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Abstract. Let n � 2 and let ˛ 2 Vn be an element in the Higman–Thompson group Vn. We
study the structure of the centralizer of ˛ 2 Vn through a careful analysis of the action of h˛i
on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar
from which we derive discrete train tracks and flow graphs to assist us in our analysis. A
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the way we give a short argument using revealing tree pairs which shows that cyclic groups
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1. Introduction

In this paper, we produce a description of the structure of element centralizers within
the Higman–Thompson groups Vn. As a corollary to our structure theorem we see
that element centralizers in the Vn are finitely generated. Finally, we give a separate
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short argument which shows that all infinite-cyclic subgroups withinVn are embedded
without distortion. (The groups Vn are first introduced by Higman in [14], where
Vn D Gn;1 in his notation. The R. Thompson group denoted V in [9] is V2 in our
notation.)

For a given integer n � 2, our primary view of the group Vn is as a group of
homeomorphisms acting on the Cantor set Cn (seen as the boundary of the rooted
regular infinite n-ary tree Tn). This point of view informs most of our work, where
we use a close study of the dynamics of subgroup actions on Cn to derive our main
result.

Centralizers in Thompson’s group F D F2 are first classified by Guba and Sapir
in [13] as a consequence of their classification of element centralizers for diagram
groups. In related but separate work, Brin and Squier in [6] describe roots and
centralizers in PLo.I /, the group of orientation-preserving, piecewise linear home-
omorphisms of the unit interval (from which it is also easy to describe the element
centralizers of Fn, although Brin and Squier never formally do so). Guba and Sapir
also show in [12] that element centralizers inF are embedded without distortion inF .
In Chapter 8 of the thesis [17], Bleak, Kassabov, and Matucci classify centralizers in
T2 up to finite index. This paper can be seen as a continuation of the line of research
leading to these results.

Higman’s work in [14] also contains information about the structure of central-
izers of elements in Vn (see Theorem 9.9 of [14]). If one reads Higman’s proof of
Theorem 9.9 carefully, one can derive with reasonable effort some of the information
about the Z factors contained within the right-hand direct product in Theorem 1.1.
However, our own result contains significantly more detail about the overall structure
of element centralizers than is contained within [14].

Separately, TunaAltinel andAlexey Muranov (see [1]) use model theory to analyze
aspects of the groups Fn < Tn < Vn. In their work they compile some information
with regard to element centralizers in these groups. Their results with regards to
element centralizers are very similar to what is known from the work of Brin and
Squier in [6] and of Kassabov and Matucci in [15], and appears to be contained
within the results of Higman from [14].

Martínez-Pérez and Nucinkis [16] recently studied generalizations of the groups
of Higman, Thompson, Stein and Brin and classified centralizers of finite subgroups
in order to study finiteness properties of those groups via cohomology. Their result
generalizes the one in [17] by Bleak, Kassabov, and Matucci and agrees with the one
of the current paper when restricted to torsion elements.

The work in this paper uses in broad outline the approach of Bleak, Kassabov and
Matucci to centralizers in Chapter 8 of [17], but we work in the more complex groups
Vn, and thus we need to employ a more complex set of tools in our analysis. We chose
to use Brin’s revealing pair technology (see [5]) for our supporting calculations (from
amongst a fairly long list of tools that provide similar data), and we developed discrete
train tracks and our flow graph objects to further support our intuitive understanding
of how elements of Vn act on Cn.
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One advantage of considering a revealing pair .A;B; �/ representing an element
˛ 2 Vn over any random representative tree pair is that it is easier to understand the
orbit structure of points in the Cantor set Cn under the action of the group h˛i. The
paper [21] studies revealing pairs in depth, and includes a solution of the conjugacy
problem for Vn using revealing pairs (Salazar gives all arguments in the context of
V2, but it is easy to see that her methods extend to n-ary trees).

We briefly describe some alternative technologies. As alluded above, one could
use the seminormal and quasinormal forms from [14] to gather much of the informa-
tion we obtained from revealing pairs. In fact, in response to early drafts of this article
and conversations with the first author of this article, Nathan Barker has replicated
and extended many of the results herein using Higman’s technology and he has gone
on to work on the simultaneous conjugacy problem in Vn [2]. Another technology is
the strand diagrams of Belk and Matucci (see [3]), which themselves are refinements
of Pride’s pictures in [19], [20]. In turn, Pride’s pictures are essentially dual objects
to the Dehn diagrams from geometric group and semigroup theory (for instance, in
this context, one can study the related analysis of conjugacy in F and other diagram
groups by Guba and Sapir in [13]). In the end, these tools all provide access to similar
content. We chose revealing pairs as we were comfortable with calculations using
them, and because it was particularly easy to define our chief combinatorial objects,
discrete train tracks and flow graphs, from a revealing pair.

The dynamical information described by discrete train tracks and their corre-
sponding flow graphs, forms a key ingredient in the proof by Bleak and Salazar [4]
of the perhaps surprising result that Z2 � Z does not embed in V . In particular, those
authors make significant use of our flow graph technology in their analysis.

Sections 2 and 3, and Section 4.1, serve as a mostly expository introduction to
calculations in the generalized R. Thompson groups Fn, Tn, and Vn. An informed
reader in the area can likely skip ahead to Section 4.2, looking back to these sections
on the rare occasions in which a new term appears.

Acknowledgments. The authors would like to thank Claas Röver and Martin Kass-
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1.1. A formal statement of results. If ˛ 2 Vn, we set

CVn
.˛/ ´ fˇ 2 Vn j ˛ˇ D ˇ˛g:

We call the group CVn
.˛/ the centralizer in Vn of ˛, as is standard.

Our primary theorem is the following.

Theorem 1.1. Let n > 1 be a positive integer and suppose ˛ 2 Vn. Then there
are non-negative integers s, t , mi , and ri and groups Kmi

, Gn;ri , Aj , and Pt , for
i 2 f1; : : : ; sg and j 2 f1; : : : ; tg, so that

CVn
.˛/ Š

� sQ
iD1

Kmi
ÌGn;ri

�
�

� tQ
jD1

..Aj Ì Z/ o Pqj
/
�
:

We now explain the statement of this theorem in a bit more detail.
The group h˛i acts on a subset of the nodes of the infinite n-ary tree. The number

s represents the number of distinct lengths of finite cyclic orbits of nodes under this
action. The value of s is easy to compute from any given revealing pair representing
˛.

For the action mentioned above, each ri is determined as a minimal number of
nodes carrying a fundamental domain (for the action of a conjugate version of h˛i)
in the set of nodes supporting the cycles of length mi .

For each mi , we have Kmi
D .Maps.Cn;Zmi

//ri , where Maps.Cn;Zmi
/ is the

group of continuous maps from Cn to Zmi
under point-wise multiplication, and where

Zmi
is the cyclic group Z=.miZ/ under the discrete topology. We note that Kmi

is
not finitely generated for mi > 1.

The groups Gn;ri are the Higman–Thompson groups from [14].
Given any element ˇ 2 Vn, one can associate an infinite collection of finite

labeled graphs (which we call flow graphs). Flow graphs are labeled, directed, finite
graphs and which describe structural meta-data pertaining to the dynamics of certain
subsets of Cn under the action of h˛i. Flow graphs are themselves “quotient objects”
coming from discrete train tracks, which are objects we introduce here to model
dynamics in the Cantor set much as regular train tracks model dynamics in surface
homeomorphism theory [22], [23], [18].

Components of a flow graph associated with ˛ fall into equivalence classes fICCig
which model similar dynamics. The number t is the number of equivalence classes
of components carrying infinite orbits under the action of h˛i. This number happens
to be independent of the representative flow graph chosen.

The right factor of the main direct product represents the restriction of the cen-
tralizer of ˛ to elements which are the identity away from the closure of the region
where h˛i acts with non-finite orbits.
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For each j , the supports of the elements of ICCj represent regions in the action of
h˛i where the centralizers of˛, with restricted actions to these regions, are isomorphic.
For any such support of an element of ICCj , the finite order elements of the restricted
centralizer form a group. We take Aj to be a representative group from set of these
isomorphic finite groups.

The group Pqj
is the full symmetric group on the qj isomorphic flow graph

components in ICCj .
Recall now that by Higman in [14], the groupsGk;r are all finitely presented. This

fact, together with a short analysis of the nature of the actions in the left-hand semi-
direct products, shows that each of the groupsKmi

ÌGn;ri are finitely generated (see
Corollary 6.2 below). As the groups on the right-hand side of the central direct product
are manifestly finitely generated, we obtain the following corollary to Theorem 1.1.

Corollary 1.2. Let n > 1 be an integer and ˛ 2 Vn. The group CVn
.˛/ is finitely

generated.

One could try to improve this last corollary to obtain a statement of finite-
presentation, which may be feasible. Such a proof might be accomplished through a
careful study of presentations of the Higman groups Gn;r . In this direction, we ask
the following.

Question 1. Must the group CVn
.˛/ be finitely presented for every ˛ 2 Vn?

We have also found some evidence supporting the possibility that the answer to
the following question is “Yes”.

Question 2. Is it true that for each index j the group Aj is abelian?

It is not completely trivial to find an example element ˛ 2 V D V2 where any Ai
is not cyclic. In Section 7 we give such an example where t D 1 and A1 Š Z2 � Z2.

A generator of each Z in the right-hand terms Ai Ì Z is given by a root of a
restricted version of ˛ which is restricted to act only on the support of an element in
ICCj . We know that Ai commutes with the restricted version of ˛ by definition, but
it is not clear that Ai will commute with any valid choice of a generator for the Z
term.

Question 3. Is it possible to replace the right-hand terms Ai Ì Z with Ai � Z?

In the final section of the paper we prove the following theorem.

Theorem 1.3. Suppose that ˛ 2 Vn so that h˛i Š Z. The group h˛i is undistorted
as a subgroup of Vn.
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1.2. Our general approach. We give a description of our approach to centralizers
in the broadest terms.

Let ˛ 2 Vn. Let H D h˛i. Define the fundamental domain of the action of H
to be the space Cn=H . Note that this space is generally not very friendly, i.e., it is
typically not Hausdorff, but that fact will have almost no bearing on our work.

If an element commutes with ˛, it will induce an action on Cn=H .
Thus, we get a short exact sequence

1 ! K ! CVn
.˛/ ! Q ! 1:

Here K represent the elements inCVn
.˛/which act on Cn in such a way that their

induced action on Cn=H is trivial. The group Q is the natural quotient of CVn
.˛/ by

the image of the inclusion map K ! CVn
.˛/. Loosely speaking, elements of Q are

represented by elements of Vn which act in the “same” way on each “copy” of the
fundamental domain in Cn (this of course is imprecise; there may be no embedding
of a fundamental domain in Cn).

The first author is indebted to Martin Kassabov for pointing out this general
structural approach to analyzing centralizers in groups of homeomorphisms.

2. Basic definitions

Throughout this section, let us fix an integer n > 1 for our discussion. We will also
establish other conventions later that will hold throughout the section, and not just in
a particular subsection.

We assume the reader is familiar with [9], and with the definition of a tree pair
representative of an element of V D V2. Nonetheless, we give an abbreviated tour
through those definitions for the non-experts (extending them to include the groups
Fn � Tn � Vn) and we state some essential lemmas which either occur in that source
or which are easily derived by the reader with full understanding of these definitions.
We give some examples demonstrating most of that language, and we add some new
language to the lexicon mostly in support of our own later definition of a flow graph.
In general the reader experienced with R. Thompson group literature will find little
new material in this section and is encouraged to skip ahead, returning only if he or
she runs into an unfamiliar term in the later parts of the paper.

2.1. Trees and Cantor sets . The only material in this section that may be unfamiliar
to readers conversant with R. Thompson group literature is some of the language
describing the Cantor set underlying a node of the tree Tn and related concepts.

Our primary perspective will be to consider Vn as a group of homeomorphisms
of the Cantor set C. In particular, Vn should be thought to act as a group of homeo-
morphisms of the Cantor set Cn Š C. That is, the version Cn of the Cantor set that
is realized as the boundary of the standard infinite, rooted n-ary tree Tn. While we
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assume the reader understands that realization of the Cantor set, and also the terms
“node” or “vertex”, “child”, “parent”, “ancestor”, “descendant”, “leaf”, and “n-caret”
(or simply “caret”), and similar related language when referring to aspects of rooted
n-ary trees, we give a short discussion below to establish some of our standard usage.

The left-to-right ordering of the children of a vertex in Tn allows us to give a
name to each vertex in Tn. Given a vertex p in Tn, there is a unique order preserving
bijection Ordp W Children.p/ ! f0; 1; 2; : : : ; n � 1g. Let v be a vertex of Tn and let
.vi /

m
iD1 be the unique descending path in Tn starting at the root r D v1 and ending at

v D vm, then we name the vertex v with the sequence .Ordvi
.viC1//m�1

iD1 . We will
think of this sequence as a string (ordered from left-to-right).

Given names of two vertices, we may concatenate these strings to produce the
name of a third vertex which will be a descendant of the first vertex

Below, we diagram an example of T2, with a finite tree T highlighted within it.
The vertex c is a leaf of T , and in both T and T2, c is a child of b which is a child
of a. The vertex a is an ancestor of c and c is a descendant of a. The name of the
vertex labeled by c is 010.

c

b

a

0

1

0

1

0 10

1 0 1

0 1

. . . . . . . . . . . . . . . .

T

We can view a finite rooted n-ary tree T as an instruction on how to partition the
Cantor set Cn. Consider the natural embedding of T into the tree Tn, where we send
the root of T to the root of Tn, and we preserve orders of children. For instance,
as in the diagram above. Now, consider the set Pn of all infinite descending paths
in Tn which start at the root of Tn. If we consider each ordered n-caret in Tn as an
instruction to pass through another inductive subdivision of the unit interval in the
formation process of Cn, then each element in Pn can be thought of as limiting on
an element of Cn. We thus identify Pn with Cn. The set Pn will now be considered
to be topologized using the induced topology from the metric space topology of the
unit interval. Now if we consider a vertex c of T , we can associate c with the subset
of Cn corresponding to the paths in Pn which pass through c. We will call this the
Cantor set under c, and we will call any such subset of Cn an interval of Cn. It
is immediate that any interval in Cn is actually homeomorphic with Cn. Given a
node c, the Cantor set under c is also commonly called a cone neighborhood in Cn,
and by definitions these sets form the standard basis for the product topology on
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Pn D f0; 1; : : : ; n � 1g! Š Cn. Thus, the leaves of T partition the set Pn, and they
also partition Cn, into a set of open basis sets. We will call this the partition of Cn
associated with the tree T .

Extending the language of the previous paragraph, given a set X � Cn, we will
call any node c of the universal tree Tn which has its underlying set contained in X ,
a node of X .

Of course, for all integers m; n > 1, we have that Cm Š Cn Š C2 D C.
Using the example above, the interval of C2 under c is C2\ Œ2=9; 7=27�. In discus-

sion, we will generally not distinguish between a vertex of Tn and the interval under
it.

Remark 2.1. Any finite union of disjoint intervals in Cn is homeomorphic with Cn.

2.2. Elements ofVn, Tn, andFn. Some of the language in this subsection is unusual,
although the general content will be familiar to all readers with knowledge of the
R. Thompson groups.

An element of Homeo.Cn/ is allowable if it can be represented by an allowable
triple .A;B; �/. The triple .A;B; �/ is allowable if there is a positive integer m
so that A and B are rooted, finite, n-ary trees with the same number m of leaves,
and � 2 †m, the permutation group on the set f1; 2; 3; : : : ; mg. We explain below
how to build the homeomorphism ˛ which is represented by such an allowable triple
.A;B; �/. We then call .A;B; �/ a representative tree pair for ˛. The group Vn
consists of the set of all allowable homeomorphisms of Cn under the operation of
composition.

We are now ready to explain how an allowable triple .A;B; �/ defines an allowable
homeomorphism ˛ of Cn. Suppose thatA andB both havem leaves, for some integer
m > 1. We consider A to represent the domain of ˛, and B to represent the range
of ˛. We take the leaves of A and B and number them in their natural left-to-right
ordering from 1 to m. For each index i with 1 � i � m, we map the interval under
leaf i ofA to the interval under the leaf i� ofB using an orientation-preserving affine
homeomorphism (that is, the homeomorphism of the two Cantor sets underlying these
leaves defined by a restriction and co-restriction of an affine map with positive slope
from the real numbers R to R). Note for Cn the slopes of such maps will be integral
powers of 2n� 1. We will say that the leaf i of A is mapped to the leaf i� of B by ˛.

The next remark follows immediately from the discussion above:

Remark 2.2. Suppose that v 2 Vn and v is represented by a tree pair .A;B; �/.
If � is a node in Tn so that � is either a leaf of A or a descendant node in Tn of a
leaf of A, then v will carry the Cantor set underlying � affinely and bijectively in an
order-preserving fashion to the Cantor set underlying some node � of Tn, where � is
either a leaf of B or a descendant of a leaf of B .

The diagram below illustrates an example for V2 D V . The tree A is on the left,
and the treeB is on the right. Note that we have re-decorated the leaves ofB with the
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numbering from � . The diagram beneath the tree pair is intended to indicate where
intervals of C2 are getting mapped, where the intervals D represent the domain and
the intervals R represent the range. The lower diagram is superfluous when defining
a general element of V .

1 2

3

4 5

6 3 4 1

6 2

5

D

R

In general, as we can decorate our tree leaves with numbers to indicate the bijec-
tion, we will now re-define the phrase “tree pair” throughout the remainder of the
paper to mean an allowable triple. We will still discuss the permutation of a tree pair
as needed.

As mentioned in the introduction, there are groups Fn � Tn � Vn. If we only
allow cyclic permutations, we get the group Tn. If our permutation is trivial, we
get Fn. Thus, we can think of Fn as a group of piecewise-linear homeomorphisms
of the interval Œ0; 1�, while Tn can be thought of as a group of piecewise-linear
homeomorphisms of the circle S1.

Here is an example element � 2 T D T2, which we will be considering again
later.

D

R

1 2 3 4 1

2 3

4

Below is an example element from F D F2.
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D

R

1 2 3 4 2

3 4

1

2.3. Multiplication in Vn. There is nothing new in this subsection; readers familiar
with the R. Thompson groups should skip ahead.

Naturally, the group operation of Vn is given by composition of functions. Build-
ing compositions using tree pairs is not hard. The process is enabled by the fact that
there are many representative tree pairs for an element of Vn.

We give an example of what we mean by the last sentence. Given a representative
tree pair .A;B; �/, one can use a leaf i of A to be a root of an extra n-caret, creating
A0, and one can build a treeB 0 fromB by replacing the leaf i� with an n-caret. Label
the leaves of A0 in increasing order, and the leaves of B 0 using the induced labeling
from the permutation � on all leaves of B 0 that are also leaves of B . For the other
leaves of B 0, use the labeling, in order, of the n-caret in A0 that is not a n-caret of A.
Let us call the permutation we have built from the leaves of A0 to the leaves of B 0 by
� 0. The process of replacing the tree pair .A;B; �/ by .A0; B 0; � 0/ is called a simple
augmentation.

If the reverse process can be carried out (that is, deleting an n-caret from both the
domain and range trees and re-labeling the permutation so that our initial two trees
appear as a simple augmentation of our resulting tree pair) then we call this process a
simple reduction. If we carry out either a simple augmentation or a simple reduction,
we may instead say we have done a simple modification to our initial tree pair.

The following lemma is a straightforward consequence of the standard fact that
any element in Vn has a unique tree pair representation that will not admit any simple
reductions.

Lemma 2.3. Any two representative tree pairs of a particular element of Vn are
connected by a finite sequence of simple modifications.

We are now ready to carry out multiplication of tree pairs. The essence of the idea
is to augment the range tree of the first element and the domain tree of the second



Centralizers in the R. Thompson group Vn 831

element until they are the same tree (and carry out the necessary augmentations
throughout both tree pairs), and then re-label the permutations, using the labeling
of the range tree of the first element to seed the re-labeling of the permutation in
the second element’s tree pair. At this junction, the two inner trees are completely
identical, and can be removed. The diagram below demonstrates this process.

1

1

11

1

1

1

1

1

1

22

2

2

2

2

2

2

22

3

3

3

3

3

3

3

3

3

3

4

4 4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

666

Thus we now know what Vn is, and we can represent and multiply its elements.

3. Conjugation, roots, and centralizers

Recall that we will use right action notation to describe how Vn acts on C D Cn, as
below.

The following discussion is completely basic and just carries out some straight-
forward points from permutation group theory.

Let c 2 Cn and ˛, ˇ 2 Vn. In particular, ˛ W Cn ! Cn.

� We denote the image of c under ˛ by c˛.
� For conjugation, we denote the conjugate of ˛ by ˇ by ˛ˇ and note therefore

that c˛ˇ D cˇ�1˛ˇ.

We will often need to discuss what is moving under an action, so we need a
definition as well. We define the support of an element ˛ 2 Vn, denoted by Supp˛,
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as below.
Supp.˛/ D fc 2 Cn j c˛ ¤ cg:

Note that this is distinct from the standard analysis version of support, which
would extend the definition to include the closure of the set of points which are
moving.

The following lemma is now standard from the theory of permutation groups.

Lemma 3.1. We have Supp.˛ˇ / D Supp.˛/ˇ:

Recall that given ˛ 2 Vn we have

CVn
.˛/ D fˇ 2 Vn j ˛ˇ D ˇ˛g :

We point out the following obvious facts.

Remark 3.2. Suppose that ˛, ˇ and � 2 Vn.

(1) If ˛ˇ D ˇ˛, then ˛ˇ D ˇ�1˛ˇ D ˛.

(2) If ˇk D ˛ for some integer k, then ˇ 2 CVn
.˛/.

(3) We have CVn
.˛/ Š .CVn

.˛//� D CVn
.˛� /.

We will use the third point above repeatedly to replace an element whose cen-
tralizer we are studying, by a conjugate element which admits a simpler tree-pair
representative (simplifying our analysis without affecting centralizer structure).

4. Revealing pairs and related objects

Subsection 4.1 should be considered as mostly expository; it will contain definitions
and lemmas from within [5] and [21]. We give very detailed examples of all of
the concepts therein which are of use in our context. The following subsections on
discrete train tracks, laminations and flow graphs, on the other hand, are entirely new.

Many tree pairs exist to represent a single element. Some tree pairs are more useful
than others when it comes to discerning aspects of the dynamics of the element’s
action on the Cantor set. Consider the element � 2 T which was defined earlier as
the second tree pair diagram in Subsection 2.2.

Thought of as a homeomorphism of the circle, � has a rotation number, which,
roughly stated, measures the average rotation of the circle under the action of � .
(Rotation numbers are a beautiful idea of Poincaré, and they are extremely useful in
the analysis of circle maps). It is known, initially by work of Ghys and Sergiescu (see
[11]), that the rotation number of any element of T is rational. Thus, � has a rational
rotation number p=q (in lowest terms). A lemma of Poincaré now shows that some
point on the circle will have a periodic orbit, with period q. If the reader examines the
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tree pair representative for � , doubtless he or she will discover a point that travels on
a finite orbit of length five. In fact, all points of the circle travel on their own periodic
orbit of length five, as � is torsion with order five. Under any reasonable definition
of rotation number, � must have rotation number 2=5, since the reader can observe
that after five iterations of � , the circle will have rotated a total of two whole times
around.

The previous example is intended to point to the fact that some tree pairs somehow
hide the dynamics of an element’s action.

In this section, we will describe revealing pairs, which are tree pairs that easily
yield up all information about the orbit dynamics in Cn under the action of a cyclic
subgroup of Vn (or in the circle or the interval, in the cases of cyclic subgroups of Tn
or Fn, respectively).

4.1. Revealing pair definitions. Throughout this section, we will work with some
nontrivial ˛ 2 Vn. We will assume that the tree pair .A;B; �/ represents ˛.

Consider A and B as finite rooted n-ary sub-trees (with roots at the root of Tn)
of Tn.

We will call the set of vertices of Tn which are leaves of bothA and B the neutral
leaves of .A;B; �/. We will simply call these the neutral leaves, if the tree pair is
understood.

As both A and B have a root and neither are empty, we can immediately form
the tree C D A \ B . It is immediate that the neutral leaves are leaves of C , but if
A ¤ B , then C will have other leaves as well.

We can make the sets X D A � B and Y D B � A. The closures xX and xY in
Tn are both finite disjoint unions rooted n-ary trees (their roots are not sitting at the
root of Tn), where the number of carets in xX is the same as the number of carets of
xY (this number could be zero if A D B). We call xX and xY a difference of carets for
A and B .

In the remainder, when we write D � E, where D and E are trees, we actually
want to take the difference of carets, so that our result will be a collection of rooted
trees.

While h˛i acts on the Cantor set, it also induces a “partial action” on an infinite
subset of the vertices of Tn, as we explain in this paragraph. Since the interval under
a leaf � ofA is taken affinely to the interval under a leaf ofB (we will denote this leaf
by �˛), we see that ˛ induces a map from the vertices of Tn under � to the vertices
of Tn under �˛. In particular, the full sub-tree in Tn with root � is taken to the full
sub-tree in Tn with root �˛ in order preserving fashion. We note in passing that we
cannot extend this to a true action on the vertices of Tn; if we consider a vertex � in
Tn which is above a leaf of A, the map ˛ may take the interval underlying � and map
it in a non-affine fashion across multiple intervals in Cn.

As an example of the behavior mentioned above, consider the element � again.
The parent vertex of the domain leaves labeled 3 and 4 is mapped across multiple
vertices of the range tree, in a non-affine fashion.
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If � is a vertex of Tn we can now define a forward and backward orbit O� of �
in Tn under the action of h˛i, to the extent that we restrict ourselves to powers of ˛
that take the interval under � affinely bijectively to an interval under a vertex of Tn.
In more general circumstances, given any integer k and a vertex � of Tn, we will use
the notation �˛k to denote the subset of Cn which is the image of the interval under
� under the map ˛k , and if that set happens to be the interval under a vertex � in
Tn (so that the restriction of ˛k to the interval under � takes the interval underlying
� affinely to the interval underlying � ), then we may denote the vertex � by �˛k as
well.

LetL.A;B;�/ denote the set of vertices of Tn which are either leaves ofA or leaves
of B , and let � 2 L.A;B;�/.

It is possible that � is a neutral leaf whose vertex in Tn has orbit O� entirely
contained in the neutral leaves of A and B . By Remark 2.2, and the fact that the
neutral leaves are finite in number, we see that in this case the orbit of � is periodic
in Tn. In this case, we call � a periodic leaf.

Now suppose � is not a periodic leaf of A. This implies that if we consider the
forward and backward orbits of � under the action of h˛i, then in both directions, the
orbit will exit the set of neutral leaves. In particular, there is a minimal integer r � 0

and a maximal integer s � 0 so that for all integers i with r � i � s we have that
�˛i 2 L.A;B;�/. It is also immediate that �˛r is a leaf of A�B and �˛s is a leaf of
B � A, while for all values of i with r < i < s we see that �˛i is a neutral leaf.

Thus, we have the following lemma.

Lemma 4.1. Suppose that ˛ 2 V is non-trivial and ˛ is represented by a tree pair
.A;B; �/. If � 2 L.A;B;�/, then either � is

(1) a periodic neutral leaf, in which case there is a maximal integer s � 0 so that
the iterated augmentation chain defined by IAC.�/ ´ .�˛i /siD0 is a sequence
of neutral leaves so that sC1 is the smallest positive power so that �˛sC1 D �,

(2) a leaf ofA�B , in which case there is a maximal integer s > 0 so that IAC.�/ ´
.�˛i /siD0 is a sequence of leaves of A or B , and furthermore, we then have �˛s

is a non-neutral leaf of B while �˛i is a neutral leaf in L.A;B;�/ for all indices
i with 0 < i < s,

(3) a leaf ofB�A, in which case there is a minimal integer r < 0 so that IAC.�/ ´
.�˛i /0iDr is a sequence of leaves of A or B , and furthermore, we then have �˛r

is a non-neutral leaf of A while �˛i is a neutral leaf in L.A;B;�/ for all indices
i with r < i < 0, or

(4) a neutral, non-periodic leaf, in which case, � is a neutral leaf in a sequence
IAC.�/ for some vertex � which is a leaf of A�B , as discussed in point (2). In
this case we set IAC.�/ ´ IAC.�/.

We now define and comment on some language from [5] and from [21]. Suppose
we have the hypotheses of Lemma 4.1. The definition of iterated augmentation chain
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IAC.�/ in Lemma 4.1 reflects the fact that we can augment the trees A and B at each
vertex along an iterated augmentation chain, and end up with a new representative
tree pair for ˛ (the first vertex in an augmentation chain of type .2/ or .3/ can only be
augmented in the domain tree A, while the last such vertex can only be augmented
in the range tree B).

If � is of type .2/, with IAC.�/ D .�˛i /siD0 for some positive integer s, where
�˛s is an ancestor of �, then we say that � is a repeller. If � is of type (3), with
IAC.�/ D .�˛i /0iDr for some negative integer r , and where �˛r is an ancestor of �,
then we say that � is an attractor.

We are now ready to define what it means for a tree pair to be a revealing pair.
Suppose that ˛ 2 V and the tree pair .A;B; �/ represents ˛. If every component of
A�B contains a repeller, and every component of B �A contains an attractor, then
we say that .A;B; �/ is a revealing pair representing ˛.

The discussion beginning Section 10.7 in [5] proves that every element of Vn
admits a revealing pair. It is not hard to generate an algorithm which will transform
any representative tree pair for an element of Vn into a revealing pair.

Given ˛ 2 Vn, we will denote by R˛ the set of all revealing pairs for ˛. We will
use the symbol � as a relation in the fashion .A;B; �/ � ˛ denoting the fact that
.A;B; �/ 2 R˛ . In this case, we can further name leaves of A � B and B � A. If �
is a leaf of A � B and � is not a repeller, then we say � is a source. If � is a leaf of
B � A and � is not an attractor, then we say � is a sink.

There are finitely many process types called “rollings” introduced by Salazar
in [21]. Rollings are methods by which one can carry out a finite collection of
simple expansions to a revealing tree pair .A;B; �/ to produce a new revealing pair
.A0; B 0; � 0/.

Below, we give the definitions and some discussion for rollings of type II. We give
definitions for the other types of rollings in Section 4.2.

The tree pair .A0; B 0; � 0/ is a single rolling of type II from .A;B; �/ if it is obtained
from .A;B; �/ by adding a copy of a component U of A � B to A at the last leaf
in the orbit of the repeller in U and to B at its image; or, by adding a copy of a
component W of B � A to A at the first leaf in the orbit of the attractor (the leaf of
A corresponding to the root node of W in B) and to B at its image.

The tree pair .A0; B 0; � 0/ is a rolling of type II from .A;B; �/ if it is obtained from
.A;B; �/ by a finite collection of single rollings of type II applied to the initial tree
pair .A;B; �/ in some order.

We now state three lemmas about properties of revealing pairs. All of these prop-
erties are fairly straightforward to verify. In the cases of Lemma 4.2 and Lemma 4.3,
the curious reader may also refer to the discussion in Sections 3.3 and 3.4 of [21] for
alternative proofs.

Below, we slightly abuse the notion of a vertex name, by associating an infinite
descending path with an infinite “name” string. This then represents a point in the
Cantor set which is the boundary of the infinite tree.

Our first lemma discusses repellers, sources, and fixed points.
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Lemma 4.2. Suppose that ˛ 2 Vn and .A;B; �/ � ˛ and that � is a leaf of a
component C of A � B , so that IAC.�/ D .�˛i /siD0.

(1) If � is a repeller (so �˛s is an ancestor of �), set �i to be the name of the
node �˛i for each 0 � i � s. Set 	 to be the string which is the suffix one would
append to the name of the node �s to obtain the name of the node �0 i.e., the path
from the ancestor to the repeller. We notate this by the expression �s	 D �0. Thus
the infinite descending path corresponding to the infinite string �i .	/1 represents
a unique repelling fixed point p�i

in the interval Xi of Cn underneath �i , under the
action of h˛si, for each index i with 0 � i < s.

(2) If � is a source, then �˛s is a sink.

(3) h˛i Š Z.

Proof. The inverse˛�s of˛s maps the Cantor setXs under �s bijectively to the Cantor
setX0 under �0, whereX0 � Xs , in affine fashion. The only infinite descending path
which is fixed by this map is the path terminating in	1, thusp�0

D �0	
1 D �s		

1
is the unique attracting fixed point of ˛�s inXs , and is thus the unique repelling fixed
point of ˛s within X0 (and even within all of Xs) under the action of ˛s .

We now show below why each of the points p�i
are also repelling fixed points of

˛s .
We first obtain a new revealing tree pair .A0; B 0; � 0/ � ˛ which is a single rolling

of type II from .A;B; �/, constructed as follows.
Glue a copy of C at �s in B to produce B 0, and a further copy of C at the leaf

�s�1 of A to produce A0. The resulting tree pair .A0; B 0; � 0/ so obtained has all of
the leaves of C of A�B as neutral leaves (except in the case where s D 1, in which
case A0 is A with a copy of C attached at �0, a leaf of the original C ).

In any case, the original copy of C , within A0, is now contained in A0 \ B 0. The
new copy of C in A0 is a complementary component of A0 �B 0 and contains the leaf
�s�1	 as a repeller. There are no other new complementary components for the tree
pair .A0; B 0; � 0/, which therefore must represent a revealing pair for ˛.

Now, by a minor adjustment to the argument in first paragraph, the point p�s�1
is

a fixed repelling point of ˛s .
We can now continue inductively in this fashion to show that each point p�i

is the
unique repelling fixed point of Xi under the action of ˛s by building a revealing pair
.A00; B 00; � 00/ for ˛ with the point p�i

as a point in a repelling leaf of a complementary
component of .A00; B 00; � 00/ with shape C and spine 	 rooted at �i .

We leave the second point of the lemma to the reader, while the third point is
immediate from the first since some power of ˛ has a repelling fixed point.

We call each subsetXi a basin of repulsion for ˛, since all points inXi eventually
flow out ofXi under repeated iteration of ˛s , never to return, except for p�i

, for each
0 � i � s. We call the string 	 above the spine of the repeller �0 or the spine of C ,
as it describes the shape of the path in C from the root of C to the repeller �0.
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We call each point p�i
a periodic repelling point of ˛ for each index i with

0 � i < s. We may also call these points fixed repelling points of ˛s , noting in
passing that not all periodic repelling points of ˛ are necessarily fixed by ˛s . In
similar fashion we call the sequence of points .p�i

/s�1iD0 a periodic orbit of periodic
repelling points for ˛. We denote by R˛ the set of periodic repelling points of ˛,
noting that it is a finite set.

We now give a similar lemma discussing attractors and sinks.

Lemma 4.3. Suppose that ˛ 2 Vn and .A;B; �/ � ˛ and � is a leaf of a component
C of B � A, so that IAC.�/ D .�˛i /0iDr , for some negative integer r .

(1) If � is an attractor (so �˛r is an ancestor of �), set �i to be the name of
the node �˛i for each r � i � 0. In this case the string 	 which has �r	 D �0
has the property that the infinite descending path corresponding to the name �i .	/1
represents a unique attracting fixed point p�i

in the intervalXi of Cn underneath �i ,
under the action of h˛ri, for each index i with r � i < 0.

(2) If � is a sink, then �˛r is a source.

(3) h˛i Š Z.

Proof. This proof is similar to the proof of the previous lemma, where here ˛�1 has
a tree pair with � as a repeller, and each p�i

is a periodic repelling point of ˛�1.

We now extend the notation from Lemma 4.2 to apply to the sets named in
Lemma 4.3 as below.

We call each subset Xi a basin of attraction for ˛ as indicated by .A;B; �/,
since all points inXi eventually limit to p�i

under repeated iteration of ˛�r , for each
r � i � 0. We call the string 	 above the spine of the attractor �0 or the spine of C ,
as it describes the shape of the path in C from the root of C to the attractor �0.

We call each point p�i
a periodic attracting point of ˛ for each index i with

r � i � 0. We may also call these points fixed attracting points of ˛�r . In similar
fashion we call the sequence of points .p�i

/�1iDr a periodic orbit of periodic attracting
points for ˛. We denote by A˛ the set of periodic attracting points of ˛, noting that
it is a finite set.

In the previous two lemmas, if � is a source or a sink (case two in each lemma),
we refer to IAC.�/ as a source-sink chain.

The next lemma follows directly from the two above, and the classification of the
orbits of the leaves of A and B . This lemma is a version of one result proved by
Burillo, Cleary, Stein and Taback in their joint work [8] as Proposition 6.1. We give
a new proof here, as the situation is greatly simplified through the use of revealing
pairs.

Lemma 4.4. Suppose that ˛ 2 Vn. There is an integer r so that ˛ has order r if and
only if there is a tree pair .A;B; �/ representing ˛ with A D B .
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Proof. Suppose that ˛ does not have infinite order, and let .A;B; �/ � ˛ be a
revealing pair representing ˛. We must have that .A;B; �/ admits no repellers or
attractors, thus both A � B and B � A are empty, and so A D B .

Suppose instead that .A;B; �/ is a tree pair representing ˛ with A D B . Then it
is immediate from the definition of multiplication for tree pairs that the order of ˛ is
the order of the permutation � .

We denote by P˛ the points of Cn which underlie the periodic neutral leaves of
L.A;B;�/. Note that the set P˛ is independent of the choice of revealing pair used to
represent ˛. We further denote by Per.˛/ the set of all periodic points of ˛, that is

Per.˛/ D R˛ t A˛ t P˛:

The following tree pairs represent the previously defined element � 2 T (we apply
an augmentation to our first tree pair to produce a revealing pair representing � ).

1 2 3

4

1 2 3

4 5

1

2 3

4

1

2 3

4 5

A quick examination of the second tree pair above should convince the reader that
� has order five and rotation number 2=5.

We now give a series of diagrams for a revealing pair .A;B; �/ representing a
particular non-torsion element ˛ 2 V . This element has a revealing pair which
contains many of the structures we have been discussing. In each diagram below we
illustrate some of the particular aspects we have discussed above.

Below is an example of our revealing pair .A;B; �/, with the neutral leaves
underlined. Recall that the left tree is A, and the right tree is B .
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1 2

3

4 5

6 7 8 9 10 3 1

6

8 7 4

2 5 9 10

In the next diagram, we point out a periodic orbit of neutral leaves of length two.

1 2

3

4 5

6 7 8 9 10 3 1

6

8 7 4

2 5 9 10

Below, the vertex 11111 in B is an attractor; its iterated augmentation chain is
.111; 11111/, a sequence of length two. The fixed point of the attractor corresponds
to the value 1 in the unit interval. The word 	 for this attractor is 11.

1 2

3

4 5

6 7 8 9 10 3 1

6

8 7 4

2 5 9 10

In the diagram to follow, the vertices 0000 and 011 represent repellers in A. The
dotted paths track the orbits of the repellers along their iterated augmentation chains.

1 2

3

4 5

6 7 8 9 10 3 1

6

8 7 4

2 5 9 10

Finally, we highlight the fact that sources flow to sinks. Note how the lengths of
the paths from sources to sinks are not uniform. In particular, the source 0100 first
hops to 110 before next landing in the basin of attraction under the vertex 111.
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1 2

3

4 5

6 7 8 9 10 3 1

6

8 7 4

2 5 9 10

4.2. Discrete train tracks and laminations. In this subsection we are concerned
with modelling the dynamics in Cn under the action of the group generated by an
element v of Vn. Naturally, the relevant information is contained in any particular
revealing pair 
 D .C;D; �/ for the element, but we have found that tools from
surface topology afford us another way to visualize these dynamics. In particular,
these dynamics can be usefully described by a combinatorial object introduced by
Thurston (see [22], [23]) to aid in the study of surfaces, namely, a train track. Given
a revealing pair, it is easy to draw a combinatorial train track which in turn “carries”
a lamination in some compact surface with boundary. It is this lamination which
models, in some sense, the movement of points in the Cantor set under iteration of
the map v. As in the theory of laminations carried by a train track, one quickly realizes
that most of the relevant visual information is actually contained in the train-track
object (see for instance, Penner and Harer’s book [18]). We call the train track object
developed here a discrete train track, even though it is continuous in nature; the name
is meant to emphasize that our train tracks model dynamics in a totally disconnected
set under iterations of a fixed map.

Below we describe in detail our method for generating a discrete train track TT�
from the revealing pair 
 representing the general element v 2 Vn mentioned above,
and briefly describe how to model the lamination it carries. We build an example
discrete train track and lamination using the element ˛ and the tree pair .A;B; �/
from the previous subsection. Finally, we discuss some of the utility of TT� and
some facts about how TT� would change under basic operations applied to v (con-
jugation, then a choice of representative revealing pair) or 
 (Salazar’s rollings). In
the next subsection, we describe a derived object, the flow graph, which carries less
information than the train track (although flow graphs in general still contain enough
information to answer many dynamics questions). In our current practice, we find
discrete train tracks and flow graphs to be helpful for understanding dynamics, while
the generating revealing pairs tend to be helpful for any involved computations and
for specifying elements with appropriate desired dynamics.

Note that any such discrete train track TT� is a representative of an equivalence
class of similar train tracks, where the equivalence class is determined by all the
discrete train tracks for revealing pairs equivalent to 
 up to Salazar’s rollings, choice
of location for drawing the complementary trees along the orbits of repelling and
attracting fixed points, and conjugacy in Vn. Thus we are picking a representative
object which is in some sense less well chosen than some “minimal” train track in
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this class. The result of applying Belk and Matucci’s geometric conjugacy invariant,
the closed strand diagram, is very close to what a “minimal” discrete train track for
an element of Vn should be (leaving out the demarcations representing iterating the
element, and of course, including some simplifications which result from the effects
of conjugation (see [3])).

Here is how one draws a discrete train track from a revealing pair.

(1) List all of the iterated augmentation chains for the revealing pair.
(2) For each chain representing a non-trivial orbit of a periodic neutral leaf:

(a) Draw a circle.
(b) If the chain represents an orbit of length r , demarcate the circle into r equal

subintervals (typically we end these intervals with dots), and label these with
the names of the nodes carrying the neutral leaves, in a counter-clockwise
order.

(3) For each chain of a repeller:

(a) Draw a circle.
(b) If the repelling periodic point travels an orbit of length r , then demarcate

the circle into r equal subintervals as above, and label these with the names
of the nodes carrying the orbit of the repeller in a counter-clockwise order.

(c) For the segment corresponding to the interval of the repelling periodic point
of the complementary tree, instead of the one label mentioned in the last
point, we label the two ends of the segment with the top and bottom of the
spine of the repeller (top (root node of complementary component) before
bottom in counter-clockwise order).

(d) Lay the complementary component of the repeller along the sub-arc of the
circle with the spine labels, gluing the spine to the circle.

(i) Scale the complementary component so that the spine is the length of
the appropriate sub-arc of the circle.

(ii) Smooth out the tree (and the spine in particular) and bend the spine so
that the spine has the same shape as the sub-arc of the circle with the
labels from the spine nodes (preserving the current length of the spine).

(iii) Rigidly rotate the scaled, smoothed, and bent tree in the plane, and
translate it so that the spine can be identified with the appropriate sub-
arc of the circle.

(4) For each chain for an attractor:

(a) Draw a circle.
(b) If the attracting periodic point travels an orbit of length r , then demarcate

the circle into r equal subintervals, and label these with the names of the
nodes carrying the orbit of the attractor in a counter-clockwise order.

(c) For the segment corresponding to the interval of the attracting periodic point
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of the complementary tree, instead of the one label mentioned in the last
point, we label the two ends of the segment with the top and bottom of
the spine of the attractor (bottom (attracting leaf node of complementary
component) before top in counter-clockwise order).

(d) Lay the complementary component of the attractor along the sub-arc of the
circle with the spine labels, gluing the spine to the circle.

(i) Reflect the complementary component of the attractor across a vertical
axis. Thus, the root of the component is now drawn at the bottom,
while the left and right-hand sides are preserved, respectively, as left
and right-hand sides.

(ii) Scale the complementary component so that the spine is the length of
the appropriate sub-arc of the circle.

(iii) Smooth out the tree (and the spine in particular) and bend the spine so
that the spine has the same shape as the sub-arc of the circle with the
labels from the spine nodes (preserving the current length of the spine).

(iv) Rigidly rotate the reflected, scaled, smoothed, and bent tree in the plane,
and translate it so that the spine can be identified with the appropriate
sub-arc of the circle.

(5) For each source-sink chain, drawn a line connecting the appropriate sources
and sinks (lines may have to cross each other in the case of Vn which is why
the lamination carried by the train track can only be embedded in an surface
with boundary; strips can pass “under” each other). Demarcate each line with
dots representing the length of the source-sink chain, and label sub-arcs with
appropriate node labels as above for other sorts of iterated augmentation chains.

(6) Add parenthetical labels for splittings of trees where the support of the whole
tree will be mapped away by one application of the element. Add parenthetical
labels anywhere else as desired to improve clarity. (This step is not strictly
necessary, but we find it to be helpful.)

If we follow the process above for the element ˛, the diagram below is an exam-
ple of what we may obtain (we include some drawn under-crossings following the
methods from drawing knots from knot theory).

0000

001

(010)

(011)

(0001)

000

001

01
011

(0101)

(0100)

0101

0001

0100

11101

11100

110

(1110)

(1111)

11110

(11110)

11111

111

100

101

(0001)
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To visualize the lamination carried by a discrete train track, for each sub-arc in
the demarcations of the discrete train tracks, one can draw a transverse copy of an
I -fiber with an embedded copy of the Cantor set Cn. If we stabilize this by building
a product with the interval I (which lines we draw parallel to any train track sub-arc),
then one has a picture of the lamination carried by the train track. (Glue the ends of
the I -fibers of the Cantor sets using the rules provided by the map v, as a local picture
of a mapping cone on the I -fiber running transverse to any demarcation dot, allowing
contraction and expansion in the transverse I -fibers near to any tree-splitting).

Note that by reflecting the attracting complementary components as directed, we
are able to draw the resulting carried lamination on a compact orientable surface with
boundary. (The “left” and “right” portions of a Cantor set underlying a node are
correctly associated without any twisting.)

Separately, one can observe that the group homomorphism � of the penultimate
subsection of this article is connected with holonomy measurements for the carried
lamination along repelling cycles when applied to the element we are centralizing.

A local diagram of the lamination carried by this train track local to the repelling
cycle in the upper left corner is included in the diagram below. One can see the
rescaling near the periodic repeller and portions of the Cantor set moving away along
flow lines.

0001

0000
001

0001 000
001

00001

Let TT1 be a discrete train track drawn in accordance with the method above.
We define the support of the discrete train track TT1 to be given as the union of
the Cantor sets underlying the node labels in the iterated augmentation chains of the
(non-trivial) periodic orbits, the source-sink chains, and the orbits of the repellers
and attractors used to create the drawing of TT1. Seeing a discrete train track as a
(possibly disconnected) graph, we define the components of TT1 to be the connected
components of TT1 as a graph. Given any such componentX , we describe the support
of the component X to be the union of the Cantor sets underlying the node labels of
X . We call a component a torsion component if the component is a circle generated
from a periodic orbit of neutral leaves, otherwise we call a component a non-torsion
component. Similar language will be defined for flow graphs, below.

We now mention some technical facts to do with the relationships amongst discrete
train tracks drawn from distinct revealing pair representatives for an element of Vn,
and also relationships which may arise as a consequence of conjugacy.

We give the basic definitions of Salazar’s rollings below, with the intention of
understanding of the variance of discrete train tracks across the set of all representative
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revealing pairs for an element of Vn. The reader is encouraged to read Salazar’s
Section 3.5 in [21], where she defines rollings of various types and traces the various
impacts of rollings on revealing tree pairs.

The tree pair .A0; B 0; � 0/ is a single rolling of type E from .A;B; �/ if it is obtained
from .A;B; �/ by adding an n-caret to A and B along each of the leaves of an iter-
ated augmentation chain corresponding to one of two types of iterated augmentation
chains; either to all of the leaves in A and B of a periodic orbit of neutral leaves, or
to the initial source leaf in A for a source-sink chain, and then to all of the neutral
leaves in A and B of that chain, and then to the leaf of B corresponding to the sink
of that chain. (These are called elementary rollings.)

The tree pair .A0; B 0; � 0/ is a single rolling of type I from .A;B; �/ if it is obtained
from .A;B; �/ by adding a cancelling tree along all of the leaves ofA along the orbit of
a repeller, and atB at the image of these leaves under the map, or by adding a cancelling
tree at all the leaves of A which appear in the reverse orbit of an attractor, and at the
leaves of B to which these leaves of A are mapped. If W is the complementary
component of A � B or B � A corresponding to the repeller or attractor in this
discussion, andW is rooted at node†, then a tree C is a cancelling tree for W if it is
obtained fromW by first choosing a proper, non-empty prefix� of the spine 	 ofW
(so that 	 D �‚ for some suffix‚), and then takingC to be the maximal sub-tree of
W which has root † and containing the node †� as a leaf. (Note that if one carries
out this process, the corresponding complementary componentW 0 created inA0 �B 0
or B 0 �A0 for the tree pair .A0; B 0; � 0/ will now be rooted at†� and will have spine
‚�).

Finally, recall from Section 4.1 that a tree pair .A0; B 0; � 0/ is a single rolling of
type II from .A;B; �/ if it is obtained from .A;B; �/ by adding a copy of a component
U of A�B to A at the last leaf in the orbit of the repeller in U and to B at its image;
or, by adding a copy of a component W of B �A to A at the first leaf in the orbit of
the attractor (the leaf of A corresponding to the root node of W in B) and to B at its
image.

The following lemma lists some basic properties of discrete train tracks. The
reader will not be required to use this lemma later in the paper, although it gives a
separate view of some arguments.

Lemma 4.5. Suppose that �1 � P1 D .D1; R1; �1/ and �2 � P2 D .D2; R2; �2/

are elements of Vn, and that TT1 and TT2 are the corresponding train tracks derived
from the revealing pair representatives P1 and P2 of these elements. Then we have
the following:

(1) Suppose that f 2 Vn so that �f1 D �2. Then:

(a) f induces a 1 � 1 correspondence between the components of TT1 which
describe dynamics around repelling/attracting orbits and the components
of TT2 which describe dynamics around repelling/attracting orbits.

(b) This correspondence also guarantees that the individual cycles in these
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components are also carried to cycles of the same length and type (repellers
must move to repellers and attractors to attractors).

(c) This correspondence preserves the labelings of the spine of the complemen-
tary components for corresponding cycles.

(2) Suppose that �1 D �2 and .D1; R1; �1/ differs from .D2; R2; �2/ by an appli-
cation of a rolling of type X . Then:

(a) If X is a rolling of type E, then a train track connecting a source node to
a sink node will be split into n such parallel tracks along its length, or a
periodic circle representing a periodic orbit of neutral leaves will be split
into n copies of “parallel” periodic circles.

(b) If X is a single rolling of type I, then there is a suffix� of the spine so that
the labels of all the sub-arcs in the relevant repelling or attracting circle will
be modified by the addition of� as a suffix to all of the labels on the circle.
Also, some source-sink chains which are incident on the affected circle will
be lengthened by the length of the orbit of the repeller or the attractor.

(c) If X is a single rolling of type II, then the source-sink chains with sources or
sinks beginning or ending in the relevant complementary component will all
increase their lengths by one (each of these new arcs will need appropriate
labels added ), and the sub-arc of the relevant repelling (attracting) circle to
which the spine of the complementary tree is glued will move one location
backward ( forward ) in the cyclic ordering of the arcs in that circle (respec-
tively). Finally, the labels of the affected arcs on the circle will change (the
arc corresponding to the old spine will now be labelled by the old leaf label
for the attractor or the repeller of that spine, while the arc corresponding to
the new spine will have as root label its old label, and as leaf label, its old
label concatenated with the word corresponding to the spine of the repeller
of attractor).

Proof. The latter points about rollings follow directly from the definitions of rollings,
as given in Section 4.1.

The first two sub-points of 1 are a result of the fact that Vn is a group of homeo-
morphisms, and topological conjugacy preserves the properties mentioned. The third
sub-point of 1 follows from the fact that elements ofVn do not change infinite suffixes;
so, the points in the finite orbit of a repelling periodic point or of an attracting periodic
point all have the same infinite repeating suffix (that is, as described in Lemmas 4.3
and 4.2). Now the conjugating element f again cannot change this infinite suffix
class, so the resulting orbit will consist of points with this same infinite suffix. (Note
first that Belk and Matucci [3] also derive the infinite suffix of a finite repelling or
attracting orbit as a conjugacy invariant for elements of F < T < V , using a method
very similar to our discrete train tracks, although Belk and Matucci’s definition is
mildly different, and second that one can choose a representative revealing pair for
the conjugate version �2 of �1 so that the spine is cyclically rotated, but by applying a
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rolling of type II , this spine can be rotated back to the original spine, thus producing
a discrete train track with the same spine labeling on the appropriate sub-arc of the
circle (although, the prefixes of all nodes on the circle will be lengthened).)

4.3. Flow graphs. The flow graph of any revealing pair p D .A;B; �/ � ˛ 2 Vn is
a labeled directed graph which is, in some sense, a quotient object from a discrete train
track (we lose the visual aspects of the branching of source sink lines as they leave
the orbit of a repeller or join the orbit of an attractor, although even this information
can be recovered from labels). We now describe how to build a flow graph from a
revealing pair.

For each repeller ofA, we draw a vertex. For each attractor ofB , we draw a vertex.
For each neutral leaf of L.A;B;�/ that is part of a periodic orbit of neutral leaves for
p, we draw a vertex. We draw a directed edge from a repeller to an attractor for each
source in the basin of repulsion of the repeller whose iterated augmentation chain
terminates in a sink in the basin of attraction of the attractor (we call these source-
sink flow lines or by similar language; they are in one-one correspondence with the
set of source-sink chains for the pair p). We draw a directed edge from each repelling
and attracting vertex to itself whenever the period of the corresponding repeller (or
attractor) is greater than one (we call this a repelling (or attracting) periodic orbit).
We draw an edge connecting two vertices representing periodic neutral leaves if a
single iteration of ˛ will take the first leaf to the second, whenever these leaves
are not the same. We label all source-sink flow lines with the appropriate iterated
augmentation chain. We label all repelling and attracting periodic orbits (even of
length one) with the finite periodic orbit of the actual points in Cn, each such point
labeled by its infinite descending path in Pn. (Note that one can detect the names of
repelling and attracting basins by deleting the infinite “	1” portion of these labels.)

The diagram below is an example of a flow graph for the tree .A;B; �/ we have
been examining. Strings of form 	1 are indicated by overlines in the labels of the
diagram.

The components of the flow graph for a revealing pair naturally decompose into
two sets; components representing the flow (under the action of h˛i) along the un-
derlying sets of a periodic orbit of neutral leaves for the revealing pair, called torsion
components, and components representing flows from basins of repulsion to basins
of attraction, and characterizing the orbits of repelling and attracting periodic points,
called non-torsion components.

Any flow line in the graph from a repeller to an attractor can be thought of as
representing the complete bi-infinite forward and backward orbit in Cn of the interval
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underlying the source, under the action of h˛i. The set so determined is called the
underlying set for the flow line, and it limits on some of the periodic repelling points
of ˛ (on one end), and on some of the periodic attracting points of ˛ (on the other
end).

Given a component C of a flow graph for ˛, we can discuss the underlying set for
the component C in Cn. We define this set as the closure of the underlying sets of the
flow lines of the component if the component has a flow line (thus, we will capture
the limiting repelling and attracting points in their finite orbits), and otherwise as the
underlying set of the finite periodic orbit of an appropriate neutral leaf.

We observe in passing the following remark, which the reader can verify as a test
of their understanding. The proof of this remark follows directly from the definition
of flow graph or can be obtained as a consequence of Lemma 4.5.

Remark 4.6. Given any revealing pair p D .A;B; �/ representing ˛ 2 Vn, and
p0 D .A0; B 0; � 0/ the result of a single rolling of type II from .A;B; �/, the flow
graph F˛;p0 for ˛ generated by p0 is identical to the flow graph F˛;p for ˛ generated
by p, except for one pair .U; U 0/ of corresponding components. The components U
and U 0 are both non-torsion components which have the same underlying set and are
isomorphic as graphs. However, the flow lines of U 0 will bear different labels from
the flow lines of U , having had some of its iterated augmentation chains lengthened
by one hop, and, one of the periodic orbits in the labeling of U 0, of either a repelling
periodic point or of an attracting periodic point, may be cyclically permuted from the
corresponding orbit as labeled in U .

A mildly more difficult statement is that in the following lemma.

Lemma 4.7. Suppose that˛ 2 Vn is represented by a revealing pairp D .A;B; �/ �
˛. If z1 and z2 underlie distinct non-torsion components of Fp;˛ , then they cannot
underlie the same component of a flow graph representing ˛k for any integer k.

Proof. Powers of ˛ may split orbits of repelling (or attracting) periodic points under
the action of h˛i, but they can never move a point from the underlying set of one
component of the flow graph to the underlying set of other components; these sets are
themselves created as the unions of the images of the forward and backward orbits
of the points underlying the interval portions of the fundamental domain of ˛ which
are carried in affine fashion by ˛.

The next lemma is a direct consequence of the work of Salazar in [21].

Lemma 4.8. Suppose that n is a positive integer and ˛ 2 Vn is represented by the
revealing pair p D .A;B; �/. For all cycle lengths mk (with 1 � mk) of periodic
orbits of neutral leaves of p, set ck to be the number of such orbits with period mk ,
and set rk as the unique value with 1 � rk < n so that ck 	 rk mod .n � 1/.
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Then there is a conjugate u D ˛f for some f 2 Vn, where u has a representative
tree pair .E; F; �/, so that the following hold.

(1) The element u has rk periodic orbits of neutral leaves with period k.

(2) For each k � 0, the number rk is a conjugacy invariant of ˛.

(3) The number of components of F �E is the same as the number of components
of B � A, and these components have the same shape, and the same spine.

(4) Likewise, the number of components of E � F is the same as the number of
components ofA�B , and these components have the same shape, and the same
spine.

Sketch of proof. The statements in the lemma above are for the most part stated in
Corollary 1 in Section 4.4 of [21]. We explain our statements relating to the modular
arithmetic involved in the reduction of the number of finite periodic orbits of the same
length, as that is not given by Salazar’s corollary. The fact that spines are preserved
as well is not explicitly stated by Salazar, but it is an immediate consequence of her
techniques.

One can describe any conjugation in Vn in terms of tree pairs by a process which
we now sketch. Suppose thatu D ˛f and letf be represented by a tree pair .C;D; �/.
There is an expansion .E 0; F 0; �0/ of .A;B; �/ so that C � .E 0 \F 0/. One replaces
the sub-tree C inside of .E 0 \ F 0/ by D, producing a revealing tree pair .E; F; �/
for u (one has to remember to percolate out the effects of � in both trees) with the
same number of neutral leaves as for the .E 0; F 0; �0/ tree pair.

This process of conjugation produces a revealing pair for ˛f whose periodic neu-
tral leaves are generated by expansions along the iterated augmentation chains of
the original neutral cycles (together with some permuting of locations in the univer-
sal tree). Thus, the number of neutral periodic leaves of the result is in the same
congruence class modulo .n � 1/ as for the tree pair for ˛.

One can now find a conjugate of ˛ which has all finite periodic orbits of neutral
leaves of the same periodmk adjacent in the universal tree Tn. If there are more than
n such orbits, one can find a conjugate such that n of the orbits travel in parallel,
all carried in the mk-orbit of an n-caret. One can also choose a conjugation so that
one can build a new revealing pair for the resulting element with the same number of
periodic orbit neutral leaves as in .A;B; �/. By simple reductions along the full orbit
of the caret, one can reduce the current representative tree pair to another revealing
pair withmk 
.n�1/ fewer periodic neutral leaves, and can repeat this overall process
until there are fewer than n orbits of neutral leaves for any period mi .

5. A partition of Cn

Given a positive integer n and some ˛ 2 Vn with representative revealing pair
.A;B; �/ � ˛, we can decompose Cn as T˛ [Z˛ . Here we are using the following
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notation:

� T˛: the subset of Cn lying under the neutral leaves in A which are on cyclic
orbits (possibly of length one).

� Z˛: the subset of Cn underlying the root node of the complementary components
of A�B and B �A, as well as any neutral leaves which are part of source-sink
chains.

The reader can easily verify the following.

Lemma 5.1. If ˛ 2 Vn and ˇ 2 CVn
.˛/, then

(1) T˛ˇ D T˛ , and

(2) Z˛ˇ D Z˛ .

This lemma allows us to work to comprehend centralizers over each set, without
regard to the behavior of these centralizers in the other regions.

From here to near the end of Section 7, we will assume that n and ˛ are fixed,
and ˛ is the element whose centralizer in Vn we are analyzing, and that .A;B; �/
is a revealing pair representing ˛. We further assume through the use of the third
point of Remark 3.2 and of Lemma 4.8 that for each periodic cycle length mi of
neutral leaves ofA under the action of h˛i, that there are precisely ri < n such cycles
of periodic neutral leaves. These values mi and ri are the numbers which appear
in the semi-direct product terms in the left-hand direct product in the statement of
Theorem 1.1.

Suppose that G � Vn and X � Cn. We define

GX D fv 2 G j vjCnnX D idjCnnXg
so that GX is the subgroup of elements of G which act as the identity except on the
set X . Lemma 5.1, assures us that there are two commuting elements ˛T 2 VnT˛

and ˛Z 2 VnZ˛
of Vn, so that ˛jT˛

D ˛T jT˛
, and ˛jZ˛

D ˛ZjZ˛
. Thus, we see

immediately that ˛ D ˛T ˛Z .
We will therefore restrict our attention to finding the centralizers CVnT˛

.˛T /, and
CVnZ˛

.˛Z/. In fact, we have the following corollary to Lemma 5.1.

Corollary 5.2. We have

CVn
.˛/ Š CVnT˛

.˛T / � CVnZ˛
.˛Z/

This explains the central direct product in our statement of Theorem 1.1.

6. Centralizers over the set T˛

Taking advantage of the decomposition given by Corollary 5.2, we analyze the cen-
tralizer of ˛ by restricting our attention to the set T˛ , over which ˛ acts as an element
of torsion.
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Below, when we refer to a cycle of ˛, we mean a cycle of neutral leaves for
.A;B; �/.

Lemma 6.1. The leaves of A over T˛ can be partitioned into disjoint sets according
to cycle lengths, denoted by Smi

, where each Smi
consists of all the leaves of A in

a periodic orbit of length mi . If ˇ 2 CVn
.˛/, then ˇ preserves the subsets of Cn

underlying the leaves in any particular set Smi
.

Proof. We first suppose T˛ is not empty, and we further suppose L.A;B;�/ admits
distinct neutral leaf cycles of lengthmi andmj under the action of ˛, where we chose
our labels so thatmi < mj . Finally, suppose ˇ 2 CVn

.˛/ acts by mapping a point p0
underlying a cycle of lengthmj to a point p D p0ˇ underlying a cycle of ˛ of length
mi . (If there is a � 2 CVn

.˛/ which maps a point underlying a cycle of length mi to
a point underlying a cycle of length mj , then ��1 will match our requirements.) We
now have the computation

p D p˛mi D p.˛ˇ /mi D p0˛miˇ D qˇ;

where q D p0˛mi is not p0 since the orbit length for p0 under ˛ is mj . However, we
have just shown that qˇ D p and by assumptionp0ˇ D p, so we have a contradiction.

We suppose throughout the remainder that there are s distinct neutral leaf cycle
lengths under the induced action of h˛i on the periodic neutral leaves in L.A;B;�/,
namely fm1; m2; : : : ; msg.

We thus can focus on how a particular ˇ 2 CVk
.˛/ can commute with ˛ over

the underlying set of the leaves in any particular set Smi
. This is the reason for the

left-hand direct product with s terms in our statement of Theorem 1.1. (Here we
are following the same logic as used in the beginning of this section which allowed
us to focus our attention on T˛ based on the dynamical cause of the direct product
decomposition of Corollary 5.2.)

For each leaf of Smi
, we can consider its orbit in Smi

under the induced action
of h˛i. Build a set Fmi

� Smi
by taking one leaf from each such orbit. Thus, Fmi

is a collection of ri leaves (by the comment after Lemma 5.1). Let Xmi
denote the

subset of Cn underlying Smi
and let Emi

denote the subset of Cn underlying the
set Fmi

. By construction we see that a subset of the fundamental domain of ˛ is
Dmi

´ Xmi
=h˛i Š Emi

.
We now analyze the groups Gmi

D CVnXmi
.˛/ D CVn

.˛/ \ VnXmi
, which are

individually isomorphic to the terms in the left-hand direct product of Theorem 1.1.
As described in Section 1.2,Gmi

is an extension of its subgroupKmi
consisting of

the elements inGmi
which have trivial induced action onDmi

and which act trivially
outside of Xmi

.
We now studyKmi

. Let ˇ be an element ofKmi
, and fix ˇ until we have finished

our classification of Kmi
.
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By the previous two paragraphs we see thatˇmust carry each set underlying a leaf
cycle in Smi

(under the action of h˛i) to itself. Consider a leaf � 2 Fmi
, and how ˇ

moves points from the set underlying � (fix this choice of leaf � for the remainder of
the discussion leading to the classification ofKmi

). First, set �r D �˛r , the r’th leaf
in the orbit of � under the action of h˛i on Smi

, for r 2 f0; 1; : : : ; mi �1g, and denote
by ��;r the set underlying �r in Cn. If we take a point p0 2 ��;0, its orbit under the
action of h˛i is p0, p1 D p0˛, p2 D p0˛

2, and etc., so that pr 2 ��;r . In order for
hˇi to have no induced action onDmi

, we see that p0ˇ D pc for some index c. Now,
in order to commute with the action of h˛i, we must have prˇ D p..rCc/ modmi / for
any index 0 � r < mi . In particular, ˇ must push the full orbit of p0 under the action
of h˛i forward by some constant index less thanmi . A consequence of this is that any
point p 2 Emi

is itself in an orbit of length less than or equal to mi under the action
of hˇi. Extending this discussion as possible via recalling our choices of Fmi

and �,
we see that ˇ.mi Š/ must act trivially over the whole set Xmi

, so ˇ must be torsion.
This now leads to the conclusion of our classification of Kmi

. Suppose that
.C;D; �/ is a revealing pair for ˇ. Since ˇ is torsion, we see that C D D. We
assume (by taking a larger revealing pair to represent ˇ if necessary), that � is a
node of C . Since ˛ takes the set ��;r to the set ��;..rC1/ modmi / in affine fashion,
and ˇ commutes with ˛ in such a way as to have no induced action on Dmi

, it is
straightforward to verify that the sub-tree T�;r in C rooted at node �r is identical in
shape to the sub-tree T..rC1/ modmi / in D rooted at �..rC1/ modmi /, for all indices r .
Further, by the last sentence of the previous paragraph, for each leaf �0 of T�;0 there
is an integer t�0

� 0 such that ˇ will send the corresponding leaf �r of T�;r to the
corresponding leaf �..rCt�0

/ modmi / in T�;..rCt�0
/ modmi /. Any map Cn ! Cn which

is the identity outside of Xmi
and which satisfies these properties can be found in

VnXmi
, and a straightforward topological argument (using the compactness of Cn, and

the basis cones of the topology on Cn. See Subsection 2.1 for the definition) shows
that these maps form a subgroup which is isomorphic to the group Maps.Cn;Zmi

/.
(That is, any continuous map from Cn to Zmi

can be described as a rooted, finite,
labeled n-ary tree, where each label indicates where in Zmi

to send the set underlying
the labeled leaf and this represents the offset in the orbit under h˛i for the element
ˇ on the corresponding leaf.) Since the choice of map to Zmi

on the set ��;0 has no
bearing (for the definition of ˇ) on the choice of map to Zmi

for the sets underlying
the other leaves in Fmi

, we see that

Kmi
Š .Maps.Cn;Zmi

//ri :

We now need to consider the structure of Gmi
=Kmi

D Qmi
. Thus, we are

modding out the subgroup of elements of VnXmi
which commute with the action of

h˛i by the subgroup Kmi
. In particular, we are looking at the elements of VnXmi

which carry, for each index 0 � r � mi � 1, the sets underlying the r’th copy
of the fundamental domain Dmi

to itself, where the map on the r’th copy of the
fundamental domain is precisely the conjugate version (under the action of ˛r ) of the
map on the 0’th copy Emi

. Therefore, the group Qmi
is isomorphically represented
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by the restriction of the action of Vn to the domainEmi
. In particular,Qmi

Š VnEmi
.

Since Emi
is given as the disjoint union of ri distinct copies of Cn, we see that this

group is precisely the finitely presented group Gn;ri of Higman in [14]! That is, we
have

Qmi
Š Gn;ri :

Note that we can realize an isomorphic copy of Qmi
in Gmi

as follows. Let
ˇ0 be an element of VnEmi

, represented by the tree pair .C 0;D0; �0/. The set Smi

decomposes as mi copies of the nodes of Fmi
in the universal tree Tn (take copy Cr

as the nodes in the set Fmi
˛r , using the induced action of h˛i on the set of subsets

of the nodes in Smi
, for each index 0 � r < mi , and fix this definition of the sets Cr

for the remainder of this subsection). There is a revealing pair .C 00;D00; �00/ � ˇ0
expansion of .C 0;D0; �0/ which has all of the nodes in the set Smi

as leaves of C 00
and D00 (excepting the nodes in Fmi

, which themselves are roots of a forest pair
f D .Fd ;Fr ; �/ representing the element of Gn;rk corresponding to ˇ0). By simply
gluing a copy of f to each Cr for r > 0 (the nodes in these Cr are leaves of C 00
and D00), we can build a new revealing tree pair .C;D; �/ representing an element
ˇ 2 VnXmi

which acts on the set 	r underlying Cr as ˇ0 acts on 	0 under C0, for
each index r (fix this definition of the sets 	r for the remainder of the section as well).
It is immediate by construction that the group yQmi

of elements ˇ so constructed is
isomorphic withQmi

and is a subgroup ofGmi
which splits the short exact sequence

Kmi
,! Gmi

� Qmi
.

Thus, we have

Gmi
Š Kmi

ÌQmi
Š Kmi

ÌGn;ri :
We can complete our analysis of the centralizer of ˛ over T˛ by showing the

following lemma, which concludes the proof of Corollary 1.2 from the introduction.

Lemma 6.2. The group Gmi
is finitely generated.

Proof. First, we recall that for all positive integer values n > 1 and r , Higman’s
groupGn;r is finitely presented (Theorem 4.6 of [14]). Let us denote by hAn;r jRn;ri
a finite presentation of Gn;r for any such n and r .

We first describe our set of generators for Gmi
. For each generator g0 2 An;ri ,

we will take as a generator of Gmi
the element g 2 yQmi

which duplicates the effect
of g0 on Emi

D 	0 over each of the sets 	r underlying the copies Cr of the leaves
C0 over 	0, for each valid index r .

At this stage, our collection of generators generates the group yQmi
, which is

finitely presented still by carrying over the relations ofGn;ri as well in corresponding
fashion. We need to add only one further generator to generate the remainder ofGmi

.
Let g1 2 Kmi

be the element represented by the revealing pair .S; T; �/. We define
.S; T; �/ as follows. Let � be a node of Fmi

(fix this choice and dependent derived
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notation for the remainder of this subsection). Let S D T be the minimal n-ary tree
so that �r D �˛r is a node which is a parent of n-leaves of S , for all index values
0 � r < mi . Let � be the permutation from the leaves of S to the leaves of T which
takes the first child of �r and sends it to the first child of �..rC1/ modmi /, for all indices
0 � r < mi , and otherwise acts as the identity. The element g1 so constructed is our
last generator.

We now show that g1, together with our other generators, is sufficient to generate
Kmi

. Each element of Kmi
decomposes as a finite product of sub-node translations

along the mi orbit of Fmi
in Smi

(under the action of h˛i). That is, we choose
a descendant node p of Fmi

in the universal tree Tn, and a translation constant
0 � t � mi . Then we translate the full orbit of p under the action of h˛i forward
cyclically by the constant t , while acting as the identity elsewhere. We denote this
translation as pt . By choosing a specific n-ary forest rooted at Fmi

and translating
each leaf of the forest in such a fashion, we can obtain any element of Kmi

, as
described above. Now, recall that Gn;ri acts transitively on the set of nodes in the
infinite n-ary forest descending from Fmi

which do not happen to represent the full
domain of Gn;ri (if ri D 1, no element of Vn D Gn;1 can take a proper sub-node to
the root node). Thus, given any particular descendant node p from a node of Fmi

and
a translation distance t , we can find an element 
 of yQmi

taking the first descendant
of �0 to p. It is now immediate by construction that p1 D g

�
1 , and pt D pt1. In

particular, the set consisting of g1 and the generators of yQmi
together, is sufficient to

generate Gmi
.

7. Centralizers over the set Z˛

Let us fix a revealing pair p D .A;B; �/ � ˛. Let f	1; 	2; : : : ; 	eg represent the set
of non-torsion flow graph components of the flow graph Fp;˛ , where for each index
i , we denote by Xi the component support of 	i . Let ˛i represent the element in
VnXi

such that ˛i jXi
D ˛jXi

, and suppose further that pi D .Ai ; Bi ; �i / � ˛i is a
revealing tree pair that is identical to p over the supportXi of �i , so that the flow graph
Fpi ;˛i

is identical to 	i . Recall that by definition Z˛ D S
i Xi . For any ˇ 2 Vn set

RAˇ ´ Rˇ t Aˇ :

Note that for any such ˇ, we have that RAˇ is a finite discrete set.

Lemma 7.1. Let g 2 CVn
.˛/.

(1) The group hgi acts on the set RA˛ .

(2) Given r 2 R˛ , there is a basin of repulsion Ur of ˛ containing r so that Urg is
contained in a basin of repulsion Us for some repelling periodic point s of ˛.

(3) Given r 2 A˛ , there is a basin of attraction Ur of ˛ containing r so that Urg is
contained in a basin of attraction Us for some attracting periodic point s of ˛.
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(4) The group hgi acts bijectively on each of the sets R˛ and A˛ of repelling and
attracting periodic points of ˛.

Proof. Let p 2 RA˛ have an orbit of size k under the action of h˛i. We now have

pg D p˛kg D pg˛k :

Thus, pg is fixed by ˛k , so that hgi bijectively preserves RA˛ .
The second point follows from the continuity of g and the following computation.

Let r 2 R˛ so that rg ¤ r (if such a repelling periodic point fails to exist, we
automatically have the second part of our lemma for the repelling periodic points).
Choose zUr � Cn an interval neighborhood of r small enough so that g is affine on
zUr and so that zUr is contained in a basin of repulsion for ˛. Expand the revealing tree
pair .A;B; �/ representing ˛ by a rolling of type II to create a new revealing tree pair
.A0; B 0; � 0/ representing ˛ with a complementary component C rooted in some node
whose underlying set is contained in zUr . The root node Ur of C represents a basin of
repulsion for ˛ which is an interval neighborhood of r carried affinely by g to another
interval of Cn. Assume that r is in a periodic orbit of length k under the action of
h˛i. Our result for repelling periodic points follows easily from the following limit:

.Ur/g˛
�.nk/ D .Ur/˛

�.nk/g ! rg (as n ! 1/:

Hence g takes a basin of repulsion neighborhood of r into a neighborhoodN of some
periodic repelling point s D rg of ˛ with orbit length dividing k where N limits on
s under powers �.nk/ of ˛.

A similar argument shows the third point of the lemma, and the final point of the
lemma is an immediate consequence of the previous three points.

The following corollary is immediate from the first point of the lemma above,
together with the fact that ˛ only admits finitely many periodic points.

Corollary 7.2. Let g 2 CVnZ˛
.˛/, then RA˛ � RAg .

The following corollary now follows from Lemma 7.1, using the idea behind the
proof from Section 6 that a centralizer of an element of torsion must carry the set of
all finite orbits of length k (under the action of the torsion element) to itself.

Corollary 7.3. Let g 2 CVn
.˛/, and let r 2 R˛ or r 2 A˛ , with periodic orbit

.ri D r˛i /k�1
iD0 in R˛ or A˛ respectively, then there is a periodic orbit .si /k�1

iD0 in R˛

or A˛ respectively such that si D rig.

The next corollary depends on the proof of the second and third points of Lem-
ma 7.1.

Corollary 7.4. Suppose that g 2 CVn
.˛/ sends some point z 2 Xi to a point zg 2 Xj

for some indices i and j , then g will send Xi bijectively to Xj .
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Proof. We first show that g will send all of the periodic repelling and attracting points
˛ within Xi into Xj .

Set Pi ´ Xi \ RA˛ . If g takes two points in Pi to the supports of distinct
components of the flow graph of ˛, then Xi must admit a flow line which has some
point r1 in its periodic repelling orbit vertex label sent to a periodic repelling point
r1g of one component 	k while having another point a1 in its periodic attracting
orbit vertex label sent to a periodic attracting point for ˛ in a label of a distinct
component 	m. But now there are basins of repulsion U1 and attraction W1 around
r1 and a1 respectively which are carried by g into Xk and Xm respectively. This last
is a contradiction as follows.

Recall that some non-zero power k of ˛ fixes all of the repelling and attracting
periodic points of ˛. Take p1 2 U1nfr1g. It must be that for all integers z,

p1g˛
kz D p1˛

kzg;

however, for z large and negative, p1˛kz is near r1 while for z large and positive,
p1˛

kz is near a1. In particular ˛k has a flow line connecting r1g to a1g, which is
not possible by Lemma 4.7.

If p1 is in the support of a flow line, then by considering powers of ˛ using similar
arguments as above we can show the whole flow line is sent by g to a single flow
graph component of ˛.

We now define the function

�.g/ D log2n�1
� Y
r2R˛

rg0�;

where rg0 denotes the slope of g at the repeller r . This map is well defined by using
the recognition that g is affine in small neighborhoods of points in Per.˛/. It is not
too hard to see that the function � W Vn ! Z is not a homomorphism in general.

Lemma 7.5. The map � W CVn
.˛/ ! Z is a group homomorphism.

Proof. Given g1; g2 2 CVn
.˛/ we compute �.g1g2/ directly from the definition.

We note that in small interval neighborhoods of the points in R˛ , the maps gi are
differentiable, and so we can apply the chain rule. Since gi acts bijectively on the set
R˛ (by Corollary 7.3) each of the two terms of the product appears exactly once and
so �.g1g2/ D �.g1/C �.g2/

We will now shift attention to the local behavior of CVnXi
over the region Xi for

any particular index i 2 f1; 2; : : : ; tg. For each such index i , set

�i .g/ D log2n�1
� Q
r2R˛i

rg0�:
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By the previous lemma, �i is a group homomorphism when we restrict its domain to
eitherCVnXi

.˛i / or even toCVn
.˛/, and further, ifˇi 2 CVnXi

.˛i /whileˇ 2 CVn
.˛/,

with ˇi jXi
D ˇjXi

, then Si .ˇi / D Si .ˇ/. For our immediate purposes below, we
will use Si W CVnXi

.˛i / ! Z.
The previous lemma now immediately implies the existence of the following exact

sequence:
0 ! ker.�i / ,! CVnXi

.˛i / � im.�i / D Z ! 0: (1)

Lemma 7.6 (Stair algorithm). Let g1; g2 2 CVnXi
.˛i / and r , s be periodic repelling

points of ˛i for some index i . If

rg1 D rg2 D s

and the slope of g1 at r is equal to the slope of g2 at r , then g1 D g2.

Proof. There is a basin of repulsion Ur of ˛i containing r so that g1 D g2 on Ur .
Let x 2 Urnfrg. Since

xg1˛
n
i D xg2˛

n
i D x˛ni g1 D x˛ni g2

for all integers n, we see that on the underlying support of any flow line L of ˛i
limiting on r we have g1jL D g2jL. But this now means that g1 agrees with g2 on
all of the underlying support of the edges of the graph 	i . In particular, g1 D g2
on sets limiting to each of the attracting orbits on the other ends of the flows lines of
	i leading away from the repelling orbit of r . Since g1 and g2 are always affine in
small neighborhoods of the repelling and attracting periodic points for ˛, we then see
that g1 and g2 actually agree on small neighborhoods of the attracting periodic orbits
which appear on the terminal ends of those flow lines leaving the orbit containing r .

We now repeat this argument moving away from the attracting orbits to new
repelling orbits along new flow lines, where we again have that g1 D g2 along these
flow lines. Now by the connectivity of 	i , g1 D g2 over Xi .

Lemma 7.7. There is an exact sequence

0 ! Z!CVnXi
.˛i /

q�! Q ! 0; (2)

whereQ � Sym.R˛i
/. In particular, CVnXi

.˛i / is virtually infinite cyclic.

Proof. Define M ´ fˇ 2 CVnXi
.˛i / j ˇ.r/ D r for all r 2 R˛i

g. Fix r1 2 R˛i

and define the map

' W M ! Z; ˇ 7! log2n�1.r1ˇ0/:

By Lemma 7.6, the map ' is injective and so M Š Z. Now we observe that
M is the kernel of the action of CVnXi

.˛i / on R˛i
and so we get a natural map

q W CVnXi
.˛i / ! Q where Q ´ CVnXi

.˛i /=M � Sym.R˛i
/.
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We recall a few elementary facts from group theory. The proofs are immediate,
but we provide them for completeness.

Lemma 7.8. Let G,H be groups such that the sequence

0 ! H ! G
!! Z ! 0

is exact. Then G Š H Ì Z.

Proof. Let z 2 !�1.1/. Then, by construction, Z Š hzi � G and H \ hzi D f1Gg.
If g 2 G and !.g/ D k, then zkg�1 2 H , and so G D H hzi.

By Lemmas 7.5 and 7.8 applied on the exact sequence (1) we obtainCVnXi
.˛i / Š

ker.�i / Ì Z. We will now show that ker.�i / is a finite group and that it coincides
with the set of torsion elements of CVnXi

.˛i /.

Lemma 7.9. Let G, Q, K, C be groups, where C D Z and Q is a finite group of
order m. Assume that the two sequences

0 ! C D Z
'�! G

 �! Q ! 0

and

0 ! K
��! G

��! Z ! 0

are exact. Then K is a finite group and G Š K Ì Z.

Proof. In this proof we write M �f N to denote that M is a finite index subgroup
of a group N . Let h 2 ��1.1/ and I ´ hhi � G. By Lemma 7.8 we have
G Š K Ì I Š K Ì Z. We need to show that K is a finite group. By assumption,
C �f G and so we observe that

I

C \ I Š IC

C
� G

C
Š Q;

therefore implying that C \ I �f I . In particular, C \ I is a non-trivial group,
hence C \ I �f C is too. By definition, for every g 2 G, we have gm 2 C . Since
C \ I �f C , there is an integer k such that gkm 2 C \ I , for every g 2 G.

If g 2 K, we have that gkm 2 K \ C \ I � K \ I D 0. Therefore, K is a
torsion subgroup of finite exponent, henceK\C D 0 and so the first exact sequence
implies that K Š  .K/ � Q and therefore it is finite.

Applying Lemma 7.9 on the two exact sequences (1) and (2) we deduce the
following result:

Corollary 7.10. Let i 2 f1; 2; : : : ; eg. The centralizer CVnXi
.˛i / is isomorphic to

ker.�i / Ì Z and ker.�i / is a finite group.
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The following is a fairly technical statement about roots which does not partic-
ularly assist us in our exploration of the centralizer of ˛, but which deserves to be
stated. It represents a viewpoint on the underlying reason for the corollary on p. 68
of [14]. Of course, a separate argument can also be given simply by noting how the
lengths of spines of complementary components for representative revealing pairs
change when one takes an element to powers.

Corollary 7.11. Suppose that ˛ 2 Vn is a non-torsion element with precisely one
flow graph component ‡ which has component support Y . Then the set of roots of ˛
in VnY is finite.

Proof. Consider the exact sequence from Lemma 7.8, applied to CVnY
.˛/. If ˛ 2

!�1.k/ for some positive integer k, then all of the roots of ˛ in VnY occur in the sets
!�1.j / for integers j which divide k. Thus the roots all occur in a finite collection
of finite sets.

We note in passing that it may be the case that for all � 2 !�1.1/ we have that
�k D �� 
 ˛, where �� is a non-trivial torsion element for each such � .

We now analyze the kernel of our �i homomorphism a bit further.

Lemma 7.12. Let i 2 f1; 2; : : : ; eg. The kernel ker.�i / D fg 2 CVnXi
.˛i / j gk D

id for some k 2 Zg, that is, the kernel of �i is the set of torsion elements inCVnXi
.˛i /.

Proof. Let T be the set of torsion elements in CVnXi
.˛i /. A priori, this may not be a

subgroup.
We observe that T � ker.�i /, because the slope of g 2 T multiplies to one

across the full cycle of every periodic orbit of neutral leaves of g, and the orbits of the
repelling periodic orbits of ˛i are carried to each other by the action of any hgi for
any g 2 CVnXi

.˛i /. So, for g 2 T , we have by the definition of �i that �i .g/ D 0.
By the previous corollary, ker.�/ is a finite group, hence ker.�/ � T .

At this juncture, we have pushed our analysis of the centralizer of an element of
Vn with a discrete train track (or flow graph) with one component, which represents
a non-torsion component, as far as necessary for us to be able to support the structure
described in the right-hand product of our Theorem 1.1.

Proof of the right-hand product structure of Theorem 1.1. We now partition the non-
torsion flow graph components f	ig by the rule 	i � 	j if there exists f 2 CVn

.˛/

such that .Xi /f D Xj . In this case we note that ˛fi D j̨ and therefore CVXi
.˛i / Š

CVXj
. j̨ /. In particular, we have that ker.�i / Š ker.�j /.

Let us call such supports (X� which can be carried to each other by anf 2 CVn
.˛/)

supports of isomorphic connected components. Let fICC1; ICC2; : : : ; ICCtg be the
set of �-equivalence classes of isomorphic (flow graph) connected components (each
of which is denoted by ICCj , for some j ), where qj is the cardinality of the set ICCj .
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For each j , order the members of ICCj and let 	i;j be the i -th member of ICCj .
We re-index the Xi ; ˛i ; �i using the new double-index notation in corresponding
fashion. Let us fix conjugators �1;k;j in CVn

.˛/ carrying X1;j to Xk;j (acting as the
identity elsewhere), and use these to generate a full permutation group Pqj

which
acts on the underlying sets X�;j of the elements in ICCj . Set Aj ´ ker.�1;j / and
note that ker.�i;j / D A

�1;i;j

j .
For fixed j , we then have the centralizer of ˛ over the set

S
i Xi;j consists of any

self centralization on each individual Xi;j (this group will be congruent to Bi;j ´
ker.�i;j / Ì Z), together with a product by any permutation of these components.
Thus, this group is

Gj Š
� qjQ
iD1

Bi;j
�

Ì Pqj
D .Aj Ì Z/ o Pqj

:

(Note that the product
Qqj

iD1Bi;j is normal in Gj .) Now as non-isomorphic non-
torsion components cannot be mapped onto each other by the action of f , we see that
the action of f on the non-torsion components of ˛ is describable as an element from
the direct product of the individual groupsGj . Since t is the number of isomorphism
classes fICCj g, we obtain our statement of Theorem 1.1.

Below is a revealing pair .A;B; �/ representing element ˛ of V2, which has
centralizer congruent to .Z2 � Z2/ � Z; the group corresponding to A1 is the Klein
4-group. This example is included to answer a question of Nathan Barker which
arose in conversation.
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Below, we sketch the flow graph associated with .A;B; �/. We do not label the
flow lines with their iterated augmentation chains, as that will only serve to clutter the
essential aspects of this graph. The three different types of flow lines for this revealing
pair are encoded by the different methods used in drawing the directed edges (solid,
versus two distinct flavors of dashing).
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In this graph, the repelling fixed points label the four vertices to the left and right,
while the attracting fixed points are the four vertices in the middle.

Graph connectivity and the constraint on preserving flow-line types provide enough
information to guarantee that if � is a non-trivial torsion element commuting with ˛,
then � is completely determined by which repelling fixed point one chooses to send
0001 to. All such elements are order two, and the elementsˇ and � below generate the
Klein 4-group K so determined by the orbit dynamics on the repelling fixed points.
Thus, A1 � K.

1 2 3 4 4 5 6 7 81 2 312 34 4 56 7812 3

ˇ �

Since ˇ and � can be realized as a group of permutations of the leaves of the
common tree A \ B which are in the repeller and attractor iterated augmentation
chains, while preserving the orbit dynamics of h˛i over RA˛ , we see that every
element in K commutes with ˛. Note that as ˛ has no roots, the generator of the Z
factor is ˛, so A1 Ì Z Š A1 � Z, in this example.

8. Cyclic subgroup (non)distortion

We assume the reader is familiar with distortion of subgroups in a group. We use
definitions consistent with their usage in [10].

The calculation of the (non)distortion of the cyclic subgroups in Vn is very close
is spirit to the calculations in [7], [24], [8]. However, by using properties of revealing
pairs, we remove many of the technical obstructions usually associated with counting
carets and this shortens the arguments in those papers.

We believe that technology such as the revealing pair technology should gener-
ally simplify proofs of non-distortion of cyclic subgroups in the various families of
generalized Thompson’s groups following arguments similar to that which is given
below. It would be interesting to see a general such tool developed for these families
of groups.
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We are indebted to M. Kassabov for a discussion of the spirit of this type of
argument.

Proof of Theorem 1.3. Suppose that ˛ 2 Vn and that h˛i Š Z. Suppose further that
X D fx1; x2; : : : ; xqg is a finite generating set of Vn which is closed under inverses.

There is a minimal positive integer PX so that for all p 2 Cn, the slope of each
xj in small neighborhoods of p is .2n � 1/sp where jspj < PX .

Suppose that .A;B; �/ � ˛, and let r be a repeller for this tree pair. Suppose
further that the iterated augmentation chain of r is r D r0, ri D r0˛

i for 0 � i � u

(so that ru is the root of the complementary component Cr of A � B containing the
repeller r). Let 	r be the spine of Cr , and suppose the length of 	r is Lr .

For each index 0 < i < u, there is a jump J.r;i/ in depth in the infinite binary
tree, from the depth of ri to riC1. Further, set J.r;0/ to be the jump from the depth of
ru to the depth of r1. (E.g., if ru has depth 4, and r1 has depth 3, then we set J.r;0/
to be 1.) Given a positive integer z, set

S.r;z/ D †
.z modu/
eD1 J.r;.e�1//;

the partial sum of the first z mod u jumps. (This sum may be negative.) Note that
the sum of all u jumps is zero, so that

†zeD1J.r; .e�1/ modu/ D S.r;z/:

Now fix a particular positive integer z. Set w D bz=uc, the largest positive integer
less than or equal to z=u. Now, if yi is the repelling periodic point under the leaf ri
for 0 � i < u, direct calculation shows that the slope of ˛z at y0 is

..2n � 1/Lr /wC1 
 .2n � 1/S.r;z/ :

By the chain rule, we require at least d..Lr 
wCLrCS.r;z//=PXe generators from
X to create the element ˛z (where d
e denotes the largest positive integer greater than
or equal to its argument). This last function can be interpreted as a function in z that is
bounded below by an affine function g W N ! Q where g.z/ D .1=W / 
 zCO with
positive slope 1=W < .Lr=.u 
 PX // for some integer W and vertical offset O 2 Z
(for technical reasons, choose O so that g.0/ < 0). Now the function fpos D g�1
(restricted and co-restricted to N) is an affine distortion function for the positive
powers of ˛ in h˛i within Vn (˛z has minimal length z when expressed as an element
in h˛i using the generating set f˛; ˛�1g, and by construction, z < fpos.m/, where m
is the minimal word length of ˛z as expressed in X ).

A similar argument produces an affine distortion function fneg W N ! N for the
negative powers of ˛. Thus, f ´ fpos C fneg will be an affine distortion function
for the whole of h˛i in Vn. In particular, h˛i is undistorted in Vn.
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Appendix: An example of the finite generation of the centralizer of a pure
torsion element

In this appendix we explore the generation of the centralizer of a torsion element of
V , for a particular basic element, following the proof of Lemma 6.2 that the element
centralizer CV .t/ of a torsion element t 2 V is finitely generated.

We work with the most basic element t of order two as in the diagram below.

1 22 1

t

By Theorem 1.1, CV .t/ Š Maps.C;Z2/ Ì V . This follows since there is only
one orbit length, which is of length two. In our case, we have only one orbit to be
concerned with, namely, the node “0” being carried to the node “1” and back again
by the action of hti. Following the proof of Lemma 6.1 we have that we can choose
F2 to be the node “0”, so that E2 is the Cantor set underlying the node “0”, namely,

E2 D f0x1x2x3 
 
 
 2 C D f0; 1g!g:
Now, yQ2 consists precisely of the elements of V which preserve the set E2 as a set,
and which have the same action on E2 as they have (respectively) on the Cantor set
underlying the node “1” It is immediate that this group is isomorphic to V .

The claim is that yQ2, together with a single particular non-trivial element g1
of Maps.C;Z2/, is sufficient to generate CV .t/. The definition of g1 is carefully
worded. In our case, we follow the definition given in the proof of Lemma 6.2, and
take � D �0 to be the node “0”, so that �1 is the node “1”. Then g1 takes the
leftmost child-leaf of �0 and sends it to the leftmost child-leaf of �1, and also sends
the leftmost child-leaf of �1 one position forward in the orbit cycle generated by t ,
which in this case closes the cycle by sending the leftmost child-leaf of �1 to the
leftmost child-leaf of �0. In particular, the element g1 of V is given in the diagram
below.

23 412 3 41

g1

The claim is that CV .t/ D hg1; yQ2i. What needs to be shown is that any map
in Maps.C;Z2/ can be built using these elements. So an element of Maps.C;Z2/ is
characterized by taking a finite tree and labeling its leaves with elements of Z2; each
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number representing how far forward in the cycle generated by t we wish to send the
corresponding leaves – all the corresponding descendent leaves of all the nodes in the
orbit of F2. An example diagram below takes such a tree T� , and gives the relevant
element � 2 CV .t/ characterizing the corresponding map in the centralizer of t .

2

3

412

3

41

6

5

6

5

0

1

1

�

T�

We observe that we build this element by putting the tree T� at each node in the
orbit of F2, and then translating the appropriate leaves of these trees forward in the
orbit under t by the amount listed on the leaves of T� . Note that the example element
� above can be built as the product of two conjugates of g1, where the conjugating
elements live in yQ2. In particular, let ˛ be an element in yQ2 affinely sending the
node“00“ to the node “001” (and thus, simultaneously, ˛ must also send “10” to
“101”, since ˛ is in yQ1) and let ˇ be an element of yQ1 sending the node “00” to the
node “01”, (and thus, also sending “10” to “11”). Then we have � D g˛1 
 gˇ1 . In
particular, we can build any appropriate map in Maps.C;Z2/ corresponding fashion.
Having such maps, together with the elements of yQ2, we can build anything inCV .t/.
Here is a particular example of building a square root r of t using only yQ2 and g1;
we find r as the result of following an element of yQ2 with an application of g1 (in
this example, r2 D t ).

14 32

1 432 1 4 32

1 432

z

r D zg1
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