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Abstract. We consider a finite dimensional, locally finite CAT.0/ cube complex X admitting
a co-compact properly discontinuous countable group of automorphisms G. We construct a
natural compact metric space B.X/ on which G acts by homeomorphisms, the action being
minimal and strongly proximal. Furthermore, for any generating probability measure on G,
B.X/ admits a unique stationary measure, and when the measure has finite logarithmic moment,
it constitutes a compact metric mean-proximal model of the Poisson boundary. We identify
a dense invariant Gı subset UNT.X/ of B.X/ which supports every stationary measure, and
on which the action of G is Borel-amenable. We describe the relation of UNT.X/ and B.X/

to the Roller boundary. Our construction can be used to give a simple geometric proof of
property A for the complex. Our methods are based on direct geometric arguments regarding
the asymptotic behavior of halfspaces and their limiting ultrafilters, which are of considerable
independent interest. In particular we analyze the notions of median and interval in the complex,
and use the latter in the proof that B.X/ is the Poisson boundary via the strip criterion developed
by V. Kaimanovich.
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1. Introduction

1.1. Motivation. Groups appearing as lattices in the automorphism groups of
CAT.0/ cube complexes have been a subject of considerable interest in recent years.
On the one hand, the class of such groups include a broad spectrum of groups from
across geometric group theory, including Coxeter groups, right-angled Artin groups,
certain arithmetic lattices in real hyperbolic space, as well as small cancellation
groups. On the other hand, the combinatorial nature of CAT.0/ cube complexes al-
lows one to develop techniques and results that are sharper than those that hold in
the general context of CAT.0/ spaces. The present paper is devoted to developing
aspects of boundary theory for lattices in CAT.0/ cube complexes, including a di-
rect geometric construction of a boundary space. This construction exhibits useful
analogies with boundary theory for lattices in semisimple algebraic groups over local
fields, with the space constructed playing the role of a maximal boundary.

To motivate this analogy, note that the study of an irreducible lattice subgroup
of semisimple algebraic groups is greatly facilitated by the study of its actions on
various compact homogeneous spaces of the algebraic group, called boundary spaces.
Taking SLn.F / as an example, where F D R; C or Qp say, one considers the
action on the maximal boundary, namely the space Fn of full flags of F n, as well
as on its equivariant factor spaces, the spaces of partial flags. Generally, for any
semisimple algebraic group H , the maximal boundary of H is defined as the compact
homogeneous space H=P , where P is a minimal parabolic subgroup, and its factors
are given by H=Q, where Q is a parabolic subgroup containing P . The number of
such factors is equal to the split rank of the group over the field F .

For a lattice subgroup of SLn.F /, the action on the maximal boundary is mini-
mal and strongly proximal, and every generating probability measure on the lattice
has a unique stationary measure. When the measure has finite logarithmic moment,
the maximal boundary with the associated stationary measure constitutes a com-
pact metric model of the Poisson boundary. In addition the maximal boundary is a
mean-proximal and universally amenable action of the lattice. Furthermore, for large
classes of discrete subgroups of SLn.F / one can establish several of these proper-
ties (or natural modifications thereof) in considerable generality. As is well-known,
the dynamical properties of the boundary actions have played a significant role in a
wide array of applications in the study of discrete subgroups of semisimple algebraic
groups, of which we mention the following:

(1) The Tits alternative.
(2) Simplicity and exactness of the reduced C �-algebra.
(3) Property A, a-T-menability, Baum–Connes and Novikov conjectures.
(4) Patterson–Sullivan theory.
(5) Super-rigidity of measure-preserving actions of higher rank lattices.
(6) Classification of boundary factors and normal subgroup theorem for higher rank

lattices.



The Poisson boundary of CAT.0/ cube complex groups 655

It is natural to attempt to develop boundary theory for CAT.0/ cube complex
groups, to the point where it can be exploited in a manner analogous to the case of
discrete subgroups of semisimple algebraic groups. This applies, in particular, to the
search for a natural notion of split rank for the complex, generalizing the notion of
split rank in the algebraic context.

1.2. Main results. A systematic development of boundary theory and its applica-
tions for CAT.0/ cube complexes and their uniform lattices must begin with the
construction of the right notion of maximal boundary, and this is our goal in the
present paper. We will give a direct geometric construction of a boundary space,
which in effect singles out a compact invariant subset B.X/ of the Roller boundary,
which is the space of ultrafilters of a cube complex X . The compact metric space
B.X/ plays a role analogous to the unique compact orbit H=P of a semisimple alge-
braic group in the Satake compactification. Namely, B.X/ is a limit set for the action
of the lattice on the larger Roller compactification, and gives rise to a minimal and
strongly proximal action. Furthermore, the action admits an equicontinuous decom-
position, an important dynamical property we will describe below, which generalizes
the irreducibility and proximality properties of the action of discrete subgroups of a
semisimple algebraic group on its maximal boundary.

We will prove that for any generating measure on the lattice, the action on B.X/

is uniquely stationary, and in addition B.X/ realizes the Poisson boundary when
the measure has finite logarithmic moment. B.X/ is also a mean proximal space
for the group. We will identify a dense invariant Gı subset denoted by UNT.X/

contained in B.X/, on which the action is Borel-amenable, and hence universal (or
measure-wise) amenable. Furthermore, UNT.X/ has measure one with respect to
any stationary measure as above. We will use UNT.X/ to give a simple geometric
proof that cube complexes satisfy Yu’s property A in our context (see [BC+] for the
general case).

We note that B.X/ possesses, for general CAT.0/ cube complexes, several fur-
ther important structural features analogous to those of the maximal boundary of
semisimple groups. In particular, utilizing the recent product decomposition theo-
rem for cube complexes established in [CS] (see Theorem 2.5 below), the boundary
B.X/ can be represented as a canonical product

Qr
iD1 B.Xi / where each Xi is an

essential, irreducible non-Euclidean cube complex, with the action on B.X/ being
the direct product of the action of G on B.Xi /. The invariant r appearing here will
be called the split rank of the cube complex. It is the natural generalization of the
split rank associated with a semisimple algebraic group over a local field, coinciding
with it in the case that where the Bruhat–Tits building is a product of trees, or equiv-
alently, in the case the group has no simple factor groups of split rank at least two. In
particular our construction yields 2r continuous equivariant boundary factors of the
Poisson boundary B.X/ (including B.X/ and the trivial factor), in analogy with the
2r boundary factors of a semisimple algebraic group of split-rank r .
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1.3. Other boundaries. Let us compare our results with previous ones existing in
the literature.

In general, there are many compact metric realizations of the Poisson boundary
of a given group, and the main challenge is to establish the dynamical properties of
a given realization. These can vary widely, and the search is for a model that has as
many desirable dynamical properties as possible, with the properties holding in the
case of semisimple algebraic groups serving as a bench mark.

For general CAT.0/ cube complexes there already exist two natural compactifi-
cations. First, one can consider the usual visual boundary defined for any CAT.0/

complex, and second, specifically for cube complexes, one can consider the space
consisting of all the ultrafilters on the partially ordered set of halfspaces, an important
compactification introduced by Roller [Ro].

Thus for a CAT.0/ cube complex one can consider

(1) the boundary space B.X/ given by the closure of non-terminating ultrafilters,
constructed in the present paper,

(2) the Roller boundary,
(3) the visual boundary,
(4) the horofunction boundary (associated say with the `1-metric),
(5) the Gromov boundary of the Cayley graph with respect to a word metric (when

the group is hyperbolic),
(6) the space of ends (when non-trivial).

A systematic comparison of the relationships between these boundary spaces is
a challenge yet to be met. However, it is worth pointing out that each of these
boundaries constitute a compact metric model of the Poisson boundary of a properly
discontinuous co-compact irreducible CAT.0/ cube complex group (when applica-
ble). For the boundary B.X/ consisting of the closure of non-terminating ultrafilters
we prove this fact in the present paper, together with the fact that the action is min-
imal. It follows that the Roller boundary, which contains B.X/, also constitutes a
compact metric model, but it is not a minimal action, in general. The horofunction
boundary with respect to the `1 metric has been identified with the Roller boundary
of the complex, by recent unpublished work of U. Bader and D. Guralnik. The fact
that Gromov boundary and the space of ends (when applicable) constitute compact
metric minimal models of the Poisson boundary is well-known.

As to the visual boundary, the fact that it constitute a compact metric model follows
from a result of Karlsson–Margulis [KM], Cor. 6.2, which implies that for any co-
compact discrete group acting properly on a proper CAT.0/ complex, the Poisson
boundary can be realized as a closed invariant subset of the visual boundary, using
also Kaimanovich’s ray criterion [K]. When the cube complex is irreducible (and
more generally when the group contains a rank-1 isometry) the action on the visual
boundary is in addition minimal. Thus by the recent result of Caprace–Sageev [CS]
on the rank rigidity of CAT.0/ cube complexes (see Theorem 2.5 below) it follows
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that the product of the visual boundaries of the irreducible non-Euclidean factors of
the complex constitutes a compact metric minimal model of the Poisson boundary.
The authors are indebted to the referee for these remarks on the visual boundary.

We note further two other boundary constructions discussed by Karlsson [Ka] and
Caprace [Ca07], which typically also provide compact metric models of the Poisson
boundary. However, these constructions do not give rise to minimal or strongly
proximal actions, in general.

As far as we are aware, for uniform lattices in general CAT.0/ complex, the exis-
tence of a compact, metric, minimal, strongly-proximal, uniquely-stationary, mean-
proximal, universally amenable and equicontinuously decomposable realization of
the Poisson boundary is an open problem. We establish these properties for the
boundary space B.X/, the closure of the non-terminating ultrafilters of CAT.0/ cube
complex, thus providing a close analog of the maximal boundary given by the homo-
geneous projective variety H=P of a semisimple group H , with P being a minimal
parabolic group.

We expect this construction to provide a unified approach to the applications of
boundary theory to discrete subgroups mentioned above, but we note that some of
them have been established for groups acting on CAT.0/ cube complexes using a
variety of other considerations. Thus the Tits alternative was established in [SW],
property A was established in [BC+], and a-T-menability was established in [NR].
For a discussion of the Baum–Connes conjecture for some cube complex groups we
refer to [CR], and for a discussion of exactness in this context see [GuNi].

2. Basics on CAT.0/ cube complexes

2.1. Hyperplanes and halfspaces. We recall basic terminology and facts about
CAT.0/ cube complexes, referring for more details to [ChN], [Gu], [N], [Ro], [S1].

Definition 2.1. A CAT.0/ cube complex is a simply-connected combinatorial cell
complex whose closed cells are Euclidean n-dimensional cubes Œ0; 1�n of various
dimensions such that:

(1) Any two cubes either have empty intersection or intersect in a single face of
each.

(2) The link of each 0-cell is a flag complex, a simplicial complex such that any
.n C 1/ adjacent vertices belong to an n-simplex.

Since an n-cube is a product of n unit intervals, each n-cube comes equipped with
n natural projection maps to the unit interval. A hypercube is the preimage of f1

2
g

under one of these projections; each n-cube contains n hypercubes. A hyperplane
in a CAT.0/ cube complex X is a subspace intersecting each cube in a hypercube
or trivially. Hyperplanes are said to cross if they intersect non-trivially; otherwise
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they are said to be disjoint. The carrier of a hyperplane is the union of all cubes
intersecting it.

Here are some basic facts about hyperplanes in CAT.0/ cube complexes which
we will use throughout our arguments.

Basic properties. (1) Each hyperplane is embedded (i.e., it intersects a given cube
in a single hypercube).

(2) Each hyperplane separates the complex into precisely two components, called
halfspaces.

(3) Every collection of pairwise crossing hyperplanes has a non-empty intersec-
tion.

(4) Each hyperplane is itself a CAT.0/ cube complex.
We shall use the `1 metric on X , namely simply the metric on the vertices which

assigns to two vertices the number of hyperplanes separating them. This metric is
equivalent to the path metric on the 1-skeleton of X .

2.2. Ultrafilters and the Roller boundary. Let H denote the collection of half-
spaces and yH denote the collection of hyperplanes. The collection of halfspaces
comes equipped with a natural involution h 7! h�, where h and h� are the two
complementary components of a given hyperplane. We denote by Oh the hyperplane
associated to the halfspace h.

Recall that an ultrafilter on H is a subset ˛ of H satisfying the following two
conditions:

(1) Choice. For every hyperplane Oh, either h 2 ˛ or h� 2 ˛ but not both.
(2) Consistency. If h 2 ˛ and h � h0, then h0 2 ˛.

Sometimes we will want to construct an ultrafilter and this will be done by making
a consistent choice of halfspaces. This means choosing halfspaces of H according
to .1/ and .2/ above.

Given two ultrafilters ˛ and ˇ and a hyperplane Oh, we say that ˛ and ˇ are
separated by Oh if h 2 ˛ and h� 2 ˇ or h 2 ˇ and h� 2 ˛.

We denote by U D U.X/ the collection of all ultrafilters on the collection of
halfspaces H of X . There is a natural embedding of the vertex set X .0/ of X into U,
namely:

X .0/ ! U; v 7! ˛v D fh 2 H j v 2 hg:
Every vertex of v 2 X may be viewed as ultrafilter, namely the collection of all those
hyperplanes h such that v 2 h. We will use ˛v to denote the ultrafilter associated to v.
As noted by [Gu], when X is finite dimensional, such ultrafilters are characterized by
the Descending Chain Condition (DCC), namely every descending chain of halfspaces
h1 � h2 � � � � terminates. Such ultrafilters are called principal ultrafilters.
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Following Roller, we may view U as a compactification of X .0/ in the following
simple manner. We consider the product

P D
Y
Oh2 yH

fh; h�g:

Since an ultrafilter is a choice for each pair .h; h�/, we have U � P . The space
P endowed with the Tychonoff topology is a compact space. It is not difficult to
see then that U is a closed subset of P and is therefore compact. Moreover, Roller
shows that X .0/ is open and dense in U. We thus conclude that U n X .0/ constitutes
a compactification of X .0/, which we refer to as the Roller boundary.

To develop a better understanding of what U.X/ looks like, it is useful to recall
how one metrizes the product topology. Recall that if Y D Q1

nD1 Xn is a countable
product of metric spaces of uniformly bounded diameter, we may metrize the product
topology as follows. Let f W N ! RC be any decreasing positive function such that
limn!1 f .n/ D 0. Then given x D .xn/; y D .yn/ 2 Y , we set

d.x; y/ D supff .n/d.xn; yn/ j n > 0g:
In our setting, the space Y D 2H is a countable product of two element spaces,

each containing the two halfspaces associated to a given hyperplane. We simply need
to describe a function f W yH ! R as above. When X is proper, one can order the
hyperplanes using the metric on X . Pick a base vertex o 2 X . For any hyperplane
Oh, we let f . Oh/ D 1=d. Oh; o/, where d. Oh; o/ denotes the 1-skeleton distance between
o and Oh. That is,

d. Oh; o/ D jfhyperplanes separating Oh from ogj C 1:

Since there are only finitely many hyperplanes a given distance from o, we have
that f is a decreasing function approaching 0, as required. Explicitly, for two distinct
ultrafilters ˛ ¤ ˇ we have

d.˛; ˇ/ D supf1=d. Oh; o/ j Oh separates ˛ and ˇg:
Note also that for each halfspace h we can define the following subset of U:

Uh D f˛ 2 U.X/ j h 2 ˛g:
We refer to such a subset as an U-halfspace. The collection of all U-halfspaces

forms a sub-basis for the Tychonoff topology on U. Thus a basic open set consists
of the intersection of finitely many U-halfspaces.

2.3. Quotients. One can abstract the above construction in the following way. A
pocset is a poset † with an order reversing involution �W † ! †. The pocset † is
said to have the finite interval condition if for every A < B , there exist finitely many
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C such that A < C < B . A pair of elements of A; B 2 † are said to be transverse if
A and A� are incomparable with B and B�. The pocset † is said to have finite width
if there is a universal bound on the size of a collection of incomparable elements. If
one starts with a finite dimensional cube complex, the collection of halfspaces forms a
pocset which satisfies both the finite width condition and the finite interval condition.

Given any poset † with an order-reversing involution, one can consider the col-
lection of all ultrafilters U.†/ on † as in Section 2.2. If † satisfies the finite interval
condition and has finite width, then the collection of all principal ultrafilters is the ver-
tex set of a finite dimensional CAT.0/ cube complex X.†/. As noted by Roller, this
construction is natural in that if one starts with a CAT.0/ cube complex X , considers
its pocset of halfspaces † D H .X/ and then considers the cube complex whose
vertices are the principal ultrafilters on †, then X.†/ D X .

Let H .X/ denote the halfspaces of X . Suppose that K � H is a subset of H

closed under involution. we can consider the ultrafilters on the halfspace system K ,
which we denote UK.X/.

The collection of principal ultrafilters of UK.X/ is the vertex set of a CAT.0/

cube complex XK.X/. There is then a natural projection map.

U.X/ ! UK.X/; ˛ 7! ˛ \ K:

This projection restricts to a projection on the principal ultrafilters, so that one
has a projection map X ! XK .

Lemma 2.2. Let X be finite dimensional CAT.0/ cube complex. Then the natural
projection X ! XK is surjective.

Proof. We need to show that given a consistent choice of half spaces for K satisfying
DCC, it can be extended to a consistent choice of halfspaces for half spaces in H

satisfying DCC. We do this by induction on the dimension on the dimension of X .
So let ˛ be a principal ultrafilter on K . We wish to extend it to an ultrafilter on H .
When X is 1-dimensional, let k be a minimal element in ˛. The halfspace k is

associated to some edge e. Let v be a vertex which is the endpoint e contained in k.
It is now clear that the ultrafilter ˛v is the desired ultrafilter.

We now proceed by induction. Again letting ˛ be a principal ultrafilter on K ,
we choose a minimal halfspace h0 2 ˛. Now the hyperplanes of OH are divided into
those that meet Oh0 and those that do not. We focus first on those that meet Oh0. These
correspond to hyperplanes in Oh0, viewed as a CAT.0/ cube complex in its own right.
By induction, for the collection of halfspaces associated to these hyperplanes, we
have that there exists some vertex v 2 Oh0 for which

˛v D fh j v 2 h and Oh \ Oh0 6D ;g:
We now let e be the edge of X whose midpoint is v and let w be the endpoint of

e which is contained in h0. Then ˛w is our desired ultrafilter.
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We then have the following useful corollary.

Corollary 2.3. Let X be a finite dimensional CAT.0/ cube complex and let ˛ � H

be a subset satisfying the choice and consistency conditions and satisfying DCC, then
\
h2˛

h 6D ;:

Proof. Let K D fh 2 H j h 2 ˛ or h� 2 ˛g. Then K is an involution invariant
subset and we may construct the space XK . The subset ˛ is now an ultrafilter on
K and since it satisfies DCC, it corresponds to a vertex in XK . Now by Lemma 2.2
the map X ! XK is surjective, so there exist vertices of X mapping to ˛. These
vertices lie in

T
h2˛ h; as required.

A particular example of this type of projection occurs when one eliminates a single
hyperplane: K D H � fh; h�g. In X , the collection of all cubes intersecting Oh is
called the carrier of Oh, which we denote C. Oh/, and naturally has a product structure
C. Oh/ Š Oh � Œ0; 1�. One then has a natural collapsing map

� W C. Oh/ Š Oh � Œ0; 1� ! Oh � f0g:
One can apply this to the carrier of Oh to obtain a quotient xX of X , whose hyperplanes
are H � fOhg. More precisely, we define an equivalence relation � on X which
identifies distinct points x, y if and only if x; y 2 C. Oh/ and �.x/ D �.y/. The
resulting quotient space xX D X=� is the cube complex associated to the pocset
H � fh; h�g. In this instance we call the map X ! xX a collapsing map. We also use
the term collapsing for the quotient obtained by removing finitely many halfspaces.

2.4. Pruning. When a group acts on a tree, it is useful to pass to a minimal invariant
subtree. For a CAT.0/ cube complex, there is a similar process, described in [CS],
which we now describe. A halfspace is called deep if it contains arbitrarily large
balls. A hyperplane is called essential if both of its associated halfspaces are deep.
A cube complex is called essential if all of its hyperplanes are essential.

We then have a the following result (described in more detail in [CS]).

Theorem 2.4. Let X be a CAT.0/ cube complex with cocompact automorphism
group. Then there exists a canonical essential CAT.0/ cube complex Xess and a G-
equivariant map f W X ! Xess such that the preimage under f of the collection of
hyperplanes of Xess is the collection of essential hyperplanes of X and f is bounded-
to-one.

Remark. A natural subclass of CAT.0/ cube complexes is the collection of those
which have extendible geodesics, which means that every finite geodesic path can be
extended to a bi-infinite geodesic. It is easy to see that such complexes are essential.
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We call Y the essential quotient of X . The map f above is easily seen to extend
to a bounded-to-one map U.X/ ! U.Xess/. In the rest of the paper, we will pass to
this essential quotient and work with it.

2.5. Products. As was discussed in [CS], a decomposition of X as a product X D
X1 � X2 corresponds to a decomposition of yH as a disjoint union yH D yH1 [ yH2

where every hyperplane in yH1 intersects every hyperplane in yH2. A CAT.0/ cube
complex is called irreducible if it does not decompose as a product. We recall the
following theorem, proved in [CS].

Theorem 2.5 (Product Decomposition Theorem). Every finite dimensional CAT.0/

cube complex admits a canonical (up to permutation of factors) decomposition as a
finite product of irreducible CAT.0/ cube complexes.

We note that the canonical property of this decomposition is that up to passing
to a subgroup of finite index, Aut.X/ preserves the decomposition. We now simply
observe that an ultrafilter on X gives rise (by restriction) to an ultrafilter on each of
the irreducible factors. Conversely, a choice of an ultrafilter on each factor gives us
an ultrafilter on X . Thus, if X Š Qn

iD1 Xi is the canonical product decomposition
of X , we have an identification U.X/ Š Qn

iD1 U.Xi /.
An unbounded cocompact CAT.0/ cube complex is called Euclidean if it con-

tains an Aut.X/-invariant flat, otherwise it is called non-Euclidean. Only the non-
Euclidean factors will play an important role in the description of the boundary. It is
thus useful to separate all the Euclidean factors from all the non-Euclidean ones. We
summarize this section as follows.

Corollary 2.6. Let X be an unbounded, proper cocompact CAT.0/ cube complex.
Then

(1) X admits a bounded-to-one Aut.X/-equivariant essential quotient Xess;
(2) Xess admits an Aut.X/-invariant decomposition Xess D XP � XE , where XE

is Euclidean and XP is a product of irreducible non-Euclidean complexes.

Part (1) of the corollary tells us that if we are considering proper cocompact actions
on CAT.0/ cube complexes, we may pass to actions on essential cube complexes.
Note that then each of the factors described in part (2) of the corollary are also
essential. An unbounded essential CAT.0/ cube complex whose irreducible factors
are all non-Euclidean will be called a strictly non-Euclidean complex.

2.6. Splitting off the Euclidean factor. Consider now a group G acting properly
and cocompactly on an essential complex X D XP � XE . We wish to obtain a
corresponding splitting of G; that is, we aim to show that uniform lattices in Aut.X/

are reducible. Such a result is true in a much more general setting, due to work of
[CM]. In our setting, the matter is simplified by the following fact. By definition,
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the Euclidean factor XE has an Aut.XE /-invariant flat E � XE . Note that since the
action of Aut.XE / on XE is cellular, the action of Aut.XE / on E is discrete. Thus
the group G acting on XP � XE acts on XP � E and the projected action on E is
discrete.

However, a theorem of Caprace and Monod [CM] tells us that an irreducible lattice
in a product of two infinite, proper CAT.0/ spaces projects to an indiscrete action on
each of its factors. We thus obtain as a corollary the following.

Corollary 2.7. Let X D XP � XE be a CAT.0/ cube complex and G a group acting
properly and cocompactly on X . Then there exists a finite index subgroup H < G

such that H D HP � HE , where HP acts properly and cocompactly on XP and HE

acts properly and cocompactly on XE .

2.7. Flipping, skewering and facing hyperplanes. We will be using some notions
and results from [CS] which we record here for convenience. An automorphism
g 2 Aut.X/ of a CAT.0/ cube complex is said to skewer a hyperplane Oh if for some
n > 0 and a halfspace h bounded by Oh we have gnh ¨ h. We say that g flips a
halfspace space h if gh� � h. A halfspace for which there exists no g 2 Aut.X/

which flips it is said to be unflippable. We then have the following results.

Lemma 2.8 (Single skewering). Let that X is a finite dimensional CAT.0/ cube
complex and let G a group acting properly and cocompactly on X . Then for every
essential hyperplane Oh in X , there exists g 2 G such that g skewers Oh.

Theorem 2.9 (Flipping Lemma). Let X be an unbounded CAT.0/ cube complex and
let G be a group acting properly and cocompactly on X . Let also h be a halfspace
which is unflippable by the action of G.

Then X has a decomposition X D X1 � X2 into a product of subcomplexes,
corresponding to a transverse hyperplane decomposition yH .X/ D yH1 [ yH2, which
satisfies the following properties.

(1) X1 is irreducible and all of its hyperplanes are compact.

(2) Some finite index subgroup G0 	 G preserves the decomposition X D X1 �X2.

(3) The G0-orbit of Oh is in yH1.

(4) X1 is R-like, namely quasi-isometric to the real line.

Corollary 2.10 (Double skewering). Let X be an essential CAT.0/ cube complex
and G a group acting properly and cocompactly on X . Then for every pair of disjoint
hyperplanes, there exists a group element skewering both.

Remark. The statement in [CS] is somewhat more general than what is stated here,
but this is sufficient for our needs.

The next two results involve the existence of hyperplanes that lie in a particular
configuration with respect to each other.



664 A. Nevo and M. Sageev

Proposition 2.11 (Corner Lemma). LetX be an essential, non-Euclidean, irreducible
cocompact CAT.0/ cube complex. Let Oh1 and Oh2 be two intersecting hyperplanes
of X . Then there exists a pair of hyperplanes which lie in diagonally opposite
components of X n fOh1; Oh2g. (That is, the hyperplanes are separated both by Oh1

and Oh2).

Proposition 2.12 (Facing Triple Lemma). Let X be an essential non-Euclidean,
cocompact complex. Then there exists a facing triple of hyperplanes in X . That is,
there exists a triple of disjoint hyperplanes no one of which separates the other two.

3. The definition of the boundary B.X/

3.1. Non terminating ultrafilters. For the rest of this paper we shall usually have
as a standing assumption that X is an unbounded, locally finite, finite dimensional
CAT.0/ cube complex. The focus of this paper will be such complexes whose auto-
morphism group acts cocompactly. A complex which has a cocompact automorphism
group will be called a cocompact complex. By Corollary 2.6, it suffices to study such
complexes which are essential.

Moreover, in light of the fact the Poisson boundary of an abelian group is a point,
the Euclidean factor will play no role in the construction of the boundary. Thus
given an arbitrary group G acting properly and cocompactly on an essential complex
X D XP � XE , we will consider a finite index subgroup H of G which preserves
the decomposition into the strictly non-Euclidean and Euclidean factors, such that
H D HP � HE , and focus on the action of HP on XP . The boundary constructed
will be the boundary of G as well. This follows from the fact that HE has an Abelian
subgroup of finite index which is central in H , and the center of any group acts
trivially on its Poisson boundaries.

Thus, we will now let X be a cocompact, essential, strictly non-Euclidean CAT.0/

cube complex. We shall be interested in a particular subset of the Roller boundary
U.X/. An ultrafilter which has the property that no descending collection of half-
spaces terminates is called non-terminating. Let UNT.X/ denote the collection of
non-terminating ultrafilters, namely:

UNT.X/ D f˛ 2 U.X/ j h 2 ˛ H) there exists h0 2 ˛ with h0 ¨ hg:
We let B.X/ denote the closure of UNT.X/ in the Tychonoff topology on U.X/

defined above.
We note that if X decomposes as a product X D Q

i Xi , then UNT.X/ DQ
i UNT.Xi /. Consequently, we obtain that B.X/ D Q

i B.Xi /.
Our aim will be to show that the action on the boundary B.X/ of X enjoys the

dynamical properties we are interested in. The very first thing we need is that the
boundary is not empty.
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Theorem3.1 (Essential complexes have non-empty boundary). LetX be an essential,
cocompact CAT.0/ cube complex. Then UNT.X/ 6D ;.

Remark. The conclusion that UNT.X/ 6D ; is false without some assumption on the
action of the automorphism group, see Figure 3.1. By Theorem 3.1, co-compactness
is a sufficient condition.

Figure 3.1. An essential complex with no non-terminating ultrafilter.

Proof. We consider the decomposition of X D XP � XE into factors, where XP

are strictly non-Euclidean and XE is Euclidean. Note that by invariance of the
decomposition under a finite index subgroup of Aut.X/, since X is cocompact so is
each of the factors XP and XE . Since UNT.X/ D UNT.XP / � UNT.XE /, it suffices
to treat separately the cases that X is Euclidean and X is strictly non-Euclidean.

First, let us treat the case that X is Euclidean. The complex X then contains an
Aut.X/-invariant flat E � X . Since X is cocompact and each hyperplane is essential,
it follows that every hyperplane meets E. The intersection of the hyperplanes of X

with E gives rise to a collection of lines, which by the finite dimensionality of X

fall into finitely many parallelism classes. Since X is essential, each such line has
infinitely many parallel lines on either side of it. Choose a ray r � E which is not
parallel to any of these lines. For each hyperplane, choose the halfspace containing
the infinite part of r . This is then a non-terminating ultrafilter.

For the strictly non-Euclidean factor XP , we first note that XP is itself of a prod-
uct of non-Euclidean irreducible factors XP D Q

Xi . Since then UNT.XP / DQ
i UNT.Xi /, it thus suffices to consider the case that is that X is an essential, irre-

ducible, non-Euclidean complex. We then proceed as follows.
We let H D fOh1; Oh2; : : : g be some ordering of the hyperplanes of X . Recall

that an ultrafilter ˛ is a choice of a halfspace h for each hyperplane Oh satisfying the
consistency condition: if h 2 ˛ and h � k, then k in ˛. We will construct an ultrafilter
˛ by describing the halfspaces hi 2 ˛ associated to Ohi in order.

Choose h1 2 ˛ arbitrarily as a halfspace bounded by Oh1. For every hyperplane
Oh � h�

1 , we choose the halfspace h such that h1 � h (this is dictated by the consistency
condition).
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Now we consider the hyperplane Ohn such that n is the smallest number for which
Ohn 6� h�

1 . That is, the first n for which the choice of the halfspace hn has yet to be
made.

If Ohn \ Oh1 D ;, then we choose hn so that hn � h1. If Ohn \ Oh1 6D ;, then by
Lemma 2.11, there exists a hyperplane Ohm such that Ohm � h1 and Ohm \ Ohn D ;. Let
hm denote the halfspace bounded by Ohm not containing Oh1 and Ohn and let hn denote
the halfspace bounded Ohn which contains Ohm. Now for every hyperplane Oh � h�

m,
we choose the halfspace h such that hm � h. Note that these choices do not change
whatever choices were made previously. Note that we have now made choices for Oh1

and Ohn. We have thus arranged that there exists a halfspace h 2 ˛ such that h � hk ,
for k D 1; : : : ; n.

We continue in this manner choosing a halfspace for each hyperplane Oh. Note
that for any two hyperplanes Oh and Ok, the decisions for both are made at some finite
stage so that the consistency condition for an ultrafilter are satisfied (i.e., if h 2 ˛ and
h � k then k 2 ˛.) Also, by construction, for each h 2 ˛, there exists k 2 ˛ such
that k � h. Thus, ˛ is non-terminating, as required.

Remark 3.2. Note that the above argument shows more, namely that there exists an
element of UNT.X/ in each halfspace of X . This fact will be used below.

We now show that the non-terminating ultrafilters make up “most” of B.X/.

Proposition 3.3. Let X be an essential, strictly non-Euclidean, cocompact CAT.0/

cube complex. Then UNT.X/ is a dense Gı in B.X/.

Proof. For a given halfspace h in X we let

Bh.X/ D f˛ 2 B.X/ j h is minimal in ˛g:

Note that

B.X/ � UNT.X/ D
[

h

Bh.X/:

Thus, to show that UNT.X/ is a dense Gı in B.X/, it suffices to show that each
Bh.X/ is closed and has empty interior.

Note that Bh.X/ \ UNT.X/ is empty and B.X/ is defined to be the closure of
UNT.X/ so that Bh.X/ has empty interior. To see that Bh.X/ is closed, simply
observe that

B.X/ � Bh.X/ D .Uh� [ S
k¨h Uk/ \ B.X/:

Thus, the complement of Bh.X/ is open, as required.
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4. General boundary theory

Let B be a compact metrizable space, and let G be a group of homeomorphisms of
B . We recall some general definitions related to the dynamics of the G-action on B ,
and then present a general approach to boundary theory. Our approach is motivated
by that of Margulis [M], Ch. VI, and Guivarc’h–Le Page [GLP], and we will show
that it can handle not only linear groups acting on projective space, but is in fact well
suited to handle the boundary theory of cube complexes as well.

Definition 4.1 (Minimality, proximality, contractibility). (1) The G-action on B is
called minimal if for every b 2 B and for any non-empty open set U � B , there exist
g 2 G such that gb 2 U .

(2) The G-action on B is called proximal if for any two points b1; b2 2 B , there
exists a point c 2 B , such that for every neighbourhood U of c, there exists g 2 G

such that gb1 2 U and gb2 2 U .
(3) A neighbourhood V of a point b 2 B is called contractible [M], Ch. VI, §1,

if there exists a point c 2 B such that for every neighbourhood U of c, there exists
g 2 G such that gV � U .

We shall also make use of a notion which is stronger than the above three con-
ditions. Roughly speaking, it says that the “attracting” conditions stated above for
points of B hold with respect to the action on some larger space in which B is
contained.

Definition 4.2. Let Y be a G-space. A compact subset B � Y is said to be a boundary
limit set for the action of G on Y if B is G-invariant and

(1) for every point y 2 Y , and every non-empty open set U � Y such that U \B 6D
;, there exists g 2 G such that gy 2 U ;

(2) for any two points y1; y2 2 Y , there exists a point c 2 B , such that for every
neighbourhood U of c, there exists g 2 G such that gy1; gy2 2 U ;

(3) for every y 2 Y there exists a neighborhood V of y and a point c 2 B , such
that for every neighbourhood U of c, there exists g 2 G with gV � U .

We now recall the following definition (see [M], Ch. VI, 2.13).

Definition 4.3 (Equicontinuous decomposition). The G-action on B is said to admit
an equicontinuous decomposition if we can write G as a finite union of subsets G DSN

iD1 Gi , and find non-empty open proper subsets Bi � B satisfying G � Bi D B ,
such that the set of functions Gi (from Bi to B) is equicontinuous on Bi . Equivalently,
fixing a metric d on B , for every " > 0 there exists ı > 0 such that if b; b0 2 Bi

satisfy d.b; b0/ < ı, then d.gb; gb0/ < " for all g 2 Gi simultaneously.

We now consider the space P.B/ of Borel probability measures on B , which we
take with the (metrizable, separable) w�-topology, namely �n ! � if and only if for
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every continuous function f on B ,
R

B
fd�n ! R

B
fd�. For each b 2 B , let ıb

denote the point measure supported on b. The map ˇ 7! ıb is continuous and embeds
B as a compact subset of P.B/, the subset of point measures.

Given a probability measure � on G, we can consider the convolution � � � DR
G

g�d�.g/, which is another probability measure on B . The operator � 7! � � � is
continuous and admits a fixed point � satisfying � � � D �. Such a measure is called
a �-stationary measure on B . If � is a �-stationary measure, the pair .B; �/ is called
a .G; �/-space.

The following two definitions were introduced in [F1].

Definition 4.4 (Strong proximality, boundary space). (1) The G-action on B is called
strongly proximal if given any probability measure � 2 P.B/, there exists b 2 B and
a sequence gn 2 G such that gn� ! ıb .

(2) A minimal strongly proximal G-space B is called a boundary.

A statistical version of proximality is given by the following.

Definition 4.5 (�-boundary, �-proximality, mean proximality). (1) The .G; �/-space
.B; �/ is called a �-boundary (or a .G; �/-boundary) if given a sequence ! D
.!n/n2N of independent random variables with values in G and common distribution
�, the sequence of probability measures !1!2 : : : !n� converges with probability one
to a limit point measure ıZ.!/.

(2) The G-space B is called �-proximal if for every �-stationary measure � 2
P.B/, the .G; �/-space .B; �/ is a �-boundary.

We recall the following results.

Theorem 4.6 ([M], Ch. VI., Prop. 1.6). (1) If B is a proximal G-space and every
point has a contractible neighborhood, then B is strongly proximal.

(2) If B is proximal, minimal and contains a non-empty contractible open set,
then it is strongly proximal, namely a boundary of G.

As to the uniqueness of stationary measures, we note the following.

Theorem4.7. If theG-action onB is strongly proximal and admits an equicontinuous
decomposition, then for every probability measure � on G whose support generates
G as a semigroup, the �-stationary measure � is unique, and .B; �/ is a .G; �/-
boundary.

Proof. This result is a corollary of the discussion in [GLP], Ch. 5, as follows. Defi-
nition 5.2 in [GLP] introduces Markov systems and Markov kernels on X � Y , with
Y a compact metric space endowed with a (semi)group action. Eq. 5.1 introduces a
condition of stationarity for the Markov kernel associated with a system of probability
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measures on Y . When X reduces to a point, the stationarity condition reduces to the
usual notion of stationarity under convolution with a measure � on the (semi)group
(that we are using in our discussion) as noted in the end of §5.1 in [GLP]. The issue
of uniqueness of stationary kernels is discussed in §5.3 of [GLP], where a condition
denoted by (I-P) is introduced in Definition 5.4 (generalizing condition (i-p) of irre-
ducibility and proximality for linear groups on the space of flags). It is clear that the
condition of equicontinuous decomposition stated above is stronger than condition
(I-P), and thus the uniqueness of the stationary measure follows from Theorem 5.9 in
[GLP], which asserts that the stationary kernel is unique for the more general Markov
systems under discussion, provided they satisfy property (I-P).

We summarize the previous discussion as follows.

Corollary 4.8. If the G-action on B is minimal, proximal, contains a non-empty
contractible open set and admits an equicontinuous decomposition, then .B; �/ is a
boundary. In addition, it is a .G; �/-boundary for the unique �-stationary measure
� on B , where � is any probability measure on G whose support generates G as a
semigroup.

Corollary 4.8 will be our basic tool: we will prove below that the action of a
subgroup G of the automorphism group of a CAT.0/ cube complex satisfies the
hypotheses required by the corollary, provided certain natural assumptions on the
cube complex and the group G are satisfied.

5. Establishing that B.X/ is a boundary

The aim of this section is to show that for an essential, strictly non-Euclidean CAT.0/

cube complex B.X/ is a boundary. More precisely, we establish the following theo-
rem.

Theorem 5.1. Let X be an essential, strictly non-Euclidean CAT.0/ cube complex
admitting a proper co-compact action of G � Aut.X/. Then the G-action on B.X/

is minimal and strongly proximal, and every probability measure � whose support
generates as a semigroup G has a unique stationary measure �. The .G; �/-space
.B.X/; �/ is a �-boundary.

In order to prove Theorem 5.1, by Corollary 4.8 it suffices to show that the action
satisfies conditions laid out there. In particular, we will show that B.X/ is a boundary
limit set and that it admits an equicontinuous decomposition.

5.1. B.X/ is a boundary limit set. In order to show that B.X/ is a boundary limit
set, we need to explore the topology on U.X/ and B.X/ a bit more closely. Recall
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that the collection of subsets of the form Uh D f˛jh 2 ˛g, called the collection of
U.X/-halfspaces, forms a sub-basis for the Tychonoff topology on U.X/, so that a
basic open set consists of the intersection of finitely many U.X/-halfspaces. Since
B.X/ is a subset of U.X/, we obtain a basis of open sets for B.X/.

We now observe that for points in UNT.X/ the local neighborhood basis has
additional structure, and this fact will play a crucial role below. First, we introduce
the following definition.

Definition 5.2 (Sectors). (1) A sector s in a cube complex X is a finite intersection
of halfspaces

Tn
iD1 hi , for which the corresponding hyperplanes Oh1; : : : ; Ohn meet,

namely
Tn

iD1
Ohi ¤ ;.

(2) A sector S of U.X/ is a finite intersection of U.X/-halfspaces of the formTn
iD1 Uhi

, for which the corresponding hyperplanes Oh1; : : : ; Ohn meet, namely for
which

Tn
iD1 hi constitute a sector in X .

When S is a sector U.X/, we will use s to denote the corresponding sector in X

and visa versa.

We then have the following result.

Lemma 5.3. Let X be a CAT.0/ cube complex. Then every neighborhood of a point
˛ 2 UNT.X/ contains a neighborhood of ˛ which is a sector in U.X/.

Proof. First we define a certain notion of complexity for basic open sets. Given a basic
open set U D Tn

iD1 Uhi
, we define two numbers, D.U / and N.U /. The number

N.U / D n is simply the number of halfspaces defining U . The number D.U / is the
sum of the distances between the hyperplanes (minimized over all presentations of
U as an intersection of halfspaces),

D.U / D
X

d. Ohi ; Ohj /;

where the distance d between non-intersecting hyperplanes is the minimal length of
a 1-skeleton path crossing both hyperplanes, minus one. When Oh and Oh0 intersect,
d. Oh; Oh0/ D 0. We set C.U / D .N.U /; D.U //, and get a partial ordering on the basic
open sets by ordering C.U / lexicographically.

Suppose that U D Tn
iD1 Uhi

is a basic open set containing ˛ 2 UNT.X/ so that
˛ is non-terminating. Now we may assume that C.U / is minimal amongst all basic
open sets contained in U and containing ˛.

If N.U / D 1 or D.U / D 0, then U is a sector and we are done. So suppose that
N.U / > 1 and D.U / > 0.

First suppose that for some i; j , we have hi � hj . If this were the case, then U

is the intersection of fh1; : : : ; hng n fhj g and so N.U / can be reduced. So we may
assume that for all i ¤ j , hi 6� hj . We call the process just described “removing
extraneous halfspaces”.
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Now after a possible renumbering of the hi ’s, the associated hyperplanes Oh1, Oh2

are disjoint and d. Oh1; Oh2/ > 0. Now since ˛ is non-terminating and h1 2 ˛, there
exists a halfspace h0

1 2 ˛ such that h0
1 � h1. We will now let

U 0 D U 0
h1

\ .
Tn

iD2 Uhi
/:

By construction, we have U 0 � U and ˛ 2 U 0. Thus, by the minimality of C.U /,
we may assume that C.U / 	 C.U 0/.

For each j D 2; : : : ; n, suppose that Oh0
1 is disjoint from Ohj and does not separate

Oh1 from Ohj , in which case we obtain that h0
1 � hj . Thus U 0 has extraneous halfspaces

that can be removed, reducing N.U 0/ and hence C.U 0/ < C.U /, a contradiction.
We thus have two possibilities: Oh0

1 intersects every Ohj , j D 2; : : : ; n. In this case
D.U 0/ < D.U /, a contradiction.

There exists Ohj , disjoint from Oh0
1. In this case, for each such j , Oh0

1 must separate
Oh1 and Ohj , so that d. Oh0

1; Ohj / < d. Oh1; Ohj /. We thus obtain D.U 0/ < D.U /, again a
contradiction.

We will now need a variant of the Corner Lemma which ensures that certain types
of halfspace intersections contain hyperplanes. Let h1 and h2 be two halfspaces as-
sociated to intersecting hyperplanes Oh1 and Oh2. Note that the hyperplane Oh1 separates
the hyperplane Oh2 into two half-hyperplanes, OhC

2 D Oh2 \ h1 and Oh�
2 D Oh2 \ h�

1 .
Similarly, Oh1 is subdivided into two half-hyperplanes by Oh2, where OhC

1 D Oh1 \ h2. A
half-hyperplane is called R-shallow if it contained in an R-neighborhood of Oh1 \ Oh2.
Otherwise it is called deep. Note that h1 \ h2 is bounded by the union of the two
half-hyperplanes OhC

1 and OhC
2 . Note also that since there are only finitely many orbits

of half-hyperplanes, there exists some global constant R > 0 such that if OhC
1 is not

R-shallow, then OhC
1 is deep. We record this fact.

Remark 5.4. If X is a cocompact cube complex, then there exists a number R > 0

such that any half-hyperplane which is not R-shallow is deep.

Lemma 5.5. Let X be a cocompact, essential, irreducible, non-Euclidean CAT.0/

cube complex and let Oh1 and Oh2 be hyperplanes in X . Let h1 \ h2 be one of the
four sectors defined by intersecting hyperplanes Oh1 and Oh2. Suppose that one of the
half-hyperplanes OhC

1 and OhC
2 is deep. Then the sector h1 \ h2 contains a hyperplane.

Proof. There are several cases, which we handle by order of difficulty.

Case 1: One of OhC
1 , OhC

2 is shallow.
Suppose that, without loss of generality, the OhC

1 is shallow, so that OhC
2 is deep.

Thus, there exists R > 0 such that OhC
1 is contained in the R-neighborhood of Oh2.
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Since Oh2 is essential, there exists a hyperplane Ok � h2 such that d.Ok; Oh2/ > R. It
follows that Ok \ Oh1 D ;. If Ok � h1, we are done, so suppose that Ok � h�

1 . Consider a
geodesic path � joining Ok and Oh2 and let p D � \ Oh2. Since the action of stab. Oh2/ on
Oh2 is cocompact and OhC

2 is deep, there exists some g 2 stab. Oh2/ such that gp 2 h1.
We then have g� 2 h1, so that gOk 2 h1, as required.

Case 2: Both OhC
1 ; OhC

2 are deep and one of Oh�
1 , Oh�

2 is shallow.
Suppose without loss of generality that Oh�

1 is shallow. By applying case 1, we
have that there exists a hyperplane Ok � h1 \ h�

2 . Since the action of stab. Oh1/ on Oh1 is
cocompact, there exists some g 2 stab. Oh1/ such that g Oh2 � h2. Since Oh�

1 is shallow,
we know that g does not skewer Oh2. It follows that gh�

2 � h2. Thus Ok � h1 \ h2, as
required.

Case 3: All half hyperplanes Oh1̇ ; Oh2̇ are deep.
By Lemma 2.11, there exists a pair of diagonally opposite sectors of Oh1 and Oh2

which contain hyperplanes. If that pair is h1 \ h2 and h�
1 \ h�

2 , then we are done,
so we may assume that h1 \ h�

2 and h�
1 \ h2 both contain hyperplanes. If Oh2 \ Oh1

is flippable in Oh1 (i.e., there exists g 2 stab. Oh1/ such that gh�
2 � h2), then letting Ok

denote a hyperplane contained in h1 \ h�
2 , we would have gOk � h1 \ h2, as required.

So let us assume that Oh2 \ Oh1 is unflippable in Oh1. We let Ok denote a hyperplane
such that Ok � h�

1 \ h2. Since the hyperplane Oh1 \ Oh2 is essential in Oh2, there exists
g 2 stab. Oh2/ such that gh1 � h1. We then have that for some n, either gn Ok � h1

or gn Ok \ Oh1 6D ;: By passing to possibly some larger power of g, we obtain that the
half-hyperplane gn OkC D gOk \ h1 is deep.

Let ym D gn Ok. We now observe that for some power of n > 0, gn ym \ ym D ;.
This is clear since the axis of g does not lie in neighborhood of ym. There are three
hyperplanes in Oh1: L1 D Oh1 \ Oh2, L2 D Oh1 \ ym and L3 D Oh1 \ gn ym. We already
are assuming that L1 is essential in Oh1. If either of L2 or L3 is inessential in Oh1, we
appeal to Case 1 above to produce the desired hyperplane. It follows that both L2

and L3 are essential in Oh1. Thus, by the Flipping Lemma 2.9, the hyperplanes L1,
L2 and L3 do not form a facing triple. This means that one of them, without loss
of generality L2 separates L1 from L3. But this contradicts the fact that Oh2, ym and
gn ym form a facing triple in X .

Now we can prove our central technical result.

Proposition 5.6. LetX bea cocompact, essential, irreducible, non-EuclideanCAT.0/

cube complex admitting a proper cocompact group action. Let S D Tk
iD1 Uhi

be a
sector neighborhood of a non-terminating ultrafilter. Then there exists a hyperplane
Oh 2 s.

Proof. The proof will be by induction on n. We start with n D 2. Let s D h1 \ h2.
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If either of the half-hyperplanes bounding s are deep, then we may apply Lemma 5.5
to conclude that s contains a hyperplane. Otherwise, suppose that OhC

1 is shallow, then
we may apply the fact that ˛ is non-terminating to construct a sequence of halfspaces
h2 � h3 � � � � such that ˛ 2 Uhi

for all i > 1. Now since OhC
1 is shallow there exists

some n such that Ohn \ Oh1 D ;. We then have Ohn � h1 \ h2, as required.
We now suppose that n > 3. Let L D Tn

iD2
Ohi . Let LC D L \ h1 and

L� D L \ h�. We first claim that LC is not contained in any neighborhood of
Oh1. Since ˛ 2 Uh1

and ˛ is non-terminating, there exists a sequence of halfspaces
h1 � m2 � m3 � � � � such that ˛ 2 Umi

for all i . Suppose that for some i we have
ymi \ L D ;. Then there exists some Ohi , 2 	 i 	 n such that Ohi \ ym D ;. Let
F � f2; : : : ; ng such that Ohi \ ym 6D ;.

By assumption, we have that F is a proper subset of f2; : : : ; ng. If F D ;, then we
would have ym � s, and we are done. So now let s0 D m\T

i2F hi . By construction
s0 � s and ˛ 2 s0. Thus, by induction, s0 contains a hyperplane and we are done.
We thus have that all the hyperplanes ymi intersect LC. Since the hyperplanes ymi

correspond to a nested collection of halfspaces, we have shown our claim.
Next we apply the inductive hypothesis to the sector

Tn
iD2 hi to conclude that

there exists a hyperplane Ok 2 Tn
iD2 hi . If Ok � h1, we are done, so suppose not, so

that Ok � h�
1 or Ok \ Oh1 D ;.

Let R denote the number described in Remark 5.4, so that any half-hyperplane
which is not R-shallow is deep. We claim that there exists g 2 stab.L/ such that
gOk \ h1 contains a point at distance greater than R from Oh1. To see this, let p be
some point of

Tn
iD1

Ohi . Let q be a point of Ok and let D D d.p; q/. Now since LC
is deep, there exists g 2 stab.L/ such that d.gp; Oh1/ > R C D. It follows from the
triangle inequality that d.gq; Oh1/ > R.

From this claim it follows that either gOk � h1, in which case we are done, or
gOk \ Oh1 6D ; and the half-hyperplane gOkC D gOk \ h1 is deep. In the latter case,
we apply Lemma 5.5 to conclude that both sectors bounded by gOkC and Oh1 contain
hyperplanes. One of these sectors is contained in s, so that we have a hyperplane
contained in s as required.

Putting together the previous two lemmas, we obtain the following.

Corollary 5.7. Let X be a cocompact, essential, irreducible, non-Euclidean CAT.0/

cube complex. If U is an open set in U.X/ such that U \ B 6D ;, then U contains a
sub-basic open set Uh � U .

We are now ready to prove that B.X/ is indeed a boundary limit set.

Theorem 5.8. Let X be an essential, strictly non-Euclidean CAT.0/ cube complex
admitting a proper co-compact action of G � Aut.X/. Then B.X/ is a boundary
limit set for the G action on U.X/.
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Proof of Theorem 5.8. We need to establish the three properties in Definition 4.2
where Y D U.X/ and B D B.X/.

We will prove the following stronger claim which immediately implies all three
properties.

Claim. For any two ultrafilters ˛ and ˇ there exists an open neighborhood V of ˛

and ˇ such that for any open set U � U.X/ such that U \ B.X/ 6D ;, there exists
g 2 G such that gV � U .

First, we establish the claim in the event that X is irreducible. Let ˛; ˇ 2 U.X/.
By the Facing Triple Lemma 2.12, there exists in X a facing triple of hyperplanes T .
It follows that there exists a halfspace h, associated to a hyperplane in T , such that
˛; ˇ 2 Uh. We set V D Uh. Now given any open set U such that U \ B.X/ 6D ;,
we know by Corollary 5.7 that there exists a hyperplane Ok � U . Thus, for one of the
halfspaces bounded by Ok, we have Uk � U . Now by appealing to the Flipping Lemma
or Double Skewering Lemma of [CS], we have g 2 G such that gV � Uk � U , as
required.

We now need to establish the claim when X is not irreducible. We shall estab-
lish the claim when X is a product of two irreducible factors. The general case is
established by induction.

Suppose that X D X1 � X2. After possible passing to a subgroup of finite index
in G, we may assume that G preserves the decomposition. Let ˛ D .˛1; ˛2/ and
ˇ D .ˇ1; ˇ2/ be two ultrafilters in U.X/. As above, in each factor Xi , we may find
a halfspace hi such that ˛i ; ˇi � Uhi

. We let V D Uh1
� Uh2

.
Let U be some open set intersecting B.X/, so that U contains a non-terminating

ultrafilter � D .�1; �2/ in UNT.X/. It follows that there exists an elementary neigh-
borhood U1�U2 such that � 2 U1�U2 � U . Note that �1 and �2 are non-terminating
so that U1 and U2 intersect B.X1/ and B.X2/ respectively. By Corollary 5.7, we
have sub-basic open sets Uk1

� U1 and Uk2
� U2.

We now choose a vertex v 2 X
.0/
2 and let Xv

1 
 X1 � fvg. Note that there is a
natural isometric identification of X1 with Xv

1 ; we thus identify subsets of X1 with
subsets of Xv

1 . Note that stab.Xv
1 / acts cocompactly on Xv

1 . (This is because G acts
preserving the product structure so that every element g 2 G, either g 2 stab.Xv

1 /

or g.Xv
1 / \ Xv

1 D ;.) Thus we may apply the claim in the irreducible case to find
some g1 2 stab.Xv

1 / such that g1Uh1
� Uk1

.
Next we consider the ym 
 Ok1 � X2 which is a hyperplane in X . Note again that

stab. ym/ acts on ym coccompactly. Choose some vertex in w 2 ym and let Xw
2 


fwg � X2. Now stab.Xw
2 / < stab. ym/ acts cocompactly on Xw

2 . Once again, we
may apply the claim in the irreducible case, to find a g2 2 stab.Xw

2 / such that
g2.Uh2

/ � Uk2
. Note that g2 2 stab. ym/ so that it preserves the halfspace k1 � X2.

We then have g2g1V � U , as required.

5.2. B.X/ admits an equicontinuous decomposition. In this section we will prove
the following theorem.
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Theorem 5.9. Let X be an essential, strictly non-Euclidean CAT.0/ cube complex
and let G < Aut.X/ be a proper, cocompact action on X . Then the G-action admits
an equicontinuous decomposition.

The proof of the theorem rests on the lemma below which uses strong separation
to produce equicontinuity. We recall the definition of Behrstock and Charney [BC]
of strongly separated hyperplanes: two disjoint hyperplanes Oh and Ok are said to be
strongly separated if there are no hyperplanes which intersect both Oh and Ok. We say
that Oh and Ok are super-strongly separated if they are strongly separated and every
hyperplane meeting Oh is disjoint from every hyperplane meeting Ok.

Lemma 5.10. Let G be a group acting on a CAT.0/ cube complex X . Let Oh and Ok be
two super-strongly separated hyperplanes such that h \ k D ;. Let Gh � G denote
the collection of elements which have an axis in h or have a fixed point in h. Then
Gh acts equicontinuously on Bk 
 Uk \ B .

Proof. Suppose that Gh does not act equicontinuously on Uk . Then there exists some
" > 0, a sequence of elements ˛n; ˇn 2 Uk , and a sequence of group elements
gn 2 Gh, such that d.˛n; ˇn/ ! 0 and d.gn˛n; gnˇn/ � ". Recall the definition of
the metric on U.X/ (and consequently on B) is a metric which is compatible with
the Tychonoff topology on the product

Y
Oh

fh; h�g:

This means that the hyperplanes are ordered in some manner and the distance between
points is 1=n where n is the first hyperplane on which they differ. We record now
what the lack of equicontinuity above means explicitly in these terms: after possibly
passing to a subsequence fgng above, there exists a sequence of hyperplanes fOhng
such that

(1) there exists some fixed hyperplane Oh0 so that gn
Ohn D Oh0,

(2) d. Ohn; w/ ! 1, where w is some chosen vertex of X ,

(3) Ohn \ k 6D ;.

For convenience it is useful to work with �n 
 g�1
n . Note that since gn 2 Gh,

so is �n. We also choose w 2 k�. By definition, �n 2 Gh and �n
Oh0 D Ohn. We will

choose n to be sufficiently large; how large will become clear in due course. First
note that because �n either has an axis in h or a fixed point in h, we know that either
�n

Oh \ Oh 6D ; or �n
Oh � h. In either case, strong separation of Oh and Ok tells us that

�n
Oh � k�. If Oh \ Oh0 6D ;, then �n

Oh \ �n
Oh0 6D ;, so by super-strong separation �n

Oh0

is disjoint from Ok. This tells us that Ohn D �n
Oh0 � k� as well, contradicting (3) above.

We can thus assume that Oh \ Oh0 D ;.
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Let D1 D d. Oh; Oh0/. Then d.�n
Oh; Ohn/ D D1, so that either Ohn \ Ok D ; or

d. Ohn; Ok/ 	 D1. Let D2 D d.w; Ok/ and let Ok1; : : : ; Okm denote the hyperplanes sepa-
rating w and Ohn. We can choose n so that m is as large as we like, so we choose it so
that m > 2D1 C D2. It follows that m � D1 � D2 of the Oki ’s intersect Ok non-trivially.
By strong separation of Oh and Ok, we then know that these Oki ’s do not intersect Oh and
hence separate Ohn from Oh. If �n

Oh \ Oh D ;, and hence �n
Oh � h. Thus the Oki ’s above

separate Ohn D �n
Oh0 and �n

Oh. But then d. Oh; Oh0/ > D1, a contradiction. We thus have
�n

Oh \ Oh 6D ;. By super-strong separation, we then have that all the Oki ’s are disjoint
from �n

Oh. Once again, we obtain that d. Ohn; �n
Oh/ > D1, a contradiction.

Proof of Theorem 5.9. Let X D Qn
iD1 Xi be the decomposition of X into irre-

ducible factors. First we prove the theorem for the action of G on each of the
irreducible factors. Since X has no Euclidean factor, by the Flipping Lemma 2.9
every halfspace in X is flippable. It follows that every halfspace in each factor Xi

is flippable. This fact in turn implies that the action of G on the visual boundary of
Xi has no fixed point at infinity. Since Xi is non-Euclidean, Theorem 2.12 tells us
there exists a facing triple of hyperplanes Oh1, Oh2, Oh3. Since no element can skewer
all such hyperplanes, it follows that G D S3

iD1 Ghi
[ Gh�

i
. We now need to show

that for each halfspace h of Xi , there exists Ok 2 h such that Ok and Oh are super-strongly
separated. By Proposition 5.1 of [CS], there exist hyperplanes Oh1, Oh2 such that h1 2 h

and h2 2 h� such that Oh1 and Oh2 are strongly separated. By the Double Skewering
Corollary 2.10, there exists a group element g 2 G double skewering Oh1 and Oh2.
That is gh�

2 � h1. It follows that g Oh1 and Oh are strongly separated. By applying a
group element that double skewers g Oh1 and Oh we obtain a hyperplane in h which is
super-strongly separated from Oh.

We can now apply Lemma 5.10 to produce a non-empty Bi for each of the finite
subsets G

h
.�/

i

of the decomposition above.

Having established that equicontinuous decomposition for each of the factors, we
then have B.X/ D Qn

iD1 B.Xi /. For each factor Xi , we now have equicontinuous
decompositions G D S

j Gi
j , so that for each j , Gi

j , there exists B i
j 6D ; such that

Gi
j acts equicontinuously on B i

j . We then observe that given any J D fj1; : : : ; jng
(where the ji ’s are within the requisite finite range), we have that GJ 
 G1

j1
\� � �\Gn

jn

acts equicontinuously on BJ 
 B1
j1

� � � � � Bn
jn

. Note further that since G acts
minimally on B and the BJ ’s are all non-empty, we have G � BJ D B . Thus
G D S

J GJ is an equicontinuous decomposition for the action.

6. Intervals and property A

We now describe the properties of intervals connecting a vertex in the cube complex
to a boundary point or two boundary points. The existence of intervals will prove to
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be an indispensable tool in analyzing the properties of the boundary, as we will see
below. The discussion in the present section pertains to general finite dimensional
locally-finite cube complexes, and the group action will not come into play at all.

Given three ultrafilters ˛, ˇ, � , recall that the median of the three ultrafilters is
defined by

med.˛; ˇ; �/ D .˛ \ ˇ/ [ .ˇ \ �/ [ .˛ \ �/:

It is easy to check that med.˛; ˇ; �/ is itself an ultrafilter. Given two ultrafilters,
˛ and ˇ, we now define the interval between ˛ and ˇ to be

Œ˛; ˇ� D f� j med.˛; ˇ; �/ D �g:
In the case that ˛ and ˇ are vertices of X , the interval Œ˛; ˇ� is simply the collection
of vertices that lie on some 1-skeleton geodesic between ˛ and ˇ (see [ChN]).

The goal of the present section is to prove the following Følner-type property for
such intervals. This will be used later on to show, among other things, that point
stabilizers are amenable. Let B.r/ denote the ball of radius r about some base vertex
and j � j the size of the intersection with the 0-skeleton.

Theorem 6.1. Let v, w be a vertices in a cube complex X and ˛ 2 UNT.X/ be a
non-terminating ultrafilter. Then ( for any fixed choice of base vertex as the center of
the balls)

lim
r!1

j.Œv; ˛� 4 Œw; ˛�/ \ B.r/j
j.Œv; ˛� [ Œw; ˛�/ \ B.r/j D 0:

Remark. The property stated in the theorem may not hold for ˛ not in UNT.X/. For
example, consider the standard squaring of the Euclidean plane. There are vertical
hyperplanes and horizontal ones. Let ˛ D .1; 0/ be the ultrafilter that contains the
right halfspace of every vertical hyperplane, the upper halfspace of every horizontal
hyperplane below the x-axis and the lower halfspace for every horizontal hyperplane
above the x-axis. Let v D .0; 0/ and w D .1; 0/. Then it is easy to see that

lim
r!1

j.Œv; ˛� 4 Œw; ˛�/ \ B.r/j
j.Œv; ˛� [ Œw; ˛�/ \ B.r/j D 1=2:

Before beginning the proof, we recall that a theorem of [BC+] tells us that inter-
vals embeds (`1-isometrically) in the standard Euclidean cube complex in Rn. This
property is the key to analyzing the properties of intervals, which will occupy us in
the next five subsections. The proof of Theorem 6.1 will conclude in §6.6.

6.1. Basics of intervals. We will first need a few basic facts about intervals.

Lemma 6.2. For any ˛; ˇ 2 U.X/, we have Œ˛; ˇ� D f� j˛ \ ˇ � �g.
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Proof. Observe that

med.˛; ˇ; �/ D � , .˛ \ ˇ/ [ .ˇ \ �/ [ .˛ \ �/ D � , ˛ \ ˇ � �:

Lemma 6.3. For any ˛; ˇ; � 2 U.X/ and m D med.˛; ˇ; �/, we have Œ˛; �� \
Œˇ; �� D Œm; ��.

Proof. We have ˛ \ m D ˛ \ �
.˛ \ ˇ/ [ .˛ \ �/ [ .ˇ \ �/

� D .˛ \ ˇ/ [ .˛ \ �/.
Hence by Lemma 6.2,

Œ˛; m� D f�j˛ \ m � �g D f�j.˛ \ ˇ/ [ .˛ \ �/ � �g D Œ˛; ˇ� \ Œ˛; ��:

Recall that the carrier C. Oh/ of a hyperplane Oh is the union of all cubes intersecting
Oh. Thus the vertices of C. Oh/ may be viewed as the ultrafilters satisfying DCC which
contain h or h� as minimal elements. We may then extend the notion of the carrier
to all of U.X/: an ultrafilter ˛ is in C. Oh/ if it contains h or h� as a minimal element.

We now have the following:

Lemma 6.4. Suppose that ˛ 4 ˇ < 1. Then for any � 2 U.X/ we have

Œ˛; �� � Œˇ; �� �
[

Oh separating
˛ and ˇ

C. Oh/:

Proof. Consider � 2 Œ˛; �� � Œˇ; ��. Since � 62 Œˇ; ��, there exists h such that
h 2 ˇ; � but h� 2 �. Since � 2 Œ˛; ��, we cannot have that Oh separates � from both
˛ and � . Thus, we have h� 2 ˛. Notice now that by the same reasoning, for any
hyperplane Ok separating � and Oh, we also have that Ok separates ˇ and � from � and ˛.

Now there are only finitely many hyperplanes separating ˛ and ˇ, so choose Ok to
be such a hyperplane that is closest to �. We then have � 2 C.Ok/, as required.

6.2. Spheres, balls and invariance of basepoint. From now on in this section, we
will let I denote an interval. We use the following notation for balls and spheres in
I :

Bv.I; r/ D the ball of radius r about v in I ;

Sv.I; r/ D the sphere of radius r about v in I :

We also use j � j to denote the number of vertices in subset of I .

Proposition 6.5. Suppose that I is an interval and I D Œv; ˛�, where v is a vertex of
I . Then

lim
r!1

jSv.I; r/j
jBv.I; r/j D 0:
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In fact, we shall prove the following more general and sharper statement.

Lemma 6.6. Let D be a natural number and " > 0 a real number. Then there exists
a number R."; D/ such that for any interval of dimension less than or equal to D,
we have jSv.I;r/j

jBv.I;r/j < " for all r > R.D; "/.

The difference between the proposition and the lemma is that the R chosen for
the " does not depend on the complex, just on the dimension and ".

Proof. Since we will always be working with the same vertex v in this lemma, we
shall write S.r/ D Sv.I; r/ and B.r/ D Bv.I; r/.

We proceed by induction on the dimension of the complex. For dimension 1, the
theorem is clear since jS.r/j D 1 for all r , so jS.r/j

jB.r/j is either 0 or 1=r . So we assume
that the theorem is true for complexes of dimension less than D. In particular we
assume the proposition holds for hyperplanes in I .

We assume that " is given. We make some choices of numbers now that we need
for later. By induction, there exists an R1 D R.D � 1; "=2/, so that, for any complex
of dimension less than D and any r > R1, jSr j

jBr j < "=2. Let Smax denote the maximal
number of points in the sphere of radius R1 in a complex of dimension less than D,
and let M D R1 �Smax. (The number Smax exists because there are only finitely many
such possible spheres.)

We choose R > maxfR1; 2DM="g. We claim that R is our required R.D; "/.
We note that RD can be naturally factorized as a product RD D RD�1 � R in

D different ways. Now we consider our embedding of I into RD . We assume that
the sphere of radius R is non-empty, for otherwise, the proposition is clearly true.
If we take a vertex w 2 I such that d.v; w/ D R, then for one of the projections
� W RD ! R has the property that d.�.v/; �.w// > R=D > 2M=" (recall that we
are using the `1 metric, which is the same as the 1-skeleton metric on the vertices
of I ). We factorize RD D RD�1 � R so that the projection onto the second factor
satisfies the above: some point in SR projects onto a point at distance at least 2M="

from v. We call the second factor the vertical direction and the hyperplanes transverse
to them horizontal hyperplanes, so that we have at least 2M=" horizontal hyperplanes
intersecting the ball of radius R. Let N denote the number of hyperplanes meeting
the ball of radius R.

We let Ln denote the n-th horizontal hyperplane (counting from the bottom). We
let �n W I ! Ln denote the projection of I onto Ln. Note that Ln D �n.I / is an
interval, namely Ln D Œ�n.v/; �n.˛/�. Consequently, Br;n D Br \ Ln is a ball; we
let dn;r denote the radius of this ball. We write Sr;n D Sr \ Ln.

Observation. Note that for any n, r and m > n, we have dm;r 	 d.n; r/ � .m � n/.

Let Lk be the first hyperplane such that Lk \ SR 6D ; and dk;R 	 R1. By the
observation above, we have at most R1 hyperplanes above Lk which intersect the
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ball of radius R. Moreover, for each of these, we have that the radius dn;r 	 R1.
Thus there are at most M points in the spheres Sn;R for n � k. For all n < k, we
have that Sn;R is empty or d.k; R/ > R1. In either case, for all n < k, we have
jSn;Rj < "

2
jBn;Rj. We now look at the ratio we are considering and break it up into

layers:

jSRj
jBRj D

Pk
iD1 jSi;Rj C PN

iDkC1 jSi;RjPN
iD1 jBi;Rj <

"
2

Pk
iD1 jBi;RjPN

iD1 jBi;Rj C M

N
< "=2 C "=2 D ":

Corollary 6.7. For any two vertices v and w and for any n 2 Z, we have

lim
r!1

Bv.I; r C n/

Bw.I; r/
! 1:

Proof. First, we need to see that additive constants do not affect the limit. This
follows immediately from Proposition 6.5, since it tells us that

lim
r!1

jBv.I; r/j
jBv.I; r C 1/j D 1:

Secondly, we show independence of basepoint. Let d D d.v; w/. Then for any
r > d , we have

Bw.I; r � d/ � Bv.I; r/ � Bw.I; r C d/:

We thus have

jBw.I; r � d/j
jBw.I; r/

	 jBv.I; r/j
jBw.I; r/j 	 jBw.I; r C d/j

jBw.I; r/j :

By the lemma, we have that the left- and right-hand sides approach 1 as r ! 1,
so this gives

lim
r!1

jBv.I; r/j
jBw.I; r/j ! 1:

The corollary follows.

6.3. Volume and collapsing. We will need to understand something about the size
of the portion of the interval taken up by its intersection with a hyperplane. Given an
interval I and Oh a hyperplane in I , we say that Oh is meager if (for any fixed choice
of base vertex as the center of the balls)

lim
r!1

jC. Oh/ \ Bv.I; r/j
jBv.I; r/j D 0:
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Remark 6.8. Let us note that by Corollary 6.7 the property of a hyperplane being
meager is independent of the base point.

We now recall the construction called collapsing, discussed in §2.3. Since C. Oh/ Š
Oh � I , we may form a quotient of I by collapsing the interval direction of C. Oh/ to
a point (i.e., via projection onto the Oh factor). The resulting complex NI is called the
complex obtained by eliminating Oh. The quotient map I � NI is called the collapsing
map for Oh. One may also eliminate a finite number of hyperplanes. It is easy to check
that such a collapsing map is well defined in that it does not depend on the order in
which the hyperplanes are collapsed.

We will need to understand what collapsing does to growth of balls.

Lemma 6.9. Let � W I � J be a collapsing for a single hyperplane and let v be a
vertex in I . Then for all r > 0, we have

jB�.I/.J; r/j
jBv.I; r/j � 1=2:

Proof. First we observe that since the distance between vertices simply counts the
number of hyperplanes which separate them, we have that � is distance non-increasing,
so that

�.Bv.I; r// � B�.v/.J; r/:

Now we note that the collapsing map is at most 2-to-1, so that

2jB�.v/.J; r/j � jBv.I; r/j:
It follows that jB�.v/.J; r/j

jBv.I; r/j � 1=2:

Lemma 6.10. Let � W I � J denote the collapsing map eliminating a meager
hyperplane Oh. Then

lim
r!1

jB�.v/.J; r/j
jBv.I; r/j D 1:

Proof. As in the previous lemma, we have �.Bv.I; r// � B�.v/.J; r/. Also, note
that � is 1-1 on the complement of C. Oh/. Thus, we obtain

jB�.v/.J; r/j
jBv.I; r/j � j�.Bv.I; r//j

jBv.I; r/j � j��
Bv.I; r/ � C. Oh/

�j
jBv.I; r/j D jBv.I; r/ � C. Oh/j

jBv.I; r/j :

By the definition of meager, we have

lim
r!1

jBv.I; r/ � C. Oh/j
jBv.I; r/j D 1:

The lemma follows.
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Corollary 6.11. Let I D Œv; ˛� be an interval with no more than n non-meager
hyperplanes. Then for any collapsing map of finitely many hyperplanes � W I � J ,
we have

lim inf
r!1

jB�.v/.J; r/j
jBv.I; r/j � 1=2n:

6.4. Projections of hyperplanes onto each other. As above, we let I D Œv; ˛� be
an interval embedded in RD , with v the origin and ˛ an non-terminating ultrafilter.
As before, we write RD D RD�1 �R, with the last factor being the vertical direction
and the hyperplanes transverse to this direction called horizontal hyperplanes. As
before, the horizontal hyperplanes are ordered from their distance from the origin
and are denoted by Ln.

As discussed previously, there exists a projection of I to Ln . Restricting, this we
get a projection map �n W L1 ! Ln. We want to get a better handle on this map.

As usual, let OH .Ln/ denote the collection of hyperplanes of the complex Ln:
these are simply the hyperplanes of I which cross Ln. Note that any hyperplane Oh
which crosses L1 and does not cross Ln must separate v from Ln. This is because
both Oh and Ln must separate v from ˛. Thus, there are finitely many hyperplanes
which cross L1 and do not cross Ln. We let �n W L1 � Yn denote the resulting
collapsing map.

Now for any hyperplane Oh in I crossing Ln which does not cross L1, we let h
denote the halfspace containing L1. We let

Cn D
\

Oh\L1D;
h \ Ln:

The subcomplex Cn is simply the image �n.L1/. Note that Cn is itself a con-
vex subcomplex of Ln whose hyperplanes consist of those hyperplanes in I which
intersect L1. Thus Yn and Cn have the same halfspace system, namely the one
coming from all hyperplanes which cross both L1 and Ln. We thus have a natural
isomorphism in W Yn ! Cn. We then see that �n D in B �n.

We summarize the above discussion in the following lemma.

Lemma6.12. For eachLn, the projectionmapL1 ! Ln factors throughacollapsing
map � W L1 � Yn and an embedding Yn ! Ln.

6.5. Non-meager hyperplanes are inessential

Theorem 6.13. Suppose that I is an interval. Then

(1) I contains only finitely many non-meager hyperplanes.

(2) For every non-meager hyperplane Oh in I , there exists some R such that the
R-neighborhood of Oh contains I \ X .
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Proof. We prove (1) by induction on D, the dimension of I . For D D 0, the statement
is trivial.

Suppose that I has infinitely many non-meager hyperplanes. Since I is finite
dimensional we may choose these hyperplanes L1; L2, … so that they are disjoint.
We further choose the Li ’s so that their carriers are disjoint. As in Section 6.4, we view
I as being embedded in RD and we may pass to a subsequence of the fLng so that
they are all transverse to some vertical direction of a factorization RD D RD�1 � R.
We also order fLng by distance to the base vertex v and let vn denote the projection
of v onto vn, for each n. We let dn D d.v; vn/

Since L1 is not meager, there exists some number " > 0 and a sequence frkg such
that jBv.I; rk/ \ C.L1/j

jBv.I; rk/j > ":

Since we are using the 1-skeleton metric, we have

Bv.I; r/ \ L1 D Bvn
.Ln; r � dn/

for all n. Furthermore, we know that the natural map C.Ln/ ! Ln is 2-1 and thus
between 2-1 and 1-1 in the intersection with B.I; rk/, we obtain

jBv1
.L1; rk � d1/j
jBv.I; rk/j D jBv.I; rk/ \ L1j

jBv.I; rk/j �
1
2
jBv.I; rk/ \ C.L1/j

jBv.I; rk/j > "=2: (6.1)

By induction we know that L1 has only finitely many non-meager hyperplanes.
So let N denote the number of non-meager hyperplanes in L1. By Lemma 6.12,
we have that the projection L1 ! Ln factors through a collapse of finitely many
hyperplanes and an embedding. We may thus apply Lemma 6.11 to obtain

jBvn
.Ln; rk � d1/j

jBv1
.L1; rk � d1/j � 1=2N :

By Lemma 6.7, for rk sufficiently large, we get

jBvn
.Ln; rk � dk/j

jBvn
.Ln; rk � d1/j > 1=2; (6.2)

which, for rk sufficiently large, implies that

jBvn
.Ln; rk � dk/j

jBv1
.L1; rk � d1/j > 1=2N C1:

We choose M > 2N C1=" and choose rk sufficiently large so that inequality (6.2)
holds for all 1 	 n 	 M . Putting this together with inequality (6.1), we obtain for
all 1 	 n 	 M ,

jBv.I; rk/ \ C.Ln/j
jBv.I; r/j >

jBvn
.Ln; rk � dk/j
jBv.I; r/j > "=2N C1:



684 A. Nevo and M. Sageev

Summing over the first M levels, we obtain

MX
nD1

jBv.I; rk/ \ C.Ln/j
jBv.I; rk/j > M"=2N C1 > 1;

a contradiction.
To prove (2), we proceed in the same manner. Suppose that there is a non-meager

hyperplane in I which does have a neighborhood containing I \ X . Then, calling
that hyperplane L1, we would have an infinite sequence of disjoint hyperplanes L1,
L2, … in I . Now the same projection arguments as above show that each Ln is
non-meager, contradicting part (1).

Corollary 6.14. If E D Œp; ˛�, where p 2 I and ˛ is a non-terminating ultrafilter,
then all the hyperplanes in E are meager.

Proof. By the definition of non-terminating, for every hyperplane Oh, there exists
another hyperplanes Oh0 separating Oh from ˛. Therefore no neighborhood of Oh contains
all of I .

6.6. Proof of Theorem 6.1. Finally, we are now ready to prove the main theorem
of this section.

Proof of Theorem 6.1. Let m D med.v; w; ˛/. Then we have

Œv; ˛� \ Œw; ˛� D Œm; ˛�:

Also, Œv; ˛�4 Œw; ˛� D Œv; ˛�[ Œw; ˛�� Œm; ˛�, so that in order to show our result,
it suffices to show that

lim
r!1

j.Œv; ˛� � Œm; ˛�/ \ B.r/j
jŒm; ˛� \ B.r/j D 0:

Let Oh1; : : : ; Ohk denote the hyperplanes separating v and m. Then

Œv; ˛� � Œm; ˛� �
k[

iD1

C. Ohi /:

Thus, we conclude that independently of the base point defining B.r/

lim
r!1

j.Œv; ˛� � Œm; ˛�/ \ B.r/j
jŒm; ˛� \ B.r/j 	 lim

r!1
j.Sk

iDq C. Ohi / \ B.r/j
jŒm; ˛� \ B.r/j D 0;

by Corollary 6.14.
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6.7. Property A for groups acting on finite dimensional cube complexes. A
discrete metric space X has property A if there exists a sequence of families of
finitely supported probability measures An;x 2 `1.X/, indexed by x 2 X , and a
sequence of constants dn > 0 such that:

(1) For every n and x, the measure An;x is supported in Bdn
.x/.

(2) For every D > 0, we have kAn;x � An;x0k ! 0 uniformly on the set f.x; x0/ j
d.x; x0/Dg as n ! 1.

A discrete group has property A if its underlying proper metric space does (this is
independent of the choice of proper metric). In this case the definition amounts to a
variant of Reiter’s condition for amenability.

It was shown in [BC+] that a finite dimensional cube complex satisfies Yu’s prop-
erty A. We give here an alternative proof in the case the cube complex is in addition
locally finite. Indeed, let us first assume that the cube complex is irreducible non-
Euclidean. In that case, UNT.X/ is non-empty, namely there is a non-terminating
ultrafilter ˛. For any vertex v 2 X , consider the sets Bn.v/ \ Œv; ˛� D Av;n, namely
the intersection of the interval from v to ˛ with a ball of radius n and center v in X .
Then by Theorem 6.1 for any " > 0 the sets satisfy

jAv;n 4 Aw;mj
jAv;nj < ";

provided that m � n � n."/ and of course diam Av;n 	 2n. This sequence of sets
constitutes a direct generalization of the sequence usually used to show that a tree
has property A, namely the sequence consisting of intervals of length n on the unique
geodesic from a vertex v to a boundary point ˛. The existence of such a sequence
implies property A for the cube complex, by definition. Now using the product
decomposition theorem of [CS] the result follows for every finite dimensional locally
finite CAT.0/ cube complex, recalling also that Euclidean complexes have property
A since they admit a F olner sequence.

We now turn to another ingredient that plays an important role in the proof of
Theorem 5.1.

7. Amenability of the boundary action

In the present section we will discuss the amenability properties of the action of
discrete groups on the boundary of a cube complex. The key to our analysis is the
existence of intervals connecting vertices in the complex to boundary points, with
balls in the intervals satisfying the Følner property established in Theorem 6.1 and
Corollary 6.7. Later on, in our discussion of the Poisson boundary, we will also use
the fact that intervals embed in Rn and hence have polynomial growth.

Let us first recall the following definitions of amenability of an action. Let P.G/

denote the space of probability measures on the countable group G taken with the
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total variation norm (`1.G/-metric). G acts on P.G/ by translations, denoted by
� 7! g�, and the action is continuous. We denote by Pc.G/ the subspace of finitely
supported measures.

Definition 7.1 (Topological, Borel and universal amenability). (1) The G-action on
a locally compact metric space B is called topologically amenable if we can find a
sequence of continuous functions ˇn W B ! Pc.G/ such that

lim
n!1 kˇn.gb/ � gˇn.b/k D 0

for every b 2 B , and the convergence is uniform on compacts subsets in B .
(2) The G-action on a standard Borel space B is called Borel-amenable if we

can find a sequence of Borel measurable functions ˇn W B ! Pc.G/ which satisfies
limn!1 kˇn.gb/ � gˇn.b/k D 0 for every b 2 B .

(3) The G-action on a standard Borel space B is called universally (or measure-
wise) amenable if for every G-quasi-invariant probability measure � on B , we can
find a sequence of measurable functions ˇn which are defined and satisfy
limn!1 kˇn.gb/ � gˇn.b/k D 0 for �-almost all points b 2 B .

The space B we will consider to begin with is UNT.X/, which by Proposition 3.3
is a dense Gı of the boundary B.X/.

Theorem 7.2. Let X be an irreducible, non-Euclidean CAT.0/ cube complex. Then
for any discrete subgroup G � Aut.X/ acting properly, the action on UNT.X/ is
Borel-amenable, and hence also a universally (or measure-wise) amenable action.

Proof. We will first construct a sequence of Borel maps Q̌
n W UNT.X/ ! P.V /,

where V D V.X/ is the set of vertices of the complex X , taking values in finitely
supported probability measures on the vertex set V.X/.

To define Q̌
n.b/ when b is a non-terminating ultrafilter, fix a reference vertex

o 2 V.X/. Given any point b 2 UNT.X/, draw the interval from o to b, denoted
by Œo; b/. Define Q̌

n W UNT.X/ ! P.V /, where Q̌
n.b/ is the probability measure

uniformly distributed on the finite set of vertices obtained as the intersection of a ball
of radius n with center o and the interval Œo; b/ from o to b.

Now note that Q̌
n.gb/ is the measure on the complex uniformly distributed on

B.n; o/ \ Œo; gb/. On the other hand, g Q̌
n.b/ is the measure uniformly distributed

on B.n; go/ \ Œgo; gb/.
In view of Theorem 6.1, given " > 0, there exists an n sufficiently large such that

outside the ball B.n; o/, the symmetric difference between the intervals Œo; gb/ and
Œgo; gb/ has size bounded by " times the sum of their sizes.

It follows the difference between the measures namely k Q̌
n.gb/ � g Q̌

n.b/k (in
`1.V .X//-norm), does indeed converge to zero for any given g in G.

Let us also note that the convergence is in fact uniform on UNT.X/ by Lemma 6.6,
namely for a fixed " > 0, n can be chosen independent of b 2 UNT.X/.
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We now pass to a discrete subgroup G � Aut.X/ acting properly by restricting
each measure Q̌

n to the various G-orbits in the complex, renormalizing and viewing
the resulting measure as an element of P.G/. More explicitly, let T be a transversal
to the G-orbits in V.X/, and for v 2 T let Gv be the stability group of v in G, which
is finite since the action of G is proper. Let us view the probability measure Q̌

n.b/

as function on the vertices in V.X/, and define

ˇn.b; g/ D
X
v2T

Q̌
n.b; gv/

jGvj :

Then the `1.G/-norm of ˇn.b; � / is

kˇn.b; � /k`1.G/ D
X
g2G

ˇn.g; b/

D
X

g2G;v2T

Q̌
n.b; gv/

jGvj

D
X
v2T

X
w2G�v

Q̌
n.b; w/

X
g2GWgvDw

1

jGvj
D

X
v2T

X
w2G�v

Q̌
n.b; w/

D k Q̌
n.b; � /k`1.V /:

Clearly a similar computation shows that kgˇn.b/ � ˇn.gb/k`1.G ! 0 and thus
UNT.X/ is a Borel-amenable action of G.

A simple consequence of Theorem 7.2 is the following.

Corollary 7.3. The stability group of a point in UNT.X/, namely of a non-terminating
ultrafilter in a (finite dimensional) CAT.0/ cube complex is an amenable group.

Proof. Let g 2 S D StG.b/ be a group element which stabilized b 2 UNT.X/.
Then the sequence of finitely supported probability measures ˇn.b/ 2 Pc.G/ is
clearly asymptotically invariant under left translation by g. The sequence defines an
mean on `1.G/ in the usual way, and this mean is invariant under the subgroup S .
Extending a bounded function on S to a bounded function on G by transfering it to
the other cosets in the obvious way, we get an S -invariant mean on `1.S/, so S is
amenable.

We note that Corollary 7.3 is in fact a consequence of more general results, con-
sidered in various formulations in [CN], [Ca07] and [BC+]. Of those, we quote the
result of [BC+] most pertinent to us.
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Theorem 7.4. Let X be a ( finite dimensional) CAT.0/ cube complex. The stability
group of every ultrafilter, namely every point in the Roller boundary and thus in
particular every point in B.X/, is an amenable group.

Remark 7.5. (1) In [Ca07] a structure theorem is proved for amenable closed sub-
groups of a group that acts properly, co-compactly and discontinuously on Hadamard
spaces, and in particular on finite dimensional locally finite CAT.0/ cube complexes.
It is shown that an amenable group virtually admits a homomorphism into Rd , with
the kernel being a topologically locally finite group.

(2) It is not clear whether the action of G on B.X/ is topologically amenable.
For that, one needs to define a sequence of functions ˇn W B.X/ ! Pc.G/, defined
on all of B.X/, asymptotically invariant and continuous. The remark following
Theorem 6.1 casts doubt as to whether the functions ˇn we have defined on UNT.X/

can be extended continuously to B.X/. However, this observation is not conclusive,
since there may in principle be other sequences that could demonstrate topological
amenability.

8. Maximality of the boundary

In the present section we will show that the boundary B.X/ with its unique stationary
measure � is a compact metric model of the Poisson boundary B.G; �/. We will
use in our analysis an important criterion for boundary maximality developed by V.
Kaimanovich, called the strip criterion. This criterion is applicable in the context
of cube complexes, since intervals provide us with a natural notion of strips in the
complex. In fact, any two distinct ultrafilters ˛ ¤ ˇ determine a unique interval of
ultrafilters between them, defined by

Œ˛; ˇ� D f� j m.˛; ˇ; �/ D �g:
By Lemma 6.2, we have

Œ˛; ˇ� D
\

h2˛\ˇ

Uh: (8.1)

The map B.X/ � B.X/ ! 2U.X/ defined by .˛; ˇ/ 7! Œ˛; ˇ� is of course Aut.X/-
equivariant.

8.1. Antipodal pairs of ultrafilters. It may happen, however, that the interval con-
sists of non-principal ultrafilters, i.e., the strip between two non-principal ultrafilters
˛ and ˇ may lie itself “at infinity”. This arises even in simple and natural examples,
such as Z2 and T3 � T3.

Thus not all pairs of boundary points are alike, and we must find the right notion
an “antipodal pair”. A pair .˛; ˇ/ 2 B.X/ � B.X/ is called antipodal if �.˛; ˇ/ 

Œ˛ \ ˇ� \ X 6D ;. The set �.˛; ˇ/ is called the strip between ˛ and ˇ. We let
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G � B.X/ � B.X/ denote the collection of antipodal pairs. We then have the
following.

Proposition 8.1. Let X be a strictly non-Euclidean, cocompact CAT.0/ cube
complex. Then the set G is generic: it is a non-empty open invariant subset in
B.X/ � B.X/.

Proof. First, we need to show that G is non-empty. First observe that it suffices to
show this for the case that X is irreducible, because the antipodal pairs in the products
appear as products of antipodal pairs in the factors.

So now assume that X is irreducible and suppose that G D ;. Let ˛, ˇ be a pair
of distinct non-terminating ultrafilters. By assumption we have S.˛; ˇ/ \ X D ; for
every such pair.

Since ˛ and ˇ are non-terminating ultrafilters, there exist infinitely many hy-
perplanes separating them. In particular there exists a pair of disjoint hyperplanes
separating them. We thus see that given any two such ˛ and ˇ, we have that

(1) there exists a collection of intersecting hyperplanes Oh1; : : : ; Ohn such that ˛ 2 hi

and ˇ 2 h�
i ,

(2) there exists Ok such that Ok 2 h�
i ,

(3) ˛ 2 k and ˇ 2 k�.

The above remark tells us that (1)–(3) holds for n D 1. The number n is bounded
by the dimension of X , so that we may choose ˛ and ˇ such that n is maximal.

Note that by (8.1), we have

S.˛; ˇ/ D
\

h2˛\ˇ

h:

Note that if ˛ \ ˇ D ;, then all hyperplanes of X separate ˛ and ˇ. In this case
clearly every vertex of X is in S.˛; ˇ/ and we are done.

So suppose that the above intersection is indeed an intersection of a non-empty
collection of halfspaces. By Corollary 2.3 if K D fh j h 2 ˛ \ ˇg satisfies DCC,
then we would have S.˛; ˇ/ 6D ;. So by our assumption, we have that K does not
satisfy DCC. Let m1 � m2 � � � � denote a non-terminating sequence of halfspaces
in K .

We claim that there exists some l such that yml intersects both Ok and Ohi for all i .
Since each ymn 2 ˛ \ ˇ and Ok separates ˛ and ˇ, it follows that if Ok \ yml D ;

then Ok � ml . But since there is a finite distance between ym1 and Ok, we must have
yml \ Ok 6D ; for some l . Similarly, we can choose l large enough so that both
yml \ Ok 6D ; and yml \ Ohi 6D ; for all i .

We can further choose l such that the half-hyperplane Ok \ m�
l

is deep. We then

consider the sector m�
l

\ k�. By Lemma 5.5, there exists some hyperplane Ok1 �
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m�
l

\ k�. We let k1 denote the halfspace of Ok1 contained in ˛. By Remark 3.2, there
exists a non-terminating ultrafilter � 2 k�

1 .
Now observe that for the pair ˛, � the collection of hyperplanes Oh1; : : : ; Ohn; yml

and the hyperplane Ok1 all satisfy properties (1)–(3) above. But this contradicts the
maximality of n as chosen.

This completes the proof that G 6D ;. To prove that it is open we will use that the
median map m W U.X/ � U.X/ � U.X/ ! U.X/ is continuous in the Tychonoff
topology. Suppose that .˛; ˇ/ is a antipodal pair. Then there exists v 2 X .0/ such that
med.˛; ˇ; v/ D v. Since vertex singletons in X .0/ are open, we may find open sets
U of ˛ and V of ˇ such that for any ˛0 2 U and ˇ0 2 V , we have med.˛0; ˇ0; v/ D v.
Thus S.˛0; ˇ0/ 6D ;, as required. Finally, G is clearly an invariant set under the
product action of Aut.X/ on B.X/ � B.X/.

Remark 8.2. Since G is Aut.X/-invariant, any 	 -finite measure � on B.X/ � B.X/

which is quasi-invariant and ergodic under a discrete subgroup G and charges every
open set, must assign G full measure.

8.2. Boundary maximality via the strip criterion. We will now use our construc-
tion of strips in the complex, for every antipodal pair of points in B.X/, in order to
show that B.X/ is a maximal boundary, namely realizes the Poisson boundary.

First, recall that a probability measure � on (a countable group) G is called of finite
logarithmic moment if there exists a distance function jgj which is quasi isometric to
a word metric, and satisfies

P
g2G log jgj�.g/ < 1. This definition is independent

of the word metric chosen.
Recall also that the Avez entropy of a probability measure � on (a countable

group) G is defined by

H.�/ D lim
n!1

�1

n

X
g2G

��n.g/ log ��n.g/:

This quantity is equal to the �-entropy of the stationary measure � on the Poisson
boundary, see below.

The measure O� is defined by O�.g/ D �.g�1/, and it has finite logarithmic moment
and finite entropy if � does.

Now recall the following criterion for boundary maximality, due toV. Kaimanovich
[K], Thm. 6.5.

Theorem 8.3 (Strip criterion, [K]). Let � be a probability measure of finite first
logarithmic moment and finite entropy on a group G. Assume that .B; �/ is a .G; �/-
boundary, and . OB; O�/ is a .G; O�/-boundary. Assume there exists a measurable G-
equivariantmap defined on .B� OB; ��O�/, denoted by .˛; ˇ/ 7! �.˛; ˇ/ � G (viewed
as assigning non-empty strips to pairs of boundary points). If for � � O�-almost all
pairs .˛; ˇ/ the strip �.˛; ˇ/ has polynomial growth (with respect to the distance
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function above), then both .B; �/ and . OB; O�/ are maximal boundaries, namely they
realize the Poisson boundaries of .G; �/ and .G; O�/.

We will use this criterion to prove:

Theorem 8.4. Let X be an irreducible non-Euclidean CAT.0/ cube complex. Let G

be a discrete subgroup of Aut.X/ acting properly and co-compactly on the complex.
Let � be a probability measure on G of finite logarithmic moment and finite entropy,
whose support generates G as a semigroup. Denote the unique �-stationary measure
on B.X/ by �. Then .B.X/; �/ is a compact metric model of the Poisson boundary
of .G; �/.

Proof. Any stationary measure is G-quasi-invariant, and hence its support is a closed
non-empty G-invariant set. In Theorem 5.8 we have shown that the G-action on
B.X/ is minimal, and hence the support of a quasi-invariant measure coincides with
B.X/. In particular, the measure of every non-empty open set is strictly positive.

Consider now the Aut.X/-equivariant map .˛; ˇ/ 7! �.˛; ˇ/ from B.X/�B.X/

to strips in X . We first claim that for a set of pairs .˛; ˇ/ 2 B.X/ � B.X/ of � � O�-
measure 1, the strips are actually subsets of the complex, namely that the set of G of
antipodal pairs has full � � O�-measure.

The action of the product of the Poisson boundaries associated with � and O� is
ergodic, in general (see [K]), and thus so is the action on any of its G-factor spaces.
By Theorem 5.1 the space B.X/ is a .G; �/-boundary and thus .B.X/; �/�.B.X/; O�/

is a factor of the product of the Poisson boundaries, so that � � O� on B.X/ � B.X/

is ergodic.
The set G of antipodal pairs is invariant under the G-action on B.X/�B.X/, and

clearly has positive � � O�-measure, since it is non-empty and open, and the product
measure charges every non-empty open set. By ergodicity, G has full � � O�-measure.

We now pass to strips in the group G itself rather than in the complex. To that
end, note that by co-compactness of G, it has only finitely many orbits of vertices
in X , and let us call the different orbits “types” denoted by t1; : : : ; tr , and choose a
vertex in each orbit v1; : : : ; vr . For each antipodal pair .˛; ˇ/, the strip �.˛; ˇ/ � X

decomposes to a disjoint union of vertices belonging to these types. Clearly there
exist at least one type (say t1) such that for a positive measure subset of antipodal
pairs, the associated strip contains vertices of type t1. But the latter set of antipodal
pairs is clearly G-invariant, and so necessarily has full measure. We now define the
map .˛; ˇ/ 7! � 0.˛; ˇ/ � G to strips in the group as follows. S 0.˛; ˇ/ is defined to
be the union of all the cosets gStG.v1/, as g ranges over all group elements with the
property that gv1 is in �.˛; ˇ/, namely gv1 is a vertex of type t1 in that strip. The map
is clearly equivariant, and the stability group StG.v1/ is finite. Now �.˛; ˇ/ � X has
polynomial growth since it is contained in an interval and thus embeds in Rd [BC+].
The polynomial growth is with respect to the `1-metric on vertices in X , and hence
� 0.˛; ˇ/ has polynomial growth with respect to a distance function quasi-isometric
to a word metric on G. The desired result now follows from Theorem 8.3.



692 A. Nevo and M. Sageev

9. Entropy and the Poisson boundary

Theorem 8.4 establishes, in particular, that for measures � on G with finite logarithmic
moment, B.X/ gives rise to a compact metric uniquely-stationary model of the Poison
boundary. In the present section we would like to demonstrate that the existence of
such a model for the Poisson boundary is a significant fact, which has important
consequence for the boundary theory of a countable group G.

First let us recall the definition of �-entropy of a standard Borel .G; �/-space (see
[NZ1] for a detailed discussion).

Definition 9.1. The �-entropy of a .G; �/-space .B; �/ is defined for a countable
group G by

h�.B; �/ D
X
g2G

�.g/

Z
B

� log
dg�1�

d�
.b/ d�.b/

As noted in §8, theAvez entropy H.�/ coincides with the �-entropy of the Poisson
boundary. Furthermore, this value constitutes the largest value that the �-entropy can
assume, ranging over all .G; �/-spaces .B; �/. Recall that the Poisson boundary is
the unique (up to �-null sets) maximal standard Borel .G; �/-space which is a �-
boundary. Here maximality means that any other .G; �/-space is a factor of the
Poisson boundary, with the factor map uniquely determined, up to �-null sets. Recall
also that the action on the Poisson boundary is amenable in the sense of Zimmer (see
[Z2] for a detailed discussion).

Theorem 9.2 (Characterization of the Poisson boundary). Let G be a countable
group, � a probability measure whose support generates G as a semigroup, and
assume that there exists a compact metric G-space B which admits a unique �-
stationary measure � such that .B; �/ realizes the Poisson boundary of .G; �/. Then
every amenable .G; �/-space is ameasure-preserving extension of thePoisson bound-
ary of .G; �/, and thus has maximal �-entropy. In particular, an amenable .G; �/-
boundary space is (essentially) isomorphic to the Poisson boundary of .G; �/. Thus
the Poisson boundary is characterized as

(1) the unique minimal amenable .G; �/-space (i.e., it is a factor of every other
amenable .G; �/-space),

(2) the unique maximal .G; �/-boundary space (i.e., every other .G; �/-boundary
space is a factor of .B; �/),

(3) the unique .G; �/-boundary space which is amenable,

(4) the unique .G; �/-boundary space of maximal �-entropy.

Proof. (1) To prove the first characterization, let us begin by recalling that if .Y; �/

is any amenable action of G with � a quasi-invariant probability measure, and B

any compact metric G-space, then there exists a G-equivariant map 
 W Y ! P.B/,
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where P.B/ is the space of probability measures on B and 
 is defined �-almost
everywhere [Z3], 4.3.9. If � D �Y is �-stationary, its image under 
, denoted
by 
�.�Y /, is a �-stationary measure on P.B/. Now if .B; �/ is a �-proximal,
then the measure 
�.�Y / must take values in ı-measures on B almost surely [M],
Ch. VI, Cor. 2.10. Therefore 
 arises from a measurable G-equivariant factor map

0.Y; �Y / ! B . Clearly if the stationary measure � on B is unique, then 
0�.�Y / and
� must coincide, so that .B; �/ is indeed a factor of .Y; �Y / and thus .B; �/ is indeed
a minimal amenable space.

(2) The second characterization is well known to be valid for any Poisson bound-
ary.

(3) The third characterization follows from the fact that an amenable .G; �/-
boundary space is both a cover and a factor of the Poisson boundary .B; �/, and
hence admits an equivariant endomorphism. But for a .G; �/-boundary space such
an endomorphism is necessarily the identity [M], Ch. VI, Cor. 2.10. Thus the space
in question is isomorphic to .B; �/.

(4) Any .G; �/-boundary space is a factor of the Poisson boundary .B; �/, and its
�-entropy is bounded by h�.B; �/. Every proper factor of .B; �/ has strictly smaller
�-entropy, since otherwise the Poisson boundary would be a measure-preserving ex-
tension of this factor space (see [NZ1]). This is not possible, because every bounded
function on .B; �/ is determined uniquely by its harmonic transform, so that .G; �/-
boundaries do not admit relatively-measure-preserving factors, as these produce dis-
tinct functions with the same harmonic transform.
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