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Spectral properties of a class of random walks
on locally finite groups

Alexander Bendikov, Barbara Bobikau and Christophe Pittet�

Abstract. We study some spectral properties of random walks on infinite countable amenable
groups with an emphasis on locally finite groups, e.g. the infinite symmetric group S1. On
locally finite groups, the random walks under consideration are driven by infinite divisible
distributions. This allows us to embed our random walks into continuous time Lévy processes.
We obtain examples of fast/slow decays of return probabilities, a recurrence criterion, exact
values and estimates of isospectral profiles and spectral distributions.
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1. Introduction

We apply methods from analysis (Laplace, Köhlbecker, and Legendre transforms)
and from geometric group theory (volume growth, isoperimetic and isospectral in-
equalities) to study the spectral properties of random walks on countable groups.
Most of the results are about groups which are not finitely generated. All the random
walks we consider are symmetric and invariant under left translations.

Notation. We use the following notation. For two non-negative functions defined
on RC or on a subset I of RC which is either a neighborhood of zero or of the infinity,
we write:

� f � g if there are constants a1; a2 > 0 such that a1f .x/ � g.x/ � a2f .x/

for all x 2 I (factor equivalence),

� f
d' g if there are constants b1; b2 > 0 such that f .b1x/ � g.x/ � f .b2x/

for all x 2 I (dilatational equivalence),
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� f
d� g if there are constants a1; a2; b1; b2 > 0 such that a1f .b1x/ � g.x/ �

a2f .b2x/ for all x 2 I .

We also use the standard notation:

� f � g at a if f .x/=g.x/ ! 1 at a.

An early result by Kesten [26] is that a countable group G is amenable if and only
if the spectral radius of the Markov operator associated to any symmetric irreducible
random walk on G equals 1. In other words, a countable group is non-amenable
if and only if the return probabilities of any symmetric irreducible random walk on
it decay exponentially fast as time goes to infinity. (This equivalence generalizes to
locally compact groups [6].) In Theorem 2.3 , we prove that any locally compact
unimodular non-compact (hence any countable infinite) amenable group carries an
irreducible symmetric random walk whose return probability decay is faster than any
given sub-exponential function.

Recurrence criteria for random walks on countable infinitely generated groups
have attracted much attention (see Chapter 4 below for a short description of contri-
butions by Brofferio and Woess [7], Darling and Erdös [12], Dudly [14], Flato and
Pitt [19], Kasymdzhanova [25], Molchanov and Nabil [18], Revuz [33], Chapter 9,
Spitzer [36], Chapter 7), see also [5]. Recall that a group is locally finite if any of
its finite subset generates a finite subgroup. Obviously, a group is countable locally
finite if and only if it is a countable increasing union of finite subgroups. Any such
group is amenable. It is not finitely generated if and only if the union is infinite and
strictly increasing. A typical example is the group S1 of permutations of the integers
with finite supports. Lawler [27] has obtained a sufficient condition for recurrence
on countable locally finite groups (see Proposition 4.1 below and [7], Proposition 1).
In Proposition 4.2, we prove that Lawler’s condition is also necessary for measures
which are convex linear combinations of idempotent measures.

It is well known that on an infinite finitely generated group, any symmetric irre-
ducible random walk returns to the origin at time t with probability at most t�1=2 (up
to a constant rescaling factor). In other words, the slowest possible decay of return
probabilities on an infinite finitely generated groups, is the one of the simple random
walk on Z. A short proof of this fact is obtained by applying Cheeger’s inequality
[13], Theorem 2.3, which implies a lower bound on the isospectral profile which we
now define. Let � be a symmetric irreducible probability measure on a countable
group G and let P.f / D f � � be the corresponding right convolution operator on
L2.G/. The associated Laplace operator � D P � I is bounded, self-adjoint and
�� is positive. The isospectral profile (also called the L2-isoperimetric profile) of
.G; �/ is the function

ƒ.v/ D min
j�j�v

�1.�/;
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where the minimum is taken over all finite subsets of G of cardinality less or equal
to v. Here,

�1.�/ D min
supp.f /��

.��f; f /

kf k2
2

:

In contrast with finitely generated groups, there is no slowest decay of return proba-
bilities on countable groups which are not finitely generated: in Proposition 4.3 we
construct, on any infinite countable locally finite group, random walks with return
probabilities whose decay is slower than any given positive function which goes to
zero as time goes to infinity.

On a finitely generated group it is usually difficult (if not hopeless) to find an irre-
ducible probability measure and to compute exact values of its isoperimetric profile
or the spectral density driven by this measure. If G is an infinite countable locally
finite group, we can choose finite subgroups G0 � G1 � � � � of G such that

G D
[
k�0

Gk :

Any probability measure � on G can be represented as a convex linear combination

� D
1X

kD0

ck�k;

of probabilities �k , each of which is supported by the finite subgroup Gk (see Propo-
sition 3.1). A natural choice for �k is the homogeneous probability measure on Gk

(i.e. the normalized Haar measure of Gk):

�k D mGk
:

The above representation of � as a series of Haar measures is convenient for compu-
tations because if � is a probability measure on a finite group H , then

� � mH D mH � � D mH :

This in turn implies that � is infinite divisible (see [17], IX.5, Theorem 2) and
can be embed in a weakly continuous convolution semi-group .�t / of probability
measures on G (see Proposition 3.2). It allows us to compute exact values of the
isospectral profile ƒ� (Theorem 5.2 and Proposition 5.3).

Let P be a right convolution operator defined by a symmetric probability measure
on a countable group. Let � ! E� be the spectral resolution of the Laplacian
�� D I � P ,

�� D
Z 1

0

�dE�:

Let ıe denote the characteristic function of the identity element e 2 G. We define
the spectral distribution function � ! N.�/ as

N.�/ ´ .E�ıe; ıe/:
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The asymptotic behavior of N.�/, for � close to zero, for Laplace operators associ-
ated to simple random walks on finitely generated virtually nilpotent groups, can be
deduced from Varopoulos results [28], Lemma 2.46. On finitely generated groups,
and under some regularity assumption, the spectral distribution and the isospectral
profile are related by the formula

N.�/
d' 1

ƒ�1.�/
;

(see [4]). In the case of infinite countable locally finite groups (they are of course
never finitely generated), if the decay of the coefficients ck of the series of Haar
measures .�k/

� D
1X

kD0

ck�k;

is not too fast, namely, if there exists " > 0 such thatX
k>n

ck 	 "cn;

for all n 2 N, then the same formula holds true (See Proposition 6.1).

2. Convolution powers on unimodular groups

Let .G; m/ be a locally compact, non-compact, unimodular group endowed with a
left Haar measure m. Let fBkgk2N be an increasing sequence of Borel subsets of G

such that jBkj ´ m.Bk/ ! 1 as k ! 1.
With any sequence of positive reals c D .ck/k2N such that

P
k2N ck D 1 we

associate the function

x ! M.x/ D
X
k2N

ck

jBkj1Bk
.x/:

Evidently B ! M.B/ D R
B Mdm is a probability measure on G. Assume

that all Bk are symmetric and
S

k Bk generates a dense subgroup of G. Then M is
symmetric and supp M generates a dense subgroup of G. Let LM W L2 ! L2 be the
corresponding right-convolution operator h ! h � M . In general, kLM kL2!L2 � 1

and it is equal to 1 if and only if the group G is amenable. On the other hand, let fXkg
be i.i.d. random variables on G with law PX1

D M and let Sn D X1 �X2 : : : Xn be the
corresponding random walk on G. According to [6] the following characterization
of Sn via the norm of the convolution operator LM holds: For all relatively compact
neighborhoods V of the neutral element e 2 G,

lim
n!1 P .S2n 2 V /1=2n D kLM kL2!L2 :
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In particular, if G is amenable kLM kL2!L2 D 1 and therefore

P .S2n 2 V / D exp.�n � o.1// as n ! 1:

If the group G is not amenable, then kLM kL2!L2 < 1. This implies that the decay
at infinity of the function n ! P .S2n 2 V / is always exponential.

We claim that for any non-compact unimodular amenable group G, the decay of
the function n ! P .S2n 2 V / can be made as close as possible to the exponential
one by an appropriate choice of the probability measure M D PX1

.
Observe that M �n.V / � kM �nk1m.V /, hence to prove our claim it is enough

to estimate the decay of the function n ! kM �nk1. We denote �k D P
i�k ci

and �.k/ D 1 � �k . Let � ! N .�/ be a right-continuous, non-decreasing step-
function R ! RC having jumps at the points �k D �.k/ and taking values at these
points N .�k/ D 1=jBkj. Notice that � ! N .�/ must be continuous at � D 0 and
N .�/ D 0 for � � 0. Later in the paper (see for example the proof of Proposition 4.2)
we will consider functions of this kind arising as spectral distributions - as defined
in the introduction - of explicit Laplace operators. When this is the case, we use the
notation N rather than N . Following the paper [35] one can obtain the following
result.

Proposition 2.1. In the notation introduced above the following inequality holds:

kM �nk1 �
Z

RC

e�n�dN .�/; n 2 N:

We write N D e�M and introduce the following auxiliary transforms.

� The Köhlbecker transform of M:

K.M/.x/ ´ � log

�Z 1

0

e�xtde�M.t/

�
:

� The Legendre transform of M:

L.M/.x/ ´ inf
�>0

fx� C M.�/g:

Clearly, L.M/ W RC ! RC is a non-decreasing, concave function. In particular, it is
continuous. For any non-decreasing, continuous function F W RC ! RC, we define
the conjugate Legendre transform of F as follows:

L�.F /.x/ ´ sup
�>0

f�x� C F .�/g:

Proposition 2.2. With the above notation, the following properties hold true.

(1) K.M/.x/ � L.M/.x/ at 1.
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(2) L.L�.F // 	 F , and L.L�.F // D F if F is concave.

(3) For any continuous decreasing function M W RC ! RC such that M.C0/ D
C1,

L.M/ � M B .M=id/�1:

(4) For any continuous function F W RC ! RC such that F .C1/ D C1 and
F .t/ D o.t/ at 1, there exist two continuous decreasing functions M1,
M2 W RC ! RC, with Mi .C0/ D C1, i D 1; 2, such that

L.M1/=F ! 1 and L.M2/=F ! 0 at 1:

Proof. The first statement is Lemma 3.2 in [3]. The second statement is a standard
fact from convex analysis, see [34], Section 12. For the third statement see [4]. We
prove the fourth statement: (a) Choose a continuous zF1 W RC ! RC such that close
to zero zF1 > c > 0, zF1=F ! 1 and zF1.�/ D o.�/ at 1. Put M1 D L�. zF1/ and
observe that M1 is convex, hence continuous. The second statement of Proposition 2.2
implies that

L.M1/=F 	 zF1=F ! 1 at 1:

(b) Choose a concave zF2 W RC ! RC such that near zero zF2.t/ 	 c > 0,
zF2.t/=F .t/ ! 0 and zF2.�/ D o.�/ at 1.

Put M2 D L�. zF2/. The function M2 has the desired properties and according to
the second statement of Proposition 2.2,

L.M2/=F D zF2=F ! 0 at 1:

The proof is finished.

Theorem 2.3. Let G be a locally compact non-compact group. Assume that G is both
unimodular and amenable. Let F W RC ! RC be a non-decreasing function such
that F .t/ D o.t/ at infinity. There exists a symmetric strictly positive probability
density M on G such that

� log kM �nk1=F .n/ ! 1 at 1:

Proof. For F given, choose M such that L.M/=F ! 1 at 1. See Proposition 2.2
(4). Choose an increasing sequence of Borel sets Bk � G such that jBkj ! 1 and
define a decreasing sequence f�.k/g from the equation e�M.�.k// D jBkj�1, k 
 1.
Then define a sequence fckg as follows: For k 	 k0 
 1 put ck D �.k � 1/ � �.k/

and for 1 � k < k0 choose ck > 0 such that
P1

kD0 ck D 1. Finally define

M D
1X

kD0

ck

1

jBkj1Bk
; (2.1)

and a step-function N which is right-continuous, non-decreasing and has jumps at
points �k D �.k/ with values N .�k/ D 1=jBkj. Write N D e� zM. Clearly zM 	 M
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and therefore K. zM/ 	 K.M/. Applying Proposition 2.1 we come to the desired
conclusion

� log kM �nk1=F .n/ 	 K. zM/=F .n/

	 K.M/=F .n/ � L.M/=F .n/ ! 1 at 1:

The proof is finished.

This proves the claim stated in the beginning of this section. Observe that the
construction given in the proof of Theorem 2.3 can be used to build many examples
of fast decaying convolution powers on locally compact non-compact unimodular
amenable groups. For example, choose l 	 1 and for k 	 k0 big enough put

�.k/ D �
log.lC1/ jBkj� 1

� :

Define ck > 0 such that
P

k�0 ck D 1 and ck D �.k � 1/ � �.k/ for k 	 k0 C 1.
Then the probability density M defined by (2.1) satisfies

kM �nk1 � exp
�

� cn

.log.l/ n/
1
�

�
at 1;

for some constant c > 0.

3. Convolution powers on locally finite groups

Assume that the group G under consideration has the following structure: there exists
a strictly increasing sequence of finite subgroups fGkg of G such that G D S

k Gk .
We say that G is locally finite. Evidently any such group is non-compact (in the
discrete topology) unimodular and amenable.

Proposition 3.1. Let G be a locally finite group. Any probability � on G can be
represented as a convex linear combination

� D
1X

kD0

ck�k

of probabilities �k each of which is supported by a finite subgroup Gk . The sequence
fGkg increases and G D S

k Gk .

Proof. Indeed, if j supp �j D 1, choose any increasing sequence fGkg of finite
subgroups of G such that �.G0/ > 0. Then �.GnGk/ > 0 for all k > 0 and let

�k ´
� kX

lD0

�.GlnGl�1/

�.GnGl�1/

��1� kX
lD0

1Gl nGl�1

�.GnGl�1/

�
�
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and

ck ´ �.GknGk�1/

� kX
lD0

�.GlnGl�1/

�.GnGl�1/

�
;

where G�1 ´ ;. The proof is finished.

In [7] a few different choices of .�k; ck/ (called shuffling models) are presented.
In the present paper we consider the following special cases: Let mk be the normalized
Haar measure on Gk . Let c D fckg be a sequence of strictly positive reals such thatP

k ck D 1. Define a probability measure � D �.c/ on G by

� D
X

k

ckmk :

Let m be the counting measure on G and L2 D L2.G; m/. Define on L2 the
following linear operators Pkf D f � mk and Pf D f � �. Clearly Pk and P are
bounded symmetric operators and

P D
1X

kD0

ckPk :

Let us compute P n. Since ml � mk D mmax.l;k/,

P n D
1X

kD0

akPk;

where

ak D
´

.c0 C � � � C ck/n � .c0 C � � � C ck�1/n ; k 	 1;

a0 D cn
0 :

From these equations we obtain

ck D
´

.a0 C � � � C ak/
1
n � .a0 C � � � C ak�1/

1
n ; k 	 1;

c0 D a
1
n

0 :

In particular, the symmetric non-negative definite operator P
1
m , defined via spectral

theory, has the following representation:

P
1
m D

1X
kD0

�
.c0 C � � � C ck/

1
m � .c0 C � � � C ck�1/

1
m

�
Pk :

As a consequence of these two observations we obtain:

P
n
m D

1X
kD0

�
.c0 C � � � C ck/

n
m � .c0 C � � � C ck�1/

n
m

�
Pk : (3.1)
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Let now t 2 RC and rn 2 QC be a sequence of rationals such that rn ! t . Then, by
spectral theory, P rn ! P t strongly. Hence, passing to the limit in both sides of the
equation (3.1) we obtain

P t D
1X

kD0

�
.c0 C � � � C ck/t � .c0 C � � � C ck�1/t

�
Pk :

The above facts are crucial for our purposes. We summarize them in the following
proposition.

Proposition 3.2. The measure � D �.c/ is infinite divisible. In particular, there
exists a weakly continuous convolution semigroup .�t /t>0 of probability measures
on G such that � D �1. Moreover the following representation holds:

�t D
1X

kD0

ck.t/mk;

where

ck.t/ D
´

.c0 C � � � C ck/t � .c0 C � � � C ck�1/t ; k 	 1;

c0.t/ D ct
0:

4. Recurrence criterion

The problem of recurrence of random walks on countable abelian groups with finite
number of generators has been investigated in details in the book of Spitzer [36],
Chapter 7. Dudley [14] proved that each countable abelian group which does not
contain a subgroup isomorphic Z3 admits a irreducible recurrent random walk. The
proof of Dudley is not constructive, hence it is very desirable to find some explicit
construction of recurrent random walks on such groups. This construction has been
done in the works of S. Molchanov and his collaborators [18], [25] for the following
groups: G D ZŒ1=p	, the group of all rational numbers of the form r D k

pm where

k, p > 1 and m 	 0 are integers, and G D 
p D Zk � .Z=pZ/.1/, with k D 0; 1; 2.
They obtained sufficient conditions for the recurrence and also necessary ones which
are very close to each other. Brofferio and Woess [7] proved recurrence criteria for
certain card shuffling models, that is, random walks on the infinite symmetric group
S1 D S

n�1 Sn. One of these models has been considered previously by Lawler
[27]. He obtained a very general sufficient condition for recurrence:

Proposition 4.1. A random walk on G D S
n�0 Gn with law � is recurrent if

1X
nD1

1

jGnj.1 � �.Gn//
D 1:
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Special cases of Proposition 4.1 had been proved previously by Flatto and Pitt
[19] (each Gn is cyclic, or G is the direct sum of finite abelian groups), and before
that by Darling and Erdős [12] (G is the direct sum of infinitely many copies of the
group of order two). See also [2].

If � D �.c/ is defined as in the proof of Proposition 3.1, we show that Lawler’s
above condition is also necessary.

Proposition 4.2. A random walk on G with law � D �.c/ is recurrent if and only if
the following condition holds:

1X
nD0

1

jGnj.1 � �.Gn//
D 1:

Proof. Let N.�/ be the spectral distribution function associated to � D �.c/ as
defined in the introduction. It is easy to see that N.�/ is a right-continuous, non-
decreasing step-function having jumps at the points �k D �.k/, where �.k/ DP

i>k ci , and N.�k/ D 1=jGkj. By Proposition 3.2,

��n.e/ D
Z 1

0

.1 � �/ndN.�/:

Since the measure B ! R
B dN is supported by the interval Œ0; �.0/	 � Œ0; 1	, there

exists ı > 1 such that, for all n 2 N,Z 1

0

e�nı�dN.�/ �
Z 1

0

.1 � �/ndN.�/ �
Z 1

0

e�n�dN.�/:

Next we use a well-known criterion of recurrence: a random walk with law � is
recurrent if and only if X

n

��n.e/ D 1:

Since

��n.e/
d'

Z 1

0

e�n�dN.�/; (4.1)

we easily transform this criterion into the propertyX
k�0

1

jGkj�.k/
�

Z 1

0

dN.�/

�
�

X
n

��n.e/ D 1:

Finally, observe that 1 � �.Gn/ � �.n/. This finishes the proof.

It is well known that if a locally compact non-compact group G is compactly
generated (for example if G is infinite and finitely generated), the upper rate of decay,
among all functions defined by

n ! k��2nk1;
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where � is a symmetric probability density whose support generates G, is realized

(up to the equivalence relation
d�) when � has finite second moment with respect to a

word metric defined by a compact symmetric generating set. This rate is a geometric
invariant of the group G. See for instance [4], [30], [31]. In particular, let G be
an abelian non-compact compactly generated group. By the structure theory [24],
Theorem 9.8,

G Š Rl � Zm � K; l C m > 0;

where K is a compact group. Then, for any symmetric probability density � W G !
RC whose support generates G, we must have

k��2nk1 � C n�.lCm/=2 at 1:

Let fX.n/gn�0 be the random walk on G with law �. Assume that fX.n/g is re-
current. Y. Guivarc’h asked the following question: How slow may the function
n ! P .X.2n/ D ejX.0/ D e/ decay at infinity? The next proposition shows
that if G is locally compact but not compactly generated, the decay of the function
n ! k��2nk1 may be as slow as possible.

Proposition 4.3. Let G be an infinite countable locally finite group and F W RC !
RC be a non-decreasing continuous function such that F .t/ D o.t/ and F .t/ ! 1
at infinity. There exists a symmetric strictly positive probability density � on G such
that

� log ��n.e/=F .n/ ! 0 at 1;

(compare with Theorem 2.3).

Proof. Let G D S1
kD1 Gk , where feg D G0 � G1 � � � � � Gk � � � � are finite

subgroups of G. Let � D �.c/ for some c D .ck/. Then by (4.1),

��n.e/ 	
Z 1

0

e�ın�dN.�/

for some ı > 1. Proceeding as in the proof of Theorem 2.3 but choosing N.�/ 	
e�M.ı�/ with M continuous and decreasing, and such that

L.M/=F ! 0 at 1;

we can find c D .ck/ and hence � D �.c/ such that ck > 0 and

��n.e/ 	
Z 1

0

e�nı�dN.�/ 	
Z 1

0

e�n�de�M.�/:

Therefore as n ! 1 we obtain

� log ��n.e/=F .n/ � K.M/=F .n/ � L.M/=F .n/ ! 0:

The proof of the proposition is finished.
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5. L2-isospectral profile

Let P and � D P � I be the transition operator and the Laplacian defined by the
probability measure � D �.c/. For any subset U � G we define the truncated
operators PU and �U by

PU f .x/ D 1U .x/P.1U f /.x/

and

�U f .x/ D 1U .x/�.1U f /.x/:

Let mU be the counting measure on U and L2.U / D L2.U; mU /. Evidently, the
operators PU and ��U can be regarded as operators on L2.U /, each of which is
a bounded and symmetric, and ��U is non-negative definite. Moreover, �U D
PU � I . If U is a finite set, L2.U / is finite dimensional and its dimension n is equal
to jU j. Therefore the spectrum SpecL2.��U / of ��U consists of a finite number
of points 0 < �1.U / � � � � � �n.U / < 1, repeated according to their multiplicity.

We define the L2-isospectral profile � ! ƒ.�/ by

ƒ.�/ ´ inf
U W jU j��

�1.U /:

For any function 0 < ƒ� � ƒ the following Faber–Krahn type inequality holds
true:

�1.U / 	 ƒ�.jU j/; for any finite U � G:

In the general setting of Markov generators this inequality was introduced in [1] (see
also [20], [21]) to investigate various aspects of the heat kernel behavior. In particular,
it was proved in [21] that under some regularity assumptions on ƒ�, the Faber–Krahn
type inequality is equivalent to the heat kernel estimate

sup
x;y2G

h.t I x; y/ � 1

ˆ.t/
for all t > 0;

where the functions ƒ� and ˆ are related by

t D
Z ˆ.t/

0

d�

�ƒ�.�/
:

See [8], [9], [10], [11], [29] and [30].
The main aim of this section is to obtain a lower bound for the function � ! ƒ.�/

in terms of the sequences fckg and fjGkjg. Under certain regularity assumptions on
fckg we will obtain two-sided bounds for ƒ which are comparable in the sense of
dilatational equivalence. See Theorem 5.2 and Theorem 5.7 below.

If a, b are positive reals a ^ b denotes their minimum. We define the function
T W RC ! RC as follows:

T .u/ ´ 1 �
1X

iD0

ci

�
1 ^ u

jGi j
�

:
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The next proposition easily follows from the very definition of the function u !
T .u/.

Proposition 5.1. The following properties hold true.

(1) T is a continuous function.

(2) T strictly decreases to zero at infinity.

(3) T is convex.

(4) For jGkj � u < jGkC1j,
1

2
�.k C 1/ < T .u/ < �.k/:

Theorem 5.2. For any finite set U � G, the following inequality holds:

�1.U / 	 T .jU j/:
In particular, for any � 	 1,

ƒ.�/ 	 T .�/:

Proof. Choose a finite set U � G, a function f such that supp.f / � U , and write

.f; Pif / D
X
x2U

f .x/Pif .x/

D
X

x;y2U

f .x/f .y/mi .y
�1x/

D 1

jGi j
X

x;y2U Wy�1x2Gi

f .x/f .y/:

Let ŒG W Gi 	 be the set of all co-sets A D aGi , a 2 G. ThenX
x;y2U Wy�1x2Gi

f .x/f .y/ D
X

A2ŒGWGi �

X
x;y2A\U

f .x/f .y/

D
X

A2ŒGWGi �

� X
x2A\U

f .x/
�2

�
X

A2ŒGWGi �

jA \ U j
X

x2A\U

f .x/2

� max
A2ŒGWGi �

jA \ U j
X

A2ŒGWGi �

X
x2A\U

f .x/2

D max
A2ŒGWGi �

jA \ U jkf k2
L2.U /

� .jGi j ^ jU j/kf k2
L2.U /

:
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Hence, for any i D 0; 1; 2; : : : , and any finite set U � G the operator norm of the
truncated operator Pi;U can be estimated as follows:

kPi;U k D supf.f; Pif / W supp.f / � U; kf kL2 D 1g
� 1

jGi j .jGi j ^ jU j/ D
�

1 ^ jU j
jGi j

�
:

It follows that

kPU k �
1X

iD0

cikPi;U k �
1X

iD0

ci

�
1 ^ jU j

jGi j
�

:

With this inequality in hands the computations of �1.U / become straightforward:

�1.U / D minf.��U f; f / W supp.f / � U; kf kL2 D 1g
D minf1 � .PU f; f / W supp.f / � U; kf kL2 D 1g
D 1 � maxf.PU f; f / W supp.f / � U; kf kL2 D 1g
D 1 � kPU k

	 1 �
1X

iD0

ci

�
1 ^ jU j

jGi j
�

D T .jU j/:

Since � ! T .�/ is a decreasing function, we obtain

ƒ.�/ D inff�1.U / W jU j � �g 	 T .�/:

The proof is finished.

Proposition 5.3. For any k D 0; 1; 2; : : : ,

�1.Gk/ D T .jGkj/:
In particular, 1

2
�.k/ < �1.Gk/ < �.k/.

Proof. Since Gk is a subgroup of G, one can regard PGk
as a convolution operator

on Gk . Indeed, for x 2 Gk and f such that supp.f / � Gk we have

PGk
f .x/ D

Z
Gk

f .xy/d�.y/ D
Z

Gk

f .xy/d�Gk
.y/ D f .x/ � �Gk

;

where �Gk
is the restriction of the probability measure � on Gk . We have

�Gk
D

1X
iD0

cimi;Gk

D
k�1X
iD0

cimi C
1X

iDk

ci

jGkj
jGi j mk

D
k�1X
iD0

cimi C
� 1X

iDk

ci

jGkj
jGi j

�
mk :
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In particular, since jGkj=jGi j � 1=2, for i > k,

�Gk
.1/ D

k�1X
iD0

ci C
� 1X

iDk

ci

jGkj
jGi j

�
�

kX
iD0

ci C 1

2

1X
iDkC1

ci < 1:

Since for any finite group (more generally, any amenable group) the norm of the
convolution operator equals the variation of the corresponding measure, we have

kPGk
k D �Gk

.1/:

It follows that

�1.Gk/ D 1 � kPGk
k D 1 �

X
i�k

ci �
X
i>k

ci

jGkj
jGi j D T .jGkj/:

We also have

�1.Gk/ D
X
i>k

�
1 � jGkj

jGi j
�

ci :

Since jGkj=jGi j � 1=2 for all i > k, we obtain

1

2

X
i>k

ci < �1.Gk/ <
X
i>k

ck :

The proof is finished.

According to Theorem 5.2 the function u ! T .u/ is a lower bound for the
function u ! ƒ.u/. Following ideas of Følner (see e.g. [11], [15], [32]) we will
give an upper bound for the function u ! ƒ.u/.

Definition 5.4. For n 2 N set

k.n/ ´ minfk W �1.Gk/ � 1=n2g: (5.1)

Let v ! F.v/ be the continuous piecewise linear function such that F.n/ D jGk.n/j.
Observe that v ! F.v/ is a strictly increasing continuous function. Hence the inverse
v ! F �1.v/ exists in the usual sense. We define the function ƒF W .1; C1/ ! R1C
by

ƒF .v/ ´ .F �1.v/ � 1/�2: (5.2)

Proposition 5.5. The following inequality holds true:

ƒ.v/ � ƒF .v/ for all v > 1:
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Proof. Let �n ´ Gk.n/ and !v ´ �ŒF �1.v/�. We have

j!vj D j�ŒF �1.v/�j D F.ŒF �1.v/	/ � v:

Using the definition of k.n/ we obtain

�1.!v/ D �1.�ŒF �1.v/�/ � .F �1.v/ � 1/�2 D ƒF .v/:

We conclude that

ƒ.v/ D inff�1.U / W jU j � vg � �1.!v/ � ƒF .v/:

The proof is finished.

The following regularity condition will play a crucial role in our further consid-
erations.

(A) There exists � > 0 such that

ck � ��.k/ for all k 2 N;

or equivalently,

�.k � 1/ � .1 C �/�.k/ for all k 2 N:

It is easy to see that for ck D exp.�kp/ condition (A) holds if and only if p � 1.

Proposition 5.6. Assume that condition (A) holds. Then there exists c > 0 such that

ƒF .v/ � cT .v/ for any v > 1:

Proof. For any n 	 1 and n � v � n C 1, we have

T .F.v// 	 T .F.n C 1// D T .jGk.nC1/j/ D �1.Gk.nC1// 	 1

2
�.k.n C 1//:

Due to our assumption

�.k.n C 1// 	 c1�.k.n C 1/ � 1/

for some c1 > 0, hence

T .F.v// 	 c1

2
�.k.n C 1/ � 1/ 	 c1

2
�1.Gk.nC1/�1/ 	 c1

2

1

.n C 1/2
	 c1

4

1

v2
	 c2

v2

for some c2 > 0. Since u ! F.u/ is strictly increasing and since F.1/ D 1, there
exists c3 > 0 such that

T .u/ 	 c2

.F �1.u//
2

	 c3

.F �1.u/ � 1/
2

D c3ƒF .u/:

The proof is finished.
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Theorem 5.7. Assume that condition (A) holds. Then there exists c > 0 such that

T .u/ � ƒ.u/ � cT .u/ for any u > 1;

that is, ƒ � T at 1.

Proof. We always have

ƒF .u/ 	 ƒ.u/ 	 T .u/ for any u > 1:

Assuming that the condition (A) holds, we apply Proposition 5.6 and obtain:

ƒF .u/ � cT .u/ for any u > 1:

The proof is finished.

Proposition 5.8. Let �; � W RC ! RC be two continuous strictly monotone functions
such that �.k/ � �.k/ and �.k/ � jGkj at 1. Then under condition (A)

T
d� � B ��1 and ƒ

d� � B ��1 at 1:

Proof. Since ƒ � T we work with T . According to Proposition 5.1 (4):

1

2
�.k C 1/ < T .u/ < �.k/ for jGkj � u < jGkC1j:

Hence for u, k as above and for some b1; b2 > 0,

k � ��1

�
u

b1

�
; k C 1 > ��1

�
u

b2

�
:

It follows that for some b3, b4 > 0,

T .u/ < �.k/ � .1 C �/�.k C 1/ � b3.1 C �/�.k C 1/ � b3.1 C �/� B ��1

�
u

b2

�
and

T .u/ >
1

2
�.k C 1/ 	 1

2.1 C �/
�.k/ 	 b4

2.1 C �/
�.k/ 	 b4

2.1 C �/
� B ��1

�
u

b1

�
:

Notice that the constants b1; b2; b3; b4 > 0 come from the relations �.k/ � �.k/

and �.k/ � jGkj. The proof is finished.

Example 5.9. 1) Let G D S1
nD0 Gn, Gn D .Z=2Z/n. Then jGnj D 2n and we

can choose �.x/ D 2x , x 	 0. Proposition 5.8 yields the following result: Under
condition (A), for any � � � at 1,

ƒ.�/ � � B log.�� / at 1; where 
 D 1= log 2:

In particular, we have
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(1.1) If ck � qk , 0 < q < 1, then �.k/ � qk , k 2 ZC. Hence,

ƒ.�/ � ��A� at 1; where A D log
1

q
:

(1.2) If ck � k�p , p > 1, then �.k/ � k�pC1, k 2 ZC. Hence,

ƒ.�/ � .log �/1�p at 1:

(1.3) If ck � 1=.k � log k � log.2/ k � � � .log.n/ k/p/, p > 1, then

�.k/ � .log.n/ k/1�p; k 2 ZC:

Hence,
ƒ.�/ � .log.nC1/ �/1�p at 1:

2) Let G D S1
nD0 Gn, Gn D Sn, be the infinite symmetric group, i.e. the group

of all finite permutations of the set N D f1; 2; : : : g. We have jGnj D nŠ. Hence we
can choose �.x/ D 
.x C 1/, where 
.x/ is the gamma function


.x/ D
Z 1

0

tx�1e�tdt:

By Stirling’s formula [16], (9.15),


.1 C x/ D p
2�x

�x

e

�x
�

1 C O

�
1

x

��
:

Let � W RC ! RC be any continuous decreasing function such that �.k/ � �.k/ at
1. Proposition 5.8 shows that under condition (A),

ƒ � � B 
�1 at 1:

Definition 5.10. The upper order ��.f / and lower order ��.f / of a positive function
f are defined by

��.f / ´ lim sup
x!1

log f .x/

log x
; ��.f / ´ lim inf

x!1
log f .x/

log x
:

If ��.f / D ��.f / < 1, we say that f is of finite order �.f / ´ ��.f /.

Proposition 5.11. Let G D S1 be the infinite symmetric group.
(1) Under condition (A), �.ƒ/ D 0 (compare with Example 5.9 (1.1)).
(2) Assume that �.k/ � jGkj�� for some 
 > 0 (condition (A) does not hold!).

Then �.ƒ/ D �
 . In particular, for any " > 0 there exist c1; c2 > 0 such that

c1u�.�C"/ � ƒ.u/ � c2u�.��"/ at 1:
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Proof of (1). Let � W RC ! RC be any continuous decreasing extension of the
function � W ZC ! RC. By Proposition 5.8,

ƒ � � B 
�1 D .� B log/ B .exp B
�1/ D .� B log/ B .
 B log/�1:

The function � B log is doubling. Hence for some k > 0 and u 
 1,

� B log.u/ 	 u�k at 1:

By Stirling’s formula, for u 
 1,

.
 B log.u// 	 .log u/
1
2 log u;

and

.
 B log/�1.u/ � exp
�

3 log u

log log u

�
:

It follows that for u 
 1,

0 	 log .ƒ.u// 	 �3k log u

log log u
:

Evidently this inequality implies that �.ƒ/ D 0.

Proof of (2). By Theorem 5.2 and Proposition 5.5,

1

ƒF

� 1

ƒ
� 1

T
:

It follows that

��
�

1

ƒF

�
� ��

�
1

ƒ

�
� ��

�
1

ƒ

�
� ��

�
1

T

�
:

For jGkj � u < jGkC1j, by Proposition 5.1,

1

2
�.k C 1/ < T .u/ < �.k/:

Hence for such u and k, and for some c1 > 0,

1

T .u/
� 2

�.k C 1/
� c1jGkC1j� D c1..k C 1/Š/�

and

log
1

ƒ.u/
� log

1

T .u/
� c1 C 
 log.k C 1/Š � c1 C 
 log.k C 1/ C 
 log u:

By Stirling’s formula log kŠ � k log k, hence for any " > 0 there exists u0 > 1 such
that for all u > u0,

log
1

ƒ.u/
� .
 C "/ log u:



810 A. Bendikov, B. Bobikau and C. Pittet

This evidently yields the inequality

��
�

1

ƒ

�
� 
: (5.3)

By the definition of the function ƒF , see (5.2),

1

ƒF .u/
D .F �1.u/ � 1/2:

It follows that

��
�

1

ƒF .u/

�
D 2��.F �1/ D 2

��.F /
:

For n � u � n C 1,

F.u/ � F.n C 1/ D jGk.nC1/j D .k.n C 1//Š;

where by (5.1),

k.n C 1/ ´ minfk W �1.Gk/ � .n C 1/�2g:
By Proposition 5.3,

1

2
�.k/ < �1.Gk/ < �.k/;

hence, for some c2 > 0,

k.n C 1/ � minfk W �.k/ � .n C 1/�2g � minfk W jGkj 	 c2.n C 1/2=�g ´ Nk:

Evidently, we have

. Nk � 1/Š � c2.n C 1/2=� � NkŠ D Nk. Nk � 1/Š:

It follows that
F.u/ � NkŠ � c2

Nk.n C 1/2=� :

By Stirling’s formula, for some c3, c4 > 0,

Nk � Nk log Nk � c3 log. Nk � 1/Š � c3 log c2.n C 1/2=� � c4 log.n C 1/:

Hence for some c5 > 0 and any " > 0, and u 
 1 we obtain

log F.u/ � c5 C log log.n C 1/ C 2



log.n C 1/ �

�
2



C "

�
log u:

This evidently yields

��.F / � 2




and

��
�

1

ƒ

�
D 2

��.F /
	 
: (5.4)

The inequalities (5.3) and (5.4) prove the claim.
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Let � W RC ! RC be any continuous decreasing function such that �.k/ � �.k/

at 1. The following three examples illustrate Proposition 5.11 (1):

(2.1) If ck � qk , 0 < q < 1, then

ƒ.�/ � .� B log/ B .
 B log/�1.�/ � ..
 B log/�1.�//�A;

where A D log 1
q

. Applying Stirling’s formula, we obtain

log
1

ƒ.�/
� A log �

log log �
at 1:

(2.2) If ck � k�p , p > 1, then

ƒ.�/ � .� B 
�1/.�/ �
�

log �

log log �

��pC1

at 1:

(2.3) If ck � 1=.k � log k � log.2/ k � � � .log.n/ k/p/, p > 1, then

ƒ.�/ � .� B 
�1/.�/ � .log.nC1/ �/1�p at 1:

6. Spectral distribution and return probability

Let � ! E� be the spectral resolution of a Laplacian �, with spectral distribution
function N.�/. On finitely generated groups, and for symmetric probability measures
with generating supports and finite second moments, the (dilatational equivalence
class of the) function N is stable under quasi-isometry. See [4], [23], [22], 0.2.C.
Under mild regularity assumptions, ƒ and N are related by the formula

N.�/
d' 1

ƒ�1.�/
:

Proposition 6.1. Under condition (A) the following properties hold.

N
d' 1

T �1
at 0 and ƒ � T at 1: (6.1)

Proof. The second equivalence of (6.1) follows from Theorem 5.7. To prove first
observe that for �.k C 1/ � u < �.k/,

N.u/ D 1

jGkC1j :

Also, by Proposition 5.1(4), for jGkj � � � jGkC1j,
1

2
�.k C 1/ < T .�/ < �.k/:
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Define �1 ´ T .jGkC1j/ and �2 ´ T .jGkj/. Then

1

2
�.k C 1/ < �1 < �2 < �.k/:

Observe that the condition (A) implies that there exists a constant � > 0 such that

�.k C 1/ >
1

1 C �
�.k/; k D 0; 1; : : : :

Putting all these facts together and the fact that � ! T �1.�/ decreases, we obtain
that for �.k C 1/ � u < �.k/,

1

N.u/
D jGkC1j
D T �1.�1/ > T �1.�.k// > T �1..1 C �/�.k C 1// > T �1..1 C �/u/;

and
1

N.u/
D jGkC1j
D T �1.�1/ < T �1.1

2
�.k C 1// < T �1. 1

2.1C�/
�.k// < T �1. u

2.1C�/
/:

The proof is finished.

Example 6.2. Let G D S1
nD0 Gn and � W RC ! RC be the volume function, that

is �.k/ D jGkj, k D 0; 1; : : : . Let � W RC ! RC be any continuous decreasing
function such that �.k/ � �.k/ at 1. Then, according to Proposition 5.8 and
Proposition 6.1, under condition (A),

N
d' 1

� B ��1
:

1) Let G D S
k.Z=Z/k . Then �.x/ D 2x , and the formula for N takes the form

N.u/
d� exp.� 1



��1.u//; where 
 D 1= log 2:

In particular, we obtain the following estimates.

(1.1) If ck � qk , 0 < q < 1, then N.u/ � u1=A� at 0, where A D log 1
q

and


 D 1
log 2

.

(1.2) If ck � k�p , p > 1, then N.u/
d' expf�u

1
1�p g at 0.

(1.3) If ck � 1=.k � log k � log.2/ k � � � .log.n/ k/p/, p > 1, then we have N.u/
d'

exp
˚ � exp.n/

�
u

1
1�p

��
at 0.
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2) Let G D S1 be the infinite symmetric group endowed with its volume function
�.x/ D 
.1 C x/, that is Gn D Sn and jGnj D nŠ.

(a) Assume that condition (A) holds. Then the formula for the function N has the
form

log
1

N.u/

d' .log 
/ B ��1.u/:

Stirling’s formula and straightforward computations give the following results.

(2.1) If ck � qk , 0 < q < 1, then with A D log 1
q

log
1

N.u/
� 1

A

�
log

1

u

��
log log

1

u

�
at 0:

(2.2) If ck � k�p , p > 1, then

N.u/
d' exp

�
�

�
1

u

� 1
p�1

log
1

u

�
at 0:

(2.3) If ck � 1=.k � log k � log.2/ k � � � .log.n/ k/p/, p > 1, then

N.u/
d' exp

�
� exp.n/

�
1

u

� 1
p�1

�
at 0:

(b) Assume that �.k/ � jGkj�� for some 
 > 0. We claim that in this case N.u/

is of finite order 1=
 at zero, that is, u ! 1=N.1=u/ is of finite order 1=
 at infinity.
In other words, for any " > 0 there exist c1; c2 > 0 such that

c1u
1
� C" � N.u/ � c2u

1
� at 0:

Indeed, let �.k C 1/ � u < �.k/. By assumption, for some c1 > 0,

N.u/ D 1

jGkC1j D 1

.k C 1/Š
�

�
u

c1

�1=�

:

It follows that

��.N / ´ lim inf
�!1

log 1
N.1=�/

log �
	 1



:

On the other hand, by assumption,

N.u/ D 1

.k C 1/Š
D .kŠ/�1

k C 1
	

�
u

c2

�1=� 1

k C 1
:

By Stirling’s formula, for any " > 0 and for all k 	 k."/ > 1,

k C 1 � k log k � .1 C "/ log kŠ � 1 C "



log

c2

u
� 1 C 2"



log

1

u
:
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It follows that for some c3 > 0,

N.u/ 	 c3u1=�

log 1
u

:

This inequality shows that

��.N / ´ lim sup
�!1

log 1
N.1=�/

log �
� 1



:

The claim is proved.

Let .�t /t>0 be a weakly continuous convolution semigroup of probability mea-
sures on G associated with the measure � D �.c/, that is, �t jtD1 D � (see Propo-
sition 3.2). Let P and � D P � I be the corresponding transition operator and the
corresponding Laplacian.

Definition 6.3. Define the return probability function p.t/ as follows:

p.t/ ´ .ıe � �t ; ıe/ D .P tıe; ıe/:

By spectral theory,

p.t/ D ..I C �/tıe; ıe/ D
Z 1

0

.1 � �/tdN.�/:

Our first observation is that

p.t/
d'

Z 1

0

e��tdN.�/: (6.2)

Writing the function t ! p.t/ in the form

p.t/ D exp.�t � R.t//; t > 0;

we observe that since the group G is amenable, R.t/ D o.1/ at 1.

Proposition 6.4. Let �; � W RC ! RC be two continuous monotone functions such
that �.k/ � jGkj and �.k/ � �.k/, k 2 ZC. Then under condition (A),

R
d�

�
.log �/ B ��1

id

��1

:

Proof. Using first Proposition 2.2, and then Proposition 6.1 and Proposition 5.8, we
can write

log
1

p
� L

�
log

1

N

�
d' L..log �/ B ��1/

d� id �
�

.log �/ B ��1

id

��1

:

This evidently gives the desired result.
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Example 6.5. 1) Let G D .Z=2Z/.1/. Choosing �.x/ D 2x , the formula for p.t/

from Proposition 6.4 takes the form

p.t/ D exp.�tR.t//; R.t/
d�

�
��1

id

��1

:

In particular we obtain the following estimates.

(1.1) If ck � qk , 0 < q < 1, then N.�/ � �1=A� at 0, where A D log 1
q

and

 D 1= log 2 (see Example 6.2 (1)). Hence, a standard Laplace transform
argument gives

p.t/
d'

Z 1

0

e��tdN.�/ � t�1=A� at 1:

(1.2) If ck � k�p , p > 1, then R.t/ � t� p�1
p , p.t/

d' exp
� � t

1
p

�
at 1.

(1.3) If ck � 1=.k � log k � log.2/ k � � � .log.n/ k/p/ and p > 1, whence in this case
we claim that R � �. Indeed, one can easily show that under the assumption
x ! .� B exp/.x/ is doubling,�

��1

id

��1

� �; p.t/
d' exp

�
� t

.log.n/ t /p�1

�
at 1:

2) Let G D S1. In this case �.x/ D 
.1Cx/, log �.x/ � x log x and, assuming
that the condition (A) holds, the formula for p.t/ takes the following form:

p.t/ D exp.�tR.t//; R.t/
d�

�
��1 log ��1

id

��1

:

(2.1) If ck � qk , 0 < q < 1, whence

log
1

N.u/
� 1

A
log

1

u
log log

1

u
at 0

and

log
1

p.t/
� 1

A
.log t /.log log t / at 1:

(2.2) If ck � k�p and p > 1, then

R.t/ �
�

log t

t

�1� 1
p

and p.t/
d' exp

� � t
1
p .log t /1� 1

p
�

at 1:

(2.3) Let ck � k�1=.log k � log.2/ k � � � .log.n/ k/p/, p > 1, then

R.t/ � �.t/ D .log.n/ t /�pC1 at 1
and

p.t/
d' exp

�
� t

.log.n/ t /p�1

�
at 1:
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(2.4) Assume that �.k/ � jGkj�� for some 
 > 0. Then the function p.t/ is of finite
order �1=
 . Indeed, p.t/ and N.�/ are related by (6.2). Standard Laplace
transform argument yield the result. In particular, for any " > 0 there exist
c1; c2 > 0 such that

c2t� 1
� �" � p.t/ � c1t� 1

� at 1:

Some particular results based on the computations from above are presented in the
following table. Some comments about the table are in order. Given a measure �.c/

on the locally finite group
S

k.Z=2Z/k , or
S

k Sk , the first, second, third, and fourth
column, shows respectively, the tail �.k/, the isospectral profile ƒ.�/, the spectral
density N.u/, and the return probability p.t/, associated to the measure �.c/. In
all given examples, the asymptotic behavior of any of the function determines the
asymptotic behaviors of the three others. In other words, the information given in
any of the column, completely determines the information given in the three other
columns. Notice that the asymptotic behavior of the coefficients ck defining �.c/

cannot be recovered from the asymptotic behavior of the tail �.k/ D P
i>k ck , not

even in the special cases considered in the table. They can be recovered if some
regularity assumptions from Karamata theory are made about the ck (for example
monotonicity). Notice that the ck are not necessary monotone in our constructions.
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