By Corollary 5.7, there exists a normal subgroup N of p-power index in G such
that N < L, pa(N) C N, pp(N) C N,andif ¢: G — G/N denotes the canonical
projection, p(ANB) = p(A)Np(B). Weset A = p(A), B = ¢(B). By Lemma 5.3,
p4 induces aretraction p ; of G/ N onto A, and pp induces aretraction p 50of G/N onto
B. Obviously p ; and pz commute. We set ¥ = ¢(x), @ = p ;(p5(X)x )Xpgz(x 1)
(¢ G/N)and y = pi(pg(*)x~") (e A). Observe that @ = ¢(a) and 7 = ¢(y).
Then, by Lemma 5.9, we have A N XBx™! = 7 1Cin5(@)7. Now, ANB =
¢(A N B). Thus,

9T ANXBE™) = o7 G Coptanmy@)7) = v 97 (Cpanpy (@))y.
We claim that
¢~ (Copanp) (@(@))) C ¥ (Cyanp) (W ())).

Indeedlet g € ¢~ (Cyanp)(p())). Wehave p(g) € p(ANB),ie.,g € (ANB)N,
whichimpliesthat g € (ANB)L,i.e., ¥ (g) € Y (ANB);and p(g)p(x) = ¢(a)p(g),
ie, gag~'a™! € N, which implies that gag™la™! € L, ie., ¥ (g)¥(a) =
Y ()Y (g). We deduce that

¢~ (Cpanp)(9(@))) C Canp (@),
and hence

e M ANxBx ™Y Cc y 'Cunp(a@)yK = (AN xBx HK.
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We conclude that
e(A) Np(xBx™) C p(A N xBx Hp(K). O
Lemma 5.14. Let x,y € G. We set
C =xBx ' (<G) and o = ps(pp(x)x Hxpp(x~h).

If a8 and yANC are finitely p-separable in G and if the pair (A N B, «) satisfies
pCCq, then C4(y)C is finitely p-separable in G.

Proof. Let z € G such that z ¢ C4(y)C. Suppose first that z ¢ AC. Since
a4NB is finitely p-separable in G, Ax B is finitely p-separable in G by Lemma 5.10.
Therefore AC = AxBx~! is also finitely p-separable in G. Consequently there
exists a normal subgroup N of p-power index in G such that z ¢ ACN. We
obviously have z ¢ C4(y)CN. Thus we can assume that z € AC. Leta € A,
¢ € C be such that z = ac. Since z ¢ C4(y)C,a 'ya ¢ yA"C. Indeed, if there is
g€ ANC suchthata='ya = gyg~', then (ag)~'y(ag) = yie.,ag € C4(y). We
obtain a € C4(y)C, and then z € C4(y)C, which is a contradiction. Now y4"C is
finitely p-separable in G. Then there exists a normal subgroup K of p-power index
in G suchthata'ya ¢ y4"C K. By Lemma 5.13, there exists a normal subgroup N
of p-power index in G suchthat N < K and, if ¢: G — G/ N denotes the canonical
projection, p(A) N @(C) C ¢(A N C)p(K). For asubset S of G, we set S = ¢(S).
For an element g of G, we set § = ¢(g). We have y4"C < 74NC-K  Note that
K <1 G/N. Then 347C¢ < j4NCK. Observe that a~'ya ¢ y4"C K — otherwise
we would have a~'ya € yA"C KN and thena™'ya € yA"C K (because N < K).
We deduce that ' ya ¢ $47C. Now it suffices to show that ¢(z) ¢ @(C4(y)C).
Suppose the contrary. Let a’ € C4(y), ¢’ € C be such that ¢(z) = ¢(a’c’). Then
p(ac) = @(a’c’). Thus p(a’"la) = p(c’c™!). Weset g = g(a’'a) = ¢(c’c™)
(e AN C). We have ¢(z) = ¢(a’)g¢(c) and a = ¢(z2)p(c)™' = ¢(a’)g. Then
a'ya = g 'e(@ 'ya)g = g7 '0(y)g = g7 '35z € 747C, a contradiction. We
have shown that C4(y)C is finitely p-separable in G. O

6. Proof of the main theorem

We turn now to the proof that right-angled Artin groups are hereditarily conjugacy
p-separable. We need the following theorem, which is due to Duchamp and Krob
(see [DK2], Theorem 2.3).

Theorem 6.1. Right-angled Artin groups are residually p-finite.

(Note that the exact statement of [DK2], Theorem 2.3, is that right-angled Artin
groups are residually torsion-free nilpotent; Theorem 6.1 then follows from [G],
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Theorem 2.1.) This theorem can also be proved using HNN extensions (see [Lo],
Theorem 2.11).

Basically, Proposition 6.2 establishes the main result. Proposition 6.2 (1) and
Proposition 6.2 (2) will be proved simultaneously by induction on the rank of G.

Proposition 6.2. Let G be a right-angled Artin group.

(1) Everyspecial subgroup S of G satisfies the p-centralizer conditionin G (pCCg).

(2) Forall g € G and for every special subgroup S of G, g5 is finitely p-separable
in G.

From now on we assume that G is a right-angled Artin group of rank r (r > 1),
and that H = (W) is a special subgroup of G of rank r — 1. Thus, G can be written
as an HNN extension of H relative to the special subgroup K = (link(¢)) of H:

G = (H,t|t 'kt =k forall k € K).
Recall that H is a retract of G. A retraction of G onto H is given by

v ifveW,

'OH(U)Z{I ifoeV\ W

We also assume that
* every special subgroup S of H satisfies the p-centralizer conditionin H (pCCp),

« forall i € H and for every special subgroup S of H, 1S is finitely p-separable
in H.

The next results (Lemma 6.3 to Lemma 6.14) are preliminaries to the proof of
Proposition 6.2.

In general, if A and B are subgroups of a group G, the image of the intersection of
A and B under a homomorphism ¢ : G — H does not coincide with the intersection
of the images of A and B in H. However, the p-centralizer condition and the above
results on retractions will allow us to obtain the following lemma, which will be used
to apply Minasyan’s criterion for conjugacy in HNN extensions (see Lemma 6.5).

Lemma 6.3. Let be given Ay, a conjugate of a special subgroup of H, Ajy,..., Ay,
n special subgroups of H, and o, Xo, ..., Xn, V1, .., Yn, 2(n + 1) elements of H.
Then, for every normal subgroup L of p-power index in H, there exists a normal
subgroup N of p-power index in H suchthat N < L andif o: H — H/N denotes
the canonical projection, then

n _ n
aCg;(Xo) N () Xidiyi C @((Cay(x0) N () xiAiyi)L),
i=1 i=1

where A; = ¢(A;) (i € {0,...,n}), @ = ¢(a), X; = ¢(x;) (j € {0,...,n}),
Ve =) (k € {l,....n}).



772 E. Toinet

Proof. Let L be a subgroup of p-power index in H. We argue by induction on 7.
Strictly speaking, the basis of our induction is n = 0 but we will need the case n = 1.
By the assumptions, there exist a special subgroup A of H and an element 8 of H
such that 49 = AR~ .

n = 0: We set x = B 1xoB. The pair (4,x) satisfies pCCp by the assump-
tions. There exists a normal subgroup N of p-power index in H such that N <
L and if ¢: H — H/N denotes the canonical projection, then Cy4)(¢(x)) C
@(Ca(x)L). But Cay(x0) = BCa(x)B~1. We deduce that ¢(cr) Cpa0)(¢(x0)) C
¢((@Cay (x0)) L).

n = 1: There are two cases:

Case 1. aCy,(x9) N x1A1y1 = 9. This is equivalent to saying that x; ¢
aCyy(x0)yy A1 Put B = (y18) ' A1y1p so that x; ¢ af(Ca(x)B)p~ 'y
Now the intersection of conjugates of two special subgroups of H is a conjugate
of a special subgroup of H (see [M], Lemma 6.5). Then A N A, is a conjugate
of a special subgroup C of H. There exists y € H such that AN A; = yCy~L.
Therefore if h € H, hA"41 = y(y~1hy)Cy~1. Now (y~'hy)C is finitely p-
separable in H by the assumptions. We deduce that 24741 is finitely p-separable
in H. With the same argument, x4"8 is finitely p-separable in H. Now the pair
(A N Ay, h) satisfies pCCp; by the assumptions. We deduce that C4(x) B is finitely
p-separable in H by Lemma 5.14. This implies that aCy,(x0)y; 41 is finitely
p-separable in H. There exists a normal subgroup M of p-power index in H such
that x; ¢ aCa,(x0)y; A1 M. Up to replacing M by M N L, we can assume that
M < L. Now the pair (4o, xo) satisfies pCCy by the assumptions. There exists
a normal subgroup N of p-power index in H such that N < M andif ¢: H —
H/N denotes the canonical projection, then Cy(4,)(¢(x0)) C @(Cy,(x0)M), or,
equivalently, 9! (Cy(a)(9(x0)) C Cao(x0)M. Then ¢~ @C-(%0)y1 " A1) C
oz(p_l(C;O()E)))yl_lAl C aCay(x0)y; A1 M (with the same notations as in the
statement of the lemma). Therefore x; ¢ ¢~ (@C 1, (X0) y1 ' A}). Finally, we have

Case 2. aCy,(x0) N x1A1y1 # 0.

Remark 6.4. If G is a group and H, K are two subgroups of G such that aH N
bKc # @, where a,b,c € G, then we have aH N bKc = g(H N ¢~ 'Kc) for all
g €aH NbKec.

Choose g € aCy,(x9)Nx1A1y1. ByRemark 6.4, wehave aCy, (x0)Nx1A1y1 =
8(Cyqy(x0) N yl_lAlyl). Weset D = Ag N yl_lAlyl. Then aCy,(x0) Nx1A1y1 =
gCp(x0). Now, D is a conjugate of a special subgroup E of H by [M], Lemma 6.5.
There exists § € H such that D = SES™!. As above, the pair (D, x¢) satisfies
pCCp . There exists a normal subgroup M of p-power index in H suchthat M < L
and if : H — H/M denotes the canonical projection, we have Cy,(p) (¥ (xo)) C
¥ (Cp(xp)L). Now by Lemma 5.13, there exists a normal subgroup N of p-power
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index in H suchthat N < M andifo: H — H/N denotes the canonical projection,
then (4) N g((y18)~'41y1B8) C (AN (1)~ A1y18)p(M). Therefore

Ao N1 ALF1 = (BABTY) Np(yy Ay
= (B (@A) N (B~ Aiy1B)e(B™)
C o) (@A N (B~ AyiBe(M))e(B™) ()
= (4o Ny Ary1)e(M)
= @(D)p(M)(*)
(with the same notations as in the statement of the lemma). We set g = ¢(g). Note
that § € aCg;(Xo) N X1A41y1. Therefore aCy(Xo) N X14171 = §(Cz;(%0) N
717141 71). Considering (%), we obtain

GCxp(¥0) NX1A1y1 = 8C 1= (¥0) C ZCy(D)p(ar)(¥o)-

Recall that N < M. Then ¢: H — H/M induces a homomorphism w H/N —
H/M such that ¥ = ¥ o ¢. Note that ¥ (p(D)p(M)) = ¥ (D). Letz €
Co(D)p(M)(Xo). Then

¥ (z) € Cypy(¥(x0)) C ¥ (Cp(xo)L) = ¥(9(Cp(x0)L)).

Therefore z € ¢(Cp(xo)L)ker(¥) = @(Cp(xo)L) (because ker(¥) = p(M) <
@(L)). We deduce that Cy(p)ear)(X0) C ¢(Cp(xo)L). We conclude that

aC:(X0) N X14171 C g9(Cp(x0)L) = ¢(gCp(x0)L)
= @p((@Cyqy(x0) N x1A1y1)L).
Inductive step: Suppose that n > 1 and that the result has been proved for n — 1.
Note that if aCy,(xo) N ﬂ:’;ll x;A;j yi = @, then by the induction hypothesis, there

exists a normal subgroup N of p-power index in H such that if : H — H/N
denotes the canonical projection, then

n—1 _ n—1
aCz;(xo) N () *iAiyi C o((@Cay(x0) N () xiAiyi)L) = 0.
i=1 i=1
Obviously

aCA (Xo) N ﬂ XA lyl =0C (P((O‘CAO(XO) n ﬂ Xi lyl)L)
= i=1
Thus we can assume that aCy,(xo) ﬂ NiZ 1 x;A;yi # 0. Therefore aCy,(xo) N
NiZ lx, ,y, = g(Cqy(x0) N N2 lyl 14;y;) for some g € H. We set F =
Ao N ﬂ; 1 Vi 1 4;y;. Again, F is a conjugate of a special subgroup of H by [M],
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Lemma 6.5. We have: aCyq,(x9) N ﬂ 1 x;Aiyi = gCF(x9). Now, by the case
n = 1, there exists a normal subgroup M of p-power index in H such that M < L
and if ¥ : H — H/M denotes the canonical projection, then

V(&) Cy ) (¥ (x0)) N Y (xpAnyn) C Y ((§CF(x0) N XnAnyn)L),

or, equivalently,

U W () Cy () (¥ (x0)) N Y (XnAnyn)) C (€CF(x0) N Xn Anyn)L.

On the other hand, by the induction hypothesis, there exists a normal subgroup N of
p-power index in H suchthat N < M andif ¢: H — H/N denotes the canonical
projection, then

n—1 _ n—1
aCq(X0) N () %i4iyi C e((@Cay(xo) N () xiAiyi)M)
i=1 i=1
or, equivalently,
L= n—1 _ n—1
Q- ((XC@(XT)) n ﬂ X_ZA,)Tl) C (OlCAO(Xo) n m XiAiyi)M.
i=1 i=1
Thus we have

n o n—1 _ —
¢ N @Cy:(X0) N () XiAiyi) = ¢~ 1 (@Cq;(Xo) N ﬂ XiAi7i) N @~ (50 An )
i=1 [
n—

C (aCygy(x9) N ﬂ xiAiyi)M O xp Apyn N
i=1

= gCr(xo)M N xpApynN.
Recall that N < M. Finally we have

n [—
9™ (@Cx (%) N () X Ai7i) C gCF(x0)M N XpAnyn M

i=1
C Y (W (Q)Cyr) W (x0) N Y (W (XnAnyn))
= ¥ (W (@) Cyr) (¥ (x0)) N Y (xn A yn))
C (gCr(x0) N annyn)L
= (@Cyy(x0) N ﬁ xiAjyi)L. O
i=1

We need the following criterion for conjugacy in HNN extensions:

Lemma6.5. LetG = (H,t |t~ 'kt = k for all k € K) be an HNN extension. Let S
be a subgroup of H. Let g = xot®'xy ...t x, (n > 1) and h = yot®1y, ... .tPmy,,
be elements of G in reduced form. Then h € g5 if and only if all of the following
conditions hold:
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(1) m=nanda; = b; foralli € {1,...,n},

(2) Yo...yn € (x0...x)5,
(3) ifa € S satisfies Yo ... yn = AXq...Xp0 "), then

aCs(xg...xp) N yonO_1 N (yoyl)K(xoxl)_1 n---
ce N (yO o Yn—1)K(xo .. -xn—l)_1 7é @.

Proof. Proved in [M] (see Lemma 7.11). Ll

The following is the analogue of Lemma 6.8 in [M]:

Lemma 6.6. Let S be a special subgroup of H. Let g € G\ H. Leth € G \ g°.
There exists a normal subgroup L of p-power index in H such that if o: H —
P = H/L denotes the canonical projection if Q denotes the HNN extension of P
relative to (K) and if o: G — Q denotes the homomorphism induced by ¢, we

have g(h) ¢ @()?®).

Proof. Write g = xot%'x1...t%x, and h = yotb1y1 ... tbm Ym in reduced forms.
Wehaven > lasg ¢ H.

Step 1. We assume that the first condition in Minasyan’s criterion (see Lemma 6.5)
is not satisfied by g and 4.

It follows from Lemma 2.10 in [Lo], and Theorem 6.1 (see, alternatively, [Lo],
Theorem 2.11) that the special subgroup K is closed in the pro-p topology on H.
(Note that this can also be obtained by combining Corollary 5.11 and Theorem 6.1.)
Thus, there exists a normal subgroup L of p-power index in H such that

x; ¢ KL foralli e {l,...,n—1}, (%)
y; ¢ KL forall j e{l,....m—1}. (s3)

We denote by ¢: H — P = H/L the canonical projection. If Q denotes the HNN
extension of P relative to ¢(K),

Q = (P.t| i Ypk)i = p(k) forall k € K),
and if o: G — Q denotes the homomorphism induced by ¢, with ¢|gz = ¢ and

@(t) = 1,thenp(g) = Xof ' X1 ... 1% X, and p(h) = yoi?' y7 ... 17 3, are reduced
forms in Q by (*) and (xx*), where X; = @(x;) (i € {0,...,n}) and y; = @(y;)

(j € {0,...,m}). But then the first condition in Minasyan’s criterion will not hold
for p(g) and @(h).

Conclusion of Step 1. We can assume that m = n and a; = b; for all i €
{1,...,n}.

Step 2. We assume that the second condition in Minasyan’s criterion is not satisfied
by gand h. Weset x = xg...x,and y = yg...y,. Thus y ¢ x5.
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By the assumptions, x5 is finitely p-separable in H. Therefore there exists a
homomorphism ¢ from H onto a finite p-group P such that ¢(y) ¢ ¢(x)?).
Denote by Q the HNN extension of P relative to ¢(K), and by ¢: G — Q the
homomorphism induced by ¢. Now let f: Q — P be the natural homomorphism.
We have

f(@(©) = f(Xot“' X1 ...1%"%p) = Xo ... % = @(X),

f@h) = f(or® yi...1yn) = Yo ... n = @(y)
(with the same notations as above). Since ¢(y) ¢ ¢(x)?®), we see that g(h) ¢
P(8)?®.

Conclusion of Step 2. We can assume that y € x5. There exists & € S such that

y =axa L.

End of the proof. Considering Minasyan’s criterion, since & ¢ g%, we must have
aCs(xo...xn) N yoKxg' N (yoy1)K(xox1)™ M-+
N (... yn—1)K(xo ... xpm1) = 0.

As we noted above, K is closed in the pro-p topology on H; thus, there exists a
normal subgroup L of p-power index in H such that:
x; ¢ KLforalli € {1,...,n—1}, (%)
yj ¢ KLforall j e {1,....,n—1}. ()
Now by Lemma 6.3, there exists a normal subgroup N of p-power index in H such
that N < L andif ¢: H — P = H/N denotes the canonical projection, then
aCg(%) N JoK%o " N Joy1 K (Tox1) ™ N
N Yo a1 K (X ... %pmp) ™
C o((@Cs(x) N yoKxg' N yoy1K(xox1) ™' N+
N Yo...yn—1K(xo...xp—1)"HL) = 0,

(k%)

where § = ¢(S), @ = ¢(@), ¥ = ¢(x), Xi = ¢(x;) (0 € {0,...,n}), y; = ¢(y))
(j € {0,...,n}). Let QO be the HNN extension of P relative to ¢(K) and let
@: G — Q be the homomorphism induced by ¢. Then, by () and (xx), ¢(g) =
Xot%' Xy ...19 X, and @(h) = yot®' y1 ...t% 3, are reduced forms in Q. So, in view
of (xxx), we have @(h) ¢ (g)?S). O

The following is the analogue of Lemma 8.8 in [M]:
Lemma 6.7. Let gog = t%'x1...t%x, (n > 1) and hy = tblyl ...tb’"ym be

cyclically reduced elements of G. Let hy, ..., hy be elements of G. If h; ¢ gé( for
alli € {1,...,k}, then there exists a normal subgroup L of p-power index in H
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such that if : H — P = H/L denotes the canonical projection, if Q denotes the
HNN extension of P relative to ¢(K), andif o : G — Q denotes the homomorphism
induced by ¢, we have

(1) @(go) = 1457 ...19%, and p(ho) = t°1 91 ... 1% §,m are cyclically reduced
in Q, where Xi = @(x;) (i € {1,....n}) and yj = (y;) (j €{l,....n}),
Q) @(hi) & p(g0)?™) foralli € {1,... k}.

Proof. As we noted above, K is closed in the pro- p topology on H ; thus, there exists
a normal subgroup L, of p-power index in H such that

x; ¢ KLy foralli e {l,...,n—1}, (%)
yj € KLy forall j €{l,...,n—1}. (%)
Leti € {1,...,k}. Since h; ¢ gé( , there exists a normal subgroup L; of p-power

index in H such that if ¢;: H — P; = H/L; denotes the canonical projection, if
Q; denotes the HNN extension of P; relative to ¢; (K) and if ¢; : G — Q; denotes
the homomorphism induced by ¢;, we have @; (h;) ¢ @; (g0)% ) by Lemma 6.6. Set
L=LoNLy---NLg.Letg: H— P = H/L be the canonical projection, let Q be
the HNN extension of P relative to ¢(K), andlet 9: G — Q be the homomorphism
inducedby ¢. Since L < Lg, §(go) = t*'%7 ...1% %, and @(ho) = 17 ... 1%,
are cyclically reduced in Q by (x) and (xx) (with the same notations as in the statement
of the lemma). As L < L; foralli € {1,...,k}, we have @(h;) ¢ p(go)?K) for all
ie{l,... .k} O

Lemma 6.8. Let G = (H,t | t 'kt = k forall k € K) be an HNN extension. Let
S be a subgroup of H. Let g = xot%'x1...t% x, be an element of G in reduced
form (n > 1). Then

Cs(g) = Cs(xq...xn) NxoKxg" N (xx1)K(xox1) ™' N

<o N (XO . Xn_l)K(X() . )Cn_l)_l.

Proof. Proved in [M] (see Lemma 7.12). ]

The following is the analogue of Lemma 8.9 in [M]:

Lemma 6.9. Let S be a special subgroup of H. Let L be a normal subgroup of
p-power index in G, and let g = xot%1x1 ...t%" x, be an element of G in reduced
form and not contained in H. Then there exists a normal subgroup N of p-power
index of H such that if o: H — P = H/N denotes the canonical projection, if
Q denotes the HNN extension of P relative to ¢(K), and if p: G — Q denotes the
homomorphism induced by ¢, we have

(1) Cos)(9(8) C @(Cs(g)L),
(2) ker(p) =N < HNL,
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(3) ker(p) < L.

Proof. Wehaven > lasg ¢ H.
As we noted above, K is closed in the pro-p topology on H. Therefore there
exists a normal subgroup M of p-power index in H such that

x; ¢ KM foralli € {1,...,n—1}. (%)

Weset L' = H N L. Note that L’ is a normal subgroup of p-power index in H. Thus,
up to replacing M by M N L', we can assume that M < L’. We set x = xg...X,.
We have

Cs(g) =Cg (x)ﬂonxo_1 N(xox1) K (xox1) 1NN (x0 ... xn—1) K (X0 ... Xp_1) "

by Lemma 6.8. We denote by [ the intersection on the right-hand side. By Lemma 6.3,
there exists a normal subgroup N of p-power index in H such that N < M and if
¢: H — P = H/N denotes the canonical projection, we have

Cs(¥)NxoKxo ' Nxox1 K (Xox1) ™' N+ NX5... 51 K (X ... Xno1) ' Co(IM),

where § = ¢(S), ¥ = ¢(x), X = @(x;) (i €{0,...,n —1}). We denote by J the
intersection on the left-hand side. Let Q be the HNN extension of P relative to ¢ (K),
andletp: G — Q be the homomorphism induced by ¢. Then Xot%! X7 ...19 %, isa
reduced form of ¢(g) in O by (*). But then Cg(s)(¢(g)) = J by Lemma 6.8. Now
o(M) < (L") = p(L") < p(L). Therefore

Co)(@(8)) =J Co(IM) = o(I)p(M)
Co)e(L) = o(Cs(g)e(L) = p(Cs(g)L).

Finally we remark that ker(p) = N < M < L' = H N L < L. Since ker(p) is the
normal closure of ker(¢) in G, we conclude that ker(¢) < L (because L is normal
in G). O

A prefix of t%1xy...t% x, is an element of G of the form %! xy ...t% x; for
some k € {0, ...,n}. We need the following result:

Proposition 6.10. Let G = (H,t | t 'kt = k forall k € K) be an HNN exten-
sion. Let g = t*1xy...t%x, be a cyclically reduced element of G (n > 1). Let
{P1...., Pn+1} be the set of all prefixes of g —we are not assuming that py, ..., Pn+1
are ordered. There are two cases:

(1) If x, € K, thenn = 1 and Cg(g) = (t)Ck(g).

(2) If xn € H\ K, let {pi. ..., pm} be the set of prefixes of g satisfying p; ' gp; €
gK (m € {0,...,n + 1}). Foreachi € {l1,...,m}, we choose a; € K
such that p7'gp; = o 'ga;. Weset Q = {o;p;' | i € {1,...,m}}. Then
Co(g) = Ck(g)(g).
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Proof. Proved in [M] (see Proposition 7.8). ]

The following is the analogue of Lemma 8.10 in [M]:

Lemma 6.11. Let L be a normal subgroup of p-power index in G. Let go =
t4xy ... t%x, (n > 1) be a cyclically reduced element of G. There exists a normal
subgroup N of p-power index in H such that if p: H — P = H/N denotes the
canonical projection, if Q denotes the HNN extension of P relative to ¢(K), and if
¢: G — Q denotes the homomorphism induced by ¢, we have

(1) Co(9(g0)) C #(Cs(go)L),
(2) ker(p) =N <HNL,
(3) ker(p) < L.

Proof. Let{p1,..., pn+1}bethe setof all prefixes of go. Renumbering p1, ..., pn+1

if necessary, we can assume that there existsm € {1,...,n+1} such that p;- lgopi €
gé{ foralli € {1,...,m}, and p;'gop; ¢ g(€< foralli e {m+1,...,n + 1}. For
eachi € {l1,...,m}, we choose o; € K such that p;'gop; = a; 'goa;. We set

Q= {a;p;'|ie{l,....,m}}. Weseth; = p;'gop; foralli € {m+1,...,n+1}.
By Lemma 6.7, there exists a normal subgroup N; of p-power index in H such that
if ¢1: H — Py = H/N; denotes the canonical projection, if Q; denotes the HNN
extension of P relative to ¢1(K), and if ¢1: G — Q7 denotes the homomorphism
induced by ¢1, then ¢ (go) is cyclically reduced in Q1, and @1 (h;) ¢ @1(go)?' &)
foralli € {m + 1,...,n + 1}. On the other hand, by Lemma 6.9, there exists a
normal subgroup N, of p-power index in H such thatif ¢p: H — P, = H/N,
denotes the canonical projection, if Q5 denotes the HNN extension of P, relative
to ¢2(K) and if po: G — Q5 denotes the homomorphism induced by ¢,, we have
Ca (k) (92(80)) C 92(Ck(go)L), ker(p2) < H N L, and ker(¢;) < L. Set N =
N1 N N,. Leto: H — P = H/N be the canonical projection, let Q be the HNN
extension of P relative to ¢(K), and let ¢ : G — Q be the homomorphism induced
by ¢. Since N < Ny, @(go) is cyclically reduced in Q and @(h;) ¢ @(go)?X for
alli e {m + 1,...,n + 1}. On the other hand, since N < N;, we have

o (Cax)(@(80))) C @2 (Cazx)(@2(80))) C Ck (go)L. (%)

There are two cases:
Case 1. x, € K. Thenn = 1, Cg(go) = (t)Ck(go), and Co(¢(go)) =
(t)Cy(k)(@(g0)) by Proposition 6.10. Now () implies that

Co(9(g0)) C {@(1))9(Ck(go)L) = ¢({t)Ck(go)L) = ¢(Ci(go)L).

Case2. x, € H\ K. Ifi € {1,....m}, @(pi) "' @(g0)@(pi) = #(p; ' gopi) €
?(g0)?) — because pilgopi € gg{ —, whereas if i € {m+1,....,n + 1},

@(pi) "' @(g0)@(pi) = §(hi) ¢ P(go)? ™). Therefore {G(p1). ..., #(pm)} is the
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set of all prefixes of §(go) satisfying @(pi)~'#(g0)@(pi) € P(g0)*®). By Propo-
sition 6.10, Cg(g0) = Cx(g0){g0)<2, and Co((g0)) = Co(x)(@(80))(#(80)) <2
where Q@ = 9(Q) = {@(a;)@(pi)~' | i € {1,...,m}}. We deduce that

Co(9(20)) C 9(Ck(20)L)(9(20))@(2) = ¢(Ck(g0)L(20)$2) = #(Cc(go)L).
O

Proposition 6.12. Let G be a right-angled Artin group of rankr (r > 1). Let g € G.
If g # 1, there exists a special subgroup H of rank r — 1 of G such that g ¢ HOC,
where H® = ey h°.

Proof. Proved in [M] (see Lemma 6.8). O

Lemma 6.13. Every special subgroup S of G satisfies the p-centralizer condition in
G (pCCq).

Proof. Let g € G. Let L be a normal subgroup of p-power index in G. There are
two cases:

Case 1. S # G. Let H be aspecial subgroup of rank r —1 of G such that S < H.
Then G can be written as an HNN extension of H, relative to a special subgroup K
of H:

G = (Ht|t 'kt =kforallk € K).

We set L' = H N L. We note that L’ is a normal subgroup of p-power index in H.
There are two cases:

Subcase 1. g € H. By the assumptions, the pair (.S, g) satisfies the p-centralizer
condition in H (pCCp;). There exists a normal subgroup M of p-power index in H
suchthat M < L’ andif ¥ : H — P = H/M denotes the canonical projection, we
have

Cy(s) (W (8)) C ¥(Cs(g)L). (*)

We denote by f: G — H the natural homomorphism. We note that f~1(M) is
a normal subgroup of p-power index in G (because f~!(M) is the kernel of the
homomorphism v o f). Therefore, N = L N (M) is a normal subgroup of p-
power index in G. Moreover N < L and f(N) < M. Wedenoteby ¢: G — Q =
G/ N the canonical projection. We observe that ker(y¥) = M, ker(p) = N, M <
fTYMYNLNH=NNH,andNNH C f(N) < M. Therefore M = N N H.
Thus we can assume that P < Q and ¢|g = . But then (L) = ¢(L') C ¢(L).
Recall that g € H and S < H. Thus considering (), we obtain

Co(5)(9(8)) = Cys)(¥(g)) C ¥ (Cs(@NV (L) C o(Cs(g)p(L) = p(Cs(g)L).

Subcase 2. g € G\ H. Write g = xot%'x;...t% x, in a reduced form (n > 1).
Then, by Lemma 6.9, there exists a normal subgroup M of p-power index in H
such thatif v : H — P = H/M denotes the canonical projection, if Q denotes the
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HNN extension of P relative to ¥ (K), andif ¥ : G — Q denotes the homomorphism
induced by ¥, then Cv—,(s)(i/_f(g)) C ¥(Cs(g)L),ker(¥) < HNL,andker(y) < L.
We note that ¥/ (S) N (L) = ¥ (S) N ¥ (L) < P is finite. Since Q is residually
p-finite, ¥ (g)YSMV @) is finitely p-separable in Q. Therefore, by Lemma 3.5,
there exists a normal subgroup N of p-power index in Q such that N < (L) and
if y: O — R = Q/N denotes the canonical projection, then

Coiicsy T (©) C 1(Cy5) (T (@NF (L))

Wesetp = yoy:G — R. We have ker(p) = ¥ !(ker(y)) = v 1(N) C
v '(Y (L)) = Lker(y). Now ker(y/) < L. Then ker(¢) < L and

Cos)(9(g) = CX(J,(S))(X(‘Z(g))) C X(Cl/‘,(s)(‘;(g))@(ll))
C (W (Cs(e)L)Y (L) = ¢(Cs(g)L).

Case2. § = G. If g = 1, then the result is trivial. Thus we can assume that
g # 1. Then, by Proposition 6.12, there exists a special subgroup H of rank r — 1 of
G suchthat g ¢ HC. Asabove, G can be written as an HNN extension of H relative
to a special subgroup K of H:

G = (Ht|t "%kt =kforallk € K).

Let go=t%'x; ...t% x, be acyclically reduced element in G conjugate to g. Choose
o« € G such that g = agoa™!. Note that g ¢ HY implies that n > 1. By
Lemma 6.11, there exists a normal subgroup M of p-power index in H such that
if y: H - P = H/M denotes the canonical projection, if Q denotes the HNN
extension of P relative to ¥ (K), and if ¥: G — Q denotes the homomorphism
induced by v/, then Co (¥ (g0)) C ¥ (Cs(go)L), ker(¥) < HNL,andker(y) < L.
Now @ is hereditarily conjugacy p-separable by Corollary 4.3. Then Q satisfies the
p-centralizer condition by Proposition 3.6. There exists a normal subgroup N of
p-power index in Q such that N < (L), and if y: Q — R = Q/N denotes the
canonical projection, we have

Cr(X(¥(£0))) C x(Co(¥(20)¥(L)).
Wesetg = yoyr: G — R. Asabove, wehaveker(p) = ¥~ !(ker(y)) = ¥ 1(N) C
vy (L)) = Lker(y). Now ker(/) < L. Then ker(¢) < L and
Cr(9(g0)) = Cy(6)(9(80)) = Cx(qp(c))(X(KZ(gO))) - X(CJ(G)(‘Z(gO))‘Z(L))
C x(¥(Co(g0) L)V (L)) = ¢(Cs(g0) L)

Finally,
9(@)Cr(¢(g0)¢(e) ™" C p(a)(Cg(go)L)p(e) ™",
that is,
Cr(p(8)) C9(Ca(g)L). O
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Lemma 6.14. For every g € G and for every special subgroup S of G, g5 is finitely
p-separable in G.

Proof. There are two cases:
Case 1. S # G. Let H be a special subgroup of rank r — 1 of G suchthat S < H.
As above, G can be written as an HNN extension of H relative to a special subgroup
Kof H:
G = (Ht|t 'kt =kforallk € K).

Let g € G. There are two cases:

Subcase 1. g € H. Then g% is finitely p-separable in H by the assumptions.
Since G is residually p-finite by Theorem 6.1, g5 is finitely p-separable in G by
Lemma 5.12.

Subcase 2. g € G\ H. Leth € G\ g5. By Lemma 6.6, there exists a
normal subgroup L of p-power index in H such thatif v: H — P = H/L
denotes the canonical projection, if Q denotes the HNN extension of P relative
to ¥ (K), and if ¥: G — Q denotes the homomorphism induced by 1, we have
U(h) ¢ ¥(g)?®). Now ¥ (S) = ¥ (S) < P is finite and Q is residually p-finite.
Then there exists a homomorphism y: O — R from Q onto a finite p-group R such
that y (¥ (h)) ¢ x(¥(g)¥S). Thus the homomorphism ¢ = yoy : G — R satisfies
the condition ¢ (/) ¢ ¢(g°), as required.

Case2. S = G. Let g € G. If g = 1, then, since G is residually p-finite by
Theorem 6.1, g% = {1}is finitely p-separable in G. Thus we can assume that g 7 1.
Then, by Proposition 6.12, there exists a special subgroup H of rank 7 — 1 of G such
that g ¢ HC. As above, G can be written as an HNN extension of H relative to a
special subgroup K of H:

G = (H,t|t 'kt =k forall k € K).

Leth € G\ g%. Let go = 1% x;...t%x, and hg = tP1y, ... tPmy,, be cyclically
reduced elements of G conjugate to g and /, respectively. Note that g ¢ H Y implies
that n > 1. There are two cases:

Subcase 1. hy € H. Then, by Lemma 6.7, there exists a normal subgroup L of p-
power index in H suchthatif v : H — P = H/L denotes the canonical projection,
if O denotes the HNN extension of P relative to ¥ (K), andif / : G — Q denotes the
homomorphism induced by v, then ¥ (g¢) = %' X7 ...1% X, is cyclically reduced
in Q, where X; = ¥ (x;) (i € {1,...,n}). Since n > 1, we have ¥ (go) ¢ P2 =
Y (HO). Therefore ¥(go) ¢ ¥ (ho)2 = ¥ (hS) C ¥(H). Now Q is conjugacy
p-separable by Corollary 4.3. Then there exists a homomorphism y from Q onto a
finite p-group R suchthat y (¥ (g0)) & x(¥ (ho))®. Therefore x (¥ (g)) ¢ x (v (h))*.
Thus the homomorphism ¢ = y o ¥/ : G — R satisfies the condition ¢(h) ¢ ¢(g5),
as desired.

Subcase 2. hg € G \ H. Let {hq, ..., hy} be the set of all cyclic permutations
of ho. Then, since & ¢ g€, we have: h; ¢ gg foralli € {1,...,m}. Therefore,
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by Lemma 6.7, there exists a normal subgroup L of p-power index in H such that,
if: H - P = H/L denotes the canonical projection, if Q denotes the HNN
extension of P relative to ¥ (K), and if ¥: G — Q denotes the homomorphism
induced by ¥, then ¥ (go) = 1'%y ...1% X, and J(ho) = 21y, ... ibm 3, are
cyclically reduced in Q, where ¥; = ¥(x;) (i € {1,...,n}) and y; = ¥ (y;)
(j €{l,...,n})~and V(hi) ¢ W(go)‘”(K) foralli € {1,...,m}. Consequently, by
Lemma 2. 3 V(go) ¢ ¥(ho)2. Now Q is conjugacy p- separable by Corollary 4.3.
Then there exists a homomorphism y from Q onto a finite p-group R such that

x(W(g0)) & x(¥(ho))R. Hence x(¥(g)) ¢ x(¥(h))X. Thus the homomorphism
¢ = yoy: G — R satisfies the condition ¢ (/) ¢ ¢(g°), as required. O

Proof of Proposition 6.2. We argue by induction on the rank r of G. If r = 0, then
the result is trivial. Thus we can assume that » > 1 and that the result has been
proved for 1, ..., r — 1. Now, Proposition 6.2 (1) follows from Lemma 6.13, and
Proposition 6.2 (2) follows from Lemma 6.14. O

We are now ready to prove:
Theorem 6.15. Every right-angled Artin group is hereditarily conjugacy p-separable.

Proof. Let G be a right-angled Artin group. Let g € G. Then g€ is finitely p-
separable in G by Proposition 6.2 (1). We deduce that G is conjugacy p-separable.
On the other hand, G satisfies the p-centralizer condition by Proposition 6.2 (2). We
conclude that G is hereditarily conjugacy p-separable by Proposition 3.6. O

7. Applications

The first application that we mention is an application of our main theorem to sepa-
rability properties of Gr.

For a group G, we denote by (C"(G)),>1 the lower central series of G. Recall that
(C™(G))n>1 is defined inductively by C'(G) = G, and C"t1(G) = [G,C"(G)]
foralln > 1.

Corollary 7.1. Every right-angled Artin group is conjugacy separable in the class
of torsion-free nilpotent groups.

Proof. Let G be a right-angled Artin group. Let g,h € G such that g ~ h. Let p
be a prime number. Then G is conjugacy p-separable by Theorem 6.15. Thus, there
exists a homomorphism ¢ from G onto a finite p-group P such that ¢(g) ~ @(h).
Now P is nilpotent. Therefore, there exists n > 1 such that C"(P) = {1}. Let
.G — CHL(G) be the canonical projection. It follows from [DK2], Theorem 2.1,
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that for all n > 1, there exists d,, € N such that

Cc"(G)

——_~ 7%,
Cr+1(G)

Thus, an easy induction on n shows that C,,L(G) is torsion-free for all # > 1. Hence
CHL(G) is a torsion-free nilpotent group for all n > 1. Since ¢(C"(G)) < C*(P) =
{1}, ¢ induces a homomorphism ¢ : C”L(G) — P suchthat g = @ om. As ¢(g) +
@(h), we have 7 (g) ~ m(h). O

We now turn to applications of our main theorem to residual properties of Out(Gr).

An automorphism ¢ of a group G is said to be conjugating if ¢(g) ~ g for every
g € G. We say that G has Property A if every conjugating automorphism of G is
inner. The following proposition is due to Minasyan (see [M], Proposition 6.9):

Proposition 7.2. Right-angled Artin groups have Property A.
For a group G, we denote by .I,(G) the kernel of the natural homomorphism
Out(G) — GL(H1(G,F,)) (where I, denotes the finite field with p elements). The

following theorem is due to Paris (see [P], Theorem 2.5):

Theorem 7.3. Let G be a finitely generated group. If G is conjugacy p-separable
and has Property A, then I,(G) is residually p-finite.

Thus, combining Theorem 7.3 and Proposition 7.2 with Theorem 6.15, we obtain:

Corollary 7.4. The outer automorphism group of a right-angled Artin group is vir-
tually residually p-finite.

The following theorem is due to Myasnikov (see [My], Theorem 1):

Theorem 7.5. Let G be a finitely generated group. If G is conjugacy p-separable
and has property A, then Out(G) is residually J, where K is the class of all outer
automorphism groups of finite p-groups.

Thus, combining Theorem 7.5 and Proposition 7.2 with Theorem 6.15, we obtain:

Corollary 7.6. The outer automorphism group of a right-angled Artin group is resid-
ually KX, where K is the class of all outer automorphism groups of finite p-groups.

In the remainder of this paper, we prove Theorem 7.14. Let G = Gr be a right-
angled Artin group. Let r be the rank of G. We denote by T(G) the kernel of the
natural homomorphism Aut(G) — GL,(Z), and by 7 (G) the kernel of the natural
homomorphism Out(G) — GL,(Z). Note that 7 (G) = T(G)/Inn(G). Day proved
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that T(G) is finitely generated (see [D2], Theorem B). Therefore 7 (G) is finitely
generated.

In order to prove Theorem 7.14, we have to introduce the notion of separating
Z-linear central filtration.

Recall that a central filtration on a group G is a sequence (Gy),>1 of subgroups
of G satisfying the conditions:

G =G, G,>Gut1, [Gm,Gu]l <Guyn forallm,n>1.

Let ¥ = (Gp)n>1 be a central filtration. Then the mapping G x G — G,

(x,y) = xyx~'y~!induces on

25(G) = ) 2

n>1 Gn+1

a Lie bracket which makes &£ (G) into a graded Lie Z-algebra.
We say that (Gp)n>1 is a separating filtration if (1,5 G, = {1}. We say that

(Gn)n>1 is Z-linear if the Z-module an—l is free of finite rank for alln > 1.

For a group G, we denote by (C7(G))n>1 the sequence of subgroups of G defined

n+1
inductively by C3(G) = G. [G.CZ(G)] < C3¥1(G). and (ric:
Lz

is the torsion

Cz(G)
subgroup of [G’gw foralln > 1.

Proposition 7.7. Forallm,n > 1, [CF(G), C2(G)] < CHH"(G).
Proof. Proved in [BL] (see Proposition 7.2). ]

Thus, (C7(G))n>1 is a central filtration on G. We denote by £7(G) the corre-
sponding graded Lie Z-algebra.

For a Lie algebra g, we denote by Z(g) the center of g. Let G be a group.
For n > 1, we denote by A4, the kernel of the natural homomorphism Aut(G) —

Am(c"+(6))' Let w: Aut(G) — Out(G) be the canonical projection. For n > 1,
Z

we set B, = w(Gy).

Theorem 7.8. If G™ is finitely generated, and Z(F, ® £7(G)) = {0} for every
prime number p, then (Bp)n>1 is a Z-linear central filtration on By. Furthermore,
(Bn)n>1 is separating if and only if G satisfies the following condition:
(IN(G)) : Forevery ¢ € Aut(G), if ¢ induces an inner automorphism of C"L(G) for
VA
alln > 1, then ¢ is inner.

Proof. Proved in [BL] (see Corollary 9.9). O
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From now on, we assume that G = Gr is a right-angled Artin group of rank r
(r > 1). We shall show that G satisfies the conditions of Theorem 7.8. Since B; is
precisely the Torelli group of G, Theorem 7.14 will then result from the following:

Theorem 7.9. Let B be a group. Suppose that B admits a separating Z-linear central
filtration (Bp)n>1. Then B is residually torsion-free nilpotent.

Proof. Proved in [BL] (see Theorem 6.1). ]

We need to introduce the following notations. Let K be a commutative ring. We
denote by Mt the monoid defined by the presentation

Mr = (V | vw = wv for all {v,w} € E),

by Ar the associative K-algebra of the monoid Mr, and by Lr the Lie K-algebra
defined by the presentation

Lr =(V |[v,w] =0forall {v,w} € E).
The following theorem is due to Duchamp and Krob (see [DK1], Corollary I1.16):

Theorem 7.10. The K-module L is free.

Thus, by the Poincaré-Birkhoff—Witt theorem, L can be regarded as a Lie sub-
algebra of its enveloping algebra, for which Duchamp and Krob established the fol-
lowing (see [DK1], Corollary 1.2):

Theorem 7.11. The enveloping algebra of Lt is isomorphic to Ar.

Furthermore, Duchamp and Krob proved the following (see [DK2], Theorem 2.1),
which generalizes a well-known theorem of Magnus:

Theorem 7.12. Suppose that K = Z. The graded Lie Z-algebra associated to the
lower central series of G is isomorphic to Lr.

Set Z = () ey star(v). It follows from Servatius’ Centralizer Theorem (see [S],
Theorem 1) that the center Z(G) of G is the special subgroup of G generated by Z.

Lemma 7.13. Suppose that Z(G) = {1}. Then Z(Lt) = {0}.

Proof. Let g € Z(Lr). Suppose that g # 0. Let v € V. We have [g,v] = 0
(in Lt). Now, Lr can be regarded as a Lie subalgebra of Ar by Theorem 7.10
and Theorem 7.11. Thus, we have gv = vg (in Ar). Therefore g belongs to the
subalgebra of Ar generated by star(v) (see [KR], Theorem 2). Since v is arbitrary,
this leads to a contradiction with our assumption. O
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From now on, we assume that K = 7Z. We now turn to prove:

Theorem 7.14. The Torelli group of a right-angled Artin group is residually torsion-
free nilpotent.

Proof. Let H be the special subgroup of G generated by V' \ Z. Note that Z(H ) =
{1}. Wehave G = H x Z(G). First, we show that 7 (G) = T (H). Letp: T(H) —
T (G) be the homomorphism defined by

p(@)(h, k) = (a(h). k)

foralle € T(H), h € H, k € Z(G). Clearly, ¢ is well defined and injective.
We shall show that ¢ is surjective. Let 8 € T(G). For g € G, we set f(g) =
(B1(g). B2(g)), where B1(g) € H and B1(g) € Z(G). Let h € H. We denote by
h the canonical image of & in H*. Note that the canonical image of h in G* =
H® x Z(G)is (h,1). Since B € T(G), we have (h, 1) = (B1(h), B2(h)), and then
B2(h) = 1. Let k € Z(G). Since B(k) lies in the center of G, we have B;(k) = 1.
Note that the canonical image of k in G® is (1, k). As B € T(G), wehave B, (k) = k.
Finally, we have

B(h.k) = (B1(h). k)
forallh € H and k € Z(G). Applying the same argument to 8!, we obtain that the
restriction « of B to H is an automorphism of H. Therefore § = ¢(«). We deduce
that ¢ is an isomorphism. Note that ¢ (Inn(H)) = Inn(G). We conclude that 7 (G) =
T (H). Thus, up to replacing G by H, we can assume that Z(G) = {1}. As we noted
above, C"C(;G) is torsion-free for all n > 1. Now, foralln > 1, C*(G) < C;(G),

and C%EG; is the torsion subgroup of cn © by [BL], Proposition 7.2. It follows
that C7(G) = C"(G) for all n > 1, and that £7(G) = Lr by Theorem 7.12.
Since Z(G) = {1}, we have Z(IF, ® Lr) = {0} for every prime number p by
Lemma 7.13. We deduce that (B,),>1 is a Z-linear central filtration on 7 (G) by
Theorem 7.8. Now, let ¢ € Aut(G) such that ¢ induces an inner automorphism on
C,,(G) foralln > 1. Let g € G. Suppose that ¢(g) and g are not conjugate in G.
Then it follows from the proof of Theorem 7.1 that there exists n > 1 such that the
canonical images of ¢(g) and g in C,,L(G) are not conjugate in CHL(G) — contradicting
our assumption. Thus ¢ is conjugating. Therefore ¢ is inner by Proposition 7.2.
We deduce that (B,),>1 is separating by Theorem 7.8. We conclude that 7 (G) is
residually torsion-free nilpotent by Theorem 7.9. g

Corollary 7.15. The Torelli group of a right-angled Artin group is residually p-finite.

Proof. Since T (G) is finitely generated by [D2], Theorem B, and residually torsion-
free nilpotent by Theorem 7.14, it is residually p-finite by [G], Theorem 2.1. g

It is known that residually torsion-free nilpotent groups are bi-orderable (see, for
example, [CKM], Remark 2.6). Thus, Theorem 7.14 immediately yields:
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Corollary 7.16. The Torelli group of a right-angled Artin group is bi-orderable.

A. Appendix

Let G be a group, and let H be a subgroup of G. Recall that the normal core of H,
denoted by Hg, is defined to be the largest normal subgroup of G that is contained
in H,ie., Hg = ﬂgeG gHg™!. The following lemma is probably well known,
though it does not seem to be in the literature. We include a proof for completeness.

Lemma A.1. Let G be a group, and let H be a subgroup of G. Then H is open in
the pro-p topology on G if and only if H is subnormal of p-power index.

Proof. If H is open in the pro-p topology on G, then it contains a normal subgroup
K of p-power index in G. Thus [G : H] is a power of p. As % is a finite p-group,
every subgroup of it is subnormal. Therefore H is subnormal in G.

Conversely, if H is a subnormal subgroup of p-power index in G, then [G : Hg]
is a power of p (see, for example, [AF2], Lemma 3.3). Thus H contains an open
subgroup of G, and hence is open itself. O
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