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finite simple groups
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Abstract. We prove that if G is a finite simple group of Lie type and S is a subset of G of size
at least two, then G is a product of at most c log jGj= log jS j conjugates of S , where c depends
only on the Lie rank of G. This confirms a conjecture of Liebeck, Nikolov and Shalev in the
case of families of simple groups of bounded rank. We also obtain various related results about
products of conjugates of a set within a group.
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1. Introduction

Our starting point is the following conjecture of Liebeck, Nikolov and Shalev [13].

Conjecture 1.1. There exists an absolute constant c such that if G is a finite simple
group and S is a subset of G of size at least two, then G is a product of N conjugates
of S for some N � c log jGj=logjS j.

Note that we must have N � log jGj=logjS j by order considerations, and so the
bound above is best possible up to the value of the constant c.

The conjecture is an extension of a deep (and widely applied) theorem of Liebeck
and Shalev [16]. Indeed, the main result of [16] states that the above conjecture
holds when S is a conjugacy class or, more generally, a normal subset (that is, a
union of conjugacy classes) of G (we state this result formally in Theorem 5.1). In
[13] Conjecture 1.1 is also proved for sets of bounded size.

Somewhat earlier Liebeck, Nikolov and Shalev [11] posed the following (still
unproved) weaker conjecture.
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Conjecture 1.2. There exists an absolute constant c such that if G is a finite simple
group and H is any nontrivial subgroup of G, then G is a product of N conjugates
of H for some N � c log jGj= log jH j.

Conjecture 1.2 itself represents a dramatic generalization of a host of earlier work
on product decompositions of finite simple groups, most of which prove Conjec-
ture 1.2 for particular subgroups H . For instance, in [15] it is proved that a finite
simple group of Lie type in characteristic p is a product of 25 Sylow p-subgroups
(see also [1] for a recent improvement from 25 to 5).

Further positive evidence for Conjecture 1.2 is provided by [12], [17] and [18]
(when H is of type SLn). Certain results of this type are essential to prove that finite
simple groups can be made into expanders (see the announcement [8]).

The main purpose of this note is to prove Conjecture 1.1 for finite simple groups
of Lie type of bounded rank. Put another way, we prove a version of Conjecture 1.1
in which the constant c depends on the rank of the group G. Our main result follows.

Theorem 1.3. Fix a positive integer r . There exists a constant c D c.r/ such that if
G is a finite simple group of Lie type of rank r and S is a subset of G of size at least
two, then G is a product of N conjugates of S for some N � c log jGj=logjS j.

In [13] a weaker bound of the form N � .log jGj=logjS j/c.r/ is obtained. Also,
in [11], Theorem 1.3 is proved when S is a maximal subgroup of G.

As a byproduct of our proof we obtain two results of independent interest. In
these results, and throughout the paper, we denote by Sg the conjugate g�1Sg of a
subset S of a group G by an element g of G, and, given a positive integer m, we
denote by Sm the product SS : : : S of m copies of S . There should be no confusion
between these two similar notations because the type of the exponent will always be
given.

Theorem 1.4. Fix a positive integer r . There exists a positive constant " D ".r/ such
that if G is a finite simple group of Lie type of rank r and S is a subset of G then
either jSSg j � jS j1C" for some g in G or S3 D G.

The next theorem is similar, but concerns only normal subsets, in which case we
obtain absolute constants.

Theorem 1.5. There exists " > 0 and a positive integer b such that if G is a finite
simple group and S is a normal subset of G then either jS2j � jS j1C" or Sb D G.

Theorem 1.5 relates to a result of Shalev, Theorem 7.4 of [27], which we strengthen
in Section 5.

Note that Theorem 1.5 would not be true were we to consider sets that are not
normal. For instance, take S to be a maximal parabolic subgroup in G D PSLn.q/
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with index qn�1
q�1

. Clearly Sb D S for all positive integers b; on the other hand, for

any positive number ", and any g in G, we have jSSg j � jGj < jS j1C" once n is
large enough. We conclude that neither of the given options can hold in this more
general situation.

Theorems 1.4 and 1.5, and the remarks of the previous paragraph, lead us to make
the following conjecture.

Conjecture 1.6. There exists " > 0 and a positive integer b such that if S is a subset
of a finite simple group G, then for some g in G either jSSg j � jS j1C" or G is the
product of b conjugates of S .

Note that, by Theorems 1.3 and 1.4, Conjectures 1.1, 1.2 and 1.6 hold for all
exceptional simple groups. Note too that all three conjectures could be phrased in
terms of translates of the set S , rather than conjugates. This follows from the simple
fact that a product of translates of S is equal to a translate of a product of conjugates
of S . Similarly a product of conjugates of a translate of S is equal to a translate of a
product of conjugates of S , a fact which will be useful in its own right.

It is possible that Conjecture 1.6 actually holds with b D 3. When b D 2

counterexamples are given by large non-real conjugacy classes (see the final section
of [27] for some related issues). Further counterexamples are given by certain families
of maximal subgroups (see for example Corollary 2 of [14], which states that large
enough simple unitary groups of odd dimension cannot be decomposed into the
product of two proper subgroups).

We derive Theorems 1.3 and 1.4 as consequences of the recent Product Theorem
for finite simple groups, proved independently by Breuillard, Green and Tao [3],
and Pyber and Szabó [23] (see Section 2). Theorem 1.5 follows from a version of
Conjecture 1.1 for normal subsets due to Liebeck and Shalev [16] and an extension of
Plünnecke’s theorem, Theorem 6.27 of [30], to normal subsets of nonabelian groups
(see Section 4).

In the final section we use a result of Petridis [20] to derive an analogue of the
classical Doubling Lemma, a special case of Plünnecke’s theorem. We refer to the
new result as the Skew Doubling Lemma; it can be thought of as a nonabelian version
of the classical Doubling Lemma. The Skew Doubling Lemma is applied to prove that
Conjecture 1.1 implies Conjecture 1.6. In the other direction, a standard argument
(similar to the proof of Corollary 2.8) shows that Conjecture 1.6 implies that a simple
group G is a product of .log jGj=logjS j/c conjugates of S , a weaker version of
Conjecture 1.1.

2. Proof of Theorem 1.4

We begin with a result of Petridis, Theorem 4.4 of [20], which extends work of
Helfgott, Ruzsa and Tao [7], [25], [26], [29]. It relates to the Doubling Lemma for
abelian groups, which we return to in Section 4.
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Lemma 2.1. Let S be a finite subset of a group G. Suppose that there exist positive
numbers J and K such that jS2j � J jS j and jSgS j � KjS j for each g in S . Then
jS3j � J 7KjS j.

Suppose now that G is a finite group. Let minclass.G/ denote the size of the
smallest nontrivial conjugacy class in G. Given a subset S of G that is neither empty
nor the trivial group, we denote by minclass.S; G/ the size of the smallest nontrivial
conjugacy class in G that intersects S . Finally, let mindeg.G/ denote the dimension
of the smallest nontrivial complex irreducible representation of G.

As observed in [19], a result of Gowers [4] implies the following.

Proposition 2.2. Let G be a finite group and let k D mindeg.G/. Take S � G such
that jS j � jGj

3
p

k
. Then G D S3.

Now let G D Gr.q/ be a simple group of Lie type of rank r over Fq , the finite
field of order q. We need some facts about G. The first result can be deduced, for
example, from Tables 5.1 and Theorem 5.2.2 of [9].

Proposition 2.3. We have qr � minclass.G/ < jGj � q8r2
.

Proposition 2.4. Let k D mindeg.G/. Then jGj < k8r2
.

Proof. We use the lower bounds on projective representations given by Landazuri
and Seitz [10], allowing for the slight errors corrected in Table 5.3.A of [9]. For
G ¤ PSL2.q/, we see that k � q, and so the result follows from Proposition 2.3.

Now suppose that G D PSL2.q/; then jGj < q3 and r D 1. For q � 5 and
q ¤ 9, k D 1

.2;q�1/
.q � 1/ and it is clear that k8 > q3. When q D 4 we have k D 2

and the result follows; likewise when q D 9 we have k D 3 and the result follows.

The next result was obtained independently in [5] and [28].

Proposition 2.5. Each finite simple group G is 3
2
-generated; that is, for any nontrivial

element g of G there exists h in G such that hg; hi D G.

Corollary 2.6. Let G be a finite simple group and let S be a subset of G of size at
least two. Then some translate of S generates G.

Proof. Let u and v be distinct elements of S . Since G is 3
2

-generated, there exists
x in G such that hvu�1; xi D G. Therefore the translate Su�1x, which contains x

and vu�1x, generates G.

The next result, the Product Theorem, is our primary tool for proving Theorems 1.3
and 1.4. Versions of this result can be found in [3], [23]. It was first proved by Helfgott
for the groups PSL2.p/ and PSL3.p/ in [6], [7].
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Theorem 2.7. Fix a positive integer r . There exists a positive constant � D �.r/

such that, for G a finite simple group of Lie type of rank r and S a generating set of
G, either S3 D G or jS3j � jS j1C�:

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Given a positive integer r , let � be the constant from Theo-

rem 2.7. Let L D 8
2
� .

Suppose first that jS j � L. The result holds trivially if S D G or jS j � 1, so
let us assume that S ¤ G and jS j > 1. We will show that there is an element g

such that jSSg j � jS j C 1. By replacing S with a translate, we may assume that
S contains the identity. Therefore S2 � S . If the inequality jS2j � jS j C 1 does
not hold then instead jS2j D jS j, so S2 D S , and hence S is a group. It is not
a normal subgroup (because G is simple) so there are elements x and g in G with
x 2 Sg but x … S . Then SSg � S [ fxg, so jSSg j � jS j C 1, as required. Let
"1 D log.L C 1/=logL � 1. One can check that jS j C 1 � jS j1C"1 , and hence there
is an element g of G such that jSSg j � jS j1C"1 .

Suppose now that jS j > L. Since G is 3
2

-generated, there exists an element g of
G such that the set T D S [ fgg generates G. We can apply Theorem 2.7 to T to
conclude that either jT 3j � jS j1C� or T 3 D G. We consider each possibility in turn.

Suppose that jT 3j � jS j1C� . Observe that T 3 is the union of the eight sets
SSS , SSg, SgS , gSS , Sgg, gSg, ggS and fgggg. Therefore at least one of the

eight sets is larger than 1
8
jS j1C� . We assumed earlier that jS j > 8

2
� , from which it

follows that 1
8
jS j1C� > jS j1C �

2 . Therefore one of the first seven of the eight sets

is larger than jS j1C �
2 . All of these seven sets except SSS are equal to a translate

of the product of one or two conjugates of S , so if any of these have size at least
jS j1C �

2 then jSShj � jS j1C �
2 for some element h of G. If, on the other hand,

jSSS j > jS j1C �
2 , then Lemma 2.1 (with J D K D jS j �

16 ) implies that there is an
element h of S [ f1g with jSShj � jS j1C �

16 . Therefore in both cases there is an
element h with jSShj � jS j1C"2 , where "2 D �

16
.

The remaining possibility is that T 3 D G. If S3 ¤ G then Proposition 2.2
implies that jS j � jGj= 3

p
k where k D mindeg.G/. But Proposition 2.4 gives that

jS j � jGj1� 1

24r2 , and this implies, in particular, that jT 3j D jGj � jS j1C 1

24r2 . The
argument of the previous paragraph applies again, to give a positive constant "3 that
depends only on r such that jSShj � jS j1C"3 for some element h.

Let " be the minimum of "1, "2 and "3; this depends only on r . We have shown
that if S3 ¤ G then there is an element g of G with jSSg j � jS j1C". This completes
the proof.

Note that we can immediately deduce the following result of [13] (which we will
use later).
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Corollary 2.8. Fix a positive integer r . There exists a constant d such that if G is a
finite simple group of Lie type of rank r and S is a subset of G of size at least two,
then G is a product of N conjugates of S for some N � 3.log jGj=logjS j/d .

Proof. Let " be the constant from Theorem 1.4, and define d D log1C" 2. Let M be

the integer part of log1C"
log jGj
log jS j . Theorem 1.4 implies that G is the product of 3 � 2M

conjugates of S , and

3 � 2M � 3

� log jGj
log jS j

�d

:

The results in this section motivate a common generalisation of the Product The-
orem (that is, Theorem 2.7) and Conjecture 1.6 for groups of Lie type.

Conjecture 2.9. There exists " > 0 and a positive integer b such that the following
statement holds. For each positive integer r there is a positive integer c.r/ such that
if G is a finite simple group of Lie type of rank r and S a generating set of G, then
either jSSg j � jS j1C" for some g 2 Sc.r/, or else G is the product of b conjugates
Sg1 ; : : : ; Sgb , where g1; : : : ; gb 2 Sc.r/.

It would be interesting to prove Conjecture 1.6 in the case when S is a subgroup
of G. A rather general qualitative result in this direction was obtained by Bergman
and Lenstra [2]. They show that if H is a subgroup of a group G satisfying jHH g j �
KjH j for all g in G, then H is “close to” some normal subgroup N of G, in the sense
that jH W H \ N j and jN W H \ N j are both bounded in terms of K.

3. Proof of Theorem 1.3

Given an element g of a group G we define

gG D fgh j h 2 Gg;
and, for a subset Z of G,

ZG D fZh j h 2 Gg:
We begin the proof of Theorem 1.3 with a simple combinatorial lemma, which enables
us to deal with “small” sets.

Lemma 3.1. Let S be a subset of size at least two in a finite group G . There exist a
positive integer m and a set of m conjugates of S whose product X satisfies

jX j D jS jm �
p

minclass.SS�1; G/

jS j �
p

minclass.G/

jS j :
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Proof. Define X1 D S and, if possible, choose an element g of G such that X�1
1 X1 \

gSS�1g�1 D f1g. Define X2 D X1gSg�1. Notice that if xL; xR 2 X1; sL; sR 2
S , and xLgsLg�1 D xRgsRg�1, then x�1

R xL D gsRs�1
L g�1. Hence x�1

R xL 2
X�1

1 X1 \gSS�1g�1, and so xL D xR and sL D sR. It follows that jX2j D jX1jjS j.
Now repeat this process with X2 replacing X1, and so on.

The process terminates with a set X of size jS jm, which is a product of m conju-
gates of S , and such that jX�1X \ gSS�1g�1j � 2 for all g in G.

Let T be a set of smallest possible size that intersects every conjugate of Z D
SS�1 nontrivially, and write t D jT j. Let n D jG W NG.Z/j, the number of G-
conjugates of Z. By the pigeonhole principle there exists an element g of Z that lies
in at least n

t
different conjugates of Z. Let us count the set

� D f.g0; Z0/ 2 gG � ZG j g0 2 Z0g
in two different ways.

First, since every conjugate of g lies in the same number of conjugates of Z, we
know that jgG jn

t
� j�j: On the other hand it is clear that j�j � njZj. Putting these

together we obtain that jgG jn
t

� njZj. Therefore

t � jgG j
jZj � minclass.SS�1; G/

jS j2
and using jX j2 � jX�1X j � t our statement follows.

Remark 3.2. Lemma 3.1 and Proposition 2.3 imply that if G is a simple group of
Lie type of rank r and S is a subset of size less that qr=4, then we have jSSg j D jS j2
for some g in G.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. As observed above, a product of conjugates of a translate of S

is equal to the translate of a product of conjugates of S . By Corollary 2.6, a translate
of S generates G. Therefore we assume that S generates G.

Suppose that jS j � minclass.G/1=4; then jGj < jS j32r by Proposition 2.3. Now
Corollary 2.8 implies that G is a product of fewer than 3.32r/d conjugates of S . The
theorem holds in this case with c D 3.32r/d .

Suppose instead that jS j < minclass.G/1=4. By Lemma 3.1 we can choose
conjugates S1; : : : ; Sm of S such that the set X D S1 : : : Sm satisfies jX j D jS jm
and

jX j �
p

minclass.G/

jS j � minclass.G/1=4:

It follows from the first part of the proof that G is a product of fewer than
c log jGj=logjX j conjugates of X . Therefore G is a product of fewer than
mc log jGj=logjX j conjugates of S and, since log jX j D m log jS j, the result fol-
lows.
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4. Plünnecke–Ruzsa estimates for nonabelian groups

The following basic result in additive combinatorics is due to Plünnecke [21], [22]
(see also Section 6.5 of [30]).

Theorem 4.1. Let A and B be finite sets in an abelian group G and suppose that
jABj � KjAj where K is a positive number. Then for any positive integer m there
exists a nonempty subset X of A such that

jXBmj � KmjX j:
In particular, jB2j � KjBj implies that jBmj � KmjBj for m D 1; 2; : : : .

The last statement (“In particular…”) is called the Doubling Lemma; it does
not hold for nonabelian groups, however, as we saw in Lemma 2.1, there are useful
analogues in this context due to Helfgott, Petridis, Ruzsa and Tao [7], [20], [25], [26],
[29]. Petridis also proved the following lemma, which is Proposition 2.1 of [20].

Lemma 4.2. Let X and B be finite sets in a group. Suppose that

jXBj
jX j � jZBj

jZj
for all Z � X . Then, for all finite sets C ,

jCXBj � jCX j jXBj
jX j :

Using this lemma we can extend Plünnecke’s theorem to normal subsets of non-
abelian groups. The statement and proof mimic Theorem 3.1 of [20], which is a
stronger version of Theorem 4.1.

Theorem 4.3. Let A and B be finite sets in a group G with B normal in G. Suppose
that jABj � KjAj for some positive number K. Then there exists a nonempty subset
X of A such that

jXBmj � KmjX j
for m D 1; 2; : : : . In particular, jB2j � KjBj implies that jBmj � KmjBj for
m D 1; 2; : : :

Proof. We proceed by induction on m. First choose X � A such that

jXBj
jX j � jZBj

jZj
for all Z � A. Then

jXBj � jX j jABj
jAj � KjX j;

so the result is true for m D 1.
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Now suppose that jXBmj � KmjX j for some positive integer m. Normality of
B implies that jXBmC1j D jBmXBj, and then Lemma 4.2 gives

jXBmC1j D jBmXBj � jBmX j jXBj
jX j � KmC1jX j:

This verifies the inductive step, and completes the proof of the theorem.

Following an argument of Petridis (see the proof of Theorem 1.2 of [20]) we
observe that the Plünnecke–Ruzsa estimates (Corollary 6.29 of [30]) can also be
generalised using Theorem 4.3.

Corollary 4.4. Suppose that A and B are subsets of a group G, with B normal in
G, and jABj � KjAj. Then

jBmB�nj � KmCnjAj
for all positive integers m and n.

Theorem 4.3 suggests that certain techniques in additive combinatorics concerning
subsets of abelian groups can be applied to normal subsets of nonabelian groups. The
next example – which is a consequence of Plünnecke’s theorem, and generalises
Corollary 2.4 of [25] – supports this suggestion.

Theorem 4.5. Let A and B be subsets of a group G with B normal in G, and suppose
that jABj j � KjAj for some positive integer j . If m � j then

jBmj � K
m
j jAj:

Sketch of proof. We use the notation of Section 6.5 of [30]. Construct the m-tuple of
directed bipartite graphs

.GA;B ; GAB;B ; : : : ; GABm�1;B/:

This m-tuple is a Plünnecke graph. Now Plünnecke’s theorem, Theorem 6.27 of [30],
yields the result immediately.

5. Proof of Theorem 1.5

In this section we prove Theorem 1.5 and generalise some related results of Shalev.
We will need the following theorem of Liebeck and Shalev [16].

Theorem 5.1. There exists an absolute positive constant a such that if G is a finite
simple group and S is a nontrivial normal subset of G, then G D Sm, where m �
a

log jGj
log jS j .
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Proof of Theorem 1.5. Let a be the absolute constant from Theorem 5.1. Choose a
positive integer b larger than 2a. Suppose first that jS j � pjGj. Then Theorem 5.1
implies that G D Sm where

m � a log jGj
log jS j � 2a � b;

and hence Sb D G.
Now suppose that jS j � pjGj. Then

log jS j
a log jGj � log jS j

2a.log jGj � log jS j/ D log jS j
2a.log.jGj=jS j/ :

Theorem 5.1 implies, once again, that for some m � a log jGj
log jS j we have G D Sm.

Hence, applying Theorem 4.3 to the normal subset S , we see that

jS2j
jS j �

� jSmj
jS j

� 1
m �

� jGj
jS j

� log jSj

a log jGj �
� jGj

jS j
� log jSj

2a.log.jGj=jSj/ D jS j 1
2a � jS j 1

b ;

and this completes the proof.

The next result is a strengthening of Theorem 7.4 of [27].

Proposition 5.2. For every ı > 0 there exists " > 0 such that for any finite simple
group G and subsets A and B of G with B normal in G and jAj � jGj1�ı we have

jABj � jAj jBj":

Proof. We assume that A is nonempty and B is nontrivial, otherwise the result is
immediate.

By Theorem 5.1, G D Bm, where m � a
log jGj
log jBj . Let K D jABj=jAj. Then,

by Theorem 4.3, there is a nonempty subset X of A such that jXBmj � KmjX j. It
follows that

jGj D jBmj D jXBmj � KmjX j � KmjAj:
Since jAj � jGj1�ı and m � a

log jGj
log jBj we can rearrange this inequality to give

jGjı � K
a

log jGj

log jBj :

This is equivalent to jBj ı
a � K, which, with " D ı

a
, is the required result.

Proposition 5.2 constitutes the expansion result for B2 that was partially proven in
Proposition 10.4 of [27]. Furthermore it goes some way towards a proof of Conjec-
ture 10.3 of [27], although what remains is the more difficult part of the conjecture.

We can strengthen Proposition 10.4 of [27] in a different direction as follows.
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Proposition 5.3. For every ı > 0 and positive integer r there exists " > 0 such that
for any finite simple group G of Lie type of rank r and any set S � G such that
jS j � jGj1�ı , there exists g in G such that

jSSg j � jS j1C":

Proof. Given ı > 0 and a positive integer r , let " be the positive constant from
Theorem 1.4. Now choose any subset S of G such that jS j � jGj1�ı . According to
Theorem 1.4, either jSSg j � jS j1C" or else S3 D G. In the former case the result
is proven. In the latter case we apply Lemma 2.1 with J D K D .jS3j=jS j/1=10 to
deduce the existence of an element g of G with jSgS j > KjS j. Then, using S3 D G

and jGj � jS j1Cı , it follows that

jSgS j >

� jS3j
jS j

� 1
10 jS j � jS j1C ı

10 :

Provided that " is chosen to be smaller than ı
10

, the inequality jSSg j � jS j1C" is
again satisfied.

6. The Skew Doubling Lemma

The next result is another analogue of the Doubling Lemma for nonabelian groups,
which we call the Skew Doubling Lemma.

Lemma 6.1 (Skew Doubling Lemma). If S is a finite subset of a group G such that,
for some positive number K, jSSg j � KjS j for every conjugate Sg of S , then

jS1 : : : Smj � K14.m�1/jS j
for m D 1; 2; : : : , where each of S1; : : : ; Sm is any conjugate of either S or S�1.

To prove Lemma 6.1 we will use Lemma 2.1 and the following result, Ruzsa’s
triangle inequality [24] (see also Section 2.3 of [30]).

Lemma 6.2. Let U , V and W be finite subsets of a group G. Then

jV W �1j
jU j � jU V �1j

jU j
jU W �1j

jU j :

First we prove a special case of Lemma 6.1.

Lemma 6.3. Let S be a finite subset of a group G. Suppose that K is a positive
number such that jSSg j � KjS j for each g in G. Then jS1S2S3j � K14jS j, where
each of S1, S2 and S3 is any conjugate of either S or S�1.
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Proof. Choose elements a and b of G. We can apply Lemma 2.1 with J D K to
obtain

jS3j � K8jS j:
Using this inequality and Lemma 6.2 (with U D S�1, V D SS and W D S ) we
obtain

jSSS�1j
jS j � jS�1S�1S�1j

jS j
jS�1S�1j

jS j D jSSS j
jS j

jSS j
jS j � K9:

Using this inequality and Lemma 6.2 (with U D S , V D S�1 and W D SS�1) we
obtain

jS�1SS�1j
jS j � jSS j

jS j
jSSS�1j

jS j � K10:

Using this inequality and Lemma 6.2 (with U D S�1, V D SS�1 and W D Sa) we
obtain

jSS�1a�1S�1j
jS j � jS�1SS�1j

jS j
jS�1a�1S�1j

jS j � K11:

Using this inequality and Lemma 6.2 (with U D S , V D SaS and W D S�1b�1)
we obtain

jSaSbS j
jS j � jSS�1a�1S�1j

jS j
jSbS j

jS j � K12: (6.1)

Using this inequality and Lemma 6.2 (with U D S , V D S�1, W D S�1b�1S�1a�1)
we obtain

jS�1aSbS j
jS j � jSS j

jS j
jSaSbS j

jS j � K13: (6.2)

Finally, using this inequality and Lemma 6.2 (with U D S�1, V D S�1aSb and
W D S ) we obtain

jS�1aSbS�1j
jS j � jS�1b�1S�1a�1S j

jS�1j
jS�1S�1j

jS�1j D jS�1aSbS j
jS j

jSS j
jS j � K14:

(6.3)
Equations (6.1), (6.2) and (6.3) imply that, given any conjugates S1, S2 and S3 of
either S or S�1, we have jS1S2S3j=jS j � K14, as required.

We need the following proposition.

Proposition 6.4. If A and B are finite subsets of a group G such that, for some
positive number K, jBBg j � KjBj for every conjugate Bg of B , then

jAB1B2j � K14jAB3j;
where each of B1, B2 and B3 is any conjugate of B or B�1.
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Proof. By Lemma 6.3 we have

jB�1
3 B1B2j
jB3j � K14;

where each of B1, B2 and B3 is any conjugate of B or B�1. Applying Lemma 6.2
with U D B�1

3 , V D A and W D B�1
2 B�1

1 we obtain

jAB1B2j
jAB3j D jAB1B2j

jB�1
3 A�1j � jB�1

3 B1B2j
jB3j � K14;

as required.

We can finally prove Lemma 6.1.

Proof of the Skew Doubling Lemma. The result holds trivially when m D 1 and m D
2. Suppose that m � 3. Apply Proposition 6.4 with B D S , A D S1 : : : Sn�2,
B1 D B3 D Sn�1 and B2 D Sn to see that

jS1 : : : Snj
jS1 : : : Sn�1j � K14

for n D 3; 4; : : : ; m. It follows that

jS1 : : : Smj
jS j D

� jS1 : : : Smj
jS1 : : : Sm�1j

�� jS1 : : : Sm�1j
jS1 : : : Sm�2j

�
: : :

� jS1S2S3j
jS1S2j

�� jS1S2j
jS1j

�

� .K14/m�2K

� K14.m�1/;

as required.

Using the Skew Doubling Lemma we can derive Conjecture 1.6 from Conjec-
ture 1.1. The proof is similar to the proof of Theorem 1.5.

Proof that Conjecture 1.1 implies Conjecture 1.6. Let c be the absolute constant from
Conjecture 1.1. We define b to be a positive integer greater than 2c, and " D 1=.28c/.
Suppose first that jS j � pjGj. Then Conjecture 1.1 implies that G D S1 : : : SN , for
conjugates S1; : : : ; SN of S , where

N � c log jGj
log jS j � 2c < b;

and hence G is certainly the product of b conjugates of S .
Now suppose that jS j � pjGj. Then

log jGj � log jS j
c log jGj � log jS j � log jGj � log jS j

c log jGj � 1

2c
:
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In particular observe that

c log jGj � log jS j � 2c.log jGj � log jS j/ D 2c log.jGj=jS j/:

Conjecture 1.1 implies, once again, that for some N � c log jGj
log jS j we have G D

S1 : : : SN , for conjugates S1; : : : ; SN of S . Using the Skew Doubling Lemma,
Lemma 6.1, we see that there is an element g of G for which

jSSg j
jS j �

� jS1 : : : SN j
jS j

� 1
14.N �1/

�
� jGj

jS j
� log jSj

14.c log jGj�log jSj/

�
� jGj

jS j
� log jSj

28c.log.jGj=jSj//

� jS j 1
28c ;

and this completes the proof.
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