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1. Introduction

Let � = (V ,E) be a finite simplicial graph. The right-angled Artin group associated
to � is the group G� defined by the presentation:

G� D hV j vw D wv for all fv;wg 2 Ei:
Note that if � is a discrete graph, then G� is the free group Fr on r generators

(where r D jV j), and if � is a complete graph, then G� is the free abelian group
Zr . Thus, right-angled Artin groups can be seen as interpolating between free groups
and free abelian groups. The rank of G� is by definition the number of vertices of
� . A special subgroup of G� is a subgroup generated by a subset W of the set of
vertices V of � – it is naturally isomorphic to the right-angled Artin group G�.W /,
where �.W / denotes the full subgraph of � spanned by W . Let v be a vertex of � .
The link of v, denoted by link.v/, is the subset of V consisting of all vertices that are
adjacent to v. The star of v, denoted by star.v/, is link.v/[ fvg. We refer to [C] for
a general survey of right-angled Artin groups.

Little is known about the automorphism groups of right-angled Artin groups. In
1989, Servatius conjectured a generating set for Aut.G�/ (see [Ser]). He proved his
conjecture in certain special cases, for example when the graph is a tree. Thereafter
Laurence proved the conjecture in the general case (see [L]). Charney and Vogtmann
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showed that Out.G�/ is virtually torsion-free and has finite virtual cohomological
dimension (see [CV1]). Day gave a finite presentation for Aut.G�/ (see [D1]). More
recently, Minasyan proved that Out.G�/ is residually finite (see [M]). This result was
obtained independently by Charney and Vogtmann in [CV2], where they also proved
that, for a large class of graphs, Out.G�/ satisfies the Tits alternative.

Let K be a class of group. A group G is said to be residually K if for all
g 2 G n f1g, there exists a homomorphism ' from G to some group of K such that
'.g/ ¤ 1. Note that if K is the class of all finite groups, this notion reduces to
residual finiteness.

For a groupG and forg; h 2 G, we use the notationg � h to mean thatg andh are
conjugate. A group G is said to be conjugacy K-separable (or conjugacy separable
in the class K) if for all g; h 2 G, either g � h, or there exists a homomorphism '

from G to some group of K such that '.g/ œ '.h/. Note that if K is the class of
all finite groups, this notion reduces to conjugacy separability. Clearly, if a group is
conjugacy K-separable, then it is residually K .

Our focus here is on conjugacy separability in the class of finite p-groups. Let p
be a prime number. If K is the class of all finite p-groups, then, instead of saying
“G is residually K”, we shall say thatG is residually p-finite. Note that this implies
residually finite as well as residually nilpotent. Instead of saying “G is conjugacy
K-separable”, we shall say that G is conjugacy p-separable. Following Ivanova
(see [I]), we say that a subset S of a group G is finitely p-separable if for every
g 2 G nS , there exists a homomorphism ' fromG onto a finite p-group P such that
'.g/ … '.S/. Note that G is conjugacy p-separable if and only if every conjugacy
class of G is finitely p-separable.

Examples of groups which are known to be conjugacy p-separable include free
groups (see, e.g. [LS]) and fundamental groups of oriented closed surfaces (see [P]).

There is a connection between these notions and a topology on G, the “pro-p
topology” onG. The pro-p topology onG is defined by taking the normal subgroups
of p-power index in G as a basis of neighbourhoods of 1 (see [RZ]). Equipped with
the pro-p topology, G becomes a topological group. Observe that G is Hausdorff if
and only if it is residually p-finite. One can show that a subset S ofG is closed in the
pro-p topology on G if and only if it is finitely p-separable. Thus, G is conjugacy
p-separable if and only if every conjugacy class ofG is closed in the pro-p topology
on G.

In [CZ], Chagas and Zalesskii constructed an example of a conjugacy separable
group possessing a non conjugacy separable subgroup of finite index. This led them
to introduce the notion of “hereditarily conjugacy separable group”. A group G is
said to be hereditarily conjugacy separable if every subgroup of finite index in G is
conjugacy separable.

Recall that a subnormal subgroup of a group G is a subgroup H of G such that
there exists a finite sequence of subgroups of G:

H D H0 < H1 < � � � < Hn D G;
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such that Hi is normal in HiC1 for all i 2 f0; : : : ; n � 1g.
A subgroup H of a group G is open in the pro-p topology on G if and only if

it is subnormal of p-power index (see Lemma A.1). This leads us to the following
definition, which naturally generalizes that of [CZ]:

Definition 1.1. LetG be a group. We say thatG is hereditarily conjugacyp-separable
if every subnormal subgroup of p-power index in G is conjugacy p-separable.

In [M], Minasyan proved that right-angledArtin groups are hereditarily conjugacy
separable. Our main theorem is the following:

Theorem6.15. Every right-angledArtin group is hereditarily conjugacyp-separable.

We will now discuss some applications of Theorem 6.15. The first application
that we mention is an application of Theorem 6.15 to separability properties of G� :

Corollary 7.1. Every right-angled Artin group is conjugacy separable in the class
of torsion-free nilpotent groups.

Let P be a group property. A group G is said to be virtually P if there exists a
finite index subgroupH < G such thatH has Property P . Combining Theorem 6.15
with a result of Paris (see [P]), we obtain the following:

Corollary 7.4. The outer automorphism group of a right-angled Artin group is vir-
tually residually p-finite.

On the other hand, combining Theorem 6.15 with a result of Myasnikov (see
[My]), we obtain the following:

Corollary 7.6. The outer automorphism group of a right-angled Artin group is resid-
ually K , where K is the class of all outer automorphism groups of finite p-groups.

The next application was suggested to the author by Ruth Charney and Luis Paris.
The natural action Aut.G�/ ! GLr.Z/ of Aut.G�/ on H1.G� ;Z/ gives rise to

a homomorphism Out.G�/ ! GLr.Z/, whose kernel is called the Torelli group of
G� – by analogy with the Torelli group of a mapping class group. In Section 7, we
combine well-known results of Bass–Lubotzky (see [BL]), and Duchamp–Krob (see
[DK1], [DK2]) with Theorem 6.15 to attain the following:

Theorem 7.14. The Torelli group of a right-angled Artin group is residually torsion-
free nilpotent.

Corollary 7.15. The Torelli group of a right-angled Artin group is residuallyp-finite.
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Recall that a group G is said to be bi-orderable if it can be endowed with a total
order � such that if g � h, then kg � kh and gk � hk for all g; h; k 2 G.

Corollary 7.16. The Torelli group of a right-angled Artin group is bi-order-able.

Our proof follows closely that of Minasyan (see [M]). Both proofs proceed by
induction on the rank of G� . The key observation is that a right-angled Artin group
of rank r can be written as an HNN extension of any of its special subgroups of rank
r � 1. After passing to an HNN extension of a finite group (which is known to be
virtually free), Minasyan applies a theorem of Dyer stating that virtually free groups
are conjugacy separable (see [Dy1]).

This paper is organized as follows. In Section 3, we introduce the p-centralizer
condition which is the analogue of the centralizer condition in [M], and we prove that
a group is hereditarily conjugacyp-separable if and only if it is conjugacyp-separable
and satisfies the p-centralizer condition. In Section 4, we prove the following ana-
logue of Dyer’s theorem for conjugacy p-separability:

Theorem 1.2. Every extension of a free group by a finite p-group is conjugacy p-
separable.

Section 5 deals with retractions that are key tools in the proof of our main theorem,
which is the object of Section 6.

My gratefulness goes to my Ph.D. thesis advisor, Luis Paris, for his trust, time and
advice. I am in debt to Ashot Minasyan for pointing out a mistake in an earlier draft
of this work, and for directing me to the paper of Aschenbrenner and Friedl [AF2]. I
also wish to thank the referee for his (or her) many useful suggestions.

2. HNN extensions

In this section, we recall the definition and basic properties of HNN extensions (see
[LS]).

Let H be a group. Then by the notation

hH; s; : : : j r; : : : i
we mean the group defined by the presentation whose generators are the generators
of H together with s, … and the relators of H together with r , ….

Let H be a group, and let K be a subgroup of H . The HNN extension of H
relative to K is the group defined by the presentation

G D hH; t j t�1kt D k for all k 2 Ki:
Every element ofG can be written as a word x0ta1x1 : : : t

anxn (n � 0, x0; : : : ; xn 2
H , a1; : : : ; an 2 Z n f0g). Following Minasyan (see [M]), we will say that the word
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x0t
a1x1 : : : t

anxn is reduced if x0 2 H , x1; : : : ; xn�1 2 H nK, and xn 2 H . Every
element of G can be written as a reduced word. Note that our definition of a reduced
word is stronger than the definition of a reduced word in [LS].

Lemma 2.1 (Britton’s Lemma). If a word x0ta1x1 : : : t
anxn is reduced with n � 1,

then x0ta1x1 : : : t
anxn ¤ 1.

Proof. Proved in [LS] (see Theorem IV.2.1).

Lemma 2.2. If x0ta1x1 : : : t
anxn and y0tb1y1 : : : t

bmym are reduced words such
that x0ta1x1 : : : t

anxn D y0t
b1y1 : : : t

bmym, then m D n and ai D bi for all
i 2 f1; : : : ; ng.

Proof. Proved in [LS] (see Lemma IV.2.3).

A cyclic permutation of the word ta1x1 : : : t
anxn is a word

takxk : : : t
anxnt

a1x1 : : : t
ak�1xk�1

with k 2 f1; : : : ; ng. A word ta1x1 : : : t
anxn is said to be cyclically reduced if

any cyclic permutation of ta1x1 : : : t
anxn is reduced. Note that if ta1x1 : : : t

anxn is
reduced and n � 2, then ta1x1 : : : t

anxn is cyclically reduced if and only if xn 2
H nK. Every element of G is conjugate to a cyclically reduced word.

Lemma 2.3 (Collins’ Lemma). If the words g = ta1x1 : : : t
anxn (n � 1) and h D

tb1y1 : : : t
bmym (m � 1) are cyclically reduced and conjugate, then there exists a

cyclic permutation h� of h and an element ˛ 2 K such that g D ˛h�˛�1.

Proof. Proved in [LS] (see Theorem IV.2.5).

Remark 2.4. There exists a natural homomorphism f W G ! H , defined by f .h/ D
h for all h 2 H , and f .t/ D 1.

Remark 2.5. Let P be a group and let ' W H ! P be a homomorphism. Let Q be
the HNN extension of P relative to '.K/:

Q D hP; Nt j Nt�1'.k/Nt D '.k/ for all k 2 Ki:
Then' induces a homomorphism x' W G ! Q, defined by x'.h/ D '.h/ for all h 2 H ,
and x'.t/ D Nt .

Lemma2.6. With the notations of Remark 2.5, ker.x'/ is the normal closure of ker.'/
in G.

Proof. Proved in [M] (see Lemma 7.5).
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The following observation is the key in the proof of our main theorem.

Remark 2.7. Let G be a right-angled Artin group of rank r (r � 1). Let H be
a special subgroup of G of rank r � 1. In other words, there is a partition of V ,
V D W [ ftg such that H D hW i. Then G can be written as the HNN extension of
H relative to the special subgroup K D hlink.t/i of H :

G D hH; t j t�1kt D k for all k 2 Ki:

3. Hereditary conjugacy p-separability and p-centralizer condition

We start with an observation that the reader has to keep in mind, because it will be
used repeatedly in the rest of the paper: if H and K are two normal subgroups of
p-power index in a group G, then H \ K is a normal subgroup of p-power index
in G.

The centralizer condition was first introduced by Chagas and Zalesskii as a suffi-
cient condition for a conjugacy separable group to be hereditarily conjugacy separable
(see [CZ]). Thereafter Minasyan showed that this condition is also necessary; that
is, a group is hereditarily conjugacy separable if and only if it is conjugacy separable
and satisfies the centralizer condition (see [M]). We make the following definition,
which naturally generalizes that of [M]:

Definition 3.1. We say thatG satisfies the p-centralizer condition (pCC) if, for every
normal subgroup H of p-power index in G, and for all g 2 G, there exists a normal
subgroup K of p-power index in G such that K < H and

CG=K.'.g// � '.CG.g/H/;

where ' W G ! G=K denotes the canonical projection.

We shall show that a group G is hereditarily conjugacy p-separable if and only
if it is conjugacy p-separable and satisfies the p-centralizer condition (see Proposi-
tion 3.6). IfH is a subgroup ofG, and g 2 G, we setCH .g/ D fh 2 H j gh D hgg.
For technical reasons, we have to introduce the following definitions.

Definition 3.2. Let G be a group, H be a subgroup of G, and g 2 G. We say that
the pair .H; g/ satisfies the p-centralizer condition inG (pCCG) if, for every normal
subgroup K of p-power index in G, there exists a normal subgroup L of p-power
index in G such that L < K, and

C'.H/.'.g// � '.CH .g/K/;

where ' W G ! G=L denotes the canonical projection. We say that H satisfies the
p-centralizer condition in G (pCCG) if the pair .H; g/ satisfies the p-centralizer
condition in G for all g 2 G.
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If G is a group, H is a subgroup of G, and g 2 G, we set gH D f˛g˛�1 j ˛ 2
H g. In order to prove Proposition 3.6, we need the following statements, which are
the analogues of some statements obtained in [M] (Lemma 3.4, Corollary 3.5, and
Lemma 3.7, respectively):

Lemma 3.3. LetG be a group,H be a subgroup ofG, and g 2 G. Suppose that the
pair .G; g/ satisfies pCCG , and that gG is finitely p-separable in G. If CG.g/H is
finitely p-separable in G, then gH is also finitely p-separable in G.

Proof. Let h 2 G such that h … gH . If h … gG , then, since gG is finitely p-sepa-
rable in G, there exists a homomorphism ' from G onto a finite p-group P such
that '.h/ … '.gG/. In particular, '.h/ … '.gH /. Thus we can assume that h 2 gG .
Let ˛ 2 G be such that h D ˛g˛�1. Suppose that CG.g/ \ ˛�1H ¤ ;. Let
k 2 CG.g/ \ ˛�1H . Then ˛k 2 H , and h D ˛g˛�1 D ˛kg.˛k/�1 2 gH , which
is a contradiction. Thus CG.g/ \ ˛�1H D ;, i.e., ˛�1 … CG.g/H . As CG.g/H
is finitely p-separable in G, there exists a normal subgroup K of p-power index in
G such that ˛�1 … CG.g/HK. Now the condition pCCG implies that there exists a
normal subgroup L of p-power index in G such that L < K and

CG=L.'.g// � '.CG.g/K/;

where ' W G ! G=L denotes the canonical projection. We claim that '.h/ … '.gH /.
Indeed, if there is ˇ 2 H such that '.h/ D '.ˇgˇ�1/, then

'.˛�1ˇ/'.g/ D '.˛�1ˇ/'.ˇ�1hˇ/ D '.˛�1h˛/'.˛�1ˇ/ D '.g/'.˛�1ˇ/;

i.e.,'.˛�1ˇ/2CG=L.'.g//. But then'.˛�1/2CG=L.'.g//'.H/� '.CG.g/KH/.
Hence˛�1 2 CG.g/HKL D CG.g/HK (becauseL < K), which is a contradiction.

Corollary 3.4. LetG be a conjugacy p-separable group satisfying pCC, andH be a
subgroup of G such thatCG.h/H is finitelyp-separable inG for all h 2 H . ThenH
is conjugacy p-separable. Moreover, hH is finitely p-separable in G for all h 2 H .

Proof. Let h 2 H . Since G satisfies pCC, the pair .G; h/ satisfies pCCG . Since G
is conjugacy p-separable, hG is finitely p-separable in G. Lemma 3.3 now implies
that hH is finitely p-separable in G. Therefore hH is finitely p-separable in H.

Lemma 3.5. Let G be a group, H be a subgroup of G, and g 2 G. Let K be a
normal subgroup of p-power index in G. If gH\K is finitely p-separable in G, then
there exists a normal subgroup L of p-power index in G such that L < K and

C'.H/.'.g// � '.CH .g/K/;

where ' W G ! G=L denotes the canonical projection.
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Proof. Note that H \ K is of finite index n in H . Actually, H \ K is of p-power
index in H (because H

H\K ' KH
K

< G
K

), but this is not needed here. There exist
˛1; : : : ; ˛n 2 H such thatH D tniD1˛i .H\K/. Up to renumbering, we can assume
that there exists l 2 f0; : : : ; ng such that ˛�1

i g˛i 2 gH\K for all i 2 f1; : : : ; lg and
˛�1
i g˛i … gH\K for all i 2 fl C 1; : : : ; ng. By the assumptions, there exists a

normal subgroup L of p-power index in G such that ˛�1
i g˛i … gH\KL for all

i 2 fl C 1; : : : ; ng. Up to replacing L by L \ K, we can assume that L < K.
Let ' W G ! G=L be the canonical projection. Let Nh 2 C'.H/.'.g//. There exists
h 2 H such that Nh D '.h/. There exist i 2 f1; : : : ; ng and k 2 H \ K such that
h D ˛ik. We have '.h�1gh/ D '.h/�1'.g/'.h/ D '.g/. Thus h�1gh 2 gL.
But then ˛�1

i g˛i D kh�1ghk�1 2 kgLk�1 D kgk�1L � gH\KL. Therefore
i � l . Then there exists ˇ 2 H \K such that ˛�1

i g˛i D ˇgˇ�1. This is to say that
˛iˇ 2 CH .g/, and then h D ˛ik D .˛iˇ/.ˇ

�1k/ 2 CH .g/.H \ K/ � CH .g/K.
We have shown that C'.H/.'.g// � '.CH .g/K/.

We are now ready to prove:

Proposition 3.6. A group is hereditarily conjugacy p-separable if and only if it is
conjugacy p-separable and satisfies pCC.

Proof. Suppose that G is conjugacy p-separable and satisfies pCC. Let H be a sub-
normal subgroup of p-power index in G. ThusH is closed in the pro-p topology on
G (because G n H D SfgH j g … H g). Let h 2 H . The set CG.h/H is a finite
union of left cosets moduloH and thus is closed in the pro-p topology onG. Corol-
lary 3.4 now implies that H is conjugacy p-separable. Therefore G is hereditarily
conjugacy p-separable. Suppose now that G is hereditarily conjugacy p-separable.
In particular, G is conjugacy p-separable. We shall show that G satisfies pCC. Let
g 2 G. Let K be a normal subgroup of p-power index in G. Let H = Khgi. Since
K < H , ŒG W H� is a power of p. As G

K
is a finite p-group, every subgroup of it is

subnormal. ThusH is subnormal inG. ThereforeH is conjugacy p-separable. Note
that gG\K D gK D gH � H . As gH is closed in the pro-p topology on H , it is
closed in the pro-p topology onG, because the topology induced onH by the pro-p
topology on G coincides with the pro-p topology on H (see, for example, [RZ2],
Corollary 5.8). The result now follows from Lemma 3.5.

4. Extensions of free groups by finite p-groups are conjugacy p-separable

We start with an observation that the reader has to keep in mind because it will be
used repeatedly in the proof of Theorem 4.2: if ' W G ! H is a homomorphism from
a group G to a group H whose kernel is torsion-free, then the restriction of ' to any
finite subgroup of G is injective.

We need the following lemma.
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Lemma 4.1. Let G = G1 � � � � � Gn be a free product of n conjugacy p-separable
groups G1, …, Gn. Let g; h 2 G n f1g be two non-trivial elements of finite order in
G such that g œ h. There exists a homomorphism ' from G onto a finite p-group P
such that '.g/ œ '.h/.

Proof. Since g is of finite order in G, there exists i 2 f1; : : : ; ng such that g is
conjugate to an element of finite order in Gi . Thus we may assume that g belongs to
Gi . Similarly, we may assume that there exists j 2 f1; : : : ; ng such that h belongs
to Gj . Suppose that i ¤ j . Let ' W Gi ! P be a homomorphism from Gi onto a
finite p-group P such that '.g/ ¤ 1. Let z' W G ! P be the natural homomorphism
extending'. Then z'.g/ œ z'.h/. Suppose that i D j . Theng and h are not conjugate
inGi – otherwise they would be conjugate inG. SinceGi is conjugacy p-separable,
there exists a homomorphism ' W Gi ! P fromGi onto a finite p-group P such that
'.g/ œ '.h/. Let z' W G ! P be defined as above. We have z'.g/ œ z'.h/.

In Section 4, by a graph, we mean a unoriented graph, possibly with loops or
multiple edges.

Recall that a graph of groups is a connected graph � = .V;E/, together with a
function G which assigns

� to each vertex v 2 V a group Gv , and
� to each edge e D fv;wg 2 E a group Ge together with two injective homo-

morphisms ˛e W Ge ! Gv and ˇe W Ge ! Gw – we are not assuming that
v ¤ w.

(See [Se], see also [Dy1].) The groups Gv (v 2 V ) are called the vertex groups of
� , the groups Ge (e 2 E) are called the edge groups of � . The monomorphisms ˛e
and ˇe (e 2 E) are called the edge monomorphisms. The images of the edge groups
under the edge monomorphisms are called the edge subgroups.

Choose disjoint presentationsGv D hXv j Rvi for the vertex groups of� . Choose
a maximal tree T in � . Assign a direction to each edge of � . Let fte j e 2 Eg be
a set in one-to-one correspondence with the set of edges of � , and disjoint from the
Xv (v 2 V ). The fundamental group of the above graph of groups � is the groupG�
defined by the presentation whose generators are

Xv .v 2 V /; te .e 2 E/
(called vertex and edge generators, respectively) and whose relations are

Rv .v 2 V /; te D 1 .e 2 T /; te˛e.ge/t
�1
e D ˇe.ge/ for all ge 2 Ge .e 2 E/

(called vertex, tree, and edge relations, respectively). One can prove that this is well
defined, that is, independent of our choice of T , etc. Note that it suffices to write the
edge relations for ge in a set of generators for Ge .

Convention. The groupsGv (v 2 V ) andGe (e 2 E) will be regarded as subgroups
of G� .
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Let f�igi2I be a collection of connected and pairwise disjoint subgraphs of � .
We may define a graph of groups �� from � by contracting �i to a point for all
i 2 I as follows. The graph �� is obtained from � by contracting �i to a point pi
for all i 2 I . The function G � is obtained from G by using the fundamental group of
�i for the vertex group at pi , and by composing the edge monomorphisms of � by
the natural inclusions of the vertex groups of �i into the fundamental group of �i , if
necessary. Clearly, G� is isomorphic to the fundamental group G�� of ��.

If� W G� ! H is a homomorphism fromG� to a groupH , such that the restriction
of � to each edge subgroup of � is injective, then we may define a graph of groups
� 0 from � by composing with � as follows. The vertex set of � 0 is V , and the edge
set of � 0 is E. The vertex groups of � 0 are the groups G0

v D �.Gv/ (v 2 V ), and the
edge groups of � 0 are the groups G0

e D Ge (e 2 E). The edge monomorphisms are
the monomorphisms ˛0

e D � B ˛e and ˇ0
e D � B ˇe (e 2 E). Present G� and G�0

using the same symbols for edge generators and with the same choice of maximal
tree. There exist two homomorphisms, �V W G� ! G�0 and �E W G�0 ! H such
that the diagram

G�

�V

��

� �� H

G�0

�E

����������

commutes, and that the restriction of �E to each vertex group ofG�0 is injective. The
homomorphism �V is given by

.�V /jGv
D �jGv

for all v 2 V;
�V .te/ D te for all e 2 E:

And the homomorphism �E is given by

.�E /jG0
v

D .idH /jG0
v

for all v 2 V;
�E .te/ D �.te/ for all e 2 E:

In [Dy1], Dyer proved that every extension of a free group by a finite group is
conjugacy separable. The following theorem is the analogue of Dyer’s theorem for
conjugacy p-separability.

Theorem 4.2. Every extension of a free group by a finite p-group is conjugacy p-
separable.

Proof. Our proof is inspired by that of Dyer (see [Dy1]). Let G be an extension of a
free group by a finite p-group. In other words, there exists a short exact sequence

1 ! F ! G
��! P ! 1;
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where F is a free group, and P is a finite p-group. Let g 2 G. Let h 2 G such that
g œ h.

Step 1. We show that we may assume that G satisfies a short exact sequence,

1 ! F ! G
��! Cpn ! 1

where F is a free group, n � 1, Cpn denotes the cyclic group of order pn, and
�.g/ D �.h/.

SinceG is an extension of a free group by a finitep-group,G is residuallyp-finite
by [G], Lemma 1.5. Therefore, if g D 1, then gG D f1g is finitely p-separable in
G. On the other hand, if g is of infinite order in G, then gG is finitely p-separable
in G by [I], Proposition 5. Therefore we may assume that g ¤ 1 and that g is of
finite order in G. Similarly, we may assume that h ¤ 1 and that h is of finite order
in G. If �.g/ and �.h/ are not conjugate in P , we are done. Thus, up to replacing
h by a conjugate of itself, we may assume that �.g/ D �.h/. Since ker.�/ D F is
torsion-free, g and h have the same order pn (n 2 N�). LetH = F hgi. Note thatH
is a subgroup of p-power index in G, and that g and h belong to H . As G

F
D P is a

finite p-group, every subgroup of it is subnormal. Thus H is subnormal in G. Then
we may replace G by H , by [I], Proposition 41, so as to assume that G satisfies the
short exact sequence

1 ! F ! G
��! Cpn ! 1:

Now G is the fundamental group of a graph of groups � , whose vertex groups
are all finite groups, by [S], Theorem. As �jGv

is injective for all v 2 V , Gv is
isomorphic to a subgroup ofCpn for all v 2 V . From now on, the groupsGv (v 2 V )
will be regarded as subgroups of Cpn .

Step 2. We show that we may assume that all edge groups are non-trivial, that if
two different vertices are connected by an edge, then the corresponding edge group
is a proper subgroup of Cpn , and that g and h belong to two different vertex groups.

First, we show that we may assume that all edge groups are non-trivial. Indeed,
Let �0 be the subgraph of � whose vertices are all the vertices of � and whose edges
are the edges of � for which the edge group is non-trivial. Let �1, …, �r be the
connected components of �0. Let �� be the graph of groups obtained from � by
contracting �i to a point for all i 2 f1; : : : ; rg. Let T be a maximal tree of ��. Then
G is isomorphic to the fundamental group G� of ��. Observe that G� is the free
product of the free group on fte j e 2 E n T g and the fundamental groups of the �i
(i 2 f1; : : : ; rg). Thus, it suffices to consider the case where � D �i (i 2 f1; : : : ; rg),
by Lemma 4.1. Since each�i (i 2 f1; : : : ; rg) is a graph of groups whose edge groups
are all non-trivial, the first part of the assertion is proved.

1Strictly speaking, it follows from the proof of [I], Proposition 4, that if there exists a homomorphism
' W H ! P fromH onto a finitep-groupP such that '.g/ œ '.h/, then there exists a homomorphism
 W G ! Q from G onto a finite p-group Q such that  .g/ œ  .h/. The exact statement of [I],
Proposition 4, is slightly different.
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Now we show that we may assume that if two different vertices are connected by
an edge, then the corresponding edge group is a proper subgroup of Cpn . Indeed, let
�0 be the subgraph of � whose vertices are all the vertices of � , and whose edges are
the edges of � for which the edge group is isomorphic to Cpn . Let �1, …, �r be the
connected components of �0. Choose a maximal tree Ti in �i for all i 2 f1; : : : ; rg.
Let �� be the graph of groups obtained from � by contracting Ti to a point for all
i 2 f1; : : : ; rg. Then G is isomorphic to the fundamental group G� of ��. Note
that a vertex group of �� is either a vertex group of � , or the fundamental group
of Ti , for some i 2 f1; : : : ; rg, in which case it is isomorphic to Cpn (because each
Ti (i 2 f1; : : : ; rg) is a tree of groups whose vertex and edge groups are all equal
to Cpn). Thus, we may replace � by ��, so that the second part of the assertion is
proved.

Since g is of finite order inG, there exists a vertex v of � , an element g0 of finite
order in the vertex group Gv of v, and an element ˛ of G such that g = ˛g0˛�1.
Similarly, there exists a vertex w of � , an element h0 of finite order in the vertex
groupGw ofw, and an element ˇ ofG such that h D ˇh0ˇ

�1. AsCpn is abelian, we
have �.g0/ D �.h0/. Thus, up to replacing g by g0 and h by h0, we may assume that
g belongs to Gv , and h belongs to Gw . Since �jGv

is injective, and �.g/ D �.h/,
we have v ¤ w.

Step 3. We show that we may assume that � has exactly two vertices, and that all
edges join these two vertices.

Indeed, choose a maximal tree T in � . There is a path P in T joining v to w.
Choose an edge e on this path. Then T n feg is the disjoint union of two trees, Tv
and Tw , with v 2 Tv and w 2 Tw . Let �v be the full subgraph of � generated by
the vertices of Tv , and �w be the full subgraph of � generated by the vertices of Tw .
Let �� be the graph of groups obtained from � by contracting �v to a point v� and
�w to a point w�. Observe that �� has exactly two vertices and that all edges join
these two vertices. The vertex groups of �� are the fundamental groups of �v and
�w , respectively. The edge groups of �� are non-trivial proper subgroups of Cpn .
And G is isomorphic to the fundamental group G� of ��. Now, since the restriction
of � to each edge subgroup of �� is injective, we may define a graph of groups � 0
from �� by composing with � , as described above. Denote by G0 the fundamental
group of � 0. There exist two homomorphisms, �V W G ! G0 and �E W G0 ! Cpn ,
such that the diagram

G

�V

��

� �� Cpn

G0
�E

����������

commutes, and that the restriction of �E to each vertex group of � 0 is injective.
Consequently, ker.�E / is free by [Se], II, 2.6., Lemma 8.

Set g0 D �V .g/ and h0 D �V .h/. As g0 and h0 have orderpn, the vertex groups of
� 0 are equal to Cpn . The edge groups of � 0 are non-trivial proper subgroups of Cpn .
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Observe that g0 and h0 belong to two different vertex groups, and that g0 (resp. h0) is
not conjugate to an element of one of the edge groups. Let e be an edge of � 0. Then
g0 and h0 are not conjugate in G0

v �G0
e
G0
w , by [MKS], Theorem 4.6. Observe that

G0 is an HNN extension (in the general sense) of G0
v �G0

e
G0
w with stable letters ta

(a 2 Enfeg), and associated subgroups ˛0
a.G

0
a/ andˇ0

a.G
0
a/ (a 2 Enfeg). Therefore

g0 and h0 are not conjugate in G0 (see, for example, [Dy2], Theorem 3). Thus, we
may replace � by � 0, G by G0, g by g0, and h by h0, so as to assume that � has two
vertices and that all edges join these two vertices.

Step 4. We show that we may assume that � has at most two edges.
Suppose that � has more than two edges. Choose a maximal tree T in � , that

is, an edge of � . Present Gv D hg j gpn D 1i, Gw D hh j hpn D 1i, and G as
described above. Choose an edge e 2 E n T .

	v 	w

T

e

The edge relations corresponding to e can be reduced to the following:

te˛e.ge/t
�1
e D ˇe.ge/;

where ge is a generator of Ge . Let ps be the order of Ge (s 2 f1; : : : ; n� 1g). Then
˛e.ge/ generates a subgroup of order ps ofGv . But there exists a unique subgroup of
order ps inGv; it is cyclic, generated by gp

r
, where r = n� s. Thus, up to replacing

ge by the preimage of gp
r

under ˛e , we may assume that ˛e.ge/ = gp
r
. There exists

k 2 N such that p and k are coprime, and that ˇe.ge/ D hkp
r
. Therefore the edge

relation corresponding to e can be written

teg
pr

t�1e D hkp
r

;

where r 2 f1; : : : ; n � 1g, k 2 N, and p and k are coprime. Now since � W G !
Cpn satisfies �.g/ D �.h/, we have �.g/p

r D �.h/kp
r D �.g/kp

r
, and then

�.g/.k�1/pr D 1 (in Cpn). As �.g/ has order pn in Cpn , we deduce that pn�r
divides k � 1. There exists a 2 Z such that k D apn�r C 1. We conclude that the
edge relation corresponding to e can be written

teg
pr

t�1e D hp
r

;

where r 2 f1; : : : ; n � 1g.
Let H be the normal subgroup of G generated by the elements

g; h; ta .a 2 E n feg/; tpe :
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ThenH has index p inG, and g and h belong toH . Thus we may replaceG byH by
[I], Proposition 4. Let G0 be the fundamental group of the graph of groups � n feg.
Set G0 D hX0 j R0i, where the presentation is as fundamental group of the graph of
groups � n feg. Set Gi D t ieG0t

�i
e D hXi j Ri i for all i 2 f1; : : : ; p � 1g. Clearly

f1; te; : : : ; tp�1
e g is a Schreier transversal for H in G. The Reidemeister–Schreier

method yields the presentation

H D hX0; X1; : : : ; Xp�1; u j R0; R1; : : : ; Rp�1; gp
r

1 D h
pr

0 ; g
pr

2 D h
pr

1 ; : : :

: : : ; g
pr

p�1 D h
pr

p�2; ug
pr

0 u
�1 D h

pr

p�1i;
where u D t

p
e , gi D t iegt

�i
e (i 2 f0; : : : ; p�1g), and hj D t

j
e ht

�j
e (j 2 f0; : : : ; p�

1g). Replaceg byg0, andh byh1. Observe thatH is the fundamental group of a graph
of groups z� as follows. The graph z� has 2p vertices, say v0, w0, v1, w1,…,vp�1,
wp�1, and pjEj edges. Let z�i be the full subgraph of z� generated by fvi ; wig for all
i 2 f0; : : : ; p � 1g. Then z�i is isomorphic to � n feg. There is one edge joining w0
to v1, one edge joining w1 to v2, …, one edge joining wp�2 to vp�1, and one edge
joining v0 to wp�1, and the edge groups associated to these egdes are isomorphic to
Ge . Note that g belongs to the vertex group of v0 and h belongs to the vertex group
of w1.

	
v0

	w0

	
v1

	w1

	
v2

	w2

	
v3

	w3

	
v4

	w4

T T T T T

Let �� be the graph of groups obtained from z� by contracting z�i to a point for all
i 2 f1; : : : ; p�1g. ThenG is isomorphic to the fundamental group of ��. The graph
�� has p vertices, say v0, …, vp�1. There is one edge joining v0 to v1, one edge
joining v1 to v2,…, one edge joining vp�2 to vp�1, and one edge joining v0 to vp�1,
and the edge groups associated to these edges are all isomorphic to Ge . Note that g
belongs to the vertex group of v0 and h belongs to the vertex group of v1.

	v0 	v1 	v2 	v3 	v4

LetT be the maximal treeT =v0v1 : : : vp�2vp�1. ThenT nfv0v1g is the disjoint union
of two trees: v0 and v1v2 : : : vp�2vp�1. Set ��

1 D v0 and ��
2 D v1v2 : : : vp�2vp�1.

Let ƒ be the graph of groups obtained from �� by contracting ��
i to a point for all

i 2 f1; 2g. Letƒ0 be the graph of groups obtained fromƒ by composing with � . As
in Step 3, we may replace � by ƒ0, so as to assume that � has two vertices and two
edges joining these two vertices.
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End of the proof. Present Gv D hg j gpn D 1i, Gw D hh j hpn D 1i, and G as
described above. There are two cases:

Case 1. � has one edge.
In this case, G is an amalgamated product of two finite abelian p-groups. Since

G is residually p-finite, G is conjugacy p-separable by [I], Theorem 2. Thus, there
exists a homomorphism ' from G onto a finite p-group P such that '.g/ œ '.h/.

Case 2. � has two edges.
We have

G D hg; h; t j gpn D 1; hp
n D 1; gp

r D hp
r

; tgp
s

t�1 D hp
s i;

where r 2 f1; : : : ; n � 1g, s 2 f1; : : : ; n � 1g. Let

A D Cpn 
 Cps 
 � � � 
 Cps„ ƒ‚ …
pr �1


Cpr :

Set m D pr C 1. Present each factor of this product in the natural way, using
generators x1, …, xm respectively. Let ˛ be the automorphism of A defined by

˛.x1/ D x1x2xm;

˛.xi / D xiC1 for all i 2 f2; : : : ; m � 2g;
˛.xm�1/ D .x2 : : : xm�1/�1;
˛.xm/ D xm:

It is easily seen that ˛ has order m � 1 D pr . We have

˛0.x1/ D x1;

˛1.x1/ D x1x2xm;

˛2.x1/ D x1x2x3x
2
m;

:::

˛m�2.x1/ D x1x2x3 : : : xm�1xm�2
m :

LetB =AÌh˛i be the semidirect product ofA by h˛i. Note thatB is a finitep-group.
Let ' W G ! B be the homomorphism defined by

'.g/ D x1; '.h/ D x1xm; '.t/ D ˛:

Observe that the conjugacy class of '.g/ inB is '.g/B D f˛k.x1/ j k 2 f0; : : : ; m�
2gg. Thus, '.g/ and '.h/ are not conjugate in B .

Corollary 4.3. Let P be a finite p-group. Let A be a subgroup of P . Let Q be the
HNN extension of P relative to A:

Q D hP; t j t�1at D a for all a 2 Ai:
ThenQ is hereditarily conjugacy p-separable.
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Proof. Let R be an arbitrary subgroup of Q. Let f W Q ! P be the natural homo-
morphism. We have ker.f /\P D f1g. Therefore ker.f / is free by [KS], Theorem 6.
That is, Q is an extension of a free group by a finite p-group. Thus R is itself an
extension of a free group by a finite p-group. Therefore R is conjugacy p-separable
by Theorem 4.2.

Remark 4.4. It is known that a fundamental group of a graph of groups, whose vertex
groups are all finite p-groups is residually p-finite if and only if it is an extension
of a free group by a finite p-group (see, for example, [AF1], Lemma 3.3). Thus, as
an immediate consequence of Theorem 4.2, we have that a fundamental group of a
graph of groups whose vertex groups are all finite p-groups is conjugacy p-separable
if and only if it is residually p-finite.

5. Retractions

In this section, we shall prove several results on retractions that will allow us to control
the growth of the intersection of Lemma 6.5 in finite p-group quotients of G� .

Definition 5.1. Let G be a group, and H be a subgroup of G. We say that H is a
retract of G if there exists a homomorphism �H W G ! G such that �H .G/ D H

and �H .h/ D h for all h 2 H . The homomorphism �H is called a retraction of G
onto H .

Remark 5.2. IfG is a right-angled Artin group, andH D hW i is a special subgroup
of G, then H is a retract of G. A retraction of G onto H is given by

�H .v/ D
´
v if v 2 W;
1 if v 2 V nW:

Lemma 5.3. Let G be a group and H be a subgroup of G. Suppose that H is a
retract ofG. Let �H be a retraction ofG ontoH . LetN be a normal subgroup of G
such that �H .N / � N . Then �H induces a retraction � xH W G=N ! G=N of G=N
onto the canonical image xH of H in G=N , defined by � xH .gN / = �H .g/N for all
gN 2 G=N .

Proof. Proved in [M] (see Lemma 4.1).

Remark 5.4. Let G be a group and let H , H 0 be two subgroups of G. Suppose
that H and H 0 are retracts of G and that the corresponding retractions, �H and �H 0 ,
commute. Then �H .H 0/ = �H 0.H/ =H \H 0. Moreover, H \H 0 is a retract of G.
A retraction of G onto H \H 0 is given by �H\H 0 D �H B �H 0 D �H 0 B �H .
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Proposition 5.5. Let G be a group and H1, …, Hn be n subgroups of G. Suppose
that H1, …, Hn are retracts of G and that the corresponding retractions pairwise
commute. Then, for every normal subgroup K of p-power index in G, there exists a
normal subgroup N of p-power index in G such that N < K and �Hi

.N / � N for
all i 2 f1; : : : ; ng. Consequently, for every i 2 f1; : : : ; ng, the retraction �Hi

induces
a retraction � xHi

of G=N onto the canonical image xHi ofHi in G=N .

Proof. Proved in [M] (see Proposition 4.3 and Remark 4.4).

Lemma 5.6. Let G be a group and let H , H 0 be two subgroups of G. Suppose
that H and H 0 are retracts of G and that the corresponding retractions, �H and
�H 0 , commute. Let N be a normal subgroup of G such that �H .N / � N and
�H 0.N / � N . Then '.H \H 0/ D '.H/ \ '.H 0/, where ' W G ! G=N denotes
the canonical projection.

Proof. Proved in [M] (see Lemma 4.5).

The next statement is the analogue of Lemma 4.6 in [M]:

Corollary 5.7. Let G be a group and H1,…,Hn be n subgroups of G. Suppose
that H1, …, Hn are retracts of G and that the corresponding retractions �H1

, …,
�Hn

pairwise commute. Then, for every normal subgroup K of p-power index in
G, there exists a normal subgroup N of p-power index in G such that N < K

and �Hi
.N / � N for all i 2 f1; : : : ; ng. Moreover, if ' W G ! G=N denotes the

canonical projection, then '.
Tn
iD1Hi / D Tn

iD1 '.Hi /.

Proof. By Proposition 5.5, there exists a normal subgroup N of p-power index in
G such that N < K and �Hi

.N / � N for all i 2 f1; : : : ; ng. We denote by
' W G ! G=N the canonical projection. We argue by induction on k 2 f1; : : : ; ng
to prove that '.

Tk
iD1Hi / D Tk

iD1 '.Hi /. If k = 1, then the result is trivial. Thus
we can assume that k � 2 and that the result has been proved for k � 1. We set
H 0 D Tk�1

iD1 Hi . By Remark 5.4, H 0 is a retract of G. A retraction of G onto H 0 is
given by �H 0 D �H1

B � � � B �Hk�1
. We have

�H 0.N / D �H1
.: : : .�Hk�2

.�Hk�1
.N ////

� �H1
.: : : .�Hk�2

.N /// � � � � � �H1
.N / � N:

The retractions �H 0 and �Hk
commute, so we can apply Lemma 5.6 to conclude that

'.H 0\Hk/ D '.H 0/\'.Hk/. By the induction hypothesis, '.H 0/ D Tk�1
iD1 '.Hi /.

Finally '.
Tk
iD1Hi / D Tk

iD1 '.Hi /.

In the following lemmas, G is a group and A, B are two subgroups of G. We
assume that A and B are retracts of G and that the corresponding retractions, �A and
�B , commute.
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Lemma 5.8. Let x; y 2 G. We set ˛ D �A.�B.x/x
�1/x�B.x�1/ (2 AxB) and

ˇ D �A.�B.y/y
�1/y�B.y�1/ (2 AyB). Then the following are equivalent:

(1) y 2 AxB ,

(2) ˇ 2 ˛A\B .

Proof. Proved in [M] (see Lemma 5.1).

Lemma 5.9. Let x 2 G. We set ˛ D �A.�B.x/x
�1/x�B.x�1/ (2 AxB) and � D

�A.�B.x/x
�1/ (2 A). Then we have

A \ xBx�1 D ��1CA\B.˛/�:

Proof. Proved in [M] (see Lemma 5.2).

The next five statements are the analogues of some statements in [M] (Lemma 5.3,
Corollary 5.4, Lemma 5.5, Lemma 5.6, and Lemma 5.7, respectively):

Lemma 5.10. Let x 2 G. We set: ˛ = �A.�B.x/x�1/x�B.x�1/ (2 AxB). If ˛A\B
is finitely p-separable in G, then AxB is also finitely p-separable in G.

Proof. Let y 2 G such that y … AxB . We set ˇ D �A.�B.y/y
�1/y�B.y�1/. By

Lemma 5.8, we have ˇ … ˛A\B . Since ˛A\B is finitely p-separable in G, there
exists a normal subgroup K of p-power index in G such that if  W G ! G=K

denotes the canonical projection, we have  .ˇ/ …  .˛A\B/ D  .˛/ .A\B/. By
Corollary 5.7, there exists a normal subgroupN ofp-power index inG such thatN <

K, �A.N / � N , �B.N / � N , and if' W G ! G=N denotes the canonical projection,
then '.A\B/ D '.A/\'.B/. Assume that '.ˇ/ 2 '.˛/'.A\B/. Let g 2 A\B be
such that '.ˇ/ D '.g/'.˛/'.g/�1. Then ˇ 2 g˛g�1N . Since N < K, we obtain
ˇ 2 g˛g�1K. But this contradicts the fact that  .ˇ/ …  .˛/ .A\B/. Therefore
we have '.ˇ/ … '.˛/'.A\B/, i.e., '.ˇ/ … '.˛/'.A/\'.B/. We set NA D '.A/ and
xB D '.B/. By Lemma 5.3, �A induces a retraction � NA of G=N onto NA and �B
induces a retraction � xB of G=N onto xB . We set Nx D '.x/ and Ny D '.y/. We
have '.˛/ D � NA.� xB. Nx/ Nx�1/ Nx� xB. Nx�1/ and '.ˇ/ D � NA.� xB. Ny/ Ny�1/ Ny� xB. Ny�1/. By
Lemma 5.8, we have Ny … NA Nx xB , i.e., '.y/ … '.AxB/.

Corollary 5.11. Let G be a group, and A, B be two subgroups of G. Suppose that
G is residually p-finite. If A and B are retracts of G such that the corresponding
retractions commute, then AB is finitely p-separable in G.

Proof. We apply Lemma 5.10 to x D 1.

Lemma 5.12. Let G be a group, and A be a subgroup of G. Suppose that G is
residually p-finite and that A is a retract of G. Then if a subset S of A is closed in
the pro-p topology on A, it is also closed in the pro-p topology on G.
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Proof. We denote by xS the closure of S inG, equipped with the pro-p topology. We
shall show that xS � S . By Corollary 5.11, A is closed in G. Therefore xS � A.
Let a 2 G n S . We can assume that a 2 A. There exists a homomorphism  from
A onto a finite p-group P such that  .a/ …  .S/. We set ' D  B �A. We have
'.a/ D  .a/ …  .S/ D '.S/. Then a … xS .

Lemma 5.13. Let x 2 G. We set ˛ D �A.�B.x/x
�1/x�B.x�1/. Suppose that the

pair .A \ B; ˛/ satisfies the p-centralizer condition in G. Then, for every normal
subgroup K of p-power index in G, there exists a normal subgroup N of p-power
index in G such that N < K, �A.N / � N , �B.N / � N , and if ' W G ! G=N

denotes the canonical projection, then '.A/ \ '.xBx�1/ � '.A \ xBx�1/'.K/.

Proof. Suppose that K is a normal subgroup of p-power index in G. We set � D
�A.�B.x/x

�1/ 2 A. By Lemma 5.9, we have A \ xBx�1 D ��1CA\B.˛/� . Since
the pair .A \ B; ˛/ satisfies pCCG , there exists a normal subgroup L of p-power
index in G such that L < K and if  W G ! G=L denotes the canonical projection,
C .A\B/. .˛// �  .CA\B.˛/K/. This is equivalent to  �1.C .A\B/. .˛/// �
CA\B.˛/K. Indeed, assume that g 2  �1.C .A\B/. .˛///. We then have  .g/ 2
C .A\B/. .˛// �  .CA\B.˛/K/, and hence g 2 CA\B.˛/KL � CA\B.˛/K
(because L < K).

By Corollary 5.7, there exists a normal subgroup N of p-power index in G such
that N < L, �A.N / � N , �B.N / � N , and if ' W G ! G=N denotes the canonical
projection, '.A\B/ D '.A/\'.B/. We set NA D '.A/, xB D '.B/. By Lemma 5.3,
�A induces a retraction� NA ofG=N onto NA, and�B induces a retraction� xB ofG=N onto
xB . Obviously � NA and � xB commute. We set Nx D '.x/, N̨ D � NA.� xB. Nx/ Nx�1/ Nx� xB. Nx�1/
(2 G=N ) and N� D � NA.� xB. Nx/ Nx�1/ (2 NA). Observe that N̨ D '.˛/ and N� D '.�/.
Then, by Lemma 5.9, we have NA \ Nx xB Nx�1 D N��1C NA\ xB. N̨ / N� . Now, NA \ xB D
'.A \ B/. Thus,

'�1. NA \ Nx xB Nx�1/ D '�1. N��1C'.A\B/. N̨ / N�/ D ��1'�1.C'.A\B/. N̨ //�:
We claim that

'�1.C'.A\B/.'.˛/// �  �1.C .A\B/. .˛///:

Indeed let g 2 '�1.C'.A\B/.'.˛///. We have '.g/ 2 '.A\B/, i.e., g 2 .A\B/N ,
which implies thatg 2 .A\B/L, i.e., .g/ 2  .A\B/; and'.g/'.˛/ D '.˛/'.g/,
i.e., g˛g�1˛�1 2 N , which implies that g˛g�1˛�1 2 L, i.e.,  .g/ .˛/ D
 .˛/ .g/. We deduce that

'�1.C'.A\B/.'.˛/// � CA\B.˛/;

and hence

'�1. NA \ Nx xB Nx�1/ � ��1CA\B.˛/�K D .A \ xBx�1/K:
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We conclude that

'.A/ \ '.xBx�1/ � '.A \ xBx�1/'.K/:

Lemma 5.14. Let x; y 2 G. We set

C D xBx�1 .< G/ and ˛ D �A.�B.x/x
�1/x�B.x�1/:

If ˛A\B and yA\C are finitely p-separable in G and if the pair (A \ B , ˛) satisfies
pCCG , then CA.y/C is finitely p-separable in G.

Proof. Let z 2 G such that z … CA.y/C . Suppose first that z … AC . Since
˛A\B is finitely p-separable inG, AxB is finitely p-separable inG by Lemma 5.10.
Therefore AC D AxBx�1 is also finitely p-separable in G. Consequently there
exists a normal subgroup N of p-power index in G such that z … ACN . We
obviously have z … CA.y/CN . Thus we can assume that z 2 AC . Let a 2 A,
c 2 C be such that z D ac. Since z … CA.y/C , a�1ya … yA\C . Indeed, if there is
g 2 A\C such that a�1ya D gyg�1, then .ag/�1y.ag/ D y i.e., ag 2 CA.y/. We
obtain a 2 CA.y/C , and then z 2 CA.y/C , which is a contradiction. Now yA\C is
finitely p-separable in G. Then there exists a normal subgroup K of p-power index
inG such that a�1ya … yA\CK. By Lemma 5.13, there exists a normal subgroupN
of p-power index inG such thatN < K and, if ' W G ! G=N denotes the canonical
projection, '.A/\ '.C / � '.A\C/'.K/. For a subset S of G, we set xS D '.S/.
For an element g of G, we set Ng D '.g/. We have Ny NA\ xC � NyA\C � xK . Note that
xK C G=N . Then Ny NA\ xC � NyA\C xK. Observe that Na�1 Ny Na … NyA\C xK – otherwise

we would have a�1ya 2 yA\CKN and then a�1ya 2 yA\CK (because N < K).
We deduce that Na�1 Ny Na … Ny NA\ xC . Now it suffices to show that '.z/ … '.CA.y/C /.
Suppose the contrary. Let a0 2 CA.y/, c0 2 C be such that '.z/ D '.a0c0/. Then
'.ac/ D '.a0c0/. Thus '.a0�1a/ D '.c0c�1/. We set Ng D '.a0�1a/ D '.c0c�1/
(2 NA \ xC ). We have '.z/ D '.a0/ Ng'.c/ and Na D '.z/'.c/�1 D '.a0/ Ng. Then
Na�1 Ny Na D Ng�1'.a0�1ya0/ Ng D Ng�1'.y/ Ng D Ng�1 Ny Ng 2 Ny NA\ xC , a contradiction. We
have shown that CA.y/C is finitely p-separable in G.

6. Proof of the main theorem

We turn now to the proof that right-angled Artin groups are hereditarily conjugacy
p-separable. We need the following theorem, which is due to Duchamp and Krob
(see [DK2], Theorem 2.3).

Theorem 6.1. Right-angled Artin groups are residually p-finite.

(Note that the exact statement of [DK2], Theorem 2.3, is that right-angled Artin
groups are residually torsion-free nilpotent; Theorem 6.1 then follows from [G],
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Theorem 2.1.) This theorem can also be proved using HNN extensions (see [Lo],
Theorem 2.11).

Basically, Proposition 6.2 establishes the main result. Proposition 6.2 (1) and
Proposition 6.2 (2) will be proved simultaneously by induction on the rank of G.

Proposition 6.2. Let G be a right-angled Artin group.

(1) Every special subgroupS of G satisfies thep-centralizer condition inG (pCCG).
(2) For all g 2 G and for every special subgroup S of G, gS is finitely p-separable

in G.

From now on we assume that G is a right-angled Artin group of rank r (r � 1),
and that H D hW i is a special subgroup of G of rank r � 1. Thus, G can be written
as an HNN extension of H relative to the special subgroup K D hlink.t/i of H :

G D hH; t j t�1kt D k for all k 2 Ki:
Recall that H is a retract of G. A retraction of G onto H is given by

�H .v/ D
´
v if v 2 W;
1 if v 2 V nW:

We also assume that
� every special subgroupS ofH satisfies thep-centralizer condition inH (pCCH ),
� for all h 2 H and for every special subgroup S ofH , hS is finitely p-separable

in H .

The next results (Lemma 6.3 to Lemma 6.14) are preliminaries to the proof of
Proposition 6.2.

In general, ifA andB are subgroups of a groupG, the image of the intersection of
A and B under a homomorphism ' W G ! H does not coincide with the intersection
of the images of A and B in H . However, the p-centralizer condition and the above
results on retractions will allow us to obtain the following lemma, which will be used
to apply Minasyan’s criterion for conjugacy in HNN extensions (see Lemma 6.5).

Lemma 6.3. Let be given A0, a conjugate of a special subgroup of H , A1,…,An,
n special subgroups of H , and ˛, x0, …, xn, y1, …, yn, 2.n C 1/ elements of H .
Then, for every normal subgroup L of p-power index in H , there exists a normal
subgroup N of p-power index inH such that N < L and if ' W H ! H=N denotes
the canonical projection, then

N̨CA0
.x0/ \

nT
iD1

xiAiyi � '..˛CA0
.x0/ \

nT
iD1

xiAiyi /L/;

where Ai D '.Ai / (i 2 f0; : : : ; ng), N̨ D '.˛/, xj D '.xj / (j 2 f0; : : : ; ng),
yk D '.yk/ (k 2 f1; : : : ; ng).
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Proof. Let L be a subgroup of p-power index in H . We argue by induction on n.
Strictly speaking, the basis of our induction is n = 0 but we will need the case n D 1.
By the assumptions, there exist a special subgroup A of H and an element ˇ of H
such that A0 = ˇAˇ�1.

n D 0: We set x = ˇ�1x0ˇ. The pair (A,x) satisfies pCCH by the assump-
tions. There exists a normal subgroup N of p-power index in H such that N <

L and if ' W H ! H=N denotes the canonical projection, then C'.A/.'.x// �
'.CA.x/L/. But CA0

.x0/ D ˇCA.x/ˇ
�1. We deduce that '.˛/C'.A0/.'.x0// �

'..˛CA0
.x0//L/.

n D 1: There are two cases:
Case 1. ˛CA0

.x0/ \ x1A1y1 D ;. This is equivalent to saying that x1 …
˛CA0

.x0/y
�1
1 A1. Put B D .y1ˇ/

�1A1y1ˇ so that x1 … ˛ˇ.CA.x/B/ˇ
�1y�1

1 .
Now the intersection of conjugates of two special subgroups of H is a conjugate
of a special subgroup of H (see [M], Lemma 6.5). Then A \ A1 is a conjugate
of a special subgroup C of H . There exists � 2 H such that A \ A1 D �C��1.
Therefore if h 2 H , hA\A1 D �.��1h�/C��1. Now .��1h�/C is finitely p-
separable in H by the assumptions. We deduce that hA\A1 is finitely p-separable
in H . With the same argument, xA\B is finitely p-separable in H . Now the pair
.A \ A1; h/ satisfies pCCH by the assumptions. We deduce that CA.x/B is finitely
p-separable in H by Lemma 5.14. This implies that ˛CA0

.x0/y
�1
1 A1 is finitely

p-separable in H . There exists a normal subgroup M of p-power index in H such
that x1 … ˛CA0

.x0/y
�1
1 A1M . Up to replacing M by M \ L, we can assume that

M < L. Now the pair .A0; x0/ satisfies pCCH by the assumptions. There exists
a normal subgroup N of p-power index in H such that N < M and if ' W H !
H=N denotes the canonical projection, then C'.A0/.'.x0// � '.CA0

.x0/M/, or,
equivalently, '�1.C'.A0/.'.x0/// � CA0

.x0/M . Then '�1. N̨CA0
.x0/y1

�1A1/ �
˛'�1.CA0

.x0//y
�1
1 A1 � ˛CA0

.x0/y
�1
1 A1M (with the same notations as in the

statement of the lemma). Therefore x1 … '�1. N̨CA0
.x0/y1

�1A1/. Finally, we have

N̨CA0
.x0/ \ x1A1y1 D ;.

Case 2. ˛CA0
.x0/ \ x1A1y1 ¤ ;.

Remark 6.4. If G is a group and H , K are two subgroups of G such that aH \
bKc ¤ ;, where a; b; c 2 G, then we have aH \ bKc D g.H \ c�1Kc/ for all
g 2 aH \ bKc.

Chooseg 2 ˛CA0
.x0/\x1A1y1. By Remark 6.4, we have˛CA0

.x0/\x1A1y1 D
g.CA0

.x0/\y�1
1 A1y1/. We setD D A0\y�1

1 A1y1. Then ˛CA0
.x0/\x1A1y1 D

gCD.x0/. Now,D is a conjugate of a special subgroup E ofH by [M], Lemma 6.5.
There exists ı 2 H such that D D ıEı�1. As above, the pair .D; x0/ satisfies
pCCH . There exists a normal subgroupM of p-power index inH such thatM < L

and if  W H ! H=M denotes the canonical projection, we have C .D/. .x0// �
 .CD.x0/L/. Now by Lemma 5.13, there exists a normal subgroup N of p-power
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index inH such thatN < M and if ' W H ! H=N denotes the canonical projection,
then '.A/ \ '..y1ˇ/�1A1y1ˇ/ � '.A \ .y1ˇ/�1A1y1ˇ/'.M/. Therefore

A0 \ y1�1A1y1 D '.ˇAˇ�1/ \ '.y�1
1 A1y1/

D '.ˇ/.'.A/ \ '..y1ˇ/�1A1y1ˇ//'.ˇ�1/
� '.ˇ/.'.A \ .y1ˇ/�1A1y1ˇ/'.M//'.ˇ�1/
D '.A0 \ y�1

1 A1y1/'.M/

D '.D/'.M/.�/

(�)

(with the same notations as in the statement of the lemma). We set Ng D '.g/. Note
that Ng 2 N̨CA0

.x0/ \ x1A1y1. Therefore N̨CA0
.x0/ \ x1A1y1 D Ng.CA0

.x0/ \
y1

�1A1y1/. Considering (�), we obtain

N̨CA0
.x0/ \ x1A1y1 D NgC

A0\y1
�1A1y1

.x0/ � NgC'.D/'.M/.x0/:

Recall that N < M . Then  W H ! H=M induces a homomorphism z W H=N !
H=M such that  D z B '. Note that z .'.D/'.M// D  .D/. Let z 2
C'.D/'.M/.x0/. Then

z .z/ 2 C .D/. .x0// �  .CD.x0/L/ D z .'.CD.x0/L//:
Therefore z 2 '.CD.x0/L/ ker. z / D '.CD.x0/L/ (because ker. z / D '.M/ <

'.L/). We deduce that C'.D/'.M/.x0/ � '.CD.x0/L/. We conclude that

N̨CA0
.x0/ \ x1A1y1 � Ng'.CD.x0/L/ D '.gCD.x0/L/

D '..˛CA0
.x0/ \ x1A1y1/L/:

Inductive step: Suppose that n � 1 and that the result has been proved for n� 1.
Note that if ˛CA0

.x0/ \ Tn�1
iD1 xiAiyi D ;, then by the induction hypothesis, there

exists a normal subgroup N of p-power index in H such that if ' W H ! H=N

denotes the canonical projection, then

N̨CA0
.x0/ \

n�1T
iD1

xiAiyi � '..˛CA0
.x0/ \

n�1T
iD1

xiAiyi /L/ D ;:

Obviously

N̨CA0
.x0/ \

nT
iD1

xiAiyi D ; � '..˛CA0
.x0/ \

nT
iD1

xiAiyi /L/:

Thus we can assume that ˛CA0
.x0/ \ Tn�1

iD1 xiAiyi ¤ ;. Therefore ˛CA0
.x0/ \Tn�1

iD1 xiAiyi D g.CA0
.x0/ \ Tn�1

iD1 y�1
i Aiyi / for some g 2 H . We set F =

A0 \ Tn�1
iD1 y�1

i Aiyi . Again, F is a conjugate of a special subgroup of H by [M],
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Lemma 6.5. We have: ˛CA0
.x0/ \ Tn�1

iD1 xiAiyi D gCF .x0/. Now, by the case
n D 1, there exists a normal subgroup M of p-power index in H such that M < L

and if  W H ! H=M denotes the canonical projection, then

 .g/C .F /. .x0// \  .xnAnyn/ �  ..gCF .x0/ \ xnAnyn/L/;
or, equivalently,

 �1. .g/C .F /. .x0// \  .xnAnyn// � .gCF .x0/ \ xnAnyn/L:
On the other hand, by the induction hypothesis, there exists a normal subgroup N of
p-power index in H such that N < M and if ' W H ! H=N denotes the canonical
projection, then

N̨CA0
.x0/ \

n�1T
iD1

xiAiyi � '..˛CA0
.x0/ \

n�1T
iD1

xiAiyi /M/

or, equivalently,

'�1. N̨CA0
.x0/ \

n�1T
iD1

xiAiyi / � .˛CA0
.x0/ \

n�1T
iD1

xiAiyi /M:

Thus we have

'�1. N̨CA0
.x0/ \

nT
iD1

xiAiyi / D '�1. N̨CA0
.x0/ \

n�1T
iD1

xiAiyi / \ '�1.xnAnyn/

� .˛CA0
.x0/ \

n�1T
iD1

xiAiyi /M \ xnAnynN
D gCF .x0/M \ xnAnynN:

Recall that N < M . Finally we have

'�1. N̨CA0
.x0/ \

nT
iD1

xiAiyi / � gCF .x0/M \ xnAnynM

�  �1. .g/C .F /. .x0/// \  �1. .xnAnyn//
D  �1. .g/C .F /. .x0// \  .xnAnyn//
� .gCF .x0/ \ xnAnyn/L
D .˛CA0

.x0/ \
nT
iD1

xiAiyi /L:

We need the following criterion for conjugacy in HNN extensions:

Lemma 6.5. LetG D hH; t j t�1kt D k for all k 2 Ki be an HNN extension. LetS
be a subgroup ofH . Let g D x0t

a1x1 : : : t
anxn (n � 1) and h D y0t

b1y1 : : : t
bmym

be elements of G in reduced form. Then h 2 gS if and only if all of the following
conditions hold:
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(1) m = n and ai = bi for all i 2 f1; : : : ; ng,
(2) y0 : : : yn 2 .x0 : : : xn/S ,

(3) if ˛ 2 S satisfies y0 : : : yn = ˛x0 : : : xn˛�1, then

˛CS .x0 : : : xn/ \ y0Kx�1
0 \ .y0y1/K.x0x1/�1 \ � � �

� � � \ .y0 : : : yn�1/K.x0 : : : xn�1/�1 ¤ ;:

Proof. Proved in [M] (see Lemma 7.11).

The following is the analogue of Lemma 6.8 in [M]:

Lemma 6.6. Let S be a special subgroup of H . Let g 2 G nH . Let h 2 G n gS .
There exists a normal subgroup L of p-power index in H such that if ' W H !
P D H=L denotes the canonical projection if Q denotes the HNN extension of P
relative to '.K/ and if x' W G ! Q denotes the homomorphism induced by ', we
have x'.h/ … x'.g/x'.S/.

Proof. Write g D x0t
a1x1 : : : t

anxn and h D y0t
b1y1 : : : t

bmym in reduced forms.
We have n � 1 as g … H .

Step 1. We assume that the first condition in Minasyan’s criterion (see Lemma 6.5)
is not satisfied by g and h.

It follows from Lemma 2.10 in [Lo], and Theorem 6.1 (see, alternatively, [Lo],
Theorem 2.11) that the special subgroup K is closed in the pro-p topology on H .
(Note that this can also be obtained by combining Corollary 5.11 and Theorem 6.1.)
Thus, there exists a normal subgroup L of p-power index in H such that

xi … KL for all i 2 f1; : : : ; n � 1g; (�)

yj … KL for all j 2 f1; : : : ; m � 1g: (��)

We denote by ' W H ! P D H=L the canonical projection. If Q denotes the HNN
extension of P relative to '.K/,

Q D hP; Nt j Nt�1'.k/Nt D '.k/ for all k 2 Ki;
and if x' W G ! Q denotes the homomorphism induced by ', with x'jH D ' and
x'.t/ D Nt , then x'.g/ D x0 Nta1x1 : : : Ntanxn and x'.h/ D y0 Ntb1y1 : : : Ntbmym are reduced
forms in Q by (�) and (��), where xi D x'.xi / (i 2 f0; : : : ; ng) and yj D x'.yj /
(j 2 f0; : : : ; mg). But then the first condition in Minasyan’s criterion will not hold
for x'.g/ and x'.h/.

Conclusion of Step 1. We can assume that m D n and ai D bi for all i 2
f1; : : : ; ng.

Step 2. We assume that the second condition in Minasyan’s criterion is not satisfied
by g and h. We set x D x0 : : : xn and y D y0 : : : yn. Thus y … xS .
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By the assumptions, xS is finitely p-separable in H . Therefore there exists a
homomorphism ' from H onto a finite p-group P such that '.y/ … '.x/'.S/.
Denote by Q the HNN extension of P relative to '.K/, and by x' W G ! Q the
homomorphism induced by '. Now let f W Q ! P be the natural homomorphism.
We have

f .x'.g// D f .x0 Nta1x1 : : : Ntanxn/ D x0 : : : xn D '.x/;

f .x'.h// D f .y0 Nta1y1 : : : Ntanyn/ D y0 : : : yn D '.y/

(with the same notations as above). Since '.y/ … '.x/'.S/, we see that x'.h/ …
x'.g/x'.S/.

Conclusion of Step 2. We can assume that y 2 xS . There exists ˛ 2 S such that
y D ˛x˛�1.

End of the proof. Considering Minasyan’s criterion, since h … gS , we must have

˛CS .x0 : : : xn/ \ y0Kx�1
0 \ .y0y1/K.x0x1/�1 \ � � �

� � � \ .y0 : : : yn�1/K.x0 : : : xn�1/�1 D ;:
As we noted above, K is closed in the pro-p topology on H ; thus, there exists a
normal subgroup L of p-power index in H such that:

xi … KLfor all i 2 f1; : : : ; n � 1g; (�)

yj … KLfor all j 2 f1; : : : ; n � 1g: (��)

Now by Lemma 6.3, there exists a normal subgroup N of p-power index in H such
that N < L and if ' W H ! P D H=N denotes the canonical projection, then

N̨C xS . Nx/ \ y0 xKx0�1 \ y0y1 xK.x0x1/�1 \ � � �
� � � \ y0 : : : yn�1 xK.x0 : : : xn�1/�1

� '..˛CS .x/ \ y0Kx�1
0 \ y0y1K.x0x1/�1 \ � � �

� � � \ y0 : : : yn�1K.x0 : : : xn�1/�1/L/ D ;;

(���)

where xS D '.S/, N̨ D '.˛/, Nx D '.x/, xi D '.xi / (i 2 f0; : : : ; ng), yj D '.yj /

(j 2 f0; : : : ; ng). Let Q be the HNN extension of P relative to '.K/ and let
x' W G ! Q be the homomorphism induced by '. Then, by (�) and (��), x'.g/ D
x0 Nta1x1 : : : Ntanxn and x'.h/ D y0 Nta1y1 : : : Ntanyn are reduced forms inQ. So, in view
of (���), we have x'.h/ … x'.g/x'.S/.

The following is the analogue of Lemma 8.8 in [M]:

Lemma 6.7. Let g0 D ta1x1 : : : t
anxn (n � 1) and h0 D tb1y1 : : : t

bmym be
cyclically reduced elements of G. Let h1, …, hk be elements of G. If hi … gK0 for
all i 2 f1; : : : ; kg, then there exists a normal subgroup L of p-power index in H
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such that if ' W H ! P D H=L denotes the canonical projection, if Q denotes the
HNN extension of P relative to '.K/, and if x' W G ! Q denotes the homomorphism
induced by ', we have

(1) x'.g0/ D Nta1x1 : : : Ntanxn and x'.h0/ D Ntb1y1 : : : Ntbmym are cyclically reduced
inQ, where xi D x'.xi / (i 2 f1; : : : ; ng) and yj D x'.yj / (j 2 f1; : : : ; ng),

(2) x'.hi / … x'.g0/x'.K/ for all i 2 f1; : : : ; kg.
Proof. As we noted above,K is closed in the pro-p topology onH ; thus, there exists
a normal subgroup L0 of p-power index in H such that

xi … KL0 for all i 2 f1; : : : ; n � 1g; (�)

yj … KL0 for all j 2 f1; : : : ; n � 1g: (��)

Let i 2 f1; : : : ; kg. Since hi … gK0 , there exists a normal subgroup Li of p-power
index in H such that if 'i W H ! Pi D H=Li denotes the canonical projection, if
Qi denotes the HNN extension of Pi relative to 'i .K/ and if 'i W G ! Qi denotes
the homomorphism induced by 'i , we have 'i .hi / … 'i .g0/'i .K/ by Lemma 6.6. Set
L D L0\L1 � � �\Lk . Let ' W H ! P D H=L be the canonical projection, letQ be
the HNN extension of P relative to '.K/, and let x' W G ! Q be the homomorphism
induced by'. SinceL < L0, x'.g0/ D Nta1x1 : : : Ntanxn and x'.h0/ D Ntb1y1 : : : Ntbmym
are cyclically reduced inQ by (�) and (��) (with the same notations as in the statement
of the lemma). As L < Li for all i 2 f1; : : : ; kg, we have x'.hi / … x'.g0/x'.K/ for all
i 2 f1; : : : ; kg.

Lemma 6.8. Let G D hH; t j t�1kt D k for all k 2 Ki be an HNN extension. Let
S be a subgroup of H . Let g D x0t

a1x1 : : : t
anxn be an element of G in reduced

form (n � 1). Then

CS .g/ D CS .x0 : : : xn/ \ x0Kx�1
0 \ .x0x1/K.x0x1/�1 \ � � �

� � � \ .x0 : : : xn�1/K.x0 : : : xn�1/�1:

Proof. Proved in [M] (see Lemma 7.12).

The following is the analogue of Lemma 8.9 in [M]:

Lemma 6.9. Let S be a special subgroup of H . Let L be a normal subgroup of
p-power index in G, and let g D x0t

a1x1 : : : t
anxn be an element of G in reduced

form and not contained in H . Then there exists a normal subgroup N of p-power
index of H such that if ' W H ! P D H=N denotes the canonical projection, if
Q denotes the HNN extension of P relative to '.K/, and if x' W G ! Q denotes the
homomorphism induced by ', we have

(1) Cx'.S/.x'.g// � x'.CS .g/L/,
(2) ker.'/ D N < H \ L,
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(3) ker.x'/ < L.

Proof. We have n � 1 as g … H .
As we noted above, K is closed in the pro-p topology on H . Therefore there

exists a normal subgroup M of p-power index in H such that

xi … KM for all i 2 f1; : : : ; n � 1g: (�)

We setL0 D H \L. Note thatL0 is a normal subgroup ofp-power index inH . Thus,
up to replacing M by M \ L0, we can assume that M < L0. We set x D x0 : : : xn.
We have

CS .g/ D CS .x/\x0Kx�1
0 \.x0x1/K.x0x1/�1\� � �\.x0 : : : xn�1/K.x0 : : : xn�1/�1

by Lemma 6.8. We denote by I the intersection on the right-hand side. By Lemma 6.3,
there exists a normal subgroup N of p-power index in H such that N < M and if
' W H ! P D H=N denotes the canonical projection, we have

C xS . Nx/\x0 xKx0�1\x0x1 xK.x0x1/�1\� � �\x0 : : : xn�1 xK.x0 : : : xn�1/�1 � '.IM/;

where xS D '.S/, Nx D '.x/, xi D '.xi / (i 2 f0; : : : ; n � 1g). We denote by J the
intersection on the left-hand side. LetQ be the HNN extension ofP relative to '.K/,
and let x' W G ! Q be the homomorphism induced by '. Then x0 Nta1x1 : : : Ntanxn is a
reduced form of x'.g/ in Q by (�). But then Cx'.S/.x'.g// D J by Lemma 6.8. Now
'.M/ < '.L0/ D x'.L0/ < x'.L/. Therefore

Cx'.S/.x'.g// D J � '.IM/ D '.I /'.M/

� x'.I /x'.L/ D x'.CS .g//x'.L/ D x'.CS .g/L/:
Finally we remark that ker.'/ D N < M < L0 D H \ L < L. Since ker.x'/ is the
normal closure of ker.'/ in G, we conclude that ker.x'/ < L (because L is normal
in G).

A prefix of ta1x1 : : : t
anxn is an element of G of the form ta1x1 : : : t

akxk for
some k 2 f0; : : : ; ng. We need the following result:

Proposition 6.10. Let G D hH; t j t�1kt D k for all k 2 Ki be an HNN exten-
sion. Let g D ta1x1 : : : t

anxn be a cyclically reduced element of G (n � 1). Let
fp1; : : : ; pnC1g be the set of all prefixes of g – we are not assuming that p1, …, pnC1
are ordered. There are two cases:

(1) If xn 2 K, then n D 1 and CG.g/ D htiCK.g/.
(2) If xn 2 H nK, let fp1; : : : ; pmg be the set of prefixes of g satisfying p�1

i gpi 2
gK (m 2 f0; : : : ; n C 1g). For each i 2 f1; : : : ; mg, we choose ˛i 2 K

such that p�1
i gpi D ˛�1

i g˛i . We set � D f˛ip�1
i j i 2 f1; : : : ; mgg. Then

CG.g/ D CK.g/hgi�.
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Proof. Proved in [M] (see Proposition 7.8).

The following is the analogue of Lemma 8.10 in [M]:

Lemma 6.11. Let L be a normal subgroup of p-power index in G. Let g0 D
ta1x1 : : : t

anxn (n � 1) be a cyclically reduced element of G. There exists a normal
subgroup N of p-power index in H such that if ' W H ! P D H=N denotes the
canonical projection, if Q denotes the HNN extension of P relative to '.K/, and if
x' W G ! Q denotes the homomorphism induced by ', we have

(1) CQ.x'.g0// � x'.CG.g0/L/,
(2) ker.'/ D N < H \ L,

(3) ker.x'/ < L.

Proof. Let fp1; : : : ; pnC1g be the set of all prefixes of g0. Renumberingp1, …,pnC1
if necessary, we can assume that there existsm 2 f1; : : : ; nC1g such that p�1

i g0pi 2
gK0 for all i 2 f1; : : : ; mg, and p�1

i g0pi … gK0 for all i 2 fmC 1; : : : ; nC 1g. For
each i 2 f1; : : : ; mg, we choose ˛i 2 K such that p�1

i g0pi D ˛�1
i g0˛i . We set

� D f˛ip�1
i j i 2 f1; : : : ; mgg. We set hi D p�1

i g0pi for all i 2 fmC1; : : : ; nC1g.
By Lemma 6.7, there exists a normal subgroup N1 of p-power index in H such that
if '1 W H ! P1 D H=N1 denotes the canonical projection, if Q1 denotes the HNN
extension of P1 relative to '1.K/, and if '1 W G ! Q1 denotes the homomorphism
induced by '1, then '1.g0/ is cyclically reduced in Q1, and '1.hi / … '1.g0/

'1.K/

for all i 2 fm C 1; : : : ; n C 1g. On the other hand, by Lemma 6.9, there exists a
normal subgroup N2 of p-power index in H such that if '2 W H ! P2 D H=N2
denotes the canonical projection, if Q2 denotes the HNN extension of P2 relative
to '2.K/ and if '2 W G ! Q2 denotes the homomorphism induced by '2, we have
C'2.K/.'2.g0// � '2.CK.g0/L/, ker.'2/ < H \ L, and ker.'2/ < L. Set N D
N1 \ N2. Let ' W H ! P D H=N be the canonical projection, let Q be the HNN
extension of P relative to '.K/, and let x' W G ! Q be the homomorphism induced
by '. Since N < N1, x'.g0/ is cyclically reduced in Q and x'.hi / … x'.g0/x'.K/ for
all i 2 fmC 1; : : : ; nC 1g. On the other hand, since N < N2, we have

x'�1.Cx'.K/.x'.g0/// � '2
�1.C'2.K/.'2.g0/// � CK.g0/L: (�)

There are two cases:
Case 1. xn 2 K. Then n D 1, CG.g0/ D htiCK.g0/, and CQ.x'.g0// D

hNtiC'.K/.x'.g0// by Proposition 6.10. Now (�) implies that

CQ.x'.g0// � hx'.t/ix'.CK.g0/L/ D x'.htiCK.g0/L/ D x'.CG.g0/L/:
Case 2. xn 2 H nK. If i 2 f1; : : : ; mg, x'.pi /�1x'.g0/x'.pi / D x'.p�1

i g0pi / 2
x'.g0/'.K/ – because p�1

i g0pi 2 gK0 –, whereas if i 2 fm C 1; : : : ; n C 1g,
x'.pi /�1x'.g0/x'.pi / D x'.hi / … x'.g0/'.K/. Therefore fx'.p1/; : : : ; x'.pm/g is the
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set of all prefixes of x'.g0/ satisfying x'.pi /�1x'.g0/x'.pi / 2 x'.g0/'.K/. By Propo-
sition 6.10, CG.g0/ D CK.g0/hg0i�, and CQ.x'.g0// D C'.K/.x'.g0//hx'.g0/i x�,
where x� D x'.�/ D fx'.˛i /x'.pi /�1 j i 2 f1; : : : ; mgg. We deduce that

CQ.x'.g0// � x'.CK.g0/L/hx'.g0/ix'.�/ D x'.CK.g0/Lhg0i�/ D x'.CG.g0/L/:

Proposition 6.12. LetG be a right-angled Artin group of rank r (r � 1). Let g 2 G.
If g ¤ 1, there exists a special subgroup H of rank r � 1 of G such that g … HG ,
whereHG D S

h2H hG .

Proof. Proved in [M] (see Lemma 6.8).

Lemma 6.13. Every special subgroup S ofG satisfies the p-centralizer condition in
G (pCCG).

Proof. Let g 2 G. Let L be a normal subgroup of p-power index in G. There are
two cases:

Case 1. S ¤ G. LetH be a special subgroup of rank r�1 ofG such that S < H .
Then G can be written as an HNN extension of H , relative to a special subgroup K
of H :

G D hH; t j t�1kt D k for all k 2 Ki:
We set L0 D H \ L. We note that L0 is a normal subgroup of p-power index in H .
There are two cases:

Subcase 1. g 2 H . By the assumptions, the pair .S; g/ satisfies the p-centralizer
condition in H (pCCH ). There exists a normal subgroup M of p-power index in H
such that M < L0 and if  W H ! P D H=M denotes the canonical projection, we
have

C .S/. .g// �  .CS .g/L
0/: (�)

We denote by f W G ! H the natural homomorphism. We note that f �1.M/ is
a normal subgroup of p-power index in G (because f �1.M/ is the kernel of the
homomorphism  B f ). Therefore, N D L \ f �1.M/ is a normal subgroup of p-
power index in G. Moreover N < L and f .N / < M . We denote by ' W G ! Q D
G=N the canonical projection. We observe that ker. / D M , ker.'/ D N , M <

f �1.M/\L\H D N \H , andN \H � f .N / < M . ThereforeM D N \H .
Thus we can assume that P < Q and 'jH D  . But then  .L0/ D '.L0/ � '.L/.
Recall that g 2 H and S < H . Thus considering (�), we obtain

C'.S/.'.g// D C .S/. .g// �  .CS .g// .L
0/ � '.CS .g//'.L/ D '.CS .g/L/:

Subcase 2. g 2 G nH . Write g D x0t
a1x1 : : : t

anxn in a reduced form (n � 1).
Then, by Lemma 6.9, there exists a normal subgroup M of p-power index in H
such that if  W H ! P D H=M denotes the canonical projection, ifQ denotes the
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HNN extension ofP relative to .K/, and if x W G ! Q denotes the homomorphism
induced by , thenC x .S/. x .g// � x .CS .g/L/, ker. / < H\L, and ker. x / < L.

We note that x .S/ \ x .L/ D  .S/ \ x .L/ < P is finite. Since Q is residually
p-finite, x .g/ x .S/\ x .L/ is finitely p-separable in Q. Therefore, by Lemma 3.5,
there exists a normal subgroup N of p-power index in Q such that N < x .L/ and
if � W Q ! R D Q=N denotes the canonical projection, then

C�. x .S//.�. x .g/// � �.C x .S/. x .g// x .L//:
We set ' D � B x W G ! R. We have ker.'/ D x �1.ker.�// D x �1.N / �
x �1. x .L// D L ker. x /. Now ker. x / < L. Then ker.'/ < L and

C'.S/.'.g// D C�. x .S//.�. x .g/// � �.C x .S/. x .g// x .L//
� �. x .CS .g/L/ x .L// D '.CS .g/L/:

Case 2. S D G. If g D 1, then the result is trivial. Thus we can assume that
g ¤ 1. Then, by Proposition 6.12, there exists a special subgroupH of rank r � 1 of
G such that g … HG . As above,G can be written as an HNN extension ofH relative
to a special subgroup K of H :

G D hH; t j t�1kt D k for all k 2 Ki:
Let g0 = ta1x1 : : : t

anxn be a cyclically reduced element inG conjugate to g. Choose
˛ 2 G such that g D ˛g0˛

�1. Note that g … HG implies that n � 1. By
Lemma 6.11, there exists a normal subgroup M of p-power index in H such that
if  W H ! P D H=M denotes the canonical projection, if Q denotes the HNN
extension of P relative to  .K/, and if x W G ! Q denotes the homomorphism
induced by , thenCQ. x .g0// � x .CG.g0/L/, ker. / < H \L, and ker. x / < L.
NowQ is hereditarily conjugacy p-separable by Corollary 4.3. ThenQ satisfies the
p-centralizer condition by Proposition 3.6. There exists a normal subgroup N of
p-power index in Q such that N < x .L/, and if � W Q ! R D Q=N denotes the
canonical projection, we have

CR.�. x .g0/// � �.CQ. x .g0// x .L//:
We set' D �B x W G ! R. As above, we have ker.'/ D x �1.ker.�// D x �1.N / �
x �1. x .L// D L ker. x /. Now ker. x / < L. Then ker.'/ < L and

CR.'.g0// D C'.G/.'.g0// D C�. x .G//.�. x .g0/// � �.C x .G/. x .g0// x .L//
� �. x .CG.g0/L/ x .L// D '.CG.g0/L/:

Finally,
'.˛/CR.'.g0//'.˛/

�1 � '.˛/'.CG.g0/L/'.˛/
�1;

that is,
CR.'.g// � '.CG.g/L/:
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Lemma 6.14. For every g 2 G and for every special subgroup S ofG, gS is finitely
p-separable in G.

Proof. There are two cases:
Case 1. S ¤ G. LetH be a special subgroup of rank r�1 ofG such that S < H .

As above, G can be written as an HNN extension ofH relative to a special subgroup
K of H :

G D hH; t j t�1kt D k for all k 2 Ki:
Let g 2 G. There are two cases:

Subcase 1. g 2 H . Then gS is finitely p-separable in H by the assumptions.
Since G is residually p-finite by Theorem 6.1, gS is finitely p-separable in G by
Lemma 5.12.

Subcase 2. g 2 G n H . Let h 2 G n gS . By Lemma 6.6, there exists a
normal subgroup L of p-power index in H such that if  W H ! P D H=L

denotes the canonical projection, if Q denotes the HNN extension of P relative
to  .K/, and if x W G ! Q denotes the homomorphism induced by  , we have
x .h/ … x .g/ x .S/. Now x .S/ D  .S/ < P is finite and Q is residually p-finite.
Then there exists a homomorphism � W Q ! R fromQ onto a finite p-groupR such
that�. x .h// … �. x .g/ x .S//. Thus the homomorphism ' D �B x W G ! R satisfies
the condition '.h/ … '.gS /, as required.

Case 2. S D G. Let g 2 G. If g D 1, then, since G is residually p-finite by
Theorem 6.1, gG D f1g is finitely p-separable inG. Thus we can assume that g ¤ 1.
Then, by Proposition 6.12, there exists a special subgroupH of rank r � 1 ofG such
that g … HG . As above, G can be written as an HNN extension of H relative to a
special subgroup K of H :

G D hH; t j t�1kt D k for all k 2 Ki:
Let h 2 G n gG . Let g0 D ta1x1 : : : t

anxn and h0 D tb1y1 : : : t
bmym be cyclically

reduced elements ofG conjugate to g and h, respectively. Note that g … HG implies
that n � 1. There are two cases:

Subcase 1. h0 2 H . Then, by Lemma 6.7, there exists a normal subgroupL of p-
power index inH such that if W H ! P D H=L denotes the canonical projection,
ifQ denotes the HNN extension ofP relative to .K/, and if x W G ! Q denotes the
homomorphism induced by  , then x .g0/ D Nta1x1 : : : Ntanxn is cyclically reduced
in Q, where xi D x .xi / (i 2 f1; : : : ; ng). Since n � 1, we have x .g0/ … PQ D
x .HG/. Therefore x .g0/ … x .h0/Q D x .hG0 / � x .HG/. Now Q is conjugacy
p-separable by Corollary 4.3. Then there exists a homomorphism � from Q onto a
finitep-groupR such that�. x .g0// … �. x .h0//R. Therefore�. x .g// … �. x .h//R.
Thus the homomorphism ' D � B x W G ! R satisfies the condition '.h/ … '.gS /,
as desired.

Subcase 2. h0 2 G nH . Let fh1; : : : ; hmg be the set of all cyclic permutations
of h0. Then, since h … gG , we have: hi … gG0 for all i 2 f1; : : : ; mg. Therefore,
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by Lemma 6.7, there exists a normal subgroup L of p-power index in H such that,
if  W H ! P D H=L denotes the canonical projection, if Q denotes the HNN
extension of P relative to  .K/, and if x W G ! Q denotes the homomorphism
induced by  , then x .g0/ D Nta1x1 : : : Ntanxn and x .h0/ D Ntb1y1 : : : Ntbmym are
cyclically reduced in Q, where xi D x .xi / (i 2 f1; : : : ; ng) and yj D x .yj /
(j 2 f1; : : : ; ng) – and x .hi / … x .g0/ x .K/ for all i 2 f1; : : : ; mg. Consequently, by
Lemma 2.3, x .g0/ … x .h0/Q. Now Q is conjugacy p-separable by Corollary 4.3.
Then there exists a homomorphism � from Q onto a finite p-group R such that
�. x .g0// … �. x .h0//R. Hence �. x .g// … �. x .h//R. Thus the homomorphism
' D � B x W G ! R satisfies the condition '.h/ … '.gS /, as required.

Proof of Proposition 6.2. We argue by induction on the rank r of G. If r D 0, then
the result is trivial. Thus we can assume that r � 1 and that the result has been
proved for 1, …, r � 1. Now, Proposition 6.2 (1) follows from Lemma 6.13, and
Proposition 6.2 (2) follows from Lemma 6.14.

We are now ready to prove:

Theorem6.15. Every right-angledArtin group is hereditarily conjugacyp-separable.

Proof. Let G be a right-angled Artin group. Let g 2 G. Then gG is finitely p-
separable in G by Proposition 6.2 (1). We deduce that G is conjugacy p-separable.
On the other hand, G satisfies the p-centralizer condition by Proposition 6.2 (2). We
conclude that G is hereditarily conjugacy p-separable by Proposition 3.6.

7. Applications

The first application that we mention is an application of our main theorem to sepa-
rability properties of G� .

For a groupG, we denote by .C n.G//n�1 the lower central series ofG. Recall that
.C n.G//n�1 is defined inductively by C 1.G/ D G, and C nC1.G/ D ŒG; C n.G/�

for all n � 1.

Corollary 7.1. Every right-angled Artin group is conjugacy separable in the class
of torsion-free nilpotent groups.

Proof. Let G be a right-angled Artin group. Let g; h 2 G such that g œ h. Let p
be a prime number. Then G is conjugacy p-separable by Theorem 6.15. Thus, there
exists a homomorphism ' from G onto a finite p-group P such that '.g/ œ '.h/.
Now P is nilpotent. Therefore, there exists n � 1 such that C n.P / D f1g. Let
� W G ! G

Cn.G/
be the canonical projection. It follows from [DK2], Theorem 2.1,
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that for all n � 1, there exists dn 2 N such that

C n.G/

C nC1.G/
' Zdn :

Thus, an easy induction on n shows that G
Cn.G/

is torsion-free for all n � 1. Hence
G

Cn.G/
is a torsion-free nilpotent group for all n � 1. Since '.C n.G// < C n.P / D

f1g, ' induces a homomorphism z' W G
Cn.G/

! P such that ' D z' B � . As '.g/ œ
'.h/, we have �.g/ œ �.h/.

We now turn to applications of our main theorem to residual properties of Out.G�/.
An automorphism ' of a group G is said to be conjugating if '.g/ � g for every

g 2 G. We say that G has Property A if every conjugating automorphism of G is
inner. The following proposition is due to Minasyan (see [M], Proposition 6.9):

Proposition 7.2. Right-angled Artin groups have Property A.

For a group G, we denote by �p.G/ the kernel of the natural homomorphism
Out.G/ ! GL.H1.G;Fp// (where Fp denotes the finite field with p elements). The
following theorem is due to Paris (see [P], Theorem 2.5):

Theorem 7.3. Let G be a finitely generated group. If G is conjugacy p-separable
and has Property A, then �p.G/ is residually p-finite.

Thus, combining Theorem 7.3 and Proposition 7.2 with Theorem 6.15, we obtain:

Corollary 7.4. The outer automorphism group of a right-angled Artin group is vir-
tually residually p-finite.

The following theorem is due to Myasnikov (see [My], Theorem 1):

Theorem 7.5. Let G be a finitely generated group. If G is conjugacy p-separable
and has property A, then Out.G/ is residually K , where K is the class of all outer
automorphism groups of finite p-groups.

Thus, combining Theorem 7.5 and Proposition 7.2 with Theorem 6.15, we obtain:

Corollary 7.6. The outer automorphism group of a right-angled Artin group is resid-
ually K , where K is the class of all outer automorphism groups of finite p-groups.

In the remainder of this paper, we prove Theorem 7.14. Let G D G� be a right-
angled Artin group. Let r be the rank of G. We denote by T .G/ the kernel of the
natural homomorphism Aut.G/ ! GLr.Z/, and by T .G/ the kernel of the natural
homomorphism Out.G/ ! GLr.Z/. Note that T .G/ D T .G/=Inn.G/. Day proved
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that T .G/ is finitely generated (see [D2], Theorem B). Therefore T .G/ is finitely
generated.

In order to prove Theorem 7.14, we have to introduce the notion of separating
Z-linear central filtration.

Recall that a central filtration on a group G is a sequence .Gn/n�1 of subgroups
of G satisfying the conditions:

G1 D G; Gn > GnC1; ŒGm; Gn� < GmCn for all m; n � 1:

Let F D .Gn/n�1 be a central filtration. Then the mapping G 
 G ! G,
.x; y/ 7! xyx�1y�1 induces on

LF .G/ D
M
n�1

Gn

GnC1

a Lie bracket which makes LF .G/ into a graded Lie Z-algebra.
We say that .Gn/n�1 is a separating filtration if

T
n�1Gn D f1g. We say that

.Gn/n�1 is Z-linear if the Z-module Gn

GnC1
is free of finite rank for all n � 1.

For a groupG, we denote by .C nZ.G//n�1 the sequence of subgroups ofG defined

inductively by C 1Z.G/ D G, ŒG; C nZ.G/� < C nC1
Z .G/, and

C
nC1
Z .G/

ŒG;Cn
Z.G/�

is the torsion

subgroup of
Cn

Z.G/

ŒG;Cn
Z.G/�

for all n � 1.

Proposition 7.7. For all m; n � 1, ŒCmZ .G/; C
n
Z.G/� < C

mCn
Z .G/.

Proof. Proved in [BL] (see Proposition 7.2).

Thus, .C nZ.G//n�1 is a central filtration on G. We denote by LZ.G/ the corre-
sponding graded Lie Z-algebra.

For a Lie algebra g, we denote by Z.g/ the center of g. Let G be a group.
For n � 1, we denote by An the kernel of the natural homomorphism Aut.G/ !
Aut. G

C
nC1
Z .G/

/. Let � W Aut.G/ ! Out.G/ be the canonical projection. For n � 1,

we set Bn D �.Gn/.

Theorem 7.8. If Gab is finitely generated, and Z.Fp ˝ LZ.G// D f0g for every
prime number p, then .Bn/n�1 is a Z-linear central filtration on B1. Furthermore,
.Bn/n�1 is separating if and only if G satisfies the following condition:

.IN.G// W For every ' 2 Aut.G/, if ' induces an inner automorphism of G
Cn

Z.G/
for

all n � 1, then ' is inner.

Proof. Proved in [BL] (see Corollary 9.9).
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From now on, we assume that G D G� is a right-angled Artin group of rank r
(r � 1). We shall show that G satisfies the conditions of Theorem 7.8. Since B1 is
precisely the Torelli group of G, Theorem 7.14 will then result from the following:

Theorem 7.9. LetB be a group. Suppose thatB admits a separating Z-linear central
filtration .Bn/n�1. Then B is residually torsion-free nilpotent.

Proof. Proved in [BL] (see Theorem 6.1).

We need to introduce the following notations. Let K be a commutative ring. We
denote by M� the monoid defined by the presentation

M� D hV j vw D wv for all fv;wg 2 Ei;
by A� the associative K-algebra of the monoid M� , and by L� the Lie K-algebra
defined by the presentation

L� D hV j Œv; w� D 0 for all fv;wg 2 Ei:
The following theorem is due to Duchamp and Krob (see [DK1], Corollary II.16):

Theorem 7.10. The K-module L� is free.

Thus, by the Poincaré–Birkhoff–Witt theorem, L� can be regarded as a Lie sub-
algebra of its enveloping algebra, for which Duchamp and Krob established the fol-
lowing (see [DK1], Corollary I.2):

Theorem 7.11. The enveloping algebra of L� is isomorphic to A� .

Furthermore, Duchamp and Krob proved the following (see [DK2], Theorem 2.1),
which generalizes a well-known theorem of Magnus:

Theorem 7.12. Suppose that K D Z. The graded Lie Z-algebra associated to the
lower central series of G is isomorphic to L� .

Set Z D T
v2V star.v/. It follows from Servatius’ Centralizer Theorem (see [S],

Theorem 1) that the center Z.G/ of G is the special subgroup of G generated by Z.

Lemma 7.13. Suppose that Z.G/ D f1g. Then Z.L�/ D f0g.

Proof. Let g 2 Z.L�/. Suppose that g ¤ 0. Let v 2 V . We have Œg; v� D 0

(in L� ). Now, L� can be regarded as a Lie subalgebra of A� by Theorem 7.10
and Theorem 7.11. Thus, we have gv D vg (in A� ). Therefore g belongs to the
subalgebra of A� generated by star.v/ (see [KR], Theorem 2). Since v is arbitrary,
this leads to a contradiction with our assumption.
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From now on, we assume that K = Z. We now turn to prove:

Theorem 7.14. The Torelli group of a right-angled Artin group is residually torsion-
free nilpotent.

Proof. LetH be the special subgroup of G generated by V nZ. Note that Z.H/ D
f1g. We haveG D H 
Z.G/. First, we show that T .G/ D T .H/. Let ' W T .H/ !
T .G/ be the homomorphism defined by

'.˛/.h; k/ D .˛.h/; k/

for all ˛ 2 T .H/, h 2 H , k 2 Z.G/. Clearly, ' is well defined and injective.
We shall show that ' is surjective. Let ˇ 2 T .G/. For g 2 G, we set ˇ.g/ D
.ˇ1.g/; ˇ2.g//, where ˇ1.g/ 2 H and ˇ2.g/ 2 Z.G/. Let h 2 H . We denote by
Nh the canonical image of h in H ab. Note that the canonical image of h in Gab D
H ab 
 Z.G/ is . Nh; 1/. Since ˇ 2 T .G/, we have . Nh; 1/ D .ˇ1.h/; ˇ2.h//, and then
ˇ2.h/ D 1. Let k 2 Z.G/. Since ˇ.k/ lies in the center of G, we have ˇ1.k/ D 1.
Note that the canonical image of k inGab is .1; k/. Asˇ 2 T .G/, we haveˇ2.k/ D k.
Finally, we have

ˇ.h; k/ D .ˇ1.h/; k/

for all h 2 H and k 2 Z.G/. Applying the same argument to ˇ�1, we obtain that the
restriction ˛ of ˇ1 toH is an automorphism ofH . Therefore ˇ D '.˛/. We deduce
that ' is an isomorphism. Note that '.Inn.H// D Inn.G/. We conclude that T .G/ =
T .H/. Thus, up to replacingG byH , we can assume thatZ.G/ D f1g. As we noted
above, G

Cn.G/
is torsion-free for all n � 1. Now, for all n � 1, C n.G/ < C nZ.G/,

and
Cn

Z.G/

Cn.G/
is the torsion subgroup of G

Cn.G/
by [BL], Proposition 7.2. It follows

that C nZ.G/ D C n.G/ for all n � 1, and that LZ.G/ D L� by Theorem 7.12.
Since Z.G/ D f1g, we have Z.Fp ˝ L�/ D f0g for every prime number p by
Lemma 7.13. We deduce that .Bn/n�1 is a Z-linear central filtration on T .G/ by
Theorem 7.8. Now, let ' 2 Aut.G/ such that ' induces an inner automorphism on
G

Cn.G/
for all n � 1. Let g 2 G. Suppose that '.g/ and g are not conjugate in G.

Then it follows from the proof of Theorem 7.1 that there exists n � 1 such that the
canonical images of '.g/ and g in G

Cn.G/
are not conjugate in G

Cn.G/
– contradicting

our assumption. Thus ' is conjugating. Therefore ' is inner by Proposition 7.2.
We deduce that .Bn/n�1 is separating by Theorem 7.8. We conclude that T .G/ is
residually torsion-free nilpotent by Theorem 7.9.

Corollary 7.15. The Torelli group of a right-angled Artin group is residuallyp-finite.

Proof. Since T .G/ is finitely generated by [D2], Theorem B, and residually torsion-
free nilpotent by Theorem 7.14, it is residually p-finite by [G], Theorem 2.1.

It is known that residually torsion-free nilpotent groups are bi-orderable (see, for
example, [CKM], Remark 2.6). Thus, Theorem 7.14 immediately yields:
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Corollary 7.16. The Torelli group of a right-angled Artin group is bi-orderable.

A. Appendix

Let G be a group, and let H be a subgroup of G. Recall that the normal core of H ,
denoted by HG , is defined to be the largest normal subgroup of G that is contained
in H , i.e., HG D T

g2G gHg�1. The following lemma is probably well known,
though it does not seem to be in the literature. We include a proof for completeness.

Lemma A.1. Let G be a group, and let H be a subgroup of G. Then H is open in
the pro-p topology on G if and only ifH is subnormal of p-power index.

Proof. If H is open in the pro-p topology on G, then it contains a normal subgroup
K of p-power index in G. Thus ŒG W H� is a power of p. As G

K
is a finite p-group,

every subgroup of it is subnormal. Therefore H is subnormal in G.
Conversely, ifH is a subnormal subgroup of p-power index in G, then ŒG W HG �

is a power of p (see, for example, [AF2], Lemma 3.3). Thus H contains an open
subgroup of G, and hence is open itself.
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